
LAWRENCE BERKELEY NATIONAL LABORATORY

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

HPGMG-FV
Samuel Williams

1

Lawrence Berkeley National Laboratory

SWWilliams@lbl.gov

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Outline

!  Introduction to Multigrid
"  Cell-Centered Multigrid
"  U/V-Cycles
"  issues in AMR
"  Multigrid Performance Challenges

!  HPGMG-FV Overview
!  HPGMG-FV Deep dive
!  CoDesign Questions

2

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Introduction

!  Linear Solvers (Ax=b) are ubiquitous in scientific
computing

!  Multigrid solves elliptic PDEs (Ax=b) using a hierarchical
(recursive) approach.
!  solution (correction) to hard problem is expressed in terms of solution to an

easier problem
!  Provides O(N) computational complexity where N is number of unknowns
!  AMR applications like LMC (Combustion Co-Design Center) might perform a MG

solve for every chemical species (NH4, CO2, …) on every AMR level.
!  Performance (setup time, solve time, scalability, and memory usage) can be

critical

3

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Geometric Multigrid

!  Geometric Multigrid is specialization in which the linear operator (A)
is simply a stencil on a structured grid (i.e. matrix-free)

!  Inter-grid operations are recast in terms of stencils based on the
underlying numerical method (e.g. cell-centered finite volume)

!  Extremely fast/efficient…
"  O(N) computational complexity (#flops)
"  O(N) DRAM data movement (#bytes)
"  O(N0.66) MPI data movement

4

“MG V-cycle”

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Geometric Multigrid

!  Geometric Multigrid is specialization in which the linear operator (A)
is simply a stencil on a structured grid (i.e. matrix-free)

!  Inter-grid operations are recast in terms of stencils based on the
underlying numerical method (e.g. cell-centered finite volume)

!  Extremely fast/efficient…
"  O(N) computational complexity (#flop’s)
"  O(N) DRAM data movement
"  O(N0.66) MPI data movement

5
progress within V-cycle!

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Cell-Centered MG

!  Values can represent…
"  cell averages (cell-centered)
"  face averages (face-centered)

6

cell-centered	

value	

j face centered	

i face 	

centered	

value	

cell-centered	

restriction	

face-centered	

restriction	

!  Solutions variables are usually cell-
centered, but boundary values exist
on cell faces (face-centered)
"  enforcing a homogeneous Dirichlet

boundary condition is not simply
forcing the ghost cells to zero.

"  Rather one has to select a value for
each ghost cell that allows one to
interpolate to zero on the face.

!  Restriction/Prolongation can be
either cell- or face-centered.

!  In piecewise constant restriction,
coarse grid elements are the
average value of the region
covered by fine grid elements

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

“V-Cycle” vs. “U-Cycle”

!  Ideally, one should be able to restrict
the global problem down to a small
coarse grid problem on a single node.
 = true “V-Cycle”

!  In distributed memory, this approach
requires a tree-like agglomeration in
which subdomains are restricted and
combined onto a subset of the nodes.

7

“V-Cycle”

1 cell

23

43

83

163

323

“U-Cycle”

!  However, realties of complex
geometries (e.g. AMR), boundary
conditions, and expediency result in
MG solvers often terminating restriction
early (e.g. only perform local restriction)
 = “U-Cycle”

!  Unfortunately, the resultant coarse
grids solves can be large and
distributed and often use solvers with
superlinear computational
complexity.

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Multigrid in Adaptive Mesh
Refinement Applications

!  Start with a coarse AMR level
(coarse grid spacing)

8

!  Add progressively finer AMR levels
as needed (observe they can be
irregularly shaped)

!  To solve this potentially large
 coarse grid (“bottom”) problem,
there are a number of approaches:
"  Direct solver (slow, hard, but works)
"  Point Relaxation (slow, easy)
"  Algebraic Multigrid (Chombo/PETSc)
"  Use iterative Solver like BiCGStab (BoxLib)

!  One often performs a MG solve
one one AMR level at a time.

!  Unfortunately, one can reach a
point where further geometric
restriction is not possible.

