
Topological Galleries: A High Level User
Interface for Topology Controlled Volume
Rendering

Brian MacCarthy, Hamish Carr and Gunther H. Weber

Abstract Existing topological interfaces to volume rendering are limited by their re-
liance on sophisticated knowledge of topology by the user. We extend previous work
by describing topological galleries, an interface for novice users that is based on the
design galleries approach. We report three contributions: an interface based on hier-
archical thumbnail galleries to display the containment relationships between topo-
logically identifiable features, the use of the pruning hierarchy instead of branch
decomposition for contour tree simplification, and drag-and-drop transfer function
assignment for individual components. Initial results suggest that this approach suf-
fers from limitations due to rapid drop-off of feature size in the pruning hierarchy.
We explore these limitations by providing statistics of feature size as function of
depth in the pruning hierarchy of the contour tree.

1 Introduction

The overall goal of scientific visualisation is to provide useful insight into existing
data. As visualisation techniques have become more complex, so have the interfaces
for controlling them. In cases where the interface has been simplified, it has often
been at the cost of the functionality of the program. Thus, while expert users are
capable of using state of the art technology, novice users who would otherwise have
uses for this technology are restricted by unintuitive interfaces.

Topology-based volume rendering, while powerful, is difficult to apply success-
fully. This difficulty is due to the fact that the interface used to design transfer func-

Brian MacCarthy
University College Dublin, Belfield, Dublin 4, Ireland, e-mail: brian.maccarthy@ucd.ie

Hamish Carr
University of Leeds, Woodhouse Lane, Leeds LS2 9JT, England e-mail: h.carr@leeds.ac.uk

Gunther H. Weber
Lawrence Berkeley Nat. Lab, 1 Cyclotron Road, Berkeley, CA 94720 e-mail: GHWeber@lbl.gov

1



2 MacCarthy, Carr and Weber

tions requires detailed topological knowledge and experience as well as experience
in transfer function design. Expanding the utility of this approach therefore requires
development of interfaces where topological skill is not required.

This paper introduces an alternative interface for topological visualisation, with
the intent of increasing the options for user-friendly interaction with topological
abstractions. This goal is achieved by combining existing state-of-the-art work on
topological visualisation with the design galleries approach for exploring feature
spaces. The resulting approach organises topological features in a file system-style
visual hierarchy for display purposes. Within this hierarchy, thumbnail renderings
represent individual features, while transfer functions are represented iconically and
can be applied to individual features via drag-and-drop.

While this interface is technically successful, it is still limited by scaling issues,
as the reduction of individual features to thumbnails makes it difficult for a user to
interpret individual features, and some analysis and discussion is therefore provided
on the situations in which this style of interface may be successful.

2 Previous Work

Our interface is based on a simple observation—novice users can be expected to un-
derstand that one object may be contained inside another. Thus, by representing the
containment relationships implicit in topological analysis, it is possible to construct
an interface that is more approachable for novice users than the existing displays of
the contour tree itself.

This approach in turn requires indicating the topological features visually to the
user—a requirement which leads in the direction of previous work on design gal-
leries, where the space of possible visualisations is shown to the user. Thus, un-
derpinning the contributions in this paper are three distinct areas of previous work:
work on design galleries, on direct volume rendering, and on topological visualisa-
tion using the contour tree. Of these topics, the one least dependent on the others is
volume rendering, and we accordingly discuss it first.

2.1 Volume Rendering

Direct volume rendering, one of the standard techniques for visualising scalar
datasets, is based on modelling the interaction of light passing through a translu-
cent medium of varying optical properties [18, 13, 15]. This is achieved in prac-
tice by defining a transfer function, which defines the optical properties at a given
point in space, typically taking one or more data values as input and assigning op-
tical properties accordingly. In general, the inputs may include isovalue [13], gra-
dient [13], moments of inertia [20], boundary information [7], curvature [11], or
feature scale [5]. The output is more straightforward, and consists of opacity and



Topological Galleries 3

colour, of which the latter must be chosen carefully [21] to ensure that different ob-
jects are distinguishable in the rendering. All of these properties, however, operate
globally, and the desire to apply different transfer functions to different regions led
to the combination of direct volume rendering with topological analysis based on
the contour tree.

