
Original Article

The International Journal of High
Performance Computing Applications
2015, Vol. 29(2) 209–232
� The Author(s) 2015
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1094342014568690
hpc.sagepub.com

ExaSAT: An exascale co-design tool for
performance modeling

Didem Unat, Cy Chan, Weiqun Zhang, Samuel Williams, John Bachan,
John Bell and John Shalf

Abstract
One of the emerging challenges to designing HPC systems is understanding and projecting the requirements of exascale
applications. In order to determine the performance consequences of different hardware designs, analytic models are
essential because they can provide fast feedback to the co-design centers and chip designers without costly simulations.
However, current attempts to analytically model program performance typically rely on the user manually specifying a
performance model. We introduce the ExaSAT framework that automates the extraction of parameterized performance
models directly from source code using compiler analysis. The parameterized analytic model enables quantitative evalua-
tion of a broad range of hardware design trade-offs and software optimizations on a variety of different performance
metrics, with a primary focus on data movement as a metric. We demonstrate the ExaSAT framework’s ability to per-
form deep code analysis of a proxy application from the Department of Energy Combustion Co-design Center to illus-
trate its value to the exascale co-design process. ExaSAT analysis provides insights into the hardware and software
trade-offs and lays the groundwork for exploring a more targeted set of design points using cycle-accurate architectural
simulators.

Keywords
Performance modeling, exascale co-design, exascale systems, performance analysis, combustion codes, abstract machine
model, compiler analysis, cache modeling, stencil applications, design trade-offs

1 Introduction

The designers of exascale systems are faced with chal-
lenges introduced by system cost and power consump-
tion (Shalf et al., 2010). In order to improve delivered
performance for large-scale applications within practi-
cal cost and power budgets, it is essential to move
towards a hardware–software co-design process where
the hardware design space is explored in tandem with
software optimizations. The US Department of Energy
co-design centers Cesar (http://cesar.mcs.anl.-
gov/), Exact (http://exactcodesign.org) and
ExMatEx (http://exmatex.lanl.gov/) are per-
forming multi-disciplinary research to iteratively design
various aspects of applications including core algo-
rithms, programming models, compilers, and runtimes
to ensure that they will meet the requirements of future
scientific simulations. Effective co-design requires a
performance framework to rapidly evaluate the pro-
posed hardware by vendors and software changes and
provide end-to-end analysis of an application.

In order to evaluate hardware–software design
trade-offs, we introduce a compiler-based performance

modeling framework, ExaSAT (Exascale Static
Analysis Tool), that enables rapid exploration of hard-
ware design space and helps bridge the communication
gap between the application developers and hardware
designers. Because many exascale architectural specifi-
cations are currently undefined, our performance
model is parameterized to help explore different design
choices. Additionally, our framework explores a para-
meterized software optimization space (e.g. cache
blocking, fusion, etc.) together with the hardware
design space so that we do not base conclusions about
hardware requirements on unoptimized codes.

The initial design of the ExaSAT framework focused
on combustion codes that use algorithms on structured
grids. Combustion currently provides 85% of the

Computational Research Division, Lawrence Berkeley National

Laboratory, USA

Corresponding author:

Didem Unat, Computational Research Division, Lawrence Berkeley

National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA.

Email: dunat@lbl.gov

 at UNIV CALIFORNIA BERKELEY LIB on June 29, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


nation’s energy needs and is a key driver for exascale
computing (https://flowcharts.llnl.gov/
archive.html#energy_archive). Economic and
environmental concerns are driving the development of
new combustion systems targeting toward clean and
efficient use of alternative fuels. Developing these sys-
tems requires simulations with sufficient chemical fide-
lity to differentiate the behavior of candidate fuels in
realistic engine conditions. Exascale computing offers
the promise of enabling the underlying science to design
fuel-efficient, clean-burning vehicles, planes, and power
plants for electricity generation (http://exactcode-
sign.org/main/wp-content/uploads/ExaCT-
Deep-Dive-Intro.pdf). For example, exascale
computing will enable the development of new homoge-
nous charge compression ignition (HCCI) engine
designs that lead to lower emissions, cleaner combustion
and a 25–50% increase in efficiency. It is predicted that
HCCI will require 20 days runtime at billion way con-
currency, a 3 PB memory to hold the simulation state,
and will generate 1.0 EB of data for analysis. Thus,
studying the performance requirements of combustion
applications on potential exascale designs is extremely
valuable.

Our framework provides a missing capability in the
co-design toolset where fast evaluation is needed at the
expense of accuracy. Simulations are slow, leading to
very narrow, yet highly detailed analysis of a small ker-
nel or a subcomponent of a system. For example, it
would take a hardware simulator, such as RAMP
(Krasnov et al., 2007; Wawrzynek et al., 2007), a few
hours to generate a single configuration of a multi-core
processor, though the application on the configured
architecture would then run in real-time. It is easier to
configure a cycle-accurate software simulator, such as
GEM5 (Binkert et al., 2011), but it would take several
hours to run an application to get meaningful results.
In comparison, ExaSAT can evaluate hundreds of
hardware–software configurations per minute on a
desktop machine. Thus, ExaSAT complements hard-
ware and software simulators in the co-design process
by serving as a design space-pruning tool. In addition,
by restricting the framework to structured grid prob-
lems, we improve the accuracy of the performance
model. For example, while the compiler front-end gath-
ers the read–write properties of streaming arrays, the
cache model takes into account the reuse in stencil
arrays when estimating the memory traffic. Since the
access pattern of such applications operating on dense
arrays can be statically inferred, we can quickly derive
fast analytic performance models. Our approach does
not support analysis for irregular or graph-based codes
where the access pattern is only available at runtime.
On the other hand, understanding the performance of
structured grid problems provides insights into the

requirements of an important class of applications
using stencil-based partial differential equation (PDE)
solvers.

This paper makes the following contributions:

� We develop the ExaSAT framework to statically
analyze an application and automatically gather
key characteristics about the computation, commu-
nication, data access patterns and data locality that
are important in characterizing the performance of
combustion codes.

� We design both an XML representation of the
application workload characteristics and an XML
representation of the exascale machine configura-
tions. The XML serves as a medium and an inter-
face for our framework to work with other tools,
such as Pin tools or architectural simulators.

� We implement a performance model that can com-
bine both hardware and software parameters to bound
performance, rapidly explore design trade-offs, and
extrapolate these requirements to potential hardware
realizations in the exascale timeframe (2020).

� We perform deep code analysis of SMC, a proxy
implementation of a production combustion code,
and use our results to address key co-design ques-
tions acquired from our industry partners. Finally,
we quantify the SMC performance on exascale
proxy architectures using ExaSAT.

The rest of the paper is organized as follows. Section
2 provides background on related work and explains
how ExaSAT differs from existing performance model-
ing tools. Section 3 introduces the ExaSAT framework
including the compiler-based front-end, XML specifi-
cation for the code description and abstract machine
model, and performance modeling component.
Validation of the framework is provided at the end of
the section. Section 4 provides an overview on the char-
acteristics of combustion applications and gives details
about a proxy application used to conduct performance
analysis for this paper. We present performance analy-
sis and results in Section 5. Section 6 makes projections
on an exascale machine, evaluates the implications of
our findings, and provides feedback to hardware and
software designers for exascale systems. The section
includes discussion on limitations and future work. We
conclude the paper in Section 7.

2 Related work

The overarching goal of the co-design centers is to
understand the interplay between hardware and soft-
ware design trade-offs. Given the uncertainty in exas-
cale architecture, co-design centers need an application
characterization tool to iteratively perform the

210 The International Journal of High Performance Computing Applications 29(2)

 at UNIV CALIFORNIA BERKELEY LIB on June 29, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


hardware–software optimization processes envisioned
for the co-design of HPC systems. GEM5 (Binkert
et al., 2011), CACTI (Thoziyoor et al., 2008) and SST
(Rodrigues et al., 2011) are software simulators that
parameterize machine specifications but they are slow,
leading to narrow analysis of small kernels or isolated
components of the system such as the interconnect.
FPGA-based cycle-accurate, circuit-level emulators
such as RAMP (Krasnov et al., 2007; Wawrzynek
et al., 2007) and the CoDEx emulator (Shalf et al.,
2011) can capture very detailed behavior of the archi-
tecture, but are not as easily configurable as software
simulators. For example, if the number of cores in the
emulator is changed from 64 to 128, every single mod-
ule will need to be manually adjusted for the new cache
sizes, address spaces, and network sizes. Furthermore,
very fine-grained circuit-level design introduces the
danger of missing general performance trends because
of the large amount of extraneous data generated.
Benchmarking provides an immediate response, but
limits the analysis to current hardware architectures
and the results can be biased towards the particular
implementation or compiler options used because we
cannot separate implementation-specific results from
performance opportunities.

Given the cost of setting up both simulations and
emulations, analytic models play a complementary role
in design space exploration to identify the subset that is
of interest for further study with simulation and emula-
tion. Higher level analytic models such as the Roofline
model (Williams et al., 2009) provide speed-of-light
(cannot-exceed) performance expectations, but offer a
very coarse-grained description of performance in terms
of flop rates and DRAM bandwidth. Convolution-
based approaches such as PMAC tools (Snavely et al.,
2002; Carrington et al., 2003) provide coarse-grained
performance analysis through correlation, and generate
models by convolving application characteristics (the
signature) through instrumentation with a vector
describing the target machine attributes. Similar to
ExaSAT, Pbound (Narayanan et al., 2010) mixes static
and runtime data to estimate upper performance
bounds. However, by focusing on the structured grid
applications ExaSAT can better characterize data
movement requirements and thus provide tighter per-
formance bounds. In addition, ExaSAT combines soft-
ware optimizations with the performance model. For
more rapid construction of analytic models, pseudo-
languages have been proposed. For example Aspen
(Spafford and Vetter, 2012) is a domain-specific lan-
guage that enables a user to describe the parallelism,
arithmetic operation counts, and data movement to
build a model. Specifying the model in Aspen still
requires a lot of work, and the quality of the model
depends on the ability of the user to accurately capture
the application signature.

Our ExaSAT framework has adopted a compiler-
based approach to automate the process of generating
the performance model. Compiler-based approaches
have the dual advantages of being less labor-intensive
(thus more easily applied to large codes) and providing
a more accurate description of codes to the analytic
model. Static analysis cannot capture the dynamic
behavior of the application; however, metrics gathered
by dynamic traces or binary instrumentation are very
sensitive to compiler flags and machine configuration,
which can obscure conclusions during the analysis.
Moreover, existing machines do not reflect the charac-
teristics of exascale machines and early prototypes of
exascale hardware are not available for evaluation.
Instead, in ExaSAT we parameterize the hardware con-
figurations to support the static compiler analysis and
increase the flexibility of the framework to support
exascale machine models. The model is not completely
agnostic of inputs either. Rather it is parameterized by
a number of runtime parameters such as problem size.
These parameters are extracted from the input deck for
the various applications so that the model sees the
resultant performance impact.

