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Abstract— This paper presents topology-based methods to robustly extract, analyze, and track features defined as subsets of
isosurfaces. First, we demonstrate how features identified by thresholding isosurfaces can be defined in terms of the Morse complex.
Second, we present a specialized hierarchy that encodes the feature segmentation independent of the threshold while still providing
a flexible multi-resolution representation. Third, for a given parameter selection we create detailed tracking graphs representing the
complete evolution of all features in a combustion simulation over several hundred time steps. Finally, we discuss a user interface
that correlates the tracking information with interactive rendering of the segmented isosurfaces enabling an in-depth analysis of the
temporal behavior.
We demonstrate our approach by analyzing three numerical simulations of lean hydrogen flames subject to different levels of tur-
bulence. Due to their unstable nature, lean flames burn in cells separated by locally extinguished regions. The number, area, and
evolution over time of these cells provide important insights into the impact of turbulence on the combustion process. Utilizing the
hierarchy we can perform an extensive parameter study without re-processing the data for each set of parameters. The resulting
statistics enable scientist to select appropriate parameters and provide insight into the sensitivity of the results wrt. to the choice of
parameters. Our method allows for the first time to quantitatively correlate the turbulence of the burning process with the distribution
of burning regions, properly segmented and selected. In particular, our analysis shows that counter-intuitively stronger turbulence
leads to larger cell structures, which burn more intensely than expected. This behavior suggests that flames could be stabilized under
much leaner conditions than previously anticipated.

1 INTRODUCTION

When analyzing and visualizing three-dimensional scalar fields iso-
surfaces play an important role as they are often easier to comprehend
than volumetric representations. Furthermore, in many scientific ap-
plications isosurfaces have well established physical interpretations.
In order to analyze multiple scalar fields concurrently it is, therefore,
natural to project one field on the isosurface of second field analyz-
ing the resulting two-dimensional function. For example, in combus-
tion simulations flames are typically constructed as temperature iso-
surfaces, called isotherms. However, only areas of this “flame” where
the fuel consumption rate is above a certain threshold are actually
considered burning. This paper presents novel topological techniques
that enable comprehensive statistical analysis of such thresholded fea-
tures through a parameter independent hierarchy. Furthermore, the
approach provides in-depth studies of the temporal evolution of fea-
tures using both comprehensive tracking graphs as well as interactive
visualization of time-correlated isosurfaces.

Understanding combustion processes over a broad range of opera-
tional regimes is of great interest for a variety of applications such as
engine or power plant design. To this end, there has been considerable
recent interest in the development of premixed burners capable of sta-
bly burning ultra-lean hydrogen-air fuel mixtures. Such burners could,
for example, be used as one component of a clean-coal power plant
utilizing hydrogen extracted from coal gasification. Lean premixed
systems are subject to a variety of hydrodynamic and combustion in-
stabilities that render practical flame stabilization, and traditional ap-
proaches to flame analysis, extremely difficult. The flames burn in a
cellular mode that is highly nonuniform, time-dependent, and difficult
to characterize [7].

The analysis presented here is performed using a representative set
of numerically evolved flames. Each flame burns in a volume peri-
odic in the x- and y-coordinate with pre-mixed fuel being injected
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through the plane z=0. The flame simulations were carried out with
a low Mach number model that incorporates a detailed description of
the combustion kinetics and differential species transport. For more
details of the model and its implementation, see [8]; for example anal-
ysis of lean hydrogen flames in this regime, see [2]. Each solution
analyzed here is represented as a sequence of three-dimensional snap-
shots, taken at uniform intervals in time, where each snapshot consists
of cell-centered data on a uniform cartesian grid describing the tem-
perature, chemical composition, and effective fuel consumption rate.
The “flame” is represented as an isotherm extracted from the datasets
using standard techniques. The local fuel consumption rate, interpo-
lated to these isosurfaces, is used to divide the surface into burning
“cells” separated by non-burning regions, as defined by a threshold in
the consumption rate.

To gain new insights into the combustion process scientists are in-
terested in two types of analysis: time-aggregate statistics and detailed
analysis of cell evolution. Comprehensive statistics on the number and
area of burning cells aggregated over time provide important informa-
tion about quantitative and qualitative differences between flames of
varying turbulence levels. A tracking graph representing the evolu-
tion of cells over time describes the local cell dynamics in detail and
allows an in depth study of all temporal events such as cell births,
deaths, merges, and splits. Furthermore, coupling the tracking graph
to an interactive visualization of the segmented flame surfaces illus-
trates each event and is an important tool to verify and validate the
parameter selection.

Given a fuel consumption threshold, we use topology based meth-
ods to segment the flames into burning cells from which we can ex-
tract the necessary information about their numbers, areas, and evolu-
tion over time. Furthermore, we present a hierarchical representation
capable of storing all possible segmentations independent of a partic-
ular threshold. As a separate step in our analysis, this hierarchy can
be quickly adapted to any specific threshold. This capability allows
us to perform extensive parameter studies to determine and verify the
choice of parameters as well as to study the sensitivity of the results
to changes in these parameters. Once an appropriate choice of param-
eters has been determined we track the corresponding cells over time
using the Reeb graph based tracking algorithm developed in [36]. The
resulting graph not only encodes the evolution of cells over time but
correlates each burning cell with a particular arc in the graph using a
unique identifier. All flame surfaces can then be interactively rendered
color-coded based on these identifiers which allows the user to easily
study any graph event in detail.