2.2 Contour Tree

For a given data set, the contour tree tracks contours, i.e., the individual con-
nected components of an isosurface, and traces their evolution as they are created,
destroyed or split or merge. Since this information makes it possible to segment
data-dependent regions and visualise them with different properties, the use of the
contour tree for visualisation has been of increasing importance in the last decade.
However, it’s use dates back to 1963, when Boyell & Ruston [2] used it as a data
structure representing the nesting structure of contours on a topographic map—a
characterisation that we rely upon in this work.

While the contour tree served initially as an abstract data visualisation method [1],
subsequent work [3] also showed its utility for constructing a user interface that
supports interaction with individual contours of an isosurface. Further work [4, 17]
showed that the data needed to be simplified topologically in practice in order to be
useful for visualisation. In this work, the contour tree is recursively simplified by
identifying unimportant branches and removing them. Where this removal leaves a
degree two node in the tree, two edges can then be collapsed to build up longer and
longer paths through the tree that represent ever more important features—a pro-
cess referred to as branch decomposition [17]. As we will see below, however, the
branch decomposition is not necessarily ideal for visualisation, and we will discuss
an alternate breakdown—the pruning hierarchy.

An alternate approach to visualisation is to combine direct volume rendering with
contour tree analysis [8]. This combination was initially achieved by computing the
nesting depth of a given contour—i.e., the graph distance in the contour tree from a
defined exterior contour—and adding it as extra parameter to transfer function de-
sign [19]. However, while this method did assign distinct transfer functions to dif-
ferent regions, any two regions with the same isovalue and nesting depth still shared
the same transfer function. This approach was subsequently extended [23] to ap-
ply arbitrary transfer functions to individual branches in the branch decomposition.
However, assigning transfer functions to branches was performed manually and re-
quired the user to be deeply familiar with the contour tree. Zhou and Takatsuka [24]
attempted to resolve the user interface problem by assigning transfer functions auto-
matically, again based on nesting depth, but choosing different colours for different
branches based on existing work on harmonic colormaps [21]. While this interface
was substantially automated, it still required the user to understand the topology in
order to choose a suitable rule for opacity distribution throughout the tree.



4 MacCarthy, Carr and Weber

In summary, then, while topological tools have been established as significant vi-
sualisation techniques, their use requires either training in topology, fully automatic
methods, or user interfaces that do not require topological knowledge on the part of
the end user. This paper seeks to develop one such user interface.

2.3 Design Galleries

If we wish to use topology in a user interface, but do not wish to require the user
to be familiar with topological analysis, we must develop an interface based on a
metaphor with which they are familiar. One way to approach this is to show all the
features using an interface, such as design galleries [14], in which a user can choose
from thumbnails of potential visualisations. By doing so, the interface gives the user
advance information as to the probable result of parameter choices.

In the case of topological analysis, several interfaces have used variations on the
idea of visual result prediction. The Contour Spectrum [1] showed the contour tree
to give the user information as to the number of connected components in each
contour. The Safari Interface [10] plotted number of connected components for dif-
ferent time steps and isovalues and provided pop-up renderings of isosurfaces as
the mouse hovered over the plot. More recently, topological landscapes [22, 9, 16]
used a terrain as proxy representation for the contour tree. Related work on topo-
logical volume rendering[23] displayed the transfer function directly on the contour
tree. Although these topological interfaces exploit the ability to predict the results
of a visualisation, none of them shows the result directly. We therefore discuss the
conceptual basis for the Topological Galleries interface next.

3 User Interface

As stated earlier, volume rendering interfaces traditionally have been either very
simple to use, but provide only basic functionality, or have been very powerful, but
too complex for a non expert user to take advantage of the added functionality. The
overall goal of this project was to create an interface that contained all the function-
ality of these advanced interfaces, but present it so that a user with no concept of
topology would be able to understand.