Another aspect that differentiates our approach from
others is that our framework uses data movement
metrics to quantify performance. Most existing perfor-
mance analysis and instrumentation focus on flop
counts, cache hit rates, and other processor-based
metrics. We focus on data movement as a key metric
because it has become one of the most challenging hard-
ware constraints for the design of future systems. Since
flops have become cheaper, the energy of data move-
ment dominates the energy cost (Shalf et al., 2010; Unat
et al., 2014). Thus, our analysis of both on-node and
off-node data movement not only provides valuable
feedback to hardware designers, but also to exascale
programming model, compiler, and runtime designers.

Finally, in addition to a parameterized machine
model, our modeling approach includes a parameter-
ized model for software optimizations. Previous work
(Mohiyuddin et al., 2009; Chan et al., 2013) showed
that estimating hardware requirements on unoptimized
software led to incorrect conclusions. Similarly, tuning
software without taking into account hardware choices
did not result in an optimal solution. These findings
motivated us to incorporate a parameterized set of soft-
ware optimizations into our framework. Our approach
holds a substantial advantage over studies that measure
code bandwidth and flop utilization without consider-
ing software transformations (Balaprakash et al., 2013).
As more detail emerges on hardware design proposals,
the upper bounds provided by the analytic models pro-
duced by ExaSAT should be examined together with
the lower bounds supplied by binary instrumentation
on current machines to provide a complete picture of
theoretical vs. achievable performance.

Unat et al. 211

 at UNIV CALIFORNIA BERKELEY LIB on June 29, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


3 The ExaSAT framework

As illustrated in Figure 1, the ExaSAT framework is
composed of two main components – the front-end
compiler analysis and back-end performance model.
The front-end component collects procedural and loop-
level information to create a profile of the code, which
is stored in an XML file. The XML code description is
then fed into the back-end analysis, which produces
dependency graphs, generates performance models,
and produces statistical summaries of the code’s char-
acteristics. The performance model is parameterized
with (1) machine specifications such as cache size, (2)
user parameters such as problem size, and (3) software
optimizations such as loop fusion and blocking. The
optimized hardware configurations provide the reduced
design space for the architecture simulators and the
optimized software configurations provide feedback to
application developers and programming system tools.

As a result of interactions with application experts
and industry partners participating in the Department
of Energy Fast Forward program (https://
asc.llnl.gov/fastforward/), we assembled a set
of performance metrics that reflect the characteristics
of the exascale applications and made these metrics the

center of ExaSAT. Figure 2 shows the list of metrics

that we used for evaluating the various hardware com-

ponents and software optimizations. The first metric

that quantifies the benefits of data movement optimiza-

tions is the byte-to-flop ratio (B:F), which expresses the

balance between the application’s required flops and

memory traffic. We use this ratio as an indicator of

energy and performance improvement for optimization

strategies. Since the degree of reuse enabled by the on-

chip memory configuration can significantly impact

memory traffic, we also measure working set sizes.
Another metric related to data movement concerns

state variables and registers. We analyze state variables
to estimate the impact of the architectural register count
on the number of spills, which cause additional loads
and stores and pipeline bubbles. Although the majority
of our analysis focuses on data movement, ExaSAT
provides estimates of arithmetic costs as well. We ana-
lyze the instruction mix, the use of expensive transcen-
dental functions such as exponentials, and the impact
of vectorization.

ExaSAT enables us to investigate alternative tech-
nologies such as non-volatile memory (NVRAM) and
integrated network controllers (NIC). NVRAM is

Figure 2. Subset of performance metrics captured.

Figure 1. Workflow in the ExaSAT framework.

212 The International Journal of High Performance Computing Applications 29(2)

 at UNIV CALIFORNIA BERKELEY LIB on June 29, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


considered to be a cost-effective alternative that can
serve as a high-capacity, secondary memory (Lee et al.,
2009), however the writes to NVRAM are costly both
in terms of dynamic energy consumption and perfor-
mance. In order to assess what data to put into
NVRAM, we use the community standard, read/write
ratios (Li et al., 2012), and a new metric known as the
write access rate, which is the fraction of write refer-
ences to a particular variable. Lastly, we use the frac-
tion of communication time to assess the impact of
off-node communication on application performance.
This metric helps us evaluate whether there is a strong
justification for custom NICs, which integrate the net-
work controller on chip to increase injection band-
width. Next, we explain how we extract these metrics
with compiler analysis and how we employ them in the
performance model.

3.1 Compiler analysis

The compiler analysis for ExaSAT was built on top of
the ROSE compiler framework (Quinlan et al., 2002),
which is an open-source compiler infrastructure devel-
oped at Lawrence Livermore National Laboratory.
ROSE parses the C, C++, and Fortran source to con-
vert it into an abstract syntax tree (AST) that we can
manipulate and analyze. Our compiler analysis cur-
rently accepts Fortran inputs; however, it can be
extended to support C/C++ inputs.

3.1.1 Procedure and loop attributes. The analysis of the
AST begins by querying the procedure definitions (sub-
routines and functions) in a module. For each proce-
dure, we collect a list of variable symbols used in the
procedure body and classify them into two categories:
L: locally declared variable symbols and, U: variable
symbols referenced within a procedure. The set differ-
ence (U \ L) of these two gives us the non-local vari-
ables, which can be global, defined in another module,
or passed as an argument to the procedure. Fortran
presents a special case because of its pass-by-reference
semantics for subroutine arguments; procedure argu-
ments that are declared with an intent type modifier are
not technically local, and must be excluded from the
L list.

After completing the live variable analysis1 and
locality analysis for the procedure, we collect detailed
loop-level information. The loop analysis handles per-
fectly and imperfectly nested loops and is carried out
inclusively on the entire loop body without excluding
child loops.

When we generate the XML output, we make the
loop-level information exclusive (not including attri-
butes in the subloops). This is important to accurately
estimate performance because both the arithmetic and

memory operations are multiplied by the iteration space
in the performance model.

For each loop, we gather loop attributes such as
iteration bounds and strides, which are later used by
the performance model to reason about the iteration
space. Loop bounds typically depend on application
parameters that are determined at runtime; therefore,
we track symbolic rather than actual values and later
perform symbolic replacement based on the user’s para-
meters. Maintaining a symbolic representation of the
iteration space also enables the performance model
back-end to analyze the effect of software transforma-
tions such as loop blocking and fusion.

In order to estimate the total arithmetic workload,
we count the floating point arithmetic operations (addi-
tion, subtraction, multiplication and division) in the
loop body. In addition, we count math intrinsic func-
tions (e.g. exp() or log()) because they can be signifi-
cantly more costly to execute. The compiler analysis
searches for function reference expressions in the loop
body and uses a lookup table to identify such functions.

3.1.2 Data access analysis. Array access analysis is one of
the crucial parts of the compiler analysis because the
read/write properties of arrays are utilized by the per-
formance model to compute on-chip data movement
and memory footprint. ROSE provides an interface to
get lists of the read references (R list) and write refer-
ences (W list) for a given statement. This interface par-
tially serves our needs by enabling us to classify
variables as read-only, write-only or both. In scientific
codes, some array dimensions may not represent spatial
dimensions, but rather different physical properties or
quantities such as density, temperature, pressure, or
energy. We differentiate such dimensions by represent-
ing each array as an array–component pair. For exam-
ple, the two references to the array Q in Q(i,j,k,imx)
and Q(i,j,k,imy) refer to two different array–component
pairs: (Q,imx) and (Q,imy). The location of such
dimensions is tunable. However, we currently require
all the arrays in the application to have the physical
property represented in the same index location. The
user can identify which indices represent spatial dimen-
sions and which are non-spatial parameters. The differ-
entiation of arrays at the component level is necessary
because the reuse pattern, and thus the working set
size, may be different for each component. We group
references by array–component pairs and return sepa-
rate lists for the read-only variables (R \ W), write-only
variables (W \ R), and the arrays that are both read
and written (R\W).

In order to model data reuse in the cache, we need
more information with respect to the array access pat-
terns. We support the read/write property analysis by
examining all the references to an array–component
pair in a basic block. The array references are broken

Unat et al. 213

 at UNIV CALIFORNIA BERKELEY LIB on June 29, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


into individual subscript expressions to extract their
relative offsets to the loop indices. This helps us deter-
mine the distance between two references to the same
array. Another important property is whether the first
reference to an array is a load or a store. If the first ref-
erence is a load followed by a store, the load requires
the data to be brought into cache from memory before
it is written. On the other hand, if a load is preceded by
a store, then the load may be carried out from the cache
without incurring any additional memory traffic. Our
tool conducts the first reference analysis within a loop
to more accurately model cache reuse and support the
analysis of advanced memory instructions such as non-
temporal stores.

If the program expands into multiple files, we
require the user to generate a separate XML per file.
The XML code description contains the function call
information such as module:function name and
argument–parameter mapping. The performance model
will take the XML of the file of interest with its depen-
dent XML files as an input. When estimating the per-
formance, if a function call is encountered, the compute
cost of that function will be added to the compute time
of the callee. Because of the nesting nature of function
calls, this complicates the performance analysis particu-
larly for the read/write properties of arrays. We are still
investigating how to improve the analysis and currently
conservatively assume that arrays are modified if we
cannot automatically determine if the function has
side-effects. We made an exception for the side-effect
analysis of Fortran math intrinsics and assume the
arguments for such functions are read-only. In addition
to arrays, we conduct a similar analysis for the scalar
variables referenced in each loop to help estimate regis-
ter usage, though the read/write property analysis for
scalar variables is much simpler.

3.2 XML Description

The ExaSAT compiler analysis outputs the results in
an XML intermediate representation (XML-IR) to
interface with the back-end performance modeling
component of the framework. This enables the utiliza-
tion of the performance model directly from the high-
level XML-IR, bypassing the compiler analysis step. In
this way, program variants or hypothetical code formu-
lations can be evaluated without having to write the
actual code. Similarly, the XML output of the compiler
analysis can be fed to another tool such as an architec-
ture simulator, bypassing the performance model step.
We currently provide the XML description of the com-
munication patterns in the codes to the SST simulator
(Rodrigues et al., 2011) to simulate different intercon-
nection topologies. The XML-IR element hierarchy
is shown in Figure 3 and a more detailed design
document can be found at http://crd.lbl.gov/
projects/combustion-codesign-2/.

3.2.1 Machine configuration. The machine configuration
used as an input to the performance model can be spec-
ified in a separate XML. ExaSAT focuses on the aggre-
gate performance of the computational throughput and
memory bandwidth between the CPU and the DRAM.
It considers the bandwidth filtering capability of last
level cache, which is determined by the total amount of
exclusive on-chip memory per thread or group of co-
operating threads. An example machine configuration
XML, shown in Listing 1, represents an exascale extra-
polation of a many-core architecture (Ang et al., 2014).
The example shows a 1000-core machine with 10 TF
aggregate computational throughput, 1 TB/s aggregate
memory bandwidth and 64 kB cache per core. The
XML also allows us to specify other parameters, such
as the number of registers, DRAM size, network
latency, and network bandwidth. Section 3.3 explains
the effects of these properties in greater detail.

