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Abstract

This work studies the performance and scalability characteristics of “hybrid” parallel programming and execution
as applied to raycasting volume rendering – a staple visualization algorithm – on a large, multi-core platform.
Historically, the Message Passing Interface (MPI) has become the de-facto standard for parallel programming and
execution on modern parallel systems. As the computing industry trends towards multi-core processors, with four-
and six-core chips common today and 128-core chips coming soon, we wish to better understand how algorithmic
and parallel programming choices impact performance and scalability on large, distributed-memory multi-core
systems. Our findings indicate that the hybrid-parallel implementation, at levels of concurrency ranging from
1,728 to 216,000, performs better, uses a smaller absolute memory footprint, and consumes less communication
bandwidth than the traditional, MPI-only implementation.

Categories and Subject Descriptors (according to ACM CCS): D.1.3 [Programming Techniques]: Concurrent
Programming—Parallel programming, F.1.2 [Computation by Abstract Devices]: Modes of Computation—
Parallelism and concurrency, I.3.3 [Computer Graphics]: Picture/Image Generation—Display algorithms

1. Introduction

It is well accepted that the future of parallel computing in-
volves chips that are comprised of many (smaller) cores.
With this trend towards more cores on a chip, many in
the HPC community have expressed concern that parallel
programming languages, models, and execution frameworks
that have worked well to-date on single-core massively par-
allel systems may “face diminishing returns” as the num-
ber of computing cores on a chip increase [ABC∗06]. In the
broader high-performance computing community, this gen-
eral topic has engendered much interest but little published
research to date.

In this context, the focus of our work is on exploring
the performance and scalability of a common visualization
algorithm – raycasting volume rendering – implemented
with different parallel programming models and run on a
large supercomputer comprised of six-core chips. In this
study, we compare a traditional implementation based on
message-passing against a “hybrid” parallel implementation,
which uses a blend of traditional message-passing (inter-
chip) and shared-memory (intra-chip) parallelism. The the-

Figure 1: This 46082 image of a combustion simulation
result was rendered by our MPI+pthreads implementation
running on 216,000 cores of the JaguarPF supercomputer.
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sis we wish to test is whether there are opportunities in the
hybrid-parallel implementation for performance and scal-
ability gains that result from using shared-memory paral-
lelism among cores within a chip.

Over the years, there has been a consistent and well-
documented concern that the overall runtime of large-data
visualization algorithms is dominated by I/O costs (e.g.,
[SKP96, KMM∗01, PYR∗09]). During our experiments, we
observed results consistent with previous work: there is a
significant cost associated with scientific data I/O. In this
study, however, we focus exclusively on the performance
and scalability of the ray casting volume rendering algo-
rithm, not on parallel I/O performance. This approach is
valid for many visualization use cases, such as creating mul-
tiple images from a single dataset that fits entirely within the
memory footprint of a large system, or creating one or more
images of data that is already resident in memory, as in the
case of in-situ visualization.

Our findings (Section 4) show that there is indeed oppor-
tunity for performance gains when using hybrid-parallelism
for raycasting volume rendering across a wide range of con-
currency levels. The hybrid-parallel implementation runs
faster, requires less memory, and for this particular algo-
rithm and set of implementation choices (Section 3), con-
sumes less communication bandwidth than the traditional,
MPI-only implementation.

2. Background and Previous Work

2.1. Parallel Volume Rendering

Volume rendering is a common technique for displaying 2D
projections of 3D sampled data [Lev88,DCH88] and is com-
putationally, memory, and data I/O intensive. In the quest
towards interactivity, as well as to address the challenges
posed by growing data size and complexity, there has been
a great deal of work over the years in the space of parallel
volume visualization (see Kaufman and Mueller [KM05] for
an overview).

Within the field of parallel volume rendering, our work
focuses on examining a form of “hybrid parallelism,” which
is distinct and different from the term “hybrid volume ren-
dering.” Hybrid volume rendering refers to using combina-
tion of image- and object-order techniques to perform ren-
dering [KM05]. In contrast, hybrid parallel refers to the use
of a mixture of shared- and distributed-memory algorithms,
programming, and execution environments [LG08].