In basing the interface on design galleries, we must first choose how we will se-
lect our thumbnails, then decide how they are to be laid out. Detailed choices must
then be made about the visual representation and the behaviour of the interface.
We have identified three major choices: the representation of the topology, the rep-
resentation of the transfer functions available, and visual feedback on the transfer
function constructed to date.

Topological Representation: We start by observing that the algorithm for sim-
plifying the contour tree naturally induces a hierarchical decomposition of the tree.



Topological Galleries 5

A

C

B
Fig. 1 The Topological Galleries Interface. At the left, a simple palette (B) for choosing colour and
type of transfer function. In the middle (A), a hierarchical set of thumbnails showing the pruning
hierarchy and the features currently assigned non-default transfer functions. On the right (C) the
current rendering. Note that all thumbnails are linked to render from the same viewpoint as the
current rendering.

Since this hierarchy corresponds to merging successively larger features of the un-
derlying data, it is a natural choice to display the features according to this hierarchy,
as shown in panel (A) of Figure 1. We will discuss in Sec. 4 why we chose pruning
hierarchy rather than branch decomposition: here, we merely point out that either is
possible.

Since the contour tree usually encapsulates the visual nesting hierarchy of fea-
tures, previous interfaces [8, 19, 24] have already exploited this for transfer function
design. However, although this hierarchy was used internally, it was not part of the
user interface, except in the form of the nesting depth (an integer). In our interface,
we show this hierarchy explicitly, thus revealing to the user the nesting relationships
between objects at different levels of detail.

Moreover, the task of presenting a hierarchy is one that has already been used in
interfaces, in particular for presenting hierarchy in graphic user interfaces. We there-
fore exploit the common interface metaphor of collapse triangles, where a small tri-
angle or other icon is shown where more detail exists, with the triangle orientation
dependent on whether the details are being shown. Clicking on a collapse triangle
then allows expansion or contraction of a subtree, as shown in Figure 2.

Transfer Function Selection: The second set of choices in the user interface re-
late not to the topological hierarchy, but to the transfer functions that can be applied
to features. In keeping with the desire to keep the interface minimalistic to avoid
overloading the user, we limit the transfer functions to six standard types which



6 MacCarthy, Carr and Weber

Fig. 2 Expanding a collapsed branch.

have proven useful in practice. These are shown in iconic form in panel (B) of Fig-
ure 1, and are discussed in more detail in Sec. 5. In addition, a further icon is shown
with the currently available colour for rendering.

To assign these standard transfer function types to a particular feature, we have
chosen to employ drag-and-drop assignment. For this, the user assigns different
types and colours simply by dragging the type or colour from the relevant box in
the tool palette in panel (B) (Figure 1) to the feature in panel (A). The changed
transfer function is then applied immediately in panel (C) to the region represented
by the thumbnail.

Visual Feedback: Once the user has assigned transfer functions to individual
features, it is desirable to provide the user with visual feedback on the choices made
to date. This is accomplished by showing a halo around each feature in the hierarchy,
as shown in Figure 1. This halo is shown in the colour of the transfer function, and
could be extended to indicate the type of transfer function as well.

In addition to these decisions, we recognised that the thumbnails in the topolog-
ical gallery might be difficult to see, and provided pop-up enlargements of thumb-
nails whenever a user’s pointer hovers over a thumbnail. In practice, as we will see
below, the small scale of many features in the data prevents this from being as useful
as we had wished.



Topological Galleries 7

We note that many of the choices made in this interface could be modified: for
example, we chose not to propagate transfer functions to children except those be-
longing to the same branch as the parent in the branch decomposition. Similarly,
where no transfer function was assigned explicitly, we chose to apply a standard de-
fault transfer function of constant opacity grey. Both of these could easily be varied,
but would be unlikely to affect our conclusions that the interface was more limited
than we had originally hoped.

Thus, by using simple but meaningful operations, we simplify the operation of
the interface so that specialised knowledge is not required to use it. We next turn to
the choice of simplification methodology, as this is significant in practice.