LAWRENCE BERKELEY NATIONAL LABORATORY

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

Multigrid Performance
Challenges

9

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Dominated by
On-Node Performance

Dominated by
MPI Performance

Overhead
Dominates

Ideal Performance

!  Nominally, multigrid has three
components that affect
performance
"  DRAM data movement and flop’s

to perform each stencil
"  MPI data movement for halo/ghost

zone exchanges
"  latency/overhead for each

operation
!  These are constrained by

"  DRAM and flop rates
"  MPI P2P Bandwidth
"  MPI overhead, OpenMP/CUDA

overheads, etc…
!  The time spent in each of these

varies with level in the v-cycle
"  coarse grids have ⅛ the volume

(number of cells), but ¼ the surface
area (MPI message size)

10

Level in the V-Cycle
Ti

m
e

in
 C

om
po

ne
nt

 in
 L

ev
el

Overhead / Latency

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Faster Machines?

!  If one just increases DRAM
bandwidth by 10x, then the code
becomes increasingly dominated
by MPI P2P communication

!  If one improves just DRAM and
MPI bandwidth, the code will
eventually be dominated by
CUDA, OpenMP, and MPI
overheads.

!  Unfortunately, the overheads are
hit O(logN) times.

!  Thus, if overhead dominates (flops
and bytes are free), then MGSolve
Time looks like O(logN)

!  Co-Design for MG requires a
balanced scaling of flop/s, GB/s,
memory capacities, and
overheads.

11

Level in the V-Cycle
Ti

m
e

in
 C

om
po

ne
nt

 in
 L

ev
el

Overhead / Latency

LAWRENCE BERKELEY NATIONAL LABORATORY

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

HPGMG-FV
Overview

12

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

HPGMG is Available
on BitBucket

!  There are two versions of HPGMG
"  HPGMG-FV: Finite Volume, thread-friendly, memory and network intensive
"  HPGMG-FE: Finite Element, flat MPI, compute intensive, built on PETSc
"  both are geometric MG
"  both use Full Multigrid (FMG)
"  both are available from https://bitbucket.org/hpgmg/hpgmg/
"  HPGMG-FV is in the finite-volume/source subdirectory.

!  By default, HPGMG-FV is configured for Top500 benchmarking evaluations.
!  However, when using HPGMG-FV for CoDesign, one should…

"  use the helmholtz operator (-DUSE_HELMHOLTZ)
"  compared Chebyshev vs. GSRB challenges (-DUSE_CHEBY vs. -DUSE_GSRB)
"  start a few smallish boxes per process (e.g. 8 x 643 by running mpirun –n# […] ./run 6 8)
"  explore performance as one varies box size (e.g. 323->1283) and number (e.g. 8->64 boxes)
"  run with at least one process per NUMA node (per GPU)
"  use more than one process (more than one GPU) to quantify impact of communication

13

!  I will try and post up-to-date online documentation and notes to…
http://crd.lbl.gov/departments/computer-science/performance-and-algorithms-research/research/hpgmg/

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

HPGMG-FV

!  portable MPI + OpenMP (no SIMD intrinsics)
!  Based on true distributed V-Cycles that allow restriction of a trillion cells

distributed across 100K processes down to one cell (total).
"  Once a process runs out of cells (falls beneath a threshold), the next restriction will shuffle

data onto a subset of the processes in a tunable tree-like agglomeration structure
"  Unfortunately, restriction/prolongation are now distributed operations in which locally

restricted/interpolated grids may need to be sent en masse to another process (inter-level
communication)

!  Data decomposition is on a level-by-level basis (rather than static)
"  proxies the irregular decompositions which may emerge on an AMR level
"  allows for easy extension with any user-defined domain decomposition

 (recursive bisection ~= Z-Mort, specialized recursive variant, and lexicographical)
"  allows for a truly heterogeneous implementation (not yet implemented) in which fine grids

are run on accelerators and coarse grids on host processor

!  Configurable for U-Cycles, V-Cycles, or F-Cycles (FMG)
!  In addition to GSRB, there are Chebyshev, SymGS, weighted-Jacobi, and

L1-Jacobi smoothers
!  Implements both homogenous Dirichlet and periodic BC’s
!  Configurable bottom solver including BiCGStab, CG, and s-step variants.