However, our hybrid-parallel implementation also makes
use of hybrid volume rendering (e.g. [MPHK93, TH94,
Ma95,BIJP99]), starting with an object-order partitioning to
distribute source data blocks to processors where they are
rendered using ray casting [Lev88, Sab88, DCH88, UK88].
Within a processor, we then use an image-space decomposi-
tion, similar to [NL92], to allow multiple rendering threads

to cooperatively generate partial images that are later com-
bined via compositing into a final image ( [DCH88, Lev88,
UK88]).

Hybrid volume rendering techniques have proven suc-
cessful in achieving scalability and tackling large data sizes.
The TREX system [KMM∗01] is a hybrid volume ren-
dering algorithm on a shared-memory platform that uses
object-parallel data domain decomposition and texture-
based, hardware-accelerated rendering followed by a par-
allel, software-based composition phase with image-space
partitioning. The design choices for which part of the SGI
Origin to use for different portions of the algorithm reflect
a desire to achieve optimal performance at each algorith-
mic stage and to minimize inter-stage communication costs.
Childs et al. [CDM06] present a hybrid scheme for volume
rendering massive datasets (with one hundred million un-
structured elements and a 30003 rectilinear data set). Their
approach parallelizes over both input data elements and out-
put pixels, and is demonstrated to scale well on up to 400
processors. Peterka et al. were the first to run a hybrid vol-
ume rendering algorithm at massive concurrency, rendering
44803 data sizes with 32,000 cores on an IBM BG/P sys-
tem [PYR∗09]. They demonstrated generally good scalabil-
ity and found that the compositing phase slowed down when
more than ten thousand cores were involved, likely due to
hardware or MPI limitations. To address this problem, they
reduced the number of processors involved in the composit-
ing phase.

The most substantial difference between our work and
previous work in hybrid volume rendering is that we are ex-
ploiting hybrid parallelism. In addition, we contribute to the
knowledge of hybrid volume rendering at massive concur-
rency: we performed experiments with up to 216,000 cores,
which is more than six times larger than previously pub-
lished results. Further, our study reproduces the degradation
in compositing performance first discovered by Peterka et
al. [PYR∗09] via a different software implementation and
supercomputer, and we present results that characterize this
effect in more detail.

2.2. Traditional and Hybrid Parallelism

The Message Passing Interface (MPI) evolved as the de-
facto standard for parallel programming and execution on
machines consisting of single-core CPUs interconnected via
a high-speed fabric [SOHL∗98]. To use MPI, an application
developer must explicitly add MPI library calls to an appli-
cation to implement fundamental parallel execution motifs:
data scatter and gather, execution synchronization, and so
forth. In MPI parlance, a processing element (PE) is the fun-
damental unit of execution, and historically each MPI PE has
mapped one-to-one to the processors of a massively paral-
lel (MPP) system. To support more recent multi-core MPPs,
vendors’ MPI implementations provide support for MPI PEs
to be mapped onto one or more cores of multi-core chips.
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However, on multi-core platforms, there may be opportuni-
ties for more efficient inter-PE communication through lo-
cal, high-speed, shared memory that bypasses the MPI inter-
face.

Shared-memory parallel applications are somewhat eas-
ier to develop than distributed memory ones as there is no
need to explicitly move data among parallel program el-
ements. Instead, each execution thread has access to the
same shared memory within a single address space. Com-
mon programming models for shared-memory parallelism
include POSIX threads [But97], OpenMP [CDK∗01], and
Intel Thread Building Blocks [Rei07]. These APIs allow
applications to manage creation and termination of exe-
cution threads, and synchronize thread execution through
semaphores and mutexes. The scalability of shared-memory
codes is typically limited by physical constraints: there are
typically only a few cores in a single CPU. Four to six cores
per CPU are common today, although the trend seems to be
towards hundreds to thousands of cores per chip.

In all of the above models, the developer must explicitly
design for parallelism, as opposed to relying on a compiler
to discover and implement parallelism. Other approaches,
which allow the developer to express parallelism implicitly
via language syntax, include data-parallel languages (e.g.,
CUDA [NVI08]), languages with data parallel extensions
(e.g., High Performance Fortran [Hig93]), and partitioned
global address space (PGAS) languages (e.g., Unified Par-
allel C (UPC) [EGCSY05], which offers the developer a
single-address space view of memory, even on distributed
memory platforms).