Additionally, some software parameters that affect
performance, such as the use of cache-bypassed writes
and non-temporal memory accesses, may be configured
in our performance model through XML input or at
runtime.

3.3 Performance model

Our performance model takes the characteristics of the
computational workload specified as an XML and gen-
erates performance metrics and execution estimates.
For simplicity, we adopt a hardware model abstraction
consisting of a collection of parallel hardware cores
alongside a parameterized memory on the chip. The
CPU is connected to the main memory by a bandwidth-
limited off-chip network. Our CPU model does not
capture the behavior of individual cores or the on-chip
network, but rather takes the aggregate computational
throughput as an input parameter. Similarly, the

1 <machine>

2 <prop key="Cores" val="1000" />

3 <prop key="Gflop/s/core" val="10" />

4 <prop key="GB/s/core" val="1" />

5 <prop key="Cache/core (kB)" val="64" />

6 <prop key="Division Cost" val="39" />

7 <prop key="Transcendental Cost" val="125" />

8 <prop key="NIC BW (GB/s)" val="100" />

9 ...

10 </machine>

Listing 1. An example XML machine description (partial)

214 The International Journal of High Performance Computing Applications 29(2)

 at UNIV CALIFORNIA BERKELEY LIB on June 29, 2015hpc.sagepub.comDownloaded from 

http://crd.lbl.gov/projects/combustion-codesign-2/
http://hpc.sagepub.com/


memory model takes the aggregate DRAM bandwidth
connecting the CPU to memory (i.e. the stream band-
width) as an input. Since modeling the effects of on-
chip access latency would require a detailed on-chip
network design analysis, we focus on the bandwidth-
filtering capability of the on-chip memory, i.e. the
reduction in memory traffic from capturing temporal
locality. Thus, we are primarily interested in the size of
the (non-inclusive) on-chip memory capacity per thread
or group of threads co-operating on a working set. Our
model focuses on capturing the costs of the computa-
tional workload and data movement, while taking into
account the degree of data reuse enabled by the on-chip
memory.

Application performance is estimated using the fol-
lowing method: let a be the aggregate computational
throughput of the machine and b be the aggregate
memory bandwidth. Let C represent the program’s
floating-point arithmetic workload and D be the neces-
sary off-chip data movement between the CPU and
DRAM. Our model estimates the program execution
time as T = max(Tc,Td), where Tc =

C
a

is the CPU
time and Td =

D
b
is the DRAM time. This performance

metric assumes the full throughput and bandwidth are
achievable, which may not always be the case for a
complex application code. The purpose of our frame-
work is not to make exact performance predictions, but
instead provides a performance upper-bound in the
spirit of the Roofline model (Williams et al., 2009), and
is useful for making relative comparisons between dif-
ferent hardware–software configurations. Lastly, we
modeled the off-node communication time by assuming
an ideal interconnection network. Our model estimates
the communication time as m

b
+ l, where m represents

the aggregate message size, b is the network injection
bandwidth, and l is the network latency. Thus, for large
messages, the network latency is negligible. The model
also computes the fraction of communication time over
the total execution time, which depends on the Tc (on a
memory bandwidth-limited kernel) and Td (on a
compute-bound kernel).

3.3.1 Floating-point computation. In order to estimate C,
the floating-point (FP) arithmetic workload, we exam-
ine the FP operation distribution present in the code.
Current FP logic is typically optimized towards FP
additions and multiplications, which exhibit their peak
throughput on workloads that only consist of a balance
of those two operations. However, there are other types
of FP operations present in scientific codes that can
only sustain a fraction of the peak. For example, on
the Intel Sandy Bridge architecture, the throughput of
scalar FP division is 39 times slower than SIMD FP
adds or multiplies, while scalar exponentiation is 125
times slower (Vladimirov, 2012). ExaSAT weighs

operations such as divides and transcendentals accord-
ing to their costs specified by the user in the machine
configuration to determine a weighted computational
workload. Further, the model is parameterized to allow
exploring optimizations such as vectorized operations.

3.3.2 State variables, registers, and spills. The number of
accesses to both state variables (scalars and non-
streamed arrays) and streamed arrays can be used to
determine how many registers need to be reserved to
hold these values during each of the loops in the pro-
gram. Since state variables are accessed during every
iteration of a loop, an optimal allocation for these vari-
ables would place the variables with the most number
of accesses into registers, while spilling the rest into the
next tier of memory (e.g. L1 cache or local memory).
Assuming an architecture with an L1 cache, our perfor-
mance model can compute the traffic that results from
spilled state variables based on the user-specified regis-
ter parameters. In addition, it can compute mandatory
traffic that results from streamed variable access to esti-
mate total L1 traffic. This information can be used to
analyze the trade-off that results between the number
of available registers and the L1 bandwidth.

3.3.3 Working sets and memory traffic. The performance
model analyzes every array accessed in each loop of the
input XML code description. Each array may have a
different access pattern, so the tool computes working
set and bandwidth usage for each array independently
given the array’s access pattern. An array that is written
will typically only require access to the current grid ele-
ment (no neighbors), while arrays that are read may
require multiple grid elements. Our memory and cache
model is targeted to the reuse pattern that occurs in
stencil computations because stencils constitute the
most prevalent operator in our target application codes.
The cache is assumed to be an ideal, fully-associative
least recently used (LRU) cache, which is optimistic in
the sense that if the working set fits into cache, full
reuse of that working set is assumed. Real caches with
random replacement policies are likely to under-
perform due to conflict misses and imperfect replace-
ment. However, our model provides a performance ceil-
ing and a starting point for more detailed analysis using
dynamic instrumentation and simulators.

Figure 4 shows the potential reuse cases captured by
our model for the canonical seven-point stencil. If the
cache is large enough to hold the cell working set, then
there will be reuse between cell iterations. Similarly, the
figure shows the working set sizes needed for reuse
between pencil iterations (all points in x for a given y
and z) and plane iterations (all points in x and y for a
given z). For each stencil access pattern encountered in

Unat et al. 215

 at UNIV CALIFORNIA BERKELEY LIB on June 29, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


the code, our model computes the working set sizes
required for each of these reuse cases.

If there are gaps in the stencil access pattern, partial
reuse may occur near the calculated boundaries
between reuse cases. Our model can compute the work-
ing set sizes that bound the transitions from no reuse to
partial reuse, to full reuse between pencil and plane
sweeps. For an LRU cache, no reuse will occur if the
cache is smaller than the number of elements accessed
in the pattern, while full reuse requires a working set
equal to the span of the pattern plus the maximum gap
size. For example, a stencil pattern that accesses planes
22, 21, 0, +1, +2, has a working set of five planes
because there’s no gap, but a pattern of 22, +2
requires a working set of eight planes (five for span,
three for gap) for reuse even though it only touches
two planes per sweep. It may seem counter-intuitive
that accessing fewer planes can increase the working set
size, but gaps in the pattern require the cache to hold
data for a longer period of time without evicting it. For
a software-managed local store, the memory can be
managed more efficiently, requiring only the span of
the access pattern to fit into the store. Since we are
interested in establishing a performance upper bound,
the model optimistically assumes full reuse is possible
for certain situations where only partial reuse would
occur. Future work will take these effects into consider-
ation to increase the tightness of the bound.

The machine configuration specifies the cache line
size, which determines the minimum granularity of
access in the unit-stride dimension used for working set
and bandwidth calculations. Our model rounds the
number of contiguous elements within the accessed
region up to the next multiple of the cache line size
(assuming optimistic alignment), to compute the result-
ing working set and memory traffic estimates. Also, the
configuration allows the user to specify whether cache
bypass is utilized for array writes, reducing memory
traffic and cache pollution. Non-temporal array reads
can also be enabled in the configuration to further
reduce cache pollution from arrays with no reuse.

Once the working set and memory traffic estimates
are computed, they are compared to the cache size spec-
ified in the hardware configuration to determine what

reuse scenario will occur for each loop, thus determin-
ing the required memory traffic for the whole program.
Note that this type of analysis can be conducted at
every level of the cache hierarchy. For example, if we
specified the cache size available at L1, then the com-
puted memory traffic would be that required between
L1 and L2. Using our methodology, we could conduct
a multi-level analysis that computes the bandwidth
requirements and performance at every level of cache.

3.3.4 Block execution schemes. Cache blocking (Rivera
and Tseng, 2000) reduces cache capacity misses by til-
ing the loop iteration space, thus shrinking the working
set to the point where it fits in cache. ExaSAT incorpo-
rates two different block execution schemes to analyze
the performance impacts of cache blocking. In the tra-
ditional blocking scheme, each loop runs over the
entire domain before proceeding to the next loop. In an
alternative scheme (Woodward et al., 2010) all of the
loops are run on a block before moving to the next
block, as illustrated in Figure 5. Each large rectangle
represents the iteration space at different points of
progress (indicated by shading), and each subrectangle
represents a block of the iteration space that fits into
local memory. While traditional blocking allows reuse
of data within loop nests, the alternative scheme sche-
dules loops such that reuse of data across loop nests is
also possible. The potential disadvantages of the alter-
native scheme are larger working set sizes and redun-
dant computation needed to satisfy any necessary
spatial dependencies between blocks. In the alternative
scheme, if the blocks are sized appropriately, all tempo-
rary arrays can remain in cache or local store through-
out the computation until the final output is produced.
If there is sufficient on-chip memory, the only DRAM
traffic required would be for reading and writing each
function’s inputs and outputs.

ExaSAT automatically generates parameterized per-
formance models for both schemes, facilitating the
exploration of optimal strategies for different machine
configurations in the co-design process. Using liveness
analysis, our performance model can estimate the total
memory footprint needed at each computation step,

Figure 4. Working sets required for different levels of reuse
for a seven-point three-dimensional stencil. The grid is swept in
a triply nested loop with the x dimension first, then y and then z.

Figure 3. XML-IR element node hierarchy.

216 The International Journal of High Performance Computing Applications 29(2)

 at UNIV CALIFORNIA BERKELEY LIB on June 29, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


giving the on-chip memory size required for each block
execution scheme and an estimate of the total memory
traffic.

3.4 ExaSAT Outputs

3.4.1 Dependency graph description. The ExaSAT frame-
work outputs a dependency graph indicating the depen-
dencies between loops in a procedure. Flow, anti, and
output dependencies are considered across all arrays
read and written in each loop. Figure 6 shows an exam-
ple dependency graph generated by ExaSAT where
boxes represent data arrays, ovals represent loops, and
arrows indicate which arrays are read and written by
each loop. The dependency graph illustrates the code’s
inherent concurrency and allows us to reason about
how the computation can be rearranged for enhanced
locality, task co-scheduling, and parallel load distribu-
tion. We explore the impact of loop fusion for enhanced
locality on our motivating application in Section 5.1.4.
Future work will study the use of intelligent runtime
analysis for task co-scheduling and load balancing.