The methods presented here allow for the first time a quantitative
analysis of the cellular burning structures and provide important sci-
entific insights: Contrary to common intuition, higher turbulence lev-
els, which generally lead to increased energy in the finer length scales
of the approach flow to the flame, apparently lead to larger cellular
burning structures. Moreover, these larger cells tend to burn more in-
tensely than would be expected from simple theories of flame propa-
gation. The combination of these two effects dramatically increases
the global propagation speed of the turbulent flames over the steady
flat flame case. Our contributions in detail are:

1. A topology-based segmentation of the burning cells of the flame
front;

2. A novel topological hierarchy storing all possible segmentations
for all possible fuel consumption thresholds. In a single pass
we collect a parameter independent hierarchy for each time step.
The hierarchies can be post-processed on any off-the-shelf PC to
produce a wide range of statistical data;

3. An extensive parameter study analyzing the sensitivity of the re-
sults to changes in various parameters and providing methods for
optimal parameter selection;

4. A quantitative comparison between simulations at different res-
olutions; and

5. An interactive environment to study the temporal evolution of
burning cells using flame surfaces color-coded according to a
global tracking graph.

1.1 Related Work

Topological techniques for scientific data analysis have become in-
creasingly popular. Much of the recent work is based on Morse
theory [24, 23] and in particular the Morse-Smale complex or sub-
structures thereof. Related methods have been discussed as early as
the 19th century [6, 22] and the Morse-Smale complex has been de-
scribed using various names [25, 27]. In its modern form on which
this paper is based the Morse-Smale complex was introduced for sur-
faces by Edelsbrunner et al. [13] and some extensions by Bremer et al.
are discussed in [4]. Extensions to the three-dimensional case can be
found in [12, 16, 17]. Notice, how this body of work allows to make
major progress compared to early attempts using topology [31] since
the simple qualitative feedback is expanded to a complete quantitative
analysis.

The segmentation techniques presented here are similar to the one
used by Laney et al. [21] to analyze the mixing layer in a Rayleigh-
Taylor instability in that we also use stable manifolds to define fea-
tures. However, unlike [21] we intersect the stable manifolds with
level sets of varying iso-values to encode a one parameter family of
threshold-based segmentations. Furthermore, we are not only inter-
ested in counting features but also in computing their size which makes
the initial segmentation more challenging. Finally, as will be discussed
in Section 3, our feature definition requires a topological hierarchy
different from the one presented in [21]. In another application of
Morse theory to data analysis, Gyulassy et al. [15] use the ascending
one-manifolds of the three-dimensional complex to define and analyze
core lines in atomistic simulations of porous media. In the context of
analyzing protein structures surface features have also been analyzed
using pockets [9, 37]. However, these structures are defined by the ge-
ometry of the manifold (the protein surface) rather than a function on
the manifold and thus these techniques cannot be applied to analyze
burning cells.

Defining and tracking features of interest has long been of interest
to the visualization community. Samtaney et al. [30] apply methods
related to object tracking in image processing to scientific data sets.
Their method tracks connected, thresholded regions by correlating at-
tributes such as centroid, volume, and moment between time steps.
A first pass eliminates all objects that are close to identical in both
time steps. Subsequent processing then checks whether objects bifur-
cate (split) or amalgamate (merge). A graph encoding the birth, death,
merging, and splitting of features presents the results of this matching.

Another popular approach [32, 33, 21] is to use the volume over-
lap of features to identify correspondences. In this case the matching
can be improved by incorporating motion prediction [29]. Finally, Ji
et al. [19, 18] track the evolution of isosurfaces in a time-dependent
volume by extracting the four dimensional space-time isosurface and
defining features in successive time steps as linked if they belong to
the same space-time surface.

In another line of research Edelsbrunner et al. [11] describe the the-
ory and algorithms to compute time-varying Reeb graphs by connect-
ing them using Jacobi sets [10], i.e., paths traced by critical points.
Szymczak [35] presents related techniques for contour trees. Sohn
and Bajaj [34] use a hybrid approach also defining correspondences
between contour trees but using volume matching similar to Silver and
Wang [32, 33] rather than topological information as in [10] or [35].
Finally, to avoid displaying the tracking graphs directly Fujishiro et
al. [14] use T-Maps as for visually exploring the structure of large
time-dependent volumes.

2 THEORY

The algorithms for segmenting and tracking burning cells are based
on Morse theory [24, 23]. Morse theory analyzes smooth functions on
manifolds based on their gradient behavior. In this paper we use two
related structures, the Morse complex [13] and the Reeb graph [28].
The Morse complex is a sub-structure of the Morse-Smale complex
used in previous work [21, 16, 17].

2.1 Morse Complex
The Morse complex segments a smooth manifold M into regions of
uniform gradient behavior. Let f : M→ R be a smooth function with
gradient ∇ f . All points p on M are classified as either critical if
∇ f (p) = 0 or regular otherwise. If all critical points have pairwise
distinct function value f is said to be Morse. Here we are only con-
cerned with two-dimensional manifolds where a critical point can ei-
ther be a minimum, a saddle, or a maximum. Furthermore, an integral
line L(t) : R→M of f is defined as a line whose tangent is aligned
with the gradient of f : δL/δ t = ∇ f (L(t)). For t→∞ all integral lines
converge towards a maximum where they are said to end. For each
maximum p the union of all integral lines ending at p is called the sta-
ble manifold of p. Note that the stable manifolds defined in this man-
ner are open disks that do not include their boundary. The collection
of stable manifolds segments M forming a complex called the Morse
complex of f . The nodes of this complex are the saddles and minima
of f ; its arcs the integral lines connecting saddles to minima; and its
regions the stable manifolds of the maxima of f , see Fig. 1(a). For
a more detailed description of Morse theory especially its application
to piece-wise linear (pl-) functions we refer the reader to [13] and [4].
Note, that the Morse complex is a sub-structure of the Morse-Smale
complex used in previous work [21, 16, 17]. In particular, the Morse
complex does not contain information about the unstable manifolds of
f (the stable manifolds of − f ). However, the unstable manifolds are
not of interest for our analysis and thus, we restrict ourself to the Morse
complex which can be computed easier and more efficiently than the
Morse-Smale complex. We use a subset of the algorithms discussed in
[5] to compute the Morse complex.

(a) (b)
Fig. 1. (a) Example Morse complex with the stable manifolds high-
lighted; (b) Morse complex of (a) after the cancellation of the marked
saddle maximum pair. The two critical point plus their incident integral
lines are deleted and two stable manifolds merge.