4 Hierarchical Contour Trees

As we have seen in the previous section, the Topological Gallery interface is based
on exploiting the hierarchy induced by the simplification process. While the existing
work is primarily based on the branch decomposition, this is not necessarily the
optimal choice for interface purposes.

To illustrate this point, consider Figure 3. The upper half of this image shows the
branch decomposition of a contour tree for a small data set. As individual leaves are
removed, larger branches are built up, with the result that the major branch in this
case has three children. For larger contour trees, the number of children may become
arbitrarily large, with the result that the first level of children of the major branch
may have a branching factor too great to represent conveniently in an interface.
For example, the root branch in the fuel dataset from volvis.org has 42 immediate
children, while the root branch in the lobster dataset has 2,598 immediate children.

In addition to this, many of the direct children of a major branch are much smaller
than the parent. Thus, representing the branch decompositions tends to result in an
interface overloaded with small features at the expense of larger ones.

An additional problem arises in the treatment of the saddles. Each feature is
represented by a transfer function highlighting the saddle at which the feature ter-
minates. If the parent feature is not also shown at or near that saddle, it becomes
difficult to interpret the relationship between features.

In comparison, the pruning hierarchy addresses both of these problems. First, as
shown in the lower half of Figure 3, when a saddle is removed to create a major
branch, this removal effectively splits the tree into three parts: the new branch at the
saddle, and the two branches of the parent caused by splitting it at the saddle. Thus,
the hierarchy is ternary in this instance, and expands much less rapidly than the
branch decomposition. As a side effect, the features added here are strictly in order
of importance, resulting in an interface in which fewer small features are shown.

Finally, the pruning hierarchy explicitly represents all branches at each saddle,
easing the task of interpreting feature relationships.

However, while the pruning hierarchy is more suitable than the branch decom-
position for the purposes of this interface, it is not without its drawbacks, the most



8 MacCarthy, Carr and Weber

Fig. 3 In the upper illustration, we show a small example of the branch decomposition. In the
lower illustration, we show the same example as a pruning hierarchy. Note how the branch decom-
position leads to a very high branching factor unsuitable for interface purposes, while the pruning
hierarchy keeps the branching factor more manageable.

significant of which is the extra memory it consumes. Compared to a tree resulting
from the branch decomposition with n branches, the pruning hierarchy will result in
3(n−1)+1 branches, and will require correspondingly more memory.



Topological Galleries 9

5 Transfer Function Design

Our goal is to develop a high-level interface that supports transfer function design
based on topologically defined features without exposing users to an explicit rep-
resentation of the contour tree. Since we are hiding the contour tree representation
from the user, we also need to hide the explicit transfer function assigned to a branch.
If we examine the common goals of a transfer function, certain key concepts arise:
suppression of unwanted features, highlighting desired features and display of con-
text are among the most common uses of a transfer function. We also chose these
transfer function templates based on a review of related (topology-based) volume
rendering work [7, 24] and experience gained from designing transfer functions
manually for topology based volume rendering. With this in mind, it no longer be-
comes necessary for users to create their own transfer function on a per-branch basis.
Instead, they can select it from a predefined set of high level operations that can be
applied to gallery images and corresponds to a set of pre-defined transfer function
templates with adjustable parameters:

Constant Opacity assigns the same opacity to the entire branch and is mostly
used to suppress a branch entirely by assigning its opacity to zero.

Linear Ramp assigns a linear ramp of opacity from the extremum value of the
branch to the saddle. Ramping up from almost transparent to almost opaque is the
default choice for every branch in the interface as it frequently gives a good sense
of all the features contained in the branch. In certain situations reversing the ramp
will expose features which would otherwise be enclosed inside a larger feature.

Hat Shape assigns a linear ramp up from the saddle to the mid-point of the
branch, and back down to the extremum. This function’s primary purpose is to high-
light features in the larger branches which contain multiple structures

Sharp Spike emulates isosurface extraction by suppressing the entire branch
except for a user defined isovalue. In order to maintain solid surfaces, any value
within a threshold value is treated as the same isovalue.

Gaussian Curve uses the formula described in [12] to create a gaussian distri-
bution of opacity. It is used for highlighting features while retaining the context of
their relationship with other features.