3.4.2 Spreadsheet description. ExaSAT outputs a perfor-
mance spreadsheet for the user to further examine the
performance of the application. The spreadsheet

contains a table of user-modifiable parameters, which
allows the user to change the initial XML software and
machine configurations. The rest of the spreadsheet
automatically updates itself via formulas to reflect the
changes made in the parameter table.

The main section of the spreadsheet is a summary
table listing properties for each loop in each procedure
in the code. Table 1 shows a part of the summary table
generated by our tool, including flop counts, state vari-
able count, working set size, memory traffic, and execu-
tion time. Aggregate statistics are also included in the
table to summarize whole program performance.

The spreadsheet contains an array access and occu-
pancy table which shows the liveness of arrays through
the progression of the program. This analysis is used
for memory capacity calculations and NVRAM feasi-
bility studies. Table 1 also shows an example occupancy
table generated by our tool. The rows in the table corre-
spond to arrays, while the columns correspond to loops
in the program, allowing the table to be read left-to-
right to correspond to a possible program execution.
The number of copies indicates the number of compo-
nents of the arrays. Each cell in the table contains one
of the following values: read (R), written (W), read-
then-written (RW), written-then-read (WR), live (L), or
non-resident (). Summary columns are given to show

Figure 6. Dependency subgraph for the SMC dynamics code.

Figure 5. Comparison between a) traditional blocked execution order, and b) the alternative block execution order.

Unat et al. 217

 at UNIV CALIFORNIA BERKELEY LIB on June 29, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


the number of reads and writes to each array as well as
the total number of live arrays, which is used to com-
pute the memory footprint.

Other sections in the spreadsheet include tables that
summarize the internode communications that must
occur during the program execution and state variable
accesses to help model the cache traffic resulting from
spilled registers. A summary table and histogram are
generated for each loop showing the number of state
and streaming variables located in registers versus
cache and the corresponding number of register hits
and misses.

3.5 Model validation

We validated our results against data collected through
dynamic instrumentation and benchmarking.

Validation against Pin: First, we used the publicly
available Pin tool (Luk et al., 2005) to validate instruc-
tion counts and memory traffic. Pin analyzes an appli-
cation at the instruction level and uses dynamic
compilation to instrument executables while they are
running. By attaching callbacks around every instruc-
tion reading or writing to memory we can extract a
stream of load and store addresses from the program
as it runs. This stream is then piped into an LRU cache
simulator that we implement on top of Pin, which
aggregates the relevant statistics such as cache hit, miss,
and line writebacks for a given cache size. Floating-
point instructions are also monitored to retrieve flop
counts.

The FP instruction counts predicted by ExaSAT
match with those measured by the Pin tool. Loads and
stores of the variable under study also match those
reported by the Pin tool. Figure 7 compares the mem-
ory traffic modeled by ExaSAT with the memory traffic
captured by the Pin tool for the CNS code for various
cache sizes. CNS2 is a combustion proxy that integrates
the compressible Navier–Stokes equations assuming
constant transport. It is a simplified (single species) ver-
sion of the SMC code (Emmett et al., 2014), which will
be discussed in more detail in Section 4. The analytical
performance model in ExaSAT correctly captures the
amount of data reuse and the resulting trend of mem-
ory traffic as cache size is varied, though the memory
traffic modeled by ExaSAT is slightly lower than the
Pin tool’s because ExaSAT is providing a lower bound.
Initially, the number of L1 cache hits measured by Pin
was abnormally higher than what ExaSAT estimates
considering only array access traffic, which led us to
investigate the proportion of L1 cache traffic due to
spilled state variables. When there are not enough regis-
ters to hold all the state variables in a loop, accesses to
these variables will be spilled to the next level memory.
This introduces more cache traffic, which will give the
impression that there is a higher hit rate. When we

separated array accesses from the state variable accesses
to the cache in the Pin tool, the loads and stores esti-
mated by ExaSAT matched with those measured by
Pin. Register spills are also discussed in Section 5.1.3.

Block size validation: Second, we measure the effect
of blocking with three simple stencil benchmarks,
namely gradient, divergence, and Laplacian and com-
pare their performance against the estimates by
ExaSAT. We manually blocked three simple stencil
benchmarks, and collected the execution time with 24
threads on a single node on NERSC Hopper Cray
XE6. No software prefetcher or cache bypass is
enabled. The results in Figure 8 show that the mea-
sured execution times and optimal blocking size corre-
late well with ExaSAT’s. Where the block size is small,
the model predicts much better performance than the
measured because in the measured code, hardware pre-
fetchers cannot hide the load latencies for small blocks.
There are also situations where the model exceeds the
measured execution time. The model has sharp transi-
tions at the points where the working set grows larger
than the available cache. In reality, the cache replace-
ment policy leads to a smoother transition than
ExaSAT.

Optimization opportunities: Third, we collected run-
ning times for the CNS code (single species) and SMC
code (multiple species) and compared them against the
ExaSAT estimated bounds. The purpose of comparing
ExaSAT with the benchmark is not to measure how
close the estimated and actual running times are, but to
point to the parts of the code where there are opportu-
nities for optimization since ExaSAT highlights para-
meter sensitivities subject to the user-specified
constraints rather than giving a performance
prediction.

Figure 9 compares the performance bounds by
ExaSAT and the actual running times by loop nests
collected on the NERSC Hopper machine.3 As clearly
seen from the results, a big performance gap exists
between the two for some of the loops and for these
there is the potential to gain the performance back
through data movement optimizations. In particular,
the hypterm function exhibits the largest discrepancies
between the measured and estimated bound. ExaSAT
bounds the running time for the hypterm function to
8.1 ms, which is 3.33 better than what is measured
(26.6 ms). ExaSAT estimates that this bound for hyp-
term can be further reduced to 3.3 ms from 8.1 ms if all
three loops are fused.

We aggressively optimized the hypterm function by
applying vectorization, cache blocking, and loop fusion
optimizations and the results are shown in the inset
graph in the same figure. The first bar in the inset graph
shows the total time spent in three loops in hypterm
and the second bar shows the measured performance as
a result of optimizations and compares it with the new

218 The International Journal of High Performance Computing Applications 29(2)

 at UNIV CALIFORNIA BERKELEY LIB on June 29, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


T
a
b

le
1

E
x
am

p
le

lo
o
p

an
al

ys
is

ta
b
le

(t
o
p
)

an
d

ar
ra

y
ac

ce
ss

an
d

o
cc

u
p
an

cy
ta

b
le

(b
o
tt

o
m

)
ge

n
er

at
ed

b
y

th
e

E
x
aS

A
T

to
o
lf

o
r

a
su

b
se

t
o
f
SM

C
d
yn

am
ic

s
co

d
e.

P
ro

ce
d
u
re

Lo
o
p

lin
e

n
u
m

b
er

flo
p
s/

ce
ll

St
at

e
V
ar

W
o
rk

in
g

se
t

(k
B

)
M

em
o
ry

tr
af

fic
(G

B
)

FP
C

o
m

p
u
ta

ti
o
n

(w
ei

gh
te

d
G

flo
p
s)

B
:F

E
xe

cu
ti
o
n

ti
m

es
(m

s)
A

d
d

M
u
l

D
iv

E
x
p

In
t

FP

ad
va

n
ce

4
1
8

1
2
8

1
7
4

0
0

1
7

5
3
5
6

0
.6

9
0
.6

3
1
.1

6
0
.6

7
ad

va
n
ce

5
3
3

2
2

0
0

7
2

0
.0

3
1
2
5

0
.1

1
0
.0

1
1
2
.0

0
0
.1

1
ad

va
n
ce

7
2
0

3
2

3
9

0
0

1
3

8
1
3
2

0
.1

9
0
.1

5
1
.3

9
0
.1

9
ad

va
n
ce

7
7
1

1
8

2
7

9
0

1
7

0
0
.4

3
7
5

1
.4

1
1
.0

0
1
.5

2
1
.3

7
ad

va
n
ce

1
5
2
9

8
6
0

9
5
9

1
8

0
3
0

7
0

8
1
8

1
.4

4
5
.3

3
0
.2

9
1
.4

1
ct

o
p
ri

m
8
5

3
1
7

1
0

2
4

3
2

0
.3

7
5

1
.5

4
0
.1

5
1
1
.1

2
1
.5

0
ct

o
p
ri

m
1
3
6

4
4

2
1

1
4

2
2

0
.1

1
7
1
8
7
5

0
.2

3
0
.4

4
0
.5

7
0
.2

3
To

ta
l/
M

ax
8
1
8

5
.6

1
7
.7

1
0
.7

8
5
.4

8

Lo
o
p

lin
e

n
u
m

b
er

To
ta

ls

V
ar

ia
b
le

n
am

e
C

o
p
ie

s
2
7
4

4
1
8

5
1
5

7
6
7

7
7
1

7
9
1

1
1
3
9

1
1
6
0

1
5
08

1
5
2
9

1
8
7
7

1
9
2
1

R
ea

d
s

W
ri

te
s

Li
ve

Fd
if.

ir
yn

5
3

W
L

L
L

R
W

L
R
W

L
R
W

R
2
1
2

2
1
2

2
6
5

Fh
yp

.ir
yn

5
3

W
R
W

L
L

L
L

L
L

L
L

L
R

1
0
6

1
0
6

4
7
7

H
g.

ir
yn

5
3

W
R

W
R

W
R

1
5
9

1
5
9

0
Q

.q
h
n

5
3

R
R

L
R

L
R

2
1
2

0
1
0
6

Q
.q

p
re

s
1

R
L

L
R

R
L

R
L

R
5

0
4

Q
.q

te
m

p
1

R
L

R
L

R
3

0
2

Q
.q

x
n

5
3

R
R

L
R

L
R

2
1
2

0
1
0
6

U
.ir

yn
5
3

L
R

L
L

L
L

L
L

L
L

L
R

1
0
6

0
5
3
0

U
n
ew

.ir
yn

5
3

L
L

L
L

L
L

L
L

L
L

L
R
W

5
3

5
3

5
8
3

d
p
e

1
W

R
W

R
L

R
L

R
4

2
2

d
py

.n
5
3

W
R

R
L

R
L

R
1
5
9

5
3

1
0
6

N
u
m

be
r

o
f
ar

ra
ys

re
si

d
en

t
1
5
9

1
6
0

2
1
3

2
1
4

3
7
3

4
2
7

4
2
7

4
2
7

4
2
7

4
2
7

2
6
5

2
1
2

Unat et al. 219

 at UNIV CALIFORNIA BERKELEY LIB on June 29, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


bound by ExaSAT after the loop fusion. The manual
optimizations achieved 6.73 the initial performance,
reducing the measured running time from 26.6 ms to
4.0 ms, which is much closer to what ExaSAT predicts
(3.3 ms). This illustrates how ExaSAT can be used to
identify performance opportunities for the programmer
and guide application tuning.