In many applications it is useful to simplify an initial Morse com-
plex. Simplification can remove noise as well as provide a way to ana-



lyze the complex at multiple scales. A Morse complex is simplified by
canceling saddles with maxima of adjacent stable manifolds. Among
the neighboring maxima one usually chooses the one with lowest func-
tion value and this is the strategy we employ here. Each cancellation
removes one saddle along with its incident arcs as well as one max-
imum. As a result two regions merge simplifying the complex, see
Fig. 1(b). Traditionally, persistence, i.e., the difference in function
value between the two canceled critical points, has been used to rank
cancellation. While persistence has been proven be an excellent choice
for removing noise [21] this might not be the only purpose of simpli-
fication. In particular, using the function value of the saddle to rank
cancellations thus removing the highest saddle first mimics a water-
shed like segmentation, see Section 3.1. In this case the “water level”
is represented by the fuel consumption threshold and each island rep-
resents a burning cell. As the threshold decreases islands/cells merge
which corresponds to cancellations in the hierarchy.

2.2 Reeb Graph
While the Morse complex is defined using the gradient of f , the Reeb
graph stores information about the level-sets of f . The level-set of f
at value s is defined as all points on M with function value s. The
connected components of the level-sets are called contours. The Reeb
graph of f is constructed by contracting the contours of f into points,
see Fig. 2. The nodes of the Reeb graph are formed by the contours
passing through critical points of f and its arcs by the remaining con-
tours. Note, that contours change topology only at critical points.
Therefore, an arc represents a family of contours that does not change
topology.
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Fig. 2. Reeb graph of the height function on the triple torus. The three
loops in the graph correspond to the three tunnels of the model.

Similar to the Morse complex the Reeb graph is simplified by can-
celing connected pairs of critical points. Following the algorithm in [1]
one can either cancel an extremum-saddle or a saddle-saddle pair that
forms a loop. The former case removes a leaf from the graph while the
later simplifies a loop to a line. In this paper we use the Reeb graph
for tracking cells over time (see Section 3.2), and leafs represent the
birth or death of a cell. Therefore, we are mainly interested in sim-
plifying loops. Using time as function to build the Reeb graph, small
loops represent, for example, neighboring regions that split and merge
in quick succession before finally separating entirely. These cases are
due to instabilities in the parameter selection and simplifying the cor-
responding loops removes these artifacts from the Reeb graph. We use
the algorithms presented in [26] to compute and simplify the graph.

3 ANALYSIS

This section describes how to efficiently segment the flame surfaces
into burning and non-burning regions and how to encode the results in
a threshold independent hierarchy. Furthermore, the algorithm extends
the hierarchy by computing the area of all burning cells for all possible
thresholds. The resulting data structure can be quickly specialized to
any given threshold and persistence parameter. Finally, the section
briefly discusses the tracking algorithm and we refer the reader to [36]
for a more detailed description.

3.1 Aggregate Analysis
First, we focus on the analysis performed on each time step indepen-
dently and in particular on how this analysis can be accomplished si-
multaneously for all possible thresholds. For each time step we extract
the flame front as an isosurface of a given temperature and interpolate
the fuel consumption rate at each vertex of the (triangulated) surface.
In this particular case the isosurface is a byproduct of the space-time
isovolume we use to track burning cells and its construction will be
described in more detail in Section 3.2. We then compute the Morse
complex of the fuel consumption interpolated onto the isotherm, en-
code it hierarchically, and save it to disk. In a post-processing step
the complex is adapted to a specific persistence and fuel consumption
threshold from which one can extract all necessary information about
number and areas of burning cells.

Given any single fuel consumption threshold, the number and areas
of all burning cells could be computed by a flood-fill approach. As-
suming a pre-determined threshold vertices are implicitly labeled as
burning/non-burning and what remains to be done is to collect all con-
nected components of burning regions, compute their area, and record
their count. However, this strategy requires to re-process all time steps
of all simulations for any change in threshold. This makes a thorough
parameter study prohibitively expensive and likely flawed as only a
small, finite number of thresholds could be tested. Instead, we use the
segmentation given by the Morse complex to represent burning cells.
Storing the areas of the stable manifolds along with the Morse com-
plex allows one to extract information about any possible threshold by
imposing an appropriate hierarchy on the Morse complex and aggre-
gate the count and areas accordingly.

As discussed in Section 2, the Morse complex segments the surface
into the stable manifolds of all local maxima. Since stable manifolds,
by definition, are simply connected there can never be more burning
cells than there are local maxima of fuel consumption (each cell has
at least one maximum in its interior). As a first approximation one
can view each maximum as representing a burning cell. One then
uniformly subdivides the overall function range up to a sufficient res-
olution and computes the partial area of each stable manifold falling
within each sub-range, see Fig. 4. Assuming the area varies linearly
within each sub-range this information is sufficient to calculate the
burning areas of all stable manifolds for any threshold by adding up
all partial areas considered burning.

(a) (b)
Fig. 4. (a) The Morse complex of Fig. 1(a) with several contours, drawn
as dotted lines, indicating the subdivision of the stable manifolds into
sub-regions based on function range; (b) The Morse complex of (a) with
the partial areas color-coded wrt. their stable manifolds.

Nevertheless, treating all stable manifolds as single burning cells
is clearly incorrect. First, if a maximum has a fuel consumption rate
below the threshold its stable manifold does not define a cell since no
part of the surface is actually considered burning. Second, whenever
two neighboring stable manifolds are connected by burning vertices,
the two manifolds are part of the same cell. For a given threshold the
first case can be trivially handled. For the second case it is important
to remember that, by definition, the vertex with the highest function
value shared between two stable manifolds is always a saddle. Cancel-
ing all saddles with fuel consumption rate above the threshold there-
fore merges all stable manifolds that are part of the same cell, thus
restoring the one-to-one correspondence between (burning) maxima
and burning cells.