6 Implementation

We implemented the Topological Galleries interface using a combination of the Qt
toolkit, Scott Dillard’s libtourtre contour tree library, and a custom OpenCL-based
topological volume renderer. As is customary for topological computation, we used
symbolic perturbation[6] to guarantee unique critical isovalues. These were later
removed from the contour tree as previously described[4].

Implementing the pruning hierarchy required adding two features to the libtourtre
library: creating the pruning hierarchy from the branch decomposition and updating
the vertex mapping. Since the branch decomposition algorithm in libtourtre stores



10 MacCarthy, Carr and Weber

the children of a branch in a list based on the order in which they were pruned, it is
simple to convert the branch decomposition into the pruning hierarchy.

Starting at the root branch and using a queuing system, we take the last child
added to the current branch, and then split the parent at the child’s saddle point
into two components, the upper and lower section. The remaining children of the
branch are added to these new branches according to whether their saddle points
are above or below the first saddle of the first child. Once the children have all been
reallocated, the two new branches are added as siblings to the first child of the parent
branch, then all three children are added to the queue of branches.

Whenever a branch is split, the vertex to branch mapping becomes invalid so it
must be updated. To do this each vertex in the dataset that maps to the parent branch
is reassigned to one of the children based on whether the data value at that vertex is
greater or less than the value at which the branch is split.

All code was implemented in C++ on an Apple Mac Pro with two 2.2GHz quad-
core processors, 6GB of main memory and an Nvidia GeForce 8800GT video card
with 512MB of video memory.

Since the thumbnails are generated from the same viewpoint as the main image,
we optimised thumbnail rendering with a simple observation: the main image is sim-
ply a larger-scale composite of the thumbnail renderings in the hierarchical gallery.
As the main image is updated for a given change in the transfer function, there-
fore, the same samples along the same ray can be used to recompute the thumbnail
rendering for the corresponding feature.

We chose not to implement pre-integration or acceleration structures, as the goal
of this work was proof-of-concept rather than to apply all possible optimisations.

7 Results

Our first test case is the hydrogen atom dataset. This dataset serves as a useful exam-
ple to illustrate the capabilities of the topological galleries to show nested features.
Figure 4 shows how the thumbnail view allows the user to assign different optical
properties to individual regions, but also reveals a weakness that we had not initially
anticipated. In this case, the yellow component in the centre of the rendering is of
crucial importance in understanding the phenomenon being studied. However, since
it is physically small, when it is rendered to a thumbnail, it becomes nearly invisible.
We will comment further on this below.

Figure 5 shows the topological gallery applied to the nucleon dataset. In this
instance, the interface made it relatively easy to set transfer functions visually, but
the small size of some of the components again reduced the utility of the interface.

While our interface potentially allows users without a background in topology
to gain insight in the nested structures of a data set, we came to the conclusion
that it was significantly less useful than we had hoped, primarily because small
components in the thumbnail gallery were hard to see, and even when magnified,
were hard to understand without a spatial context.



Topological Galleries 11

Fig. 4 Topological galleries for the hydrogen atom dataset. While the individual components in
the rendering can be identified in the thumbnail gallery, small but significant components such as
the yellow component in the middle are effectively invisible in the gallery.

The original design gallery concept was intended to show a range of possibilities
for an entire image. As such, all pixels in each thumbnail were typically used. Here,
where the thumbnails are being used to show individual subregions of the data, an
unexpected problem arises: most of the thumbnails represent small features, whose
projected area in the thumbnail is less than 1% of the thumbnail areas.

This occurs because, in order to maintain context, all thumbnails are rendered at
global scale. A better solution may be to display features at a maximum size in the
thumbnail and use the context zoom to show the position of the feature in the context
of the current main image. But this implies rendering features at a local scale, and
losing all possibility of contextual information.

In retrospect, it is not surprising that this was a problem, as it was already known
that the size of features in the contour tree tends to fall off rapidly. For example,
the simplification panel used for the flexible isosurface interface[4] used a log-log
plot of feature size versus number of features. Even though the projected area falls
off somewhat less fast than the volume of a feature, we observed that most features
more than 4 or 5 branches down the pruning hierarchy were on the order of a few
percent of the thumbnail size.