14

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

FMG

!  HPGMG-FV implements Full Multigrid (FMG).
!  FMG uses an F-Cycle with a V-Cycle at each level.
!  No iterating. One global reduction (to calculate the final residual)
!  Essentially, an O(N) direct solver (discretization error in 1 pass)

15

Smooth

Residual

Restrict

Bottom Solve

Interpolate

Interpolate (High Order)

!  Fine grids (those in slow “capacity” memory) are accessed only twice
!  Coarser grids (those that have progressively smaller working sets) are

accessed progressively more
!  Same routines are used many times with highly varied working sets
!  Coarsest grids are likely latency-limited (run on host?)
!  FMG sends O(log2(P)) messages (needs low overhead communication)
!  Stresses many aspect of the system (memory hierarchy, network, compute,

threading overheads, heterogeneity, …)

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

HPGMG-FV detailed timing….

 0 1 2 3 4 5 6 7 8 9	
box dimension 128^3 64^3 32^3 16^3 8^3 8^3 8^3 4^3 2^3 9^3 total	
------------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------	
smooth 0.083160 0.009769 0.002024 0.000753 0.000592 0.000711 0.000833 0.001602 0.001382 0.000000 0.100826	
residual 0.018734 0.000940 0.000204 0.000088 0.000073 0.000087 0.000102 0.000181 0.000158 0.000155 0.020721	
applyOp 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.001907 0.001907	
BLAS1 0.004449 0.000115 0.000057 0.000053 0.000064 0.000069 0.000082 0.000206 0.000197 0.014692 0.019984	
BLAS3 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000	
Boundary Conditions 0.000000 0.000308 0.000080 0.000017 0.000005 0.000005 0.000005 0.000013 0.000014 0.000011 0.000458	
Restriction 0.000922 0.000350 0.000297 0.000141 0.000435 0.000363 0.000445 0.000603 0.000790 0.000000 0.004346	
 local restriction 0.000915 0.000342 0.000288 0.000130 0.000032 0.000037 0.000042 0.000129 0.000146 0.000000 0.002062	
 pack MPI buffers 0.000001 0.000001 0.000000 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000000 0.000007	
 unpack MPI buffers 0.000001 0.000001 0.000001 0.000001 0.000095 0.000106 0.000124 0.000140 0.000224 0.000000 0.000694	
 MPI_Isend 0.000001 0.000000 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000000 0.000007	
 MPI_Irecv 0.000001 0.000001 0.000001 0.000001 0.000035 0.000045 0.000061 0.000056 0.000063 0.000000 0.000263	
 MPI_Waitall 0.000000 0.000001 0.000001 0.000001 0.000263 0.000164 0.000205 0.000263 0.000340 0.000000 0.001239	
Interpolation 0.002921 0.001742 0.001107 0.000369 0.000499 0.000579 0.000741 0.000631 0.000740 0.000000 0.009329	
 local interpolation 0.002916 0.001735 0.001098 0.000358 0.000068 0.000077 0.000085 0.000137 0.000147 0.000000 0.006621	
 pack MPI buffers 0.000000 0.000000 0.000001 0.000001 0.000157 0.000179 0.000202 0.000147 0.000238 0.000000 0.000926	
 unpack MPI buffers 0.000000 0.000000 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000002 0.000000 0.000009	
 MPI_Isend 0.000000 0.000000 0.000001 0.000001 0.000131 0.000154 0.000196 0.000154 0.000185 0.000000 0.000822	
 MPI_Irecv 0.000000 0.000000 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0.000000 0.000007	
 MPI_Waitall 0.000001 0.000001 0.000001 0.000001 0.000132 0.000155 0.000241 0.000176 0.000150 0.000000 0.000856	
Ghost Zone Exchange 0.010486 0.005997 0.003671 0.003480 0.003963 0.004767 0.005602 0.007449 0.007796 0.002098 0.055309	
 local exchange 0.000003 0.000003 0.000004 0.000005 0.000006 0.000007 0.000008 0.001059 0.001659 0.001838 0.004589	
 pack MPI buffers 0.001327 0.000467 0.000442 0.000518 0.000624 0.000743 0.000863 0.000991 0.001208 0.000026 0.007210	
 unpack MPI buffers 0.000473 0.000455 0.000485 0.000593 0.000738 0.000878 0.001019 0.001130 0.001331 0.000025 0.007125	
 MPI_Isend 0.000302 0.000339 0.000450 0.000781 0.000937 0.001143 0.001334 0.001515 0.001190 0.000018 0.008009	
 MPI_Irecv 0.000093 0.000096 0.000140 0.000165 0.000210 0.000250 0.000299 0.000313 0.000257 0.000012 0.001835	
 MPI_Waitall 0.008260 0.004603 0.002103 0.001355 0.001370 0.001656 0.001970 0.002306 0.002008 0.000011 0.025641	
MPI_collectives 0.001312 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.002378 0.003691	
------------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------	
Total by level 0.122319 0.018799 0.007384 0.004927 0.005706 0.006680 0.008064 0.010724 0.010967 0.021933 0.217503	