Hybrid parallelism has evolved in response to the
widespread deployment of multi-core chips in distributed-
memory systems. An MPI-hybrid model allows data move-
ment among nodes using traditional MPI motifs like scat-
ter and gather, but within nodes using shared-memory paral-
lelism via POSIX threads or OpenMP. Previous work com-
paring MPI-only with MPI-hybrid implementations (e.g.,

[HJR09, MTT∗09]) has focused on benchmarking well-
known computational kernels. In contrast, our study exam-
ines this space from the perspective of visualization algo-
rithms.

The previous studies point to several areas where MPI-
hybrid may outperform MPI-only. First, MPI-hybrid tends to
require less memory for applications with domain decompo-
sition (e.g. parallel volume rendering), since fewer domains
means less “surface area” between domains and hence less
exchange of “ghost zone” data. Second, the MPI runtime al-
locates various tables, buffers, and constants on a per-PE
basis. Today, the gain from using fewer PEs to reduce this
memory overhead may seem small with only four or six
cores per chip, but the trend towards hundreds of cores per
chip with less memory per core will magnify these gains.
Third, MPI-hybrid can use only one PE per node for collec-
tive operations such as scatter, gather and all-to-all, thereby
reducing the absolute number of messages traversing the
inter-connect. While the size of the messages in this sce-
nario may be larger or smaller depending upon the specific
problem, a significant factor influencing overall communica-
tion performance is latency, which is reduced by using fewer
messages.

The primary contributions of our work is a comparison
of the performance and resource requirements of hybrid-
and traditional-parallel implementations of raycasting vol-
ume rendering. Our methodology and results (Section 4) are
consistent with those identified in previous studies of hybrid
parallelism from the HPC community (e.g., [HJR09]).

3. Implementation

From a high level view, our parallel volume rendering im-
plementation repeats a design pattern that forms the basis
of previous work (e.g., [MPHK93, TH94, Ma95, BIJP99]).
Given a source data volume S and n parallel processes, each
process reads in 1

n of S. Next, each of the n processes per-
forms raycasting volume rendering on its data subdomain

Figure 2: Diagram of our system architecture.
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to produce a set of image fragments. Next, each of the n
processes participates in a compositing stage in which frag-
ments are exchanged and combined into a final image. Each
of the n processes then sends it portion of the completed
image to process 0 for display or I/O to storage. Figure 2
provides a block-level view of this organization. Our dis-
tributed memory parallel implementation is written in C++
and C and makes calls to MPI [SOHL∗98]. The portions
of the implementation that are shared-memory parallel are
written using a combination of C++ and C and either POSIX
threads [But97] or OpenMP [CDK∗01], so that we are actu-
ally comparing two hybrid implementations that we refer to
as MPI+pthreads and MPI+OpenMP.

The MPI-only and MPI-hybrid implementations differ in
several key respects. First, the raycasting volume rendering
algorithm itself is serial on each MPI-only PE or is shared-
memory multicore-parallel in the MPI-hybrid case. We dis-
cuss this issue in more detail in Section 3.1. Second, the
communication topology in the compositing stage differs
slightly, and we discuss this issue in more detail in Section
3.2. A third difference is in how data is partitioned across the
pool of parallel processes. In the MPI-only implementation,
each PE loads and operates on a disjoint block of data. In the
MPI-hybrid case, each MPI PE loads a disjoint block of data
and each of its worker threads operate in parallel on that data
using an image-parallel decomposition [NL92].

3.1. Parallel, Multicore Raycasting Volume Rendering

Our raycasting volume rendering code implements Levoy’s
method [Lev88]: we compute the intersection of a ray with
the data block, and then compute the color at a fixed step
size along the ray through the volume. All such colors along
the ray are integrated front-to-back using the “over” oper-
ator. Output from our algorithm consists of a set of image
fragments that contain an x,y pixel location, R,G,B,α color
information, and a z-coordinate. The z-coordinate is the lo-
cation in eye coordinates where the ray penetrates the block
of data. Later, these fragments are composited in the correct
order to produce a final image (see Section 3.2).