Moreover, our current implementation of the pruning hierarchy results in the
generation of many empty thumbnails. This is a result of the branch map being split
across so many branches: there are multiple branches representing a single vertex
and the vertex only maps to one of the branches.



12 MacCarthy, Carr and Weber

Fig. 5 Topological galleries for the nucleon dataset. As with the hydrogen dataset, while the
gallery clearly allows direct selection of individual features, small features are unmanageably
small, and the utility is accordingly diminished.

As a result of these factors, for all the appeal of a user-friendly interface for
topology, the practical value is more limited than hoped.

8 Conclusions and Future Work

We have applied the design galleries metaphor to topology-controlled volume ren-
dering. While this metaphor greatly simplifies the design of transfer functions and
shows promise in that regard, there is a key problem that needs to be overcome for
this approach to be useful. Feature size in the pruning hierarchy drops off consid-
erably, and this rapid drop-off results in many almost empty images. These empty
images make it very difficult to design transfer functions effectively. In the future,
we will examine this behavior for a variety of data sets to determine whether it fol-
lows any rules, and whether there are different classes of data indicative of whether
the gallery metaphor is likely to fail. We will also look into alternate simplifica-
tion metrics and examine their impact on the problem. Finally, we will determine
whether there are alternate means of re-combining features that are split by the
pruning-hierarchy as a means to generate more meaningful gallery images.



Topological Galleries 13

Acknowledgements This work was supported by the Director, Office of Science, Office of Office
of Advanced Scientific Computing Research, of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231.

References

1. BAJAJ, C. L., PASCUCCI, V., AND SCHIKORE, D. R. The Contour Spectrum. In Proceedings
of IEEE Visualization 1997 (1997), pp. 167–173.

2. BOYELL, R. L., AND RUSTON, H. Hybrid Techniques for Real-time Radar Simulation. In
Proceedings of the 1963 Fall Joint Computer Conference (1963), IEEE, pp. 445–458.

3. CARR, H., AND SNOEYINK, J. Path seeds and flexible isosurfaces using topology for ex-
ploratory visualization. In Data Visualization 2003 (Proceedings of VisSym 2003) (New York,
NY, 2003), ACM Press, pp. 49–58.

4. CARR, H., SNOEYINK, J., AND VAN DE PANNE, M. Simplifying Flexible Isosurfaces with
Local Geometric Measures. In Proceedings of IEEE Visualization 2004 (2004), pp. 497–504.

5. CORREA, C., AND MA, K.-L. Size-based transfer functions: A new volume exploration
technique. IEEE Transactions on Visualization and Computer Graphics 14, 6 (2008), 1380–
1387.

6. EDELSBRUNNER, H., AND MÜCKE, E. P. Simulation of Simplicity: A technique to cope
with degenerate cases in geometric algorithms. ACM Transactions on Graphics 9, 1 (1990),
66–104.

7. FANG, S., BIDDLECOME, T., AND TUCERYAN, M. Image-based transfer function design
for data exploration in volume visualization. In Proceedings of IEEE Visualization 1998 (Los
Alamitos, CA, USA, 1998), IEEE Computer Society Press, pp. 319–326.

8. FUJISHIRO, I., TAKESHIMA, Y., AZUMA, T., AND TAKAHASHI, S. Volume data mining
using 3D field topology analysis. IEEE Computer Graphics and Applications 20, 5 (Sept./
Oct. 2000), 46–51.

9. HARVEY, W., AND WANG, Y. Topological landscape ensembles for visualization of scalar-
valued functions. Computer Graphics Forum 29, 3 (2010), 993–1002.

10. KETTNER, L., ROSSIGNAC, J., AND SNOEYINK, J. The Safari Interface for Visualizing
Time-Dependent Volume Data Using Iso-surfaces and Contour Spectra. Computational Ge-
ometry: Theory and Applications 25, 1-2 (2001), 97–116.