 Total time in MGBuild 225.675795 seconds	
 Total time in MGSolve 0.217941 seconds	
 number of v-cycles 1	
Bottom solver iterations 70	

 Performance 4.489e+11 DOF/s	

calculating error...	
 h = 2.170138888888889e-04 ||error|| = 4.595122248560908e-11	

16

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Breakdown of Time

17

0.000

0.050

0.100

0.150

0.200

0.250

1 10 100 1,000 10,000 100,000

Ti
m

e
(s

ec
on

ds
)

Nodes

Time By Operation on Mira Total
smooth
Ghost Exchange
misc.
Interpolation
Restriction
Collectives

!  Breakdown of time on Mira…:

!  smooth time is roughly constant.
!  misc…

"  Residual and BLAS1 operations
"  relatively constant (residual is large %)
"  but sees some variation for odd coarse

grid problem sizes (153) due to variable
of BLAS1 in BiCGStab iterations

!  Ghost zone exchange time steadily
increases with scale…
"  topology not exploited in job scheduler

or MPI as mapping processes in AMR
codes is difficult

!  Collectives…
"  Just 1 global collective for the residual
"  many local collectives on the coarse grid

solve
"  Collectives on on BGQ are fast

!  Restriction/Interpolation…
"  despite requiring inter-level

communication are still very fast
"  Interpolation sends 8x more data

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

HPGMG-FV (message sizes)

!  In FMG,
"  large messages only occur in only

the last V-Cycle
"  smaller messages are more

frequent as FMG performs
progressively more small V-Cycles

"  agglomeration causes a spike in
message counts when you reach
the agglomeration threshold

"  eventually all cells are on one node
and the number of messages is
small.

!  Performance on small
messages (overhead/latency)
can be critical

18

0

2000

4000

6000

8000

10000

12000

14000

1 10 100 1000 10000 100000

N
um

be
r o

f M
es

sa
ge

s

MPI Message Size

HPGMG (process 0)

data collected on BGQ w/HPM

Agglomeration
Sends whole

Boxes

LAWRENCE BERKELEY NATIONAL LABORATORY

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

HPGMG-FV
Deep Dive

19

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Coordinates

!  Coordinates can either be discrete of continuous

!  Continuous coordinates
"  labeled x,y,z by convention
"  represent coordinates in space
"  are used to evaluate continuous functions
"  are independent of multigrid/AMR level

!  Discrete coordinates
"  labeled i,j,k by convention
"  access array elements
"  define array sizes
"  are a function of the current MG/AMR level and grid spacing h…

 (x,y,z) = (i*h,j*h,k*h) for some grid spacing h

20

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Boxes
(The Quanta for Domain Decomposition)

!  box is a cubical region of space at a particular grid spacing h
"  has a i,j,k discrete coordinate of its lower coordinate
"  discrete i,j,k maps to continuous coordinates x,y,z = ih,jh,kh
"  boxes have a dimension ‘dim’, but have additional ‘ghosts’-deep ghost zones

(halo) which replicates data from neighboring boxes.
"  boxes can have some array padding to facilitate SIMDization/alignment
"  jStride, kStride, and volume are defined to facilitate indexing in the presence of

deep ghost zones with complex padding for alignment

!  Boxes have ‘numVectors’ vectors (e.g. solution, RHS, D^{-1}, etc…)
each comprising double-precision values over the region of space
"  box->vectors[id] returns a pointer to a 3D double precision array
"  this data can represent either cell-centered –or– face-centered data.
"  box->vectors[id][0] is the first ghost zone element !!
"  many routines perform some pointer arithmetic to create a pointer to the

first non-ghost zone element.