In the MPI-only case, this serial implementation is in-
voked on each of the MPI PEs. Each operates on its own
disjoint block of data. As we are processing structured recti-
linear grids, all data subdomains are spatially disjoint, so we
can safely use the ray’s entry point into the data block as the
z-coordinate for sorting during the later composition step.

In the MPI-hybrid case, the raycasting volume renderer
on each MPI PE is a shared-memory parallel implementation
consisting of T threads all executing concurrently to perform
the raycasting on a single block of data. As in [NL92], we
use an image-space partitioning: each thread is responsible
for raycasting portion of the image. Our image-space parti-
tioning is interleaved, where the image is divided into many
small tiles that are distributed amongst the threads. Through

a process of manual experimentation, we determined that an
image tile size of 32×32 pixels produced consistently better
performance than other tile sizes for a variety of source vol-
ume sizes on the six-core AMD Opteron processor. We also
found that a dynamic work assignment of tiles to threads
minimized load imbalance.

3.2. Parallel Compositing

The compositing algorithm takes the fragments generated
by the raycasting algorithm and produces the final image.
The compositing begins by partitioning the pixels of the fi-
nal image amongst the MPI PEs. It then performs an all-to-
all communication step, where MPI PEs send and receive
fragments. The sent fragments are the fragments from that
MPI PE’s raycasting phase. The MPI PE identifies where
to send fragments using the partition information. The re-
ceived fragments correspond to the pixels of the final image
that that MPI PE owns. The fragments are exchanged us-
ing an MPI_Alltoallv call. This call provides the same
functionality as direct sends and receives, but bundles the
messages into fewer point-to-point exchanges, and thus is
more efficient. After the fragments are exchanged, each MPI
PE is able to perform the final compositing for its portion of
the larger image, using the “over” operator on the fragments.
The final step is to collect the image subpieces to MPI PE 0
and output the entire image.

Peterka et al. [PYR∗09] reported scaling difficulties for
compositing when using more than 8,000 MPI PEs. They
solved this problem by reducing the number of MPI PEs re-
ceiving fragments to be no more than 2,000. We emulated
this approach, again limiting the number of MPI PEs receiv-
ing fragments, although we experimented with values higher
than 2,000.

In the hybrid implementations, only one thread per socket
participates in the compositing phase. That thread gathers
fragments from all other threads in the same socket, packs
them into a single buffer, and transmits them to other com-
positing PEs. This approach results in fewer messages than
if all threads in the hybrid parallel implementation were to
send messages to all other threads on all other CPUs. Our
aim here is to better understand the opportunities for im-
proving performance in the hybrid-parallel implementation.
The overall effect of this design choice is an improvement in
communication characteristics, as indicated in Section 4.4.2.

4. Results

4.1. Methodology

Our methodology is designed to test the hypothesis that an
MPI-hybrid implementation exhibits better performance and
resource utilization than the MPI-only implementation. We
compare the cost of MPI runtime overhead and correspond-
ing memory footprint in Section 4.3.1; compare the absolute
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amount of memory required for data blocks and ghost zone
(halo) exchange in Section 4.3.2; compare scalability of the
raycasting and compositing algorithms in Sections 4.4.1 and
4.4.2; and compare the levels of communication required
during the compositing phase in Section 4.4.2.

Our test system, JaguarPF, is a Cray XT5 located at Oak
Ridge National Lab and was recently ranked by the Top500
list as the fastest supercomputer in the world with a theo-
retical peak performance of 2.3 Petaflops [Top09]. Each of
the 18,688 nodes has two sockets, and each socket has a six-
core 2.6GHz AMD Opteron processor, for a total of 224,256
compute cores. With 16GB per node (8GB per socket), the
system has 292TB of aggregate memory and roughly 1.3GB
per core.

We conducted a strong scaling study where we rendered
a 46082 image from a 46083 dataset (roughly 97.8 bil-
lion cells) at concurrency levels from 1,728-way parallel to
216,000-way parallel. On JaguarPF, a minimum of 1,728
cores is required to accommodate this particular problem
size. In the hybrid case, we shared a data block among six
threads and used one sixth as many MPI PEs. Although we
could have shared a data block among as many as twelve
threads on each dual-socket six-core node, we chose not to
because sharing data across sockets results in non-uniform
memory access. Based on preliminary tests, we estimated
this penalty to be around 5 or 10% of the raycasting time.
Therefore, we used six threads running on the cores of a sin-
gle six-core processor.