The advantage of counting burning cells in terms of (simplified)



(a) (b) (c) (d)
Fig. 3. Using a highest-saddle-first hierarchy to encode all possible cell segmentations: Consider the Morse complex of Fig. 1(a) together with the
partial areas shown in Fig. 4(b). The sequence (a)-(d) shows how the burning cell segmentation can be constructed for all thresholds in a single
top-to-bottom sweep. Colored portions of the complex are considered above the threshold, white regions below. (a) The segmentation at some
initial threshold with two burning cells whose area is given by the sum of the pre-computed areas above the threshold; (b) Lowering the threshold
it passes a maximum and a new cell appears (colored blue). Furthermore, the threshold has passed a saddle which is immediately canceled with
its lower neighboring maxima (the yellow one). This causes the red and yellow cells to merge restoring the correct cell count for this threshold.
The area of the merged cell is computed by simply summing the areas in the corresponding function ranges; (c) Further lowering the function
value causes the green cell to appear and the blue one to merge with the red/yellow one. The combined area as before is given as the sum of the
pre-computed areas; (d) Finally, lowering the threshold to the lowest contour shown merges the green cell with the rest.

stable manifolds is that it is easy to store the Morse complex in a hier-
archical fashion based on whatever metric is appropriate. In this case
the hierarchy is created by canceling saddles in order of decreasing
fuel consumption. The resulting sequence of cancellations mimics a
watershed segmentation with decreasing water level. Imagine a wa-
tershed segmentation as the fuel consumption threshold is swept top-
to-bottom through its entire range. Each time the threshold passes a
maximum, a new burning cell is born. Each time the threshold passes
a saddle, two stable manifolds merge, see Fig. 3. The merging corre-
sponds to the cancellation order of the hierarchy and the birth events
are given by a sorted list of maxima. In practice, we store a list of max-
ima sorted by decreasing function value. Additionally, each maximum
stores a cancellation value indicating at which threshold it will merge
with a neighboring maximum and the corresponding neighbor index.
As a result the maximum / burning cell count for each threshold can
be determined by a single sweep through the list stopping at the given
threshold. In this fashion all possible watersheds are stored in a single
data structure. Note, that since the count can only change at discrete
instances, namely at function values of maxima and saddles, the con-
tinuous function describing count vs. threshold can indeed be stored
accurately. Finally, areas of the merged stable manifolds are collected
by adding the appropriate pre-computed values at each cancellation.

In practice, we first perform a persistence-based simplification [13,
4] of the original Morse complex using a very small persistence thresh-
old. While this simplification does not necessarily follow the water-
shed described above it has no effect on the results, see Section 4, but
significantly reduces the number of maxima/stable manifolds present
in the initial complex. For a detailed description of persistence-based
simplification and its implementation for Morse complexes we refer
the reader to [13, 4]. Since we pre-compute areas for all stable man-
ifolds fewer maxima result in smaller file sizes necessary to store the
hierarchy. Using a very conservative persistence of 0.001 and dividing
the function range into 300 equally sized sub-ranges. File sizes range
between 10-15MB for the coarse resolution and 20-30MB for the fine
resolution per time step depending on the complexity of the isosurface.

3.2 Tracking

The algorithms discussed above support collection of cumulative sta-
tistical data for a complete time series, processing each time step sep-
arately. Another important aspect of combustion processes is the evo-
lution of burning cells over time. In particular, scientists are interested
in determining how and when burning cells are created/destroyed and
merge/split.

To facilitate the tracking process, we first restrict our considerations
to a particular isotherm, see Fig. 5(a), analogous to computing cumu-
lative statistics via the Morse complex on an isotherm. Thresholding
isotherm triangles by fuel consumption (Fig. 5(b)) yields a segmen-
tation of the isotherm in burning regions. Our approach tracks these
regions by considering their boundaries (Fig. 5(c)), tracing them over
time (Fig. 5(d)) and determining when they split and merge. We can

determine this split and merge events by computing the Reeb graph
of the surface swept by the boundaries over time. (We note that the
swept surface is actually embedded in 4D space using time as fourth
dimension. Fig. 5(d) shows this swept surface projected in 3D space
to illustrate the concept.)

To obtain the Reeb graph of the swept surface, we first observe that
burning region boundaries can be obtained by means of two subse-
quent contouring operations. First the isotherm is computed as iso-
surface of temperature and subsequently boundaries are obtained by
contouring this isosurface by fuel consumption rate. This observation
leads to the following construction scheme for the swept surface: (i)
We concatenate all time steps to form a four dimensional rectilinear
grid, where time is the fourth dimension and contour this grid using
a 4D marching cubes algorithm [3]. In a second step we extract the
boundaries of the burning regions in a second contouring step. The
result is then used to calculate the Reeb graph, which is the desired
tracking graph (after simplification).

Since we are only interested in creation, destruction, merging and
splitting of burning regions, we do not need to extract exact boundaries
of the burning region. Instead, it is sufficient to extract boundaries
that preserve the connectivity of burning regions. While our pipeline
performs all these steps on three dimensional data sets, we use the 2D
case to illustrate the underlying concepts as shown in Fig. 6.

We extract the space-time surface swept by the boundaries of burn-
ing cells over time in a two-stage process. First, we connect all time
steps of the simulations to a (virtual) 4D hyper-grid and extract a tem-
perature isovolume using the algorithm presented in [3]. The isovol-
ume encodes the evolution of the flame surfaces over time. Concur-
rently, we interpolate the fuel consumption scalar field at all vertices of
the isovolume and label them as burning, non-burning based on a given
threshold (we use 2.6 for all tracking related experiments). Finally, the
space-time surface between the burning and non-burning regions of the
isovolume is the surface swept by the boundaries of burning regions
over time.