21

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Boxes
(Cell- vs. Face-Centered Data Layout)

22

!  Nominally, face-centered data can get by with smaller array dimensions
 (no need for face-centered ghost data)

!  However, for simplicity and to facilitate indexing, HPGMG always uses the
same number of elements for both cell- or face-centered (=array padding)

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

Face-centered data
(e.g. beta_i[])

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

Face-centered data
(e.g. beta_j[])

!  Although data is always stored in separate arrays…

1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

0

Cell-centered data
(e.g. x[])

i	

j	

!  Thus we have different 3D arrays (#’s are offsets from the base pointer)

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Boxes
(Cell- vs. Face-Centered Data Layout)

23

1 2 3 4 5

6 11

12 17

18 23

24 29

30 31 32 33 34 35

0 0 1 2 3 4 5

6

12

18

24

30 31 32 33 34 35

0 1 2 3 4 5

6 11

12 17

18 23

24 29

30 35

!  However, conceptually, it represents different quantities in the same region
of space…

7 9 10

16

19 21 22

25 26 27 28

7 8 9 10 11

13 16 17

19 20 21 22 23

25 26 27 28 29

7 8 9 10

13 15 16

19 21 22

25 26 27 28

31 32 33 34

8

13 14 15

20

14 15

14

20

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Boxes
(Cell- vs. Face-Centered Data Layout)

24

4

5 10

11 16

17 22

23 24 25 26 27 28

-7 -6 -5 -4 -3 -2

-1

5

11

17

23 24 25 26 27 28

-7 -6 -5 -4 -3 -2

-1

4

5 10

11 16

17 22

23 28

-1

!  With a little pointer arithmetic, the first non-ghost zone cell or lower faces
of that cell have coordinates (0,0,0)

!  e.g.
 const double * __restrict__ rhs = level->my_boxes[box].vectors[rhs_id] + ghosts*(1+jStride+kStride);

-7 -6 -5 -4 -3 -2

1 2 3

6 7 9

12

18 19 21

0 0 1 2 3 4

6 7 8 9 10

12 13 16

18 19 20 21 22

0 1 2 3

6 7 8 9

12 13 15

18 19 21

24 25 26 27

8

13 14 15

20

14 15

14

20

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Boxes
(Cell- vs. Face-Centered Data Layout)

25

4

5 10

11 16

17 22

23 24 25 26 27 28

-7 -5 -4 -3 -2

5

11

17

23 24 25 26 27 28

-7 -6 -5 -4 -3 -2

-1

4

5 10

11 16

17 22

23 28

-1

!  A variable-coefficient 7-point stencil has asymmetric coefficient indexing
!  observe that a stencil at x[ijk=0] uses…

"  beta_i[0] and beta_i[1]
"  beta_j[0] and beta_j[6]
"  x[-1], x[1], x[-6], x[6], and x[0]

-7 -6 -5 -4 -3 -2

2 3

7 9

12

18 19 21

2 3 4

6 7 8 9 10

12 13 16

18 19 20 21 22

1 2 3

7 8 9

12 13 15

18 19 21

24 25 26 27

8

13 14 15

20

14 15

14

20

-6

-1 1

6

0 0 1

0

6

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Levels
(the domain at a grid spacing h)

!  HPGMG Creates a hierarchy of ‘levels’
"  each level is (currently) a cubical domain partitioned into

cubical boxes
"  each level has a unique grid spacing ‘h’ which differs by a

factor of 2x from its coarse and fine neighboring levels
"  boxes can either be smaller, the same size, or larger on

coarser levels (but total number of cells is always 8x less)

!  Boxes are distributed among processes
"  in level.c, a 3D array is created and populated with the MPI

rank of the owner of each box.
"  All communication routines are built using this 3D array
"  Researchers can replace the existing domain decomposition

options (populate this 3D array) with something more
sophisticated without changing any other code

!  On a given level, a process can have any
number of boxes (even none)
"  Not all processes have the same number of boxes (load

imbalance, fewer boxes deep in the v-cycle)
"  An ‘active’ process is a process that has work on the current

or deeper levels
"  Inactive processes drop out (complex MPI DAG)
"  HPGMG creates a subcommunicator for each level to

minimize any global communication

26

start with a 12x12 level

example for illustration purposes…

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Levels
(the domain at a grid spacing h)

!  HPGMG Creates a hierarchy of ‘levels’
"  each level is (currently) a cubical domain partitioned into

cubical boxes
"  each level has a unique grid spacing ‘h’ which differs by a

factor of 2x from its coarse and fine neighboring levels
"  boxes can either be smaller, the same size, or larger on

coarser levels (but total number of cells is always 8x less)