Similarly, ExaSAT suggested that tiling the SMC
code would provide a 37% improvement in perfor-
mance on Hopper and a 41% speedup on San Diego
Supercomputer Center’s Trestles.4 We have implemen-
ted a tiled version of SMC and observed a 30%
improvement on Hopper and 32% on Trestles. We sus-
pect that the poorer measured performance can be
attributed to limitations with the hardware prefetchers
since the SMC code accesses a large number of arrays

in its solvers. Consequently, there is room for improve-
ment and we are still investigating the SMC perfor-
mance. We did not manually implement the fused
version of SMC because of its complexity. We plan to
use the CHiLL compiler framework (Chen et al., 2008)
to automate loop fusion.

4 Motivating application: SMC

We demonstrate the abilities of the ExaSAT framework
by applying the tool to the SMC code, which contains
over 10K lines of code, making manual analysis
impractical for this code. SMC was developed by the
Combustion Co-design Center and is a proxy for the
production direct numerical combustion codes such as
S3D (Chen et al., 2009). SMC represents structured

Figure 7. Comparing memory traffic modeled by ExaSAT and simulated by Pin for the CNS code (1283 problem).

Figure 8. Measured and modeled execution times for blocking sizes for three simple stencil benchmarks.

220 The International Journal of High Performance Computing Applications 29(2)

 at UNIV CALIFORNIA BERKELEY LIB on June 29, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


grid problems, which play an important role in numeri-
cal simulations, particularly in stencil-based PDE sol-
vers. Understanding SMC performance provides
insights into the requirements of this family of combus-
tion codes on exascale machines.

SMC integrates the multi-component reacting com-
pressible Navier–Stokes equations with detailed models
for chemical species diffusion and kinetics. It contains
the key elements of both the dynamical core5 and the
chemical kinetics components of S3D; however, SMC is
restricted to gas-phase problems and a restricted set of
boundary conditions. SMC also uses a simpler tem-
poral integration algorithm that does not include auto-
matic error control. The algorithm is based on the high-
accuracy solution of a system of partial differential
equations of the form

∂U

∂t
+r � F (U)=r � D(U)+ S

The terms F , D, and S correspond to hyperbolic trans-
port, non-linear diffusive processes and chemical source
terms, respectively. U is a vector of unknowns, repre-
senting density, energy and three components of
momentum with an additional density for each chemi-
cal species (e.g. octane), for a total of 5 + Ns

unknowns per point where Ns is the number of species
in the problem. The number of chemical species and
the number of reactions have a strong effect on the
overall computational costs of the algorithm; typical
applications will range from as few as 9 species to more
than 100. The chemical kinetics model used by SMC is
specified at compile time using code that is generated
automatically from a tabular description of the reac-
tion mechanism. This mechanism-specific file also
includes thermodynamic data needed for the

simulation. Transport coefficients are computed using
EGLIB (Ern and Giovangigli, 1995).

We focus on two important aspects of SMC: the
chemical source term evaluation and the dynamical
core. The chemical source term of SMC is a computa-
tionally intensive, element-wise computation that uses
a large number of transcendental operations. The dyna-
mical core uses high-order stencil computations to
approximate spatial derivatives, converting the system
into a large system of ordinary differential equations.
These ordinary differential equations are then inte-
grated using a third-order, low-storage, TVD Runge–
Kutta scheme (Gottleib and Shu, 1998; Qiu and Shu,
2005).

The spatial discretization uses a finite difference
approximation on a uniform grid. There are essentially
three types of term we need to approximate: first-order
derivatives needed to approximate r � F , and terms of
the form (aux)y and (aux)x, both of which arise in dis-
cretizing D. We first define a first-order derivative oper-
ator in the x direction, D1,x using an eighth-order finite
difference discretization

ux, i, j, k’D1, xui, j, k =
X
‘= 1, 4

a‘(ui+ ‘, j, k � ui�‘, j, k)

with analogous operators in the y and z directions.
These discrete derivative operators are used to evaluate
the terms for discretization of F . They are also used to
evaluate mixed derivative terms. For example

(hux)y’D1, y(hD1, xu)

The second derivative terms are discretized using an
eighth-order extension of the narrow stencil discretiza-
tion of Kamakoti and Pantano (2009). In particular,

Figure 9. Measured and modeled execution times for each loop in a single Runge–Kutta step in the CNS code. L# indicates the
loop number.

Unat et al. 221

 at UNIV CALIFORNIA BERKELEY LIB on June 29, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


we approximate variable coefficient second derivative
terms in the form

∂

∂x
a
∂u

∂x

� �
i

’D2, x(a, u)=
X

‘,m=�4, ..., 4

b‘,mai+ ‘, j, kui+m, j, k

A more detailed discussion of the discretizations in
SMC can be found in Emmett et al. (2014).

The parallel grid decomposition for the SMC code
requires ghost cell exchanges for the vector U. Ghost
cells are the data residing in neighboring grid blocks
that are required to compute the stencil operations.
Figure 10 shows the stencil access pattern and ghost
region that needs to be communicated. The depth of
the ghost region is four grid cells in each dimension
with 5 + Ns values per point.

5 Results

5.1 Analysis of SMC with ExaSAT

In order to capture the effect of increasing the number
of species, we modeled the SMC code for 9, 21, 53, 71
and 107 species, representing simulations ranging from
hydrogen to natural gas to biofuels. Figure 11 provides
more description of the species modeled in this paper.
Note that only certain values for the number of species
are meaningful. Unless stated otherwise, the baseline
performance estimates are based on a domain
decomposition (box) size of 1283 per node with 53 spe-
cies using the machine configurations specified in
Listing 1.

5.1.1 Arithmetic operations. ExaSAT can examine the FP
operation mix per loop iteration and provides the flexi-
bility to change the arithmetic operation throughput.
Figure 12 shows the operation analysis for both the
chemistry and dynamics kernels of the SMC code for a
1283 problem size with 53 species. The two kernels exhi-
bit substantially different arithmetic operation distribu-
tions. The chemistry kernel contains transcendental
operations, mainly exponentials (92.5%) and loga-
rithms (7%). Even though a small number of division

and transcendental functions appear in both kernels,
these operations contribute significantly to the running
time since they execute roughly one to two orders of
magnitude slower. Figure 12 shows the estimated con-
tribution of each FP operation to the CPU time when
we assume vectorized addition and multiplication, and
low throughputs6 for division and transcendental func-
tions (1/39th and 1/125th of peak, respectively). Note
that the CPU time (Tc) is computed based on the com-
pute throughput and does not include the DRAM time.
Even though transcendental functions in the chemistry
kernel are a small fraction of the total flops, they domi-
nate the CPU time (75%). Similarly, the number of
divisions in the dynamics kernel seems insignificant but
represents one third of the CPU time.

5.1.2 Fast transcendentals and division. Vectorization is one
of the main sources of parallelism within a processor
that can enable fast execution of FP division and trans-
cendental arithmetic. Besides parallelism benefits, it
can also lower energy and control complexity. The
downside is that it takes chip surface area and requires
programmer assistance. An alternative approach to
vectorization is software pipelining, which can hide
functional unit latency but also requires more program-
ming effort and more registers.

Table 2, shows benchmarked (not modeled) perfor-
mance results gathered on the Intel Sandy Bridge E5-
2680. Fast-div shows the performance improvements
for division using the SSE instruction (AVX provides
no further performance gain) and Fast-exp shows the
performance improvement for the exponential function
with the AVX Short Vector Math Library. The bench-
mark results indicate that SSE provides a 1.953

improvement on division and AVX provides a 2.983

improvement on exponentials.
ExaSAT allows a user to weight instructions based

on their relative throughput to the peak compute rate.
The weights can reflect the longer execution times of cer-
tain instructions such as division, or they can reflect the
potential speedup through improvements to the compi-
lers or hardware. The speedup due to the use of vector
intrinsics may not be proportional to the increased
weight of the instruction speed because the compiler
might fail to generate code that uses vector intrinsics
due to complex loop body or divergence effects.

Figure 13 shows the estimated speedup for the SMC
code including both the chemistry and dynamics codes
as a result of different SIMD lengths. Here, the baseline
performance assumes SIMDized addition and multipli-
cation, and low throughputs for division and transcen-
dental functions (first column in Table 2). Figure 13
also shows the estimated speedup for SMC on the
Sandy Bridge (indicated as a line) using the bench-
marked costs for division and transcendentals shown in
Table 2. Our performance model takes the maximum

Figure 10. (a) Three-dimensional grid with its ghost cells, and
(b) stencil access pattern for SMC.

222 The International Journal of High Performance Computing Applications 29(2)

 at UNIV CALIFORNIA BERKELEY LIB on June 29, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


CPU time and DRAM time for each kernel indepen-
dently to compute the execution time. Both vectorized
division and transcendentals greatly improve the execu-
tion time of the chemistry code; however, there is no
benefit for the dynamics code since its execution time is
limited by DRAM bandwidth. As a result, there is a
diminishing return as we increase the SIMD length. For
example, for 53 species, the SSE instruction (SIMD2)
provides 25%, while SIMD4, SIMD8 and SIMD16 give
43%, 54%, and 60% improvement over the baseline,
respectively. The improvement differs between the dif-
ferent number of species because of the number of reac-
tions, thus the number of divisions and transcendentals
differ. Both 53 and 71 species have a high number of
reactions per species, which means more arithmetic
operations and higher benefit from vectorization for the
chemistry component.

5.1.3 State variables. The state variable analysis provided
by ExaSAT is valuable in the co-design process because
it exposes a hardware trade-off between register count

and L1 cache traffic (or local memory traffic). In order
to measure how many registers the SMC code requires
to avoid spills, we collected all the state variables and
their access frequencies for each loop using compiler
analysis. Based on the number of registers specified by
the user, the performance model allocates the state vari-
ables to available registers and computes the L1 cache
traffic resulting from the register spilling. Figure 14
shows the number of accesses for each FP state variable
sorted by number of accesses in the SMC chemistry ker-
nel. For example, in a nine-species simulation, the vari-
able #22 is accessed 15 times. In the best-case scenario,
the compiler will allocate the variables with the highest
number of accesses to the available registers. Assuming
16 FP named registers (as in SSE or AVX), the vertical
dashed line shows the cut-off between variables that
would be allocated to registers (left of the line) and
those that are spilled to cache (right of the line).