11. KINDLMANN, G., WHITAKER, R., TASDIZEN, T., AND MOLLER, T. Curvature-based trans-
fer functions for direct volume rendering: Methods and applications. In Proceedings of IEEE
Visualization 2003 (Washington, DC, USA, 2003), IEEE Computer Society, p. 67.

12. KNISS, J., PREMOZE, S., IKITS, M., LEFOHN, A., HANSEN, C., AND PRAUN, E. Gaussian
transfer functions for multi-field volume visualization. In Proceedings of IEEE Visualization
2003 (Washington, DC, USA, 2003), IEEE Computer Society, p. 65.

13. LEVOY, M. Display of surfaces from volume data. IEEE Computer Graphics and Applications
8, 3 (May 1988), 29–37.

14. MARKS, J., ANDALMAN, B., BEARDSLEY, P. A., FREEMAN, W., GIBSON, S., HOD-
GINS, J., KANG, T., MIRTICH, B., PFISTER, H., RUML, W., RYALL, K., SEIMS, J., AND
SHIEBER, S. Design galleries: a general approach to setting parameters for computer graphics
and animation. In Proceedings of ACM SIGGRAPH ’97 (New York, NY, USA, 1997), ACM
Press/Addison-Wesley Publishing Co., pp. 389–400.

15. MAX, N. Optical models for direct volume rendering. IEEE Transactions on Visualization
and Computer Graphics 1, 2 (June 1995), 99–108.

16. OESTERLING, P., HEINE, C., JÄNICKE, H., AND SCHEUERMANN, G. Visual analysis of
high dimensional point clouds using topological landscapes. In Proceedings of IEEE Pacific
Visualization 2010 (2010), S. North, H.-W. Shen, and J. van Wijk, Eds., pp. 113–120.

17. PASCUCCI, V., COLE-MCLAUGHLIN, K., AND SCORZELLI, G. Multi-resolution computa-
tion and presentation of contour trees. Algorithmica 38, 2 (October 2003), 249–268.



14 MacCarthy, Carr and Weber

18. SABELLA, P. A rendering algorithm for visualizing 3D scalar fields. Computer Graphics
(Proceedings of ACM SIGGRAPH 88) 22, 4 (1988), 51–58.

19. TAKESHIMA, Y., TAKAHASHI, S., FUJISHIRO, I., AND NIELSON, G. M. Introducing topo-
logical attributes for objective-based visualization of simulated datasets. In Proceedings of
Volume Graphics 2005 (2005), pp. 137–145.

20. TENGINAKAI, S., LEE, J., AND MACHIRAJU, R. Salient Iso-Surface Detection with Model-
Independent Statistical Signatures. In Proceedings of Visualization 2001 (2001), pp. 231–238.

21. WANG, L., AND MUELLER, K. Harmonic colormaps for volume visualization. IEEE/EG
Symposium on Volume and Point-Based Graphics (2008), 322–325.

22. WEBER, G. H., BREMER, P.-T., AND PASCUCCI, V. Topological landscapes: A terrain
metaphor for scientific data. IEEE Transactions on Visualization and Computer Graphics 13,
6 (November/December 2007), 1416–1423. LBNL-63763.

23. WEBER, G. H., DILLARD, S. E., CARR, H., PASCUCCI, V., AND HAMANN, B. Topology-
controlled volume rendering. IEEE Transactions on Visualization and Computer Graphics 13,
2 (March/April 2007), 330–341.

24. ZHOU, J., AND TAKATSUKA, M. Automatic transfer function generation using contour tree
controlled residue flow model and color harmonics. IEEE Transactions on Visualization and
Computer Graphics 15, 6 (2009), 1481–1488.

Disclaimer

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, nei-
ther the United States Government nor any agency thereof, nor the Regents of the
University of California, nor any of their employees, makes any warranty, express
or implied, or assumes any legal responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or repre-
sents that its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by its trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorse-
ment, recommendation, or favoring by the United States Government or any agency
thereof, or the Regents of the University of California. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof or the Regents of the University of California.