!  Boxes are distributed among processes
"  in level.c, a 3D array is created and populated with the MPI

rank of the owner of each box.
"  All communication routines are built using this 3D array
"  Researchers can replace the existing domain decomposition

options (populate this 3D array) with something more
sophisticated without changing any other code

!  On a given level, a process can have any
number of boxes (even none)
"  Not all processes have the same number of boxes (load

imbalance, fewer boxes deep in the v-cycle)
"  An ‘active’ process is a process that has work on the current

or deeper levels
"  Inactive processes drop out (complex MPI DAG)
"  HPGMG creates a subcommunicator for each level to

minimize any global communication

27

decompose into nine 4x4 boxes

example for illustration purposes…

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Levels
(the domain at a grid spacing h)

!  HPGMG Creates a hierarchy of ‘levels’
"  each level is (currently) a cubical domain partitioned into

cubical boxes
"  each level has a unique grid spacing ‘h’ which differs by a

factor of 2x from its coarse and fine neighboring levels
"  boxes can either be smaller, the same size, or larger on

coarser levels (but total number of cells is always 8x less)

!  Boxes are distributed among processes
"  in level.c, a 3D array is created and populated with the MPI

rank of the owner of each box.
"  All communication routines are built using this 3D array
"  Researchers can replace the existing domain decomposition

options (populate this 3D array) with something more
sophisticated without changing any other code

!  On a given level, a process can have any
number of boxes (even none)
"  Not all processes have the same number of boxes (load

imbalance, fewer boxes deep in the v-cycle)
"  An ‘active’ process is a process that has work on the current

or deeper levels
"  Inactive processes drop out (complex MPI DAG)
"  HPGMG creates a subcommunicator for each level to

minimize any global communication

28

parallelize among 4 MPI
processes (max=3) using
a lexicographical ordering

example for illustration purposes…

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Levels
(the domain at a grid spacing h)

!  HPGMG Creates a hierarchy of ‘levels’
"  each level is (currently) a cubical domain partitioned into

cubical boxes
"  each level has a unique grid spacing ‘h’ which differs by a

factor of 2x from its coarse and fine neighboring levels
"  boxes can either be smaller, the same size, or larger on

coarser levels (but total number of cells is always 8x less)

!  Boxes are distributed among processes
"  in level.c, a 3D array is created and populated with the MPI

rank of the owner of each box.
"  All communication routines are built using this 3D array
"  Researchers can replace the existing domain decomposition

options (populate this 3D array) with something more
sophisticated without changing any other code

!  On a given level, a process can have any
number of boxes (even none)
"  Not all processes have the same number of boxes (load

imbalance, fewer boxes deep in the v-cycle)
"  An ‘active’ process is a process that has work on the current

or deeper levels
"  Inactive processes drop out (complex MPI DAG)
"  HPGMG creates a subcommunicator for each level to

minimize any global communication

29

By default, the code uses a
recursive bisection

decomposition to form a SFC

Observe the complex
communication pattern

reminiscent of an AMR level.

example for illustration purposes…

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Levels
(the domain at a grid spacing h)

!  HPGMG Creates a hierarchy of ‘levels’
"  each level is (currently) a cubical domain partitioned into

cubical boxes
"  each level has a unique grid spacing ‘h’ which differs by a

factor of 2x from its coarse and fine neighboring levels
"  boxes can either be smaller, the same size, or larger on

coarser levels (but total number of cells is always 8x less)

!  Boxes are distributed among processes
"  in level.c, a 3D array is created and populated with the MPI

rank of the owner of each box.
"  All communication routines are built using this 3D array
"  Researchers can replace the existing domain decomposition

options (populate this 3D array) with something more
sophisticated without changing any other code

!  On a given level, a process can have any
number of boxes (even none)
"  Not all processes have the same number of boxes (load

imbalance, fewer boxes deep in the v-cycle)
"  An ‘active’ process is a process that has work on the current

or deeper levels
"  Inactive processes drop out (complex MPI DAG)
"  HPGMG creates a subcommunicator for each level to

minimize any global communication

30

A coarser level (spacing=2h)
may have smaller (2x2) boxes
decomposed the same way…

example for illustration purposes…

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Levels
(the domain at a grid spacing 2h)

!  HPGMG Creates a hierarchy of ‘levels’
"  each level is (currently) a cubical domain partitioned into