Figure 15 shows the percentage of state variable
accesses spilled to the next level memory as the number
of available registers is varied. In the 16-register exam-
ple, about half of the accesses are fulfilled from registers
and half go to cache for each of the five chemistry spe-
cies shown. In the dynamics kernel (not shown in the
figure), even though the total number of state variables
is much smaller, assigning the top 16 variables to regis-
ters only reduces the number of cache accesses by about
half since access rates remain fairly high for the top 30
to 40 variables for many loops. Since the chemistry
code has a relatively low streaming data requirement
compared to the dynamics code, spilled state variables
make up greater than 95% of the L1 cache traffic if
there are 16 registers. It is possible to filter additional
cache traffic by adding registers to the architecture,
which would move the cut-off line in Figure 14 to the
right. Having 256 registers per thread (as in NVIDIA’s
Kepler GPU7) would filter 88% or more of L1 cache
traffic due the state variable for the SMC chemistry
code, and 94% or more for the SMC dynamics code. It
is important to note that the spills must be balanced
against the performance cost of a large register file. The
optimal performance point may be reached at an earlier
point.

Figure 11. Number of species, number of reactions and a description of the chemistry component of the SMC codes modeled.

Figure 12. Floating point operation mix and breakdown of CPU
time Tc modeled by ExaSAT for chemistry and dynamics kernels.

Unat et al. 223

 at UNIV CALIFORNIA BERKELEY LIB on June 29, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


5.1.4 Memory traffic and working sets. Cache blocking:
ExaSAT can model the effect of cache blocking on the
working set size and memory traffic without manually
implementing this optimization. Blocking the iteration
space shrinks the size of the working set to enable tem-
poral data reuse. If the reduced working set fits within
the available on-chip storage, the memory traffic due to
the capacity misses can be greatly reduced. A trade-off
of cache blocking is the induced memory traffic for the
ghost cells. As the block size is decreased, the redundant
traffic to pull the ghost zone increases. Finding the opti-
mal blocking factor for a given cache size is an optimi-
zation problem for compilers, auto-tuners and runtime
environments. In this context, ExaSAT can guide other
programming tools to reduce the search space for
blocking factor. We are also interested in illustrating
the co-design trade-off of blocking, more specifically
the trade-off between cache size and memory band-
width. For a given cache configuration, ExaSAT can
determine a blocking strategy that balances the capacity
misses against the additional traffic for the ghost zone.

Figure 16 highlights the change in B:F of the
dynamics kernel computed by ExaSAT as a result of
blocking for various cache sizes specified by the user.
B:F represents the required number of bytes to be
transferred off-chip divided by the required flops. The
cache size indicates the amount of on-chip memory

available per group of threads/cores collaborating on
the same working set. Blocking the iteration space
reduces the working set size and enables greater reuse.
The inflection points in the plot show the points where
the working sets no longer fit into the cache. However,
using smaller block sizes results in additional memory
traffic due to the redundant ghost cell storage and
accesses. This effect can be seen even in the unlimited
cache case because it is independent of capacity misses.
Thus, ExaSAT predicts that blocking with an inap-
propriate factor could incur more data traffic than nec-
essary. With an optimal blocking factor, a small cache
can beat the performance of an unblocked reference
implementation on a large cache. Consequently, the
compiler or auto-tuner has to find the optimal block
size to take full advantage of available cache, while a
chip designer has to find a balance between the cache
size and memory bandwidth.

Software optimizations: ExaSAT also allowed us to
evaluate the performance impact of software optimiza-
tions such as loop fusion and the alternative block exe-
cution scheme described in Section 3.3.4. Even though
loop fusion can reduce memory traffic, it increases the
resulting loop’s working set, exposing a co-design
trade-off between memory bandwidth and cache size.
Loop fusion was done by hand, guided by the data
dependency graphs generated by the framework, while
the cache blocking and alternative block execution
schemes were computed automatically from the XML
code description. Figure 17 shows the effect of applying
various software optimizations on the trade-off space
between cache size and the resulting B:F. For small
cache sizes, no blocking is used, but there is still some
benefit from applying loop fusion to loops that touch
the same data. For medium cache sizes, some loops are
able to take advantage of reuse within loops in the

Figure 13. Estimated overall SMC speedup over baseline as a result of SIMDizing division and transcendental functions using
different vector lengths. Baseline indicates vectorized addition and multiplication operations running at the peak compute
throughput, but no vectorization for division or transcendentals.

Table 2 Relative throughput of divide and exponential
compared to vectorized ADD on Intel Sandy Bridge E5-2680
with Turbo Boost.

Relative throughput Baseline Fast-div Fast-exp

Division 1/39 1/20 —
Exponentials 1/125 — 1/42

224 The International Journal of High Performance Computing Applications 29(2)

 at UNIV CALIFORNIA BERKELEY LIB on June 29, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


non-fused case, but there is not enough cache to hold
the increased working sets required for fused loop bod-
ies. Once the caches are large enough to contain the
increased working sets of the fused loops, fusion
becomes beneficial again. For 53 species, the break-
point is about 2 MB.

The alternative block execution scheme requires the
largest working sets because an entire block of data per
array must fit in cache (as opposed to a small number
of planes per array) to enable reuse across loops.
However, the benefit from such reuse is a significantly
lower B:F (roughly half for the largest cache sizes in the

figure). This execution scheme may be most relevant to
situations with processing capabilities co-located with
large memory banks such as with processor-in-memory
and processor-near-memory architectures (Saulsbury
et al., 1996). The studied optimizations emphasize the
power of software transformations on B:F and their
relation to cache size. Not surprisingly as we increase
the number of chemical species, the working set size
increases (not shown in the figure), requiring a larger
cache for fusion to become advantageous. Please see
Chan et al. (2013) for a further analysis of software
optimizations on combustion co-design.

Figure 14. Number of accesses for each FP state variable sorted by their access frequency in the chemistry kernel.

Figure 15. L1 Cache traffic chemistry state variables as the number of the registers is varied. Having more registers can filter cache
traffic for state variables.

Unat et al. 225

 at UNIV CALIFORNIA BERKELEY LIB on June 29, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


5.1.5 Memory footprint analysis. ExaSAT can compute the
memory required for an application. For SMC, the
memory requirement increases linearly with the number
of species. A 53-species simulation needs 678 three-
dimensional arrays, translating into approximately
13 FP values per species per grid point. Out of 678
arrays, 505 of them have a ghost cell region. Including
message buffers, a box size of 1283 occupies 12.33 GB
of memory, which means a 16 GB node can only hold
one 1283 box. Exascale memory capacity is predicted to
be primarily constrained by cost (Kogge et al., 2008)
which encourages vendors to look for cheaper but den-
ser memory technologies such NVRAM. NVRAM is a
cost-effective alternative technology that can serve as a
high-capacity, secondary memory. It offers higher den-
sity and scalability than DRAM, and uses nearly zero
power when in standby mode (Lee et al., 2009). On the
other hand, the NVRAM memory cells tend to have a
short lifetime. Compared to DRAM, the dynamic write
energy is 4 to 403 worse and the write access latency is
an order of magnitude slower (Lee et al., 2009; Qureshi
et al., 2009; Caulfield et al., 2010). Nevertheless, with-
out focusing on the details of the NVRAM design, we
investigate whether there is sufficient low-write memory
traffic for certain variables to justify inclusion of
NVRAM in an exascale node, since the specifics of
NVRAM design regarding memory endurance, write-
voltage and write speed are highly dependent on the
technology and are likely to change.

In order to study the NVRAM opportunities in the
application, ExaSAT computes the read/write ratio and
write access rate of arrays since writes to NVRAM are
costly both in terms of performance and energy. In

SMC (see Figure 18), there are a number of arrays with
low read and low write access rates. We are primarily
interested in arrays rather than scalar variables because
the idle power consumption is proportional to the mem-
ory footprint. If a write access rate of � 0.11% is cho-
sen, then a larger fraction of data (75%) qualifies for
storage in NVRAM. This would translate into roughly
75% idle power saving. On the other hand, the dynamic
energy for these arrays would go up by a factor of 40.
Even if a conservative read/write ratio of 5 or higher
were chosen, the case for NVRAM would be weak
because only 35% of the data would reside in NVRAM.
Unfortunately, this is where our analytic model has its
limits. To assess whether the dynamic energy consump-
tion overshadows the idle energy savings, power simula-
tors such as NANDFlashSim (Jung et al., 2012) are
needed, which is a part of our future work.

5.1.6 Communication analysis. The interprocess communi-
cation time as a percentage of total execution time
depends on the DRAM time on a memory-bandwidth-
limited kernel (or CPU time on a compute bound ker-
nel). Because SMC is memory-bandwidth-limited (see
Section 6.1 for details), Figure 19 shows the fraction of
communication time for the SMC code as the memory-
bandwidth-to-network-bandwidth ratio, d, is varied.
For example, a configuration with 1 TB/s of memory
bandwidth and 100 GB/s of NIC bandwidth would cor-
respond to d = 10, which is an expected value at the
exascale. The figure varies d from 2.5 (a relatively fast
network bandwidth) to 40 (a relatively fast memory).
According to the analytic results shown in Figure 19,
communication time accounts for less than 13% of the

Figure 16. Optimal blocking factor depends on the available cache size.

226 The International Journal of High Performance Computing Applications 29(2)

 at UNIV CALIFORNIA BERKELEY LIB on June 29, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


total time in the worst case and diminishes as we
increase the number of species for the SMC code.
Because the communication time does not appear to be
a performance bottleneck for SMC, there is no strong
justification for integrating an NIC on the processor
chip to increase the injection bandwidth and reduce
latency. Future work will study adaptive mesh refine-
ment codes, where messages tend to be smaller but
more frequent. In those cases, we expect there might be
more need for on-chip NICs.

The analytic performance analysis ignores the net-
work topology and assumes an idealized network for
off-node communication, considering only network
latency and injection bandwidth as the performance
metrics. However, factors that are hard to capture in
an analytic model such as network topology, routing,
network contention, and job placement can have a sig-
nificant impact on performance. We are currently colla-
borating with Sandia National Laboratory to employ
the SST/macro simulator (Rodrigues et al., 2011) to
assess the network performance of SMC. ExaSAT
serves as a stepping stone for such effort and is used to
verify the simulation results. For example, performance
on a three-dimensional torus with an optimal job place-
ment agrees with that for the idealized network sce-
nario as used in our analytic model, seeing no network
congestion for pure nearest-neighbor communication.