We optimize the basic algorithm described above in two important
ways: The first optimization avoids extracting a true space-time iso-
surface between burning and non-burning regions. Later in the pro-
cess cells will be tracked by computing the Reeb graph of the final
space-time isosurface. The Reeb graph, however, only depends on
the connectivity of the surface not its geometry. Therefore, instead
of computing intersections along edges connecting burning to non-
burning vertices we snap such vertices to the ones labeled burning. It
can be shown that the resulting surface has the identical connectivity
to the “true” space-time surface but can be computed by simple filter
operation, see [36].

Second, we intersect the isovolume with planes of constant time at
each of the original time steps of the simulation. Note, that for the
original time steps this intersection reduces to another filtering oper-
ation and thus can be performed efficiently in a streaming fashion,
see [36]. The resulting isosurface is then segmented according to Sec-



(a) (b) (c) (d)
Fig. 5. Tracking burning regions. Like in the cumulative analysis, we restrict our considerations to a particular isotherm (a), on which fuel consump-
tion is mapped as a scalar field. Thresholding triangles of the isotherm by fuel consumption allows identification of individual burning regions (b).
We track these individual burning regions by considering their boundaries, which can be obtained in a second contouring operation (c). Traced
over time, these boundaries sweep surfaces in 4D space (the figure shows their path in 3D space) (d). The Reeb graph of this time surface is the
desired tracking graph.

(a) (b) (c) (d)
Fig. 6. Tracing the evolution of 2D burning regions and extinction pockets by tracking their boundaries. (a) Input data comes as a set of discrete time
slices. (b) Treating time as additional, third dimension we extract a space-time surface correlating isotherms from different time steps. The isotherms
(contour lines in 2D) for all original time steps area extracted by selecting all lines that have only vertices in the time step of interest (orange lines).
(c) Isotherm vertices at original time steps classified as either burning (red) or non-burning (blue) based on the local fuel consumption rate. Note
that vertices between time steps (arrowed vertex) are not classified, yet. (d) Classify vertices between time steps (arrowed vertex) by thresholding
and extract boundaries separating burning regions and extinction pockets (orange lines).

tion 3.1, the segmentation specialized for a persistence of 0.1 and a
fuel consumption threshold of 2.6, and all burning vertices are labeled
with their corresponding cell id. The specific parameter values are
determined by extensive parameter studies described in Section 4.

Computing the Reeb graph of the time function on this space-time
isosurfaces is the tracking graph of the cells, as shown in Fig. 7. Fur-
thermore, all vertices at original time-steps are labeled by cell id and
we augment the Reeb graph with this information if necessary by
adding valence two nodes. This allows to correlate specific cells of
the flame surface with points in the tracking graph. This correlation is
crucial when analyzing the graph.

(a) (b) (c)
Fig. 7. Using the Reeb graph to compute a tracking graph. (a) Several
time steps of a 2D data set with the boundaries of several cells indicated;
(b) The space-time boundary created by the boundaries of the cells in
(a) as they are interpolated over time. The surface is colored coded
using time as function and its Reeb graph is shown in white and gray;
(c) Each cell within a time step is assigned a unique identifier which we
use to augment the Reeb graph. Note that the final tracking graph still
contains nodes between time steps without identifier (shown in gray).

Once we have computed the Reeb graph we simplify all loops that
span less than a full time step since they must represent artifacts of
the construction (using linear interpolation between time steps no true
feature should exist between time steps). Finally, we simplify all
loops spanning exactly one time step to streamline the graph. This
helps resolving segmentation instabilities caused by saddles close to
the threshold value. As shown in Fig. 8 one sometimes finds “ex-

tended” split/merge events in which two regions merge and split sev-
eral times before fully merging/splitting. We also remove components
of the graph that have an overall life-span of less than two time steps.
We use dot to layout the resulting graph [20].

Fig. 8. An extended merge event: Two cells (initially labeled 12 and
21) merge and split twice before ultimately merging. These are inherent
instabilities in segmenting by thresholding caused by saddles very close
to the cut-off.

4 PARAMETER STUDIES

An often overlooked aspect of data analysis techniques is the ability
to easily change selection parameters. In practice, application scien-
tist are typically less interested in a single set of parameters but rather
in understanding the phenomenon in question within a range of opera-
tional parameters. Furthermore, studying the sensitivity of the analysis
with respect to the input parameters is an important piece of informa-
tion in its own right. A key feature of the hierarchy constructed in
Section 3.1 is the ability to quickly specialize it to any given set of
parameters. To demonstrate advantages of this flexibility and the sta-
bility of the topology-based analysis in general this section presents
a detailed parameter study for the three combustion simulations. It is
important to note that each simulation was only processed once on a
large 32 core server. All data presented in this paper was then extracted
from the stored hierarchies in a post-processing step on a standard lap-
top.

The goal of the combustion research featured here is to analyze and
compare three different numerical simulations of lean hydrogen flames
interacting with varying levels of turbulence. The focus is on under-
standing how many independent burning cells exist at any one time,
their areas, and evolution over time. Since this is the first time burning
cells have been analyzed in this fashion it is important to understand
the influence of various parameters on the analysis. Here, we present
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(f)
Fig. 9. Parameter study: (a) Average number of cells per time steps depending on the fuel consumption threshold for various persistences; (b)
Average number of cells depending on persistence; (c) Number of cells over time for three different temperature value in the strong turbulence
case; (d)-(f) Cumulative density function of cell area weighted by overall burning area for various fuel consumption thresholds in the none, weak,
and strong turbulence case respectively.

a sensitivity analysis with respect to persistence, temperature isovalue,
and fuel consumption threshold as well as a comparison between the
two levels of spatial resolutions. Unless specifically mentioned all
graphs show the collective statistics of time steps 300, 240, and 150
onward for the none, weak, and strong turbulence case respectively
using the coarse version of the data. Whenever, for brevity, only one
of the three cases can be shown the strong turbulence case is used as
it is the most volatile and expected to show the largest variance. Fi-
nally, the baseline values used for the final analysis are a temperature
of 1225 Kelvin, a persistence of 0.1, and a fuel consumption threshold
of 2.6.