Because the time to render is view-dependent, we exe-
cuted each raycasting phase ten times over a selection of
ten different camera locations (see Figure 3). The raycast-
ing times we report are an average over all locations.

In the compositing phase, we tested five different ratios of
total PEs to compositing PEs. We restricted the compositing
experiment to only two views (the first and last) because it
was too costly to run a complete battery of all view and ratio
permutations. Since the runtime of each trial can vary due to
contention for JaguarPF’s interconnection fabric with other
users, we ran the compositing phase ten times for both views.
We report mean and minimum times over this set of twenty
trials. Minimum times most accurately represent what the
system is capable of under optimal, contention-free condi-

tions, while mean times help characterize the variability of
the trials.

4.2. Source Data and Decomposition

Starting with a 5123 dataset of combustion simulation results
†, we used trilinear interpolation to upscale it to arbitrary
sizes in memory. We scaled equally in all three dimensions
to maintain a cubic volume. Our goal was to choose a prob-
lem size that came close to filling all available memory (see
Table 1). Although upscaling may distort the results for a
data-dependent algorithm, the only data dependency during
raycasting is early ray termination. However, we found that
for our particular dataset and transfer function, there was al-
ways at least one data block for which no early terminations
occurred. Moreover, the cost of the extra conditional state-
ment inside the ray integration loop to test for early termina-
tion added a 5% overhead. Therefore, we ran our study with
early ray termination turned off, and we believe that upscal-
ing the dataset does not effect our results.

† Sample data courtesy J. Bell and M. Day, Center for Computa-
tional Sciences and Engineering, Lawrence Berkeley National Lab-
oratory.

Color Camera
Black (1,0,0)
Black (0,1,0)
Black (0,0,1)
Cyan (0,1,1)

Magenta (1,0,1)
Yellow (1,1,0)

Red (2,1,1)
Green (1,2,1)
Blue (1,1,2)
Gray (1,1,1)

Figure 3: The raycasting phase used these ten camera loca-
tions to approximate an “average” use case.

MPI-only MPI-hybrid
MPI PEs Block Dimensions MPI PEs Block Dimensions Memory Per Node
123=1728 384×384×384 288 384×768×1152 10368MB
243=13824 192×192×192 2304 192×384×576 1296MB
363=46656 128×128×128 7776 128×256×384 384MB
483=110592 96×96×96 18432 96×192×288 162MB
603=216000 76×76×76 36000 76×153×230 80.4MB / 81.6MB

Table 1: Problem size configurations and per-node memory requirements for our experiment. The memory usage for MPI-
hybrid and MPI-only at 216,000 cores differs because they have different dataset dimensions.
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Cores Mode MPI PEs
MPI Runtime Memory Usage

Per PE (MB) Per Node (MB) Aggregate (GB)
1728 MPI-hybrid 288 67 133 19
1728 MPI-only 1728 67 807 113

13824 MPI-hybrid 2304 67 134 151
13824 MPI-only 13824 71 857 965
46656 MPI-hybrid 7776 68 136 518
46656 MPI-only 46656 88 1055 4007

110592 MPI-hybrid 18432 73 146 1318
110592 MPI-only 110592 121 1453 13078
216000 MPI-hybrid 36000 82 165 2892
216000 MPI-only 216000 176 2106 37023

Table 2: Memory usage as measured directly after MPI initialization.

Because the compute nodes on an XT5 system have no
physical disk for swap, and hence no virtual memory, ex-
ceeding the physical amount of memory causes program ter-
mination. Our total memory footprint was four times the
number of bytes in the entire dataset: one for the dataset
itself, and the other three for the gradient data, which we
computed by central difference and used in shading calcula-
tions. Although each node has 16GB of memory, we could
reliably allocate only 10.4GB for the data block and gradient
field at 1,728-way concurrency because of overhead from the
operating system and MPI runtime.