6 Discussion

6.1 Projections on an exascale machine

Figure 20 shows the cumulative effect of the hardware
and software improvements modeled by ExaSAT. The
estimated effective baseline performance is slightly over
0.5 Tflops using the machine configurations specified
in Listing list:machinexml, which is a 10 Tflop node

with 1 TB/s memory bandwidth. The SMC code is
severely limited by memory bandwidth. Both cache
blocking and loop fusion make more efficient use of
memory bandwidth, doubling the baseline perfor-
mance. However, the estimated performance indicates
that software optimizations must be supported by
hardware improvements at the expense of increased
cost and power for the sake of higher performance. If
the memory bandwidth is increased from 1 to 4 TB/s,
ExaSAT suggests that a 2.5–33 speedup in the perfor-
mance is possible. We also modeled the effect of vectori-
zation of division and exponentials for the SMC code.
Fast-div represents the predicted performance improve-
ments as a result of improved throughput (23 ) using
the SSE instruction and Fast-exp represents the improve-
ment for the exponential function by a factor of three
with the AVX SVML. While the vectorized division pro-
vides a modest performance increase, the chemistry com-
ponent greatly benefits from the improved exponential
function performance. Finally, we changed the network
injection bandwidth from 100 to 400 GB/s, which repre-
sents a custom NIC that integrates the network control-
ler onto the chip to reduce power and to increase
throughput by a factor of 4. Even after the software opti-
mizations and hardware improvements, SMC is still lim-
ited by memory bandwidth. In the exascale timeframe, it
is unlikely that machines will support bandwidths higher
than 4 TB/s, thus more aggressive software optimiza-
tions will be needed to reduce data movement and
deliver the performance improvements necessary to reach
the exascale.

6.2 Implications for hardware design

We evaluated the impact of utilizing vector intrinsics
for division and transcendental functions and realized

Figure 17. Various software optimizations modeled by ExaSAT for the 53-species SMC dynamics code and the B:F achievable for
various on-chip memory sizes.

Unat et al. 227

 at UNIV CALIFORNIA BERKELEY LIB on June 29, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


that they can greatly improve the CPU-bound chemis-
try code, provided that compilers or code generators
can support vectorization. On the other hand, SIMD
lengths more than four do not provide significant per-
formance benefits because the dynamics part of the
SMC code is severely limited by the performance of the
memory subsystem. For the baseline code with optimal
cache blocking, we see very little benefit derived from
larger on-chip caches. However, if we adopt a more
aggressive approach with loop fusion, we can achieve
an order-of-magnitude reduction in memory bandwidth
requirements provided there are much larger on-chip
memory and register files. For SMC, fusion can reduce
traffic by up to 60% versus baseline provided that there

is a large enough cache. Having 256 registers per thread
would filter 88% or more of the register spills due to
the state variables.

In our assessment of data accesses, given that tech-
nology allows NVRAM write performance to improve,
we see some opportunities to utilize NVRAM to
increase memory capacity with low cost. However, the
NVRAM technology has to mature before an invest-
ment in software support can be justified. In order to
determine which data to place to NVRAM, we argue
that the write access rate rather than the read/write
ratio should be used as a metric because lower write
access rates are better suited to NVRAM. There is a
modest performance benefit from the reduced latency

Figure 18. Read/write ratio (left axis) and write access rate (right axis) of arrays in the SMC code.

Figure 19. Fraction of communication time for different memory bandwidth/NIC bandwidth ratios. d = 10 is an expected value for
an exascale node. d = 2.5 represents a relatively fast network bandwidth and d = 40 represents a relatively fast memory.

228 The International Journal of High Performance Computing Applications 29(2)

 at UNIV CALIFORNIA BERKELEY LIB on June 29, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


and increased bandwidth of on-chip NICs because the
network injection bandwidth does not appear to be a
performance bottleneck, and the SMC application is
insensitive to interconnect latency if the job is placed
efficiently.

6.3 Implications for software design

The ExaSAT performance model is a lightweight model
and can be integrated into other tools and serve as a
cost model. In particular, our analysis of data move-
ment both on-chip and off-chip provides valuable feed-
back to application, programming model, compiler,
and runtime developers. The results emphasize the
importance of reduction in memory traffic both for
performance and energy reasons. In fact, one of the
co-authors of this paper implemented a new blocking
optimization in SMC based on our ExaSAT analysis,
which yielded an 863 speedup over 1 thread on a
61-core Xeon Phi each running 4 hardware threads
(Emmett et al., 2014).

ExaSAT can also provide performance ceilings for
compute-bound kernels. Simply having vector units on
the chip is not sufficient to increase performance
because the compiler also has to generate the appropri-
ate instructions. Current compilers can convert scalar
codes into SIMDized programs with some programmer
assistance, such as ensuring address alignment and pro-
viding compiler directives. Automatic vectorization
often fails for complicated loops because other code
optimizations may interfere with vectorization or the
loop body may be too long to analyze. The highly irre-
gular structure and single-point implementation of the
chemistry code currently prevent the compiler from

inserting vector intrinsics, especially on GPU-like
architectures. The ExaSAT results encouraged the
SMC developers to restructure the chemistry compo-
nent in way to facilitate vectorization by the vendor
compiler and this resulted in 2.23 faster chemistry on
the Edison machine that includes a 256-bit SIMD
(AVX) vector FP. The chemical reactions in the SMC
code were previously auto-generated in the order that
the species appeared in the input file. Two reactions
which have the same number of reactants and the same
number of products execute the same instructions with
different values. The revised version groups reactions
based on the number of reactants and products, which
helps vectorization. Similarly, the dynamical core is
annotated to provide hints to the compiler for vectori-
zation. The improvement in the performance of the
dynamical core is about 1.753 because it is limited
mainly by the memory bandwidth, as predicted by
ExaSAT.

In addition, we would like to leverage the lessons
learned through ExaSAT for the development of a
programming model for combustion codes. The
new programming model will focus on data structure
support for tiling optimizations for data locality and
the use of functional semantics to help the runtime
reason about data flow and memory use. The goal is
to tune the aggressiveness of tiling and fusion optimi-
zations on a given architecture and minimize data
movement.

6.4 Future work

An area of future work will be to expand the frame-
work’s functionality to cover a broader range of

Figure 20. Modeled SMC performance as a result of successive hardware and software optimizations.

Unat et al. 229

 at UNIV CALIFORNIA BERKELEY LIB on June 29, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


applications besides structured grid problems. For
example we are interested in studying dense linear alge-
bra and N -body problems, for some of which a static
analysis can be applied. However, the analysis by the
compiler and cache model in ExaSAT must be
extended to cover their reuse patterns.

One of the current limitations of the framework is
how it handles conditionals (Vera and Xue, 2002).
Conditionals come in different forms and each form
needs to be handled differently. In the codes we ana-
lyzed, the branches contain the same number of mem-
ory accesses and only the values assigned to the
variables are different. Thus, we only need to analyze
one of the if-clauses. When conditionals lead to thread
divergence (gaps in the iteration space), we would like
to be able compute the data movement by weighting
each branch. If the branches introduce workload
imbalance, the model can be parameterized by a
branch-taken probability computed from sample runs
or provided by the user.

Although we have made substantial progress in
identifying several hardware design trade-offs, there are
still a number of co-design questions that remain to be
answered. We have formulated plans for comparing
analytic model estimates with dynamic analysis and
architectural simulators to obtain more accurate
results. Some of these plans include more detailed core
model, on-chip network, NVRAM power modeling
and network job placement strategies. Another exascale
co-design challenge that we have already started evalu-
ating is whether the software or hardware should take
responsibility for fault tolerance. Hardware-managed
resilience mechanisms increase the overall system cost
and power consumption. We are extending our analysis
of data access patterns to compute data movement
requirements of different checkpoint schemes for
software-managed resilience. Finally, given that our
methodology allows us to address hardware require-
ments for the SMC combustion code, we would like to
extend the ExaSAT framework to examine the require-
ments for adaptive mesh refinement codes, such as the
low-Mach-number combustion code (Day and Bell,
2000).

7 Conclusions

We have developed the ExaSAT framework to rapidly
evaluate exascale proxy applications and accelerate the
iterative co-design process. ExaSAT complements more
detailed architectural simulation tools through rapid
generation of abstract analytic models. It is our belief
that analytic models are essential to quickly identify
the most productive areas for exploring a complicated
multi-dimensional design space, including both hard-
ware and software optimizations. ExaSAT parame-
terizes both the machine model and software

optimizations to conduct a sensitivity analysis to guide
the co-design process. We demonstrated ExaSAT’s
ability to perform end-to-end analysis on a combustion
proxy application (SMC). The SMC results show sub-
stantial opportunities to reduce memory bandwidth
requirements by increasing chip area for more registers
and on-chip memory. Our analysis illustrates to hard-
ware and software designers the need for higher mem-
ory bandwidth and more aggressive software
optimizations to reduce data movement. This informa-
tion can be combined with architectural simulations to
understand how our design recommendations change
with the energy costs of feasible implementations.
Future work will expand the scope of analysis to a
wider range of applications and improve the coupling
of analytic models with architectural simulation
environments.

Acknowledgements

The authors would like to thank Weishen Mead and Matthew
Cordery for their contribution to the Pin tool validation.

Funding

All authors from the Lawrence Berkeley National Laboratory
were supported by the Office of Advanced Scientific
Computing Research in the Department of Energy Office of
Science (contract number DE-AC02-05CH11231). This work
is part of the Department of Energy Center for Exascale
Simulation of Combustion in Turbulence (ExaCT) and the
Department of Energy Co-Design for Exascale (CoDEx)
projects.

Notes

1. A variable is live if it holds a value that may be used in

the future (thus it cannot be deallocated or overwritten).
2. CNS is available for download at the ExaCT co-design

center’s website (http://exactcodesign.org).
3. Using a six-core AMD Opteron 6172 with 6 MB L3

cache.
4. Using a four-core AMD MagnyCours with 4 MB L3

cache.
5. The part of the code that computes fluid dynamics.
6. Based on the benchmarks we conducted and those con-

ducted by Vladimirov (2012).
7. Kepler has 255 32-bit registers.

References

Ang JA, Barrett RF, Benner RE, Burke D, Chan C, Cook J,

et al. (2014) Abstract machine models and proxy architec-

tures for exascale computing. In: 1st international workshop

on hardware-software co-design for high performance com-

puting (Co-HPC‘14), New Orleans, USA, 17 November

2014, pp. 25–32. Piscataway: IEEE Press.
Balaprakash P, Buntinas D, Chan A, Guha A, Gupta R,

Narayanan SHK, et al. (2013) Exascale workload charac-

terization and architecture implications. In: 21st high

230 The International Journal of High Performance Computing Applications 29(2)

 at UNIV CALIFORNIA BERKELEY LIB on June 29, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


performance computing symposia (HPC‘13), San Diego,

USA, 7–10 April 2013.
Binkert N, Beckmann B, Black G, Reinhardt SK, Saidi A,

Basu A, et al. (2011) The GEM5 simulator. SIGARCH

Computer Architecture News 39(2): 1–7.
Carrington L, Snavely A, Gao X and Wolter N (2003) A per-

formance prediction framework for scientific applications.

In: ICCS workshop on performance modeling and analysis

(PMA‘03), Melbourne, Australia, 2–4 June 2003, pp.