Data. For each of the three simulations every fifth time step of a
long time series was saved using a uniform grid of size 256x256x768
and a shorter temporal subset given at every single time step using
a 512x512x1536 grid. For the turbulence free case the simulation
ended at time t = 3100 resulting in 621 coarse time steps. In addition
102 fine resolution time steps have been saved covering the interval
[511,612]. For the weak turbulence case the simulation ended at time
step 2695 providing 540 coarse time steps together with 82 fine resolu-
tion time step in the [431,512] interval. Finally, the strong turbulence
case ended at time step 2235 producing 448 coarse files in addition
to 91 fine resolution time steps covering time steps [540,630]. Each
time step consists of two floating point values: the temperature and the
fuel consumption rate. Overall the input amounts to roughly 400GB
of compressed floating point data.

Persistence. As discussed in Section 2 the persistence of the can-
cellation that merges two burning cells is the absolute distance in func-
tion value (here the fuel consumption) between the lower maximum
and the shared saddle. Thus simplifying per persistence merges cells
containing “shallow” maxima. In previous applications of topologi-
cal analysis persistence has been shown to have a significant influence
on the results [21, 15]. In this context, small persistences are used to
remove noise while larger persistences to perform a multi-scale anal-
ysis. Nevertheless, in these cases persistence has been the only pa-
rameter acting on the various topological segmentations while in the

work presented here the highest-saddle-first hierarchy is of primary
interest. In particular, a high persistence threshold might skew the re-
sults as persistence based simplification would allow stable manifolds
to be merged via saddles below the given fuel consumption threshold.
In the worst case an absolute persistence of 1.0 at a fuel consumption
threshold of 2.6 could allow a saddle with fuel consumption rate of 1.6
to be canceled. Effectively, this would count the offending saddle as
burning even though this would be clearly undesirable. Therefore, the
persistence should be restricted to a value significantly below 1.0.

The primary measure effected by varying the persistence is the
number of cells. Fig. 9(a) shows the number of cells depending on
the fuel consumption threshold for various persistences in the strong
turbulence case. While the persistence does have a significant impact
on the count for high fuel consumption thresholds its influence is in-
significant in the vicinity of physically meaningful thresholds (around
2.6). Fig. 9(b) shows the average number of burning cells in each time
step versus persistence for all three simulations. Clearly, the count is
extremely stable up to persistences far beyond the physically mean-
ingful range.

Temperature. The temperature value defining the flame front is
the only parameter not easily adjusted in our frame work. For each
temperature a separate set of surfaces must be extracted which given
the large number of time steps takes several hours. However, the tem-
perature value is usually hand-picked by the domain scientists using
traditional visualization techniques making it less susceptible to mis-
calculation. Nevertheless, it is important to understand the stability of
the results with respect to this choice. As a first test of stability we
compare the cell count over time for three different choices of tem-
perature namely 1200, 1225, and 1250 Kelvin. Fig. 9(c) shows the
number of burning cells over time for the strong turbulence case. All
three graphs show qualitatively the same behavior. Furthermore, the
region count strictly increases with the temperature value. This sug-
gests that the count is stable except that in some instances flame fronts
at higher temperatures do not contain some of the “bridges” of high
fuel consumption between cells. Therefore, cells that could merge for



lower temperatures no longer have a connection thus increasing the
count. Finally, Fig. 12(a) shows the area weighted normalized cumu-
lative density function (NCDF) of the distribution of cell areas for the
three temperature values. The normalized cumulative density func-
tion of cell areas for an area a is defined as the fraction of cells with
size ≤ a. For example, at 1200 Kelvin about 40% of the patches are
larger than 4 a ratio that decreases to 30% for 1225 Kelvin, and to un-
der 20% for 1250 Kelvin. Overall, the three graphs show an identical
behavior with the only difference being that lower temperature values
on average produce slightly larger cells. This is unsurprising as lower
temperature surfaces have a larger overall surface area.

Fuel Consumption Threshold. The most important parameter in
the analysis is the threshold of fuel consumption which defines what
parts of the flame surface are considered burning. Fig. 9(d), (e), and
(f) show the NCDF of cell areas for the none, weak, and strong turbu-
lence case. As expected lower thresholds produce larger cells as more
of the surface area is considered burning. Furthermore, the graphs for
lower thresholds show long flat tails indicating the presence of few
outliers with unusually large areas. While all graphs show the same
trend they seem to become more stable for higher thresholds. Overall,
this suggests that higher thresholds are likely to produce more stable
results. However, based on the physical interpretation the fuel con-
sumption threshold should be set rather lower around 2.0-2.6. Based
on our analysis it was determined to choose the highest physically
meaningful threshold of 2.6 as optimal value.

Spatial Resolution. As mentioned in Section 3 for each simula-
tion a small temporal subset of about 100 time steps was computed
with an additional level of subdivision and dumped every time step
rather than every fifth. Once flattened into a regular grid these time
steps have eight times the spatial resolution of the coarse data. To de-
termine whether the higher resolution provides additional information
we performed the full analysis and compared the results. Fig. 12(b)
shows the NCDF of the high resolution data in solid and the NCDFs of
the corresponding temporal sub-set of the coarse data as dotted lines.
Considering, that the high resolution data is given at eight time the
spatial and five time the temporal resolution the curves match remark-
ably well. The high similarity between the different resolutions allows
us to use the coarse data with a high degree of confidence. As a result
the full time sequences can be used providing a better statistical sam-
pling. In fact, the statistics over the complete series look somewhat
different from those of the temporal sub-set shown here. While the
curves in Fig. 12(b) suggest a linear fit the final NCDFs show a clear
logarithmic behavior, see Fig. 12(c).

5 TEMPORAL ANALYSIS

In addition to the statistical analysis we track all burning cells in the
three cases using the coarse level time series. We started the tracking
once the simulation are considered to be in a “steady state” which is
time step 300 in the turbulence free, time step 240 in the weak, and
150, in the strong turbulence case. Since for this resolution only every
fifth time step of the original simulation was stored we sub-sampled
the coarse resolution in time creating one intermediate time step be-
tween each pair of original data files.