We chose concurrencies that are cubic numbers to al-
low for a clean decomposition of the entire volume into
cubic blocks per MPI PE. In the MPI-hybrid case, how-
ever, these blocks are rectangular because we aggregated
six blocks (1× 2× 3) into one shared block. For 216,000
cores, we could not evenly divide the 46083 dataset, and
chose to round down to a 45603 dataset for MPI-only and
a 4560× 4590× 4600 dataset for MPI-hybrid. As a result,
the MPI-only dataset is approximately 1.4% smaller than
the MPI-hybrid dataset. While this difference might seem to
give an advantage to the MPI-only implementation, results
in later sections show that the MPI-hybrid performance and
resource utilization are uniformly better than for MPI-only.

4.3. Memory Usage

4.3.1. Overhead at Initialization

Because MPI-hybrid uses fewer MPI PEs, it incurs less
memory overhead from the MPI runtime environment and
from program-specific data structures that are allocated per
PE. Table 2 shows the memory footprint of the program
as measured directly after calling MPI_Init and reading
in command-line parameters. We collected the VmRSS, or
“resident set size,” value from the /proc/self/status
interface. Memory usage was sampled only from MPI PEs
0 through 6, but those values agreed within 1–2%. There-
fore, the per-PE values we report in Table 2 are from PE 0
and the per-node and aggregate values are derived from the
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Figure 4: Ghost data required by our implementations.

Cores MPI-only MPI+pthreads MPI+OpenMP
1728 24.88s 22.31s 22.23s

13824 3.10s 2.84s 2.83s
46656 0.92s 0.85s 0.85s

110592 0.38s 0.37s 0.37s
216000 0.19s 0.21s 0.20s

Table 3: Raycasting times for our three implementations.

per-task value: MPI-only uses twelve PEs per node versus
MPI-hybrid’s two PEs per node, and in the aggregate MPI-
hybrid has one sixth as many PEs. At 216,000 cores, the per-
PE runtime overhead of MPI-only is more that 2× that of
MPI-hybrid and the per-node and aggregate memory usage
is another factor of six larger for MPI-only because it uses
6× as many PEs as MPI-hybrid. Thus, MPI-only uses nearly
12× as much memory per-node and in-aggregate than MPI-
hybrid to initialize the MPI runtime at 216,000-way concur-
rency.
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4.3.2. Ghost Data

Two layers of ghost data are required in our raycasting
phase: the first layer for trilinear interpolation of sampled
values, and the second layer for computing the gradient field
using central differences (gradients are not precomputed for
our dataset). Because the MPI-hybrid approach uses fewer,
larger blocks in its decomposition, it requires less exchange
and storage of ghost data by roughly 40% across all concur-
rencies (see Figure 4).

4.4. Scaling Study

4.4.1. Raycasting

Our raycasting phase scales nearly linearly because it in-
volves no inter-processor communication (see Figure 5).
Each MPI PE obtains its data block, then launches either one
(MPI-only) or six (MPI-hybrid) raycasting threads. Working
independently, each thread tests for ray-triangle intersections
along the data block’s bounding box and, in the case of a hit,
integrates the ray by sampling data values at a fixed interval
along the ray, applying a transfer function to the values, and
aggregating the resulting color and opacity in a fragment for
that ray’s image position. For these runs and timings, we use
trilinear interpolation for data sampling along the ray as well
as a Phong-style shader. The final raycasting time is essen-
tially the runtime of the thread that takes the most integration
steps. This behavior is entirely dependent on the view. Our
approach, which is aimed at understanding “average” behav-
ior, uses ten different views (see Figure 3 in Section 4.1) and
reports their average runtime.

Overall, we have achieved linear scaling up to 216,000
for the raycasting phase with MPI-only (see Figure 5). MPI-
hybrid exhibits different scaling behavior because it has a
different decomposition geometry: MPI-only has a perfectly
cubic decomposition, while MPI-hybrid aggregates 1×2×3
cubic blocks into rectangular blocks that are longest in the z-
direction (see Table 1). The interaction of the decomposition
geometry and the camera direction determine the maximum
number of ray integration steps, which is the limiting factor
for the raycasting time. At lower concurrencies, this interac-
tion benefits MPI-hybrid, which outperforms MPI-only by
as much as 11% (see Table 3). At higher concurrencies the
trend flips, and MPI-only outperforms MPI-hybrid by 10%.
We expect that if we were able to run on an eight-core sys-
tem with a 2×2×2 aggregation factor for MPI-hybrid, both
implementations would scale identically. We also note that
at 216,000 cores, raycasting is less than 20% of the total
runtime (see Figure 6), and MPI-hybrid is over 50% faster
because of gains in the compositing phase that we describe
next.