926–935. Berlin Heidelberg: Springer.
Caulfield AM, Coburn J, Mollov T, De A, Akel A, He J,

et al. (2010) Understanding the impact of emerging non-

volatile memories on high-performance, IO-intensive com-

puting. In: 2010 ACM/IEEE international conference for

high performance computing, networking, storage and anal-

ysis (SC‘10), New Orleans, USA, 13–19 November 2010,

pp. 1–11. Piscataway: IEEE Press.
Chan C, Unat D, Lijewski M, Zhang W, Bell J and Shalf J

(2013) Software design space exploration for exascale com-

bustion co-design. In: Kunkel JM, Ludwig T and Meuer

HW (eds) Supercomputing. New York: Springer, vol. 7905,

pp. 196–212
Chen C, Chame J and Hall M (2008) CHiLL: A framework

for composing high-level loop transformations. Technical

report 08-897, University of Southern California, USA.
Chen JH, Choudhary A, de Supinski B, DeVries M, Hawkes

ER, Klasky S, et al. (2009) Terascale direct numerical

simulations of turbulent combustion using S3D. Computa-

tional Science and Discovery 2(1): 015001.
Day MS and Bell JB (2000) Numerical simulation of laminar

reacting flows with complex chemistry. Combustion Theory

and Modelling 4(4): 535–556.
Emmett M, Zhang W and Bell JB (2014) High-order algo-

rithms for compressible reacting flow with complex chem-

istry. Combustion Theory and Modelling 18(3): 361–387.
Ern A and Giovangigli V (1995) Fast and accurate multicom-

ponent transport property evaluation. Journal of Computa-

tional Physics 120(1): 105–116.
Gottleib S and Shu C (1998) Total variation diminishing

Runge-Kutta schemes. Mathematics of Computation

67(221): 73–85.

Jung M, Wilson EH, Donofrio D, Shalf J and Kandemir MT

(2012) NANDFlashSim: Intrinsic latency variation aware

NAND flash memory system modeling and simulation at

microarchitecture level. In: 28th IEEE symposium on mass

storage systems and technologies (MSST‘12), Pacific Grove,

USA, 16–20 April 2012, pp. 1–12. Piscataway: IEEE Press.
Kamakoti R and Pantano C (2009) High-order narrow stencil

finite-difference approximations of second-order deriva-

tives involving variable coefficients. SIAM Journal on Sci-

entific Computing 31(6): 4222–4243.
Kogge P, Bergman K, Borkar S, Campbell D, Carlson W,

Dally W, et al. (2008) ExaScale computing study: Technol-

ogy challenges in achieving exascale systems. Technical

report, DARPA, Arlington, USA.
Krasnov A, Schultz A, Wawrzynek J, Gibeling G and Droz

PY (2007) Ramp blue: A message-passing manycore sys-

tem in FPGAs. In: 17th international conference on field

programmable logic and applications (FPL‘07),

Amsterdam, The Netherlands, 27–29 August 2007, pp. 54–

61. Piscataway: IEEE Press.
Lee BC, Ipek E, Mutlu O and Burger D. (2009) Architecting

phase change memory as a scalable DRAM alternative.

SIGARCH Computer Architecture News 37(3): 2–13.
Li D, Vetter JS, Marin G, McCurdy C, Cira C, Liu Z, et al.

(2012) Identifying opportunities for Byte-addressable non-

volatile memory in extreme-scale scientific applications.

In: 26th IEEE international parallel and distributed process-

ing symposium (IPDPS‘12), Shanghai, China, 21–25 May

2012, pp. 945–956. Piscataway: IEEE Press.
Luk CK, Cohn R, Muth R, Patil H, Klauser A, Lowney G,

et al. (2005) Pin: Building customized program analysis

tools with dynamic instrumentation. In: 2005 ACM SIG-

PLAN conference on programming language design and

implementation (PLDI‘05), Chicago, USA, 11–15 June

2005, pp. 190–200. New York: ACM Press.

Mohiyuddin M, Murphy M, Oliker L, Shalf J, Wawrzynek J

and Williams S (2009) A design methodology for domain-

optimized power-efficient supercomputing. In: 2009 ACM/

IEEE conference on high performance computing network-

ing, storage and analysis (SC‘09), Portland, USA, 14–20

November 2009, pp. 1–12. New York: ACM Press.
Narayanan SHK, Norris B and Hovland PD (2010) Generat-

ing performance bounds from source code. 39th interna-

tional conference on parallel processing workshops

(ICPPW‘10), 10–13 September 2010, pp. 197–206. New

York: ACM Press.
Qiu J and Shu C (2005) Runge–Kutta discontinuous Galerkin

method using WENO limiters. SIAM Journal on Scientific

Computing 26(3): 907–929.
Quinlan DJ, Miller B, Philip B and Schordan M. (2002)

Treating a user-defined parallel library as a domain-

specific language. In: 16th international parallel and distrib-

uted processing symposium (IPDPS‘02), Fort Lauderdale,

USA, 15–19 April 2002, pp. 105–114. Piscataway: IEEE

Press.
Qureshi MK, Srinivasan V and Rivers JA. (2009) Scalable

high performance main memory system using phase-

change memory technology. SIGARCH Computer Archi-

tecture News 37(3): 24–33.

Rivera G and Tseng CW (2000) Tiling optimizations for 3D

scientific computations. In: 2000 ACM/IEEE conference

on supercomputing, Dallas, USA, 4–10 November 2000.

Piscataway: IEEE Press.
Rodrigues AF, Hemmert KS, Barrett BW, Kersey C, Oldfield

R, Weston M, et al. (2011) The structural simulation

toolkit. SIGMETRICS Performance Evaluation Review

38(4): 37–42.
Saulsbury A, Pong F and Nowatzyk A (1996) Missing the

memory wall: The case for processor/memory integration.

In: 23rd annual international symposium on computer archi-

tecture, Philadelphia, USA, 22–24 May 1996, pp. 90–101.

New York: ACM Press.
Shalf J, Dosanjh S and Morrison J (2010) Exascale computing

technology challenges. In: Laginha JM, Palma M, Daydé

M, Marques O and Correia Lopes J (eds) High Perfor-

mance Computing for Computational Science – VECPAR

2010. New York: Springer, vol. 6449, pp. 1–25.

Unat et al. 231

 at UNIV CALIFORNIA BERKELEY LIB on June 29, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/


Shalf J, Quinlan D and Janssen C (2011) Rethinking
hardware-software codesign for exascale systems. IEEE

Computer 44(11): 22–30.
Snavely A, Carrington L, Wolter N, Labarta J, Badia R and

Purkayastha A (2002) A framework for performance mod-
eling and prediction. In: 2002 ACM/IEEE conference on

supercomputing, Baltimore, USA, 16–22 November 2002,
pp. 1–17. Piscataway: IEEE Press.

Spafford KL and Vetter JS (2012) Aspen: a domain specific
language for performance modeling. In: 2012 ACM/IEEE

international conference on high performance computing,

networking, storage and analysis (SC‘12), Salt Lake City,
USA, 10–16 November 2012, pp. 1–11. Piscataway: IEEE
Press.

Thoziyoor S, Muralimanohar N, Ahn JH and Jouppi NP
(2008) CACTI 5.1. Technical report no. HPL-2008-20, HP
Labs.

Unat D, Shalf J, Hoefler T, Schulthess T, Dubey A (eds),
et al. (2014) Programming abstractions for data locality.
Workshop on programming abstractions for data locality

(PADAL‘14), Lugano, Switzerland, 28–29 April 2014.
Vera X and Xue J (2002) Let’s study whole-program cache

behaviour analytically. In: 8th international symposium on

high-performance computer architecture (HPCA‘02), Cam-
bridge, USA, 2–6 February 2002, pp. 175–186. Piscataway:
IEEE Press.

Vladimirov A (2012) Arithmetics on Intel’s Sandy Bridge and

Westmere CPUs: not all FLOPS are created equal. Report,
Colfax International.

Wawrzynek J, Patterson D, Oskin M, Lu SL, Kozyrakis C,
Hoe JC, et al. (2007) RAMP: A research accelerator for
multiple processors. IEEE Micro 27(2): 46–57.

Williams S, Waterman A and Patterson D (2009) Roofline: an
insightful visual performance model for multicore architec-
tures. Communications of the ACM 52(4): 65–76.

Woodward PR, Jayaraj J, Lin PH, Yew PC, Knox MR,
Greensky JBSG, et al. (2010) Boosting the performance
of computational fluid dynamics codes for interactive
supercomputing. Procedia Computer Science 1(1):
2055–2064.

Author biographies

Dr Didem Unat has been a full-time faculty member at
Kocx University in Istanbul since September 2014.
Previously she was at the Lawrence Berkeley National
Laboratory (LBNL). She was the recipient of the Luis
Alvarez Fellowship in 2012 from LBNL. Her research
interests lie primarily in high-performance computing
(HPC), parallel programming models, compiler analy-
sis and performance modeling. She holds a PhD in
Computer Science from the University of California,
San Diego.

Dr Cy Chan is a research scientist in the Computer
Architecture Group at LBNL, working on developing

new techniques for software optimization and novel
programming models for HPC systems. He holds an
AB in Applied Mathematics from Harvard University
and an SM and PhD in Electrical Engineering and
Computer Science from the Massachusetts Institute of
Technology.

Dr Weiqun Zhang is member of the Center for
Computational Sciences and Engineering at LBNL.
His primary research focus is radiation hydrodynamics.
Previously he has worked in a number of other subjects
(e.g. relativistic hydrodynamics/magneto hydrody-
namics and gamma-ray burst afterglows).

Dr Samuel Williams is a staff scientist in the
Performance and Algorithms Research Group at
LBNL. His research interests include HPC, auto-tun-
ing, performance modeling, computer architecture, and
hardware–software co-design. Dr Williams received his
PhD in Computer Science from the University of
California at Berkeley in 2008.

John Bachan is a computer systems engineer at LBNL
in the Computer Architecture Group. His interests
span programming languages (high-level functional
and systems level), to software engineering methodolo-
gies. At present his research is based in
instrumentation-driven simulation of hardware for
exascale. This includes cache coherency in memory
hierarchies and the performance of asynchronous task-
based runtimes.

Dr John B Bell is a mathematician at LBNL. He has
made contributions in the areas of finite difference
methods, numerical methods for low-Mach-number
flows, adaptive mesh refinement, interface tracking and
parallel computing. He was elected to the National
Academy of Sciences in 2012. He is also a Fellow of
SIAM and was the recipient of the Sidney Fernbach
Award from the IEEE in 2005.

John Shalf is the chief technology officer at the
National Energy Research Scientific Computing
Center. He is a member of the US Department of
Energy Exascale Steering committee, and is a co-
author of the landmark View from Berkeley paper as
well as the DARPA Exascale Software Report. He cur-
rently leads projects in exascale technology research
such as CoDEx (Co-Design for Exascale), and the
LBNL Green Flash project that seeks to develop
energy-efficient scientific computing systems using
many-core and embedded technologies.

232 The International Journal of High Performance Computing Applications 29(2)

 at UNIV CALIFORNIA BERKELEY LIB on June 29, 2015hpc.sagepub.comDownloaded from 

http://hpc.sagepub.com/