For each dataset we have created the full tracking graph and used it
to render the accompanying animations. As discussed in Section 3.2
tracking graphs contain a node for every time step and every arc. How-
ever, to reduce visual clutter only nodes with a valence different from
two are shown in the figures and movies. Since the complete graphs
have an extreme aspect ratio and are very large they are provided as
additional material rather than shown directly in the paper. To ana-
lyze the graphs we create multiple versions for each simulation using
various levels of simplification and coloring. The simplification re-
moves small scale (on the temporal scale) features primarily due to
instabilities in the thresholding and makes the graph noticeably less
cluttered. We also experimented with different colorings of the graphs
to highlight various properties. Given the temporal interpretation of
the graphs it is natural to color nodes at either “end” and observe the
effects as the color propagates through the graph. However, the large

number of splits make it impossible to create unique (and still recog-
nizable different) colors for each branch. Furthermore, the existing
merges often combine two arcs of different color leading to the re-
moval of one color from the propagation. As a result there exist no
single uniquely appropriate coloring algorithm and instead we focus
on presenting different schemes to the user each with their advantages
and disadvantages. In particular, we have applied four different strate-
gies: a) In the first time step the four cells with largest fuel consump-
tion are chosen and assigned a unique color. Each time a cell splits
all children inherit the color and if two colored cells merge the color
stemming from the arc with higher maximal fuel consumption passes
on its color to the child; b) The same strategy as in a) is used but for
the cells with the fourth to eighth largest fuel consumption; c) The
eight cells with the highest fuel consumption in the first time step are
assigned a color. Each time a cell splits only the child with the highest
fuel consumption value among the children inherits the color. If two
colored cells merge the cell with the previously higher fuel consump-
tion passes on its color; and d) The same strategy as in c) is applied in
reverse by coloring the eight cells with the largest fuel consumption in
the last time step propagating the color backwards. The a),c), and d)
coloring strategies are shown in the animations with colors matching
the arc colors in the corresponding graphs.

Color strategies a) and b) provide a general notion of how cells in
early time steps influence cells in later time steps. For example, in the
turbulence free case all burning cells at the end of the simulations are
descendent from the four cells with highest fuel consumption in the
beginning. However, this is not true for the cell with fourth to eights
highest fuel consumption. The differences between a), b) and c), d) in-
dicate that a high maximal fuel consumption is not necessarily a good
indicator for cell survival. While passing on a color to all children
quickly colors most of the graph coloring only the child with highest
fuel consumption has most colors disappearing.

Fig. 10. Annotated screen-shot of the interactive user interface. Show-
ing cell 4 of time step 550 highlighted in the turbulence free case, see
Fig. 11.

Fig. 11 shows a small portion of the tracking graph for the turbu-
lence free case using color scheme b) modified to only show colored
branches. Round nodes indicate burning cells segmented from an ac-
tual flame surfaces using the Morse complex. The numbers inside
the nodes and along the branches indicate the identifier assigned to
this particular cell in the segmentation. This information allows us
to quickly find cells of interest and also to color cells consistently in
time. The diamond shapes represent topological events in between
time steps and thus have no identifier attached. To provide better navi-
gation we use the space inside the diamonds to indicate the simulation
time. Red/green nodes and diamonds signal merge/split events and
turquoise structures a birth or death event. Using the renderings above
and below the graph one can follow the event chain.

Between time 550 and 552.5 the purple cell 4 merges with cell 18
via a small connection across the lower boundary (as mentioned above
the simulation is periodic in x and y). Subsequently, what used to be
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Fig. 11. Subsection of the tracking graph in the turbulence free case compressed to only show the colored arcs together with several corresponding
segmentations. Round nodes correspond to cells explicitly segmented by the Morse complex, diamonds to topological events between time steps.
Red signifies a merge, green a split, and turquoise a birth/death event.

cell 18 develops a connection with cell 25 resulting at time 555 in the
three purple areas all being connected via small bridges into a single
cell. At time 557.5 the cell formerly labeled 25 has split leaving a
small portion attached to cell 4 and creating a new cell 26. Finally,
at time 560 the remains of cells formerly labeled 18 and 25 have split
off cell 4 forming a separate cell 19. A useful side-effect of the con-
struction algorithm of [5] is that the labels within each time step corre-
spond to the relative fuel consumption of the highest maximum within
each cell. Therefore, the cell with overall highest fuel consumption
is labeled 1 the next highest 2 etc.. As seen in Fig. 11 this provides
consistency in the labeling across time steps even though the segmen-
tations are performed independently. This consistency is not perfect
nor is it strictly required since the graphs provide enough information
to connect labels across time. However, it does make following the
graph easier and more intuitive.

Besides the illustrations of the graphs and the corresponding anima-
tion we also developed a tool to interactively explore the time corre-
lated isosurfaces. To this end we store the results of the segmentation
(one 8-bit index per triangle) in a separate set of files. To explore a
graph these files a read along side the original surfaces which allows
us to color the surfaces by cell id. To support exploration of the entire
time series we implemented a simple pre-fetching scheme that always
keeps a user-defined number of surfaces and segmentations in mem-
ory. Fig. 10 shows a screen shot of the user interface that allows to
interactively choose a time step as well as a cell index. At any time
all burning cells are randomly colored using eight unique colors and
a single selected cell/stable manifold is colored red. Together with a

pdf viewer showing the corresponding graph the user can follow each
event in the graph in detail. To further illustrate the user interface we
have provided a live screen capture of the in-depth analysis of Fig. 11
using our tool. To facilitate understanding we added the relevant por-
tions of the graph of Fig. 11 to the animation with the current time
step highlighted in grey. As noted above, the inherent consistency in
the labeling process makes following cell through time easy. In the
majority of cases labels will persist over time thus relieving the user
from continuously updating the highlighted cell index. Since the user
interface is based entirely on a pre-computed segmentation it can be
applied to a variety of surface based feature tracking applications such
as, for example, the one presented by Laney et al. [21].