4.4.2. Compositing

We observe the same effect that Peterka et al. [PYR∗09] re-
port: for higher concurrencies, it is more beneficial to use
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Figure 7: Compositing times for different ratios of com-
positing PEs to total PEs. Solid lines show minimum times
taken over ten trials each for two different views; dashed
lines show the corresponding mean times.
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only a subset of PEs for compositing. While Peterka et al.
found that 1,000 to 2,000 compositors were optimal for up
to 32,768 total PEs, we have found that at 46,656 PEs and
above the optimal number of compositors is closer to 4,000
to 8,000 (see Figure 7). We note that there are many differ-
ences between our study and theirs in the levels of concur-
rency, architectures, operating systems, communication net-
works, and MPI libraries, each potentially introducing vari-
ation in the ideal number of compositors.

Above 1,728 cores, we observe that the compositing times
are systematically better for the MPI-hybrid implementation.
The primary cost of compositing is the MPI_Alltoallv
call that moves each fragment from the PE where it orig-
inated during raycasting to the compositing PE that owns
the region of image space where the fragment lies. Be-
cause MPI-hybrid aggregates these fragments in the mem-
ory shared by six threads, it uses on average about 6× fewer
messages than MPI-only (see Figure 8). In addition, MPI-
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hybrid exchanges less fragment data because its larger data
blocks allow for more compositing to take place during ray
integration.

We observe a critical point in the compositing perfor-
mance beginning at 13,824 cores where the elapsed time for
MPI-only begins to increase with additional compositors. A
similar critical point occurs for MPI-hybrid at 46,656 cores.
We believe this critical point exists due to the character-
istics of the underlying interconnect fabric. Because MPI-
hybrid generates fewer and smaller messages, the critical
point occurs at a higher level of concurrency than for MPI-
only. Also, our MPI-hybrid version outperforms the MPI-
only version across all configurations in these tests. Future
work will examine this issue in more detail and on differ-
ent architectures to better illuminate factors contributing to
performance of this stage of processing.

4.4.3. Overall Performance

At 216,000 cores, the best compositing time for MPI-hybrid
(0.35s, 4500 compositors) is 67% less than for MPI-only
(1.06s, 6750 compositors). Furthermore, at this scale com-
positing time dominates rendering time, which is roughly
0.2s for both MPI-only and MPI-hybrid. Thus, the total ren-
der time is 55% faster for MPI-hybrid (0.56s versus 1.25s).
Overall, the scaling study shows that the advantage of MPI-
hybrid over MPI-only becomes greater as the number of
cores increases (see Figure 6).

5. Conclusion and Future Work

The multi-core era offers new opportunities and challenges
for parallel applications. This study has shown that hybrid
parallelism offers performance improvements and better re-
source utilization for raycasting volume rendering on a large,
distributed-memory supercomputer comprised of multi-core
CPUs. The advantages we observe for hybrid parallelism are
reduced memory footprint, reduced MPI overhead, and re-
duced communication traffic. These advantages are likely
to become more pronounced in the future as the number of
cores per CPU increases while per-core memory size and
bandwidth decrease.

We found that at high concurrency, fragment exchange
during the compositing phase is the most expensive opera-
tion. Our compositing algorithm relies entirely on the imple-
mentation of the MPI_Alltoallv call in the Cray MPI li-
brary. Our finding that using a subset of compositing PEs re-
duces communication overhead agrees with what Peterka et
al. [PYR∗09] found for the MPI implementation on an IBM
BG/P system, suggesting that both libraries use similar im-
plementations and optimizations of MPI_Alltoallv. A
separate paper by Peterka et al. [PGR∗09] introduces a new
compositing algorithm, “Radix-k,” that shows good scal-
ing up to 16,000-way concurrency. This approach, which is
compatible with our hybrid parallel system, may lead to even
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Figure 8: The number of messages and total data sent dur-
ing the fragment exchange in the compositing phase.

faster compositing times. Studying their combined perfor-
mance, especially at concurrencies in the hundreds of thou-
sands, is an avenue for future work.
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