6 RESULTS

Here, we present the results of the statistical analysis as well as the
tracking. To illustrate the results we have provide a number of an-
imations as well as pdf files of all graphs in the accompanying ma-
terials. Most of the computation was performed in parallel at the Na-
tional Energy Research Scientific Computing Center at Berkeley using
both an SGI Altix 350 server with 32 Intel Itanium-2 processors and
a small portion of a 712-CPU Opteron cluster. Running on a single
Itanium-2 processor the isovolume extraction between two time steps
takes around eight minutes, extracting the isotherm for a single time
step takes approximately 5 minutes, the segmentation of the result-
ing flame surface 20 seconds, and the extraction of the corresponding
portion of the space-time boundary surface three and a half minutes.
Merging all space-time partial surfaces into a single file takes around
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Fig. 12. Parameter study and results: (a) Cumulative density functions of the cell areas weighted by overall burning area for three temperature
values in the strong turbulence case; (b) Comparison of the NCDF functions on fine and coarse resolution for all three cases. (c) NCDF function of
the cell area distribution. As turbulence increases the distributions skews towards larger cells.

30 minutes. The final space-time surface, stored in obj format, oc-
cupies between 2GB in the none and weak turbulence case and 3GB
in the strong turbulence case. The main bottleneck in isovolume and
isotherm extraction as well as merging results of two time slices is file
I/O, which accounts for approximately two thirds of the processing
time. For the purpose of these measurements, we used the time steps
that produced the largest output files. The Reeb graph computation
was performed on a 2.33 GHz Intel Core Duo laptop with 2GB main
memory in 6, 6.5, and 11 minutes for the none, weak, and strong case
turbulence case respectively.

As discussed in Section 4 storing the segmentation as hierarchical
Morse complex enabled us, for the first time, to perform extensive pa-
rameter studies. This provides the scientist with powerful tools to pick
a final set of parameters and validate the results. Furthermore, our
analysis demonstrates that, at least for the statistical data presented
here, the coarser resolution of the simulations contains all necessary
information. As a result the fine resolution computation might be
skipped in future simulations significantly increasing the performance
while decreasing the storage requirements.

The most significant scientific result is summarized in Fig. 12(c).
It shows the normalized cumulative density function of the distribu-
tion of cell areas for the three simulations, and indicates a clear trend
towards larger flame cells with increasing turbulence intensity. This
trend is perhaps counterintuitive, since flows with a higher turbulence
intensity contain more energetic fine-scale modes which may interact
with the laminar flame. Apparently, however, these interactions do not
tear apart the flame at smaller scales, but rather significantly modify
the development of the thermodiffusive instabilities that lead to the
cellular burning structures in the non-turbulent case.

As can be seen in the accompanying animations one reason for the
increased cell size is that in the stronger turbulence, cells in the process
of splitting remain attached longer. Fig. 13 shows a snapshot of each
simulation in which a small number of single cells are highlighted. For
the turbulence free case the cells remain somewhat convex, Fig. 13(a),
while for the weak and especially the strong case more sprawling cells
develop. The increasing “connectedness” of burning pockets creates
overall larger cells which explains the curves in Fig. 12(c). Overall,
our analysis suggests that taking turbulence into account might allow
a stable combustion process using a much leaner hydrogen-air mixture
than previously thought possible.

The tracking graphs presented here allow, for the first time, to cor-
relate burning cells over time and to better understand their evolution.
For example, based on simulations of flat laminar flames it has been
expected that cells only split and do not merge. While the graphs in-
deed predominantly show a splitting behavior there are a significant
number of merges present in all three simulations. As part of the fu-
ture work it will be interesting to extend the statistical analysis to the
graphs themselves determining whether there exist significant differ-
ences in the cell evolution.

While the tracking is generally very stable there do exist rare arti-
facts due to the low temporal resolution. In the unsimplified graphs

(a) (b) (c)
Fig. 13. Snapshots of early time steps in the turbulence free (a), weak
(b), and strong turbulence (c) case. Selected burning cells are shown in
color, non-selected cells in grey. The non-burning portions of the flame
surfaces are drawn translucent. As the turbulence level increases cells
become less convex and develop a higher genus.

one can sometimes find merge-split nodes which connect two regions
in between time steps even though the Morse segmentation before and
after shows two separate cells. These are generally artifacts of the low
time resolution most likely coupled with tetrahedralization artifacts.
The cells in question are usually spatially close and convoluted. In
such cases the space-time isovolume can create spurious connections.
A similar problem exists sometimes for dying cells which often con-
sist of only a handful of vertices. Such cells tend to move fast while
shrinking rapidly which results in a lost connection. In the graphs
these dying cells appear as short lived components that are born and
die sometimes with a single time step.

7 CONCLUSIONS

We have presented a novel hierarchical segmentation strategy which
allows us to analyze and track features embedded in time-dependent
isosurfaces. We use these techniques to study burning cell structures
in simulated lean premixed hydrogen flames. In a single pass over the
data we collect a large amount of statistical information revealing new
insights into the combustion process. In particular, the size and inten-
sity of the burning cells are quantified and tracked over time to inves-
tigate the effect of turbulence on the propagation of these structures.
Furthermore, we have presented new algorithms to track features over
time by computing the Reeb graph of the boundary of their space-time
volume and demonstrated an interactive tool to visualize the results.
Overall, the procedures described in this paper provide the applica-
tion scientists with fundamentally new analytic capabilities and thus
significantly advance the state of the art.

In the future, we are aiming to extend our techniques to a fully
three-dimensional segmentation to eliminate the need of choosing a
temperature isovalue. Furthermore, we plan to statistically analyze the
graphs and in particular collect time-dependent characterizations of
individual cells. Finally, displaying the graphs is in itself an interesting
research problem due to their large size and extreme aspect rations. We
are currently exploring new graph drawing algorithms and in particular
the possibility to provide linked views between the interactive user
interface and a graph visualization.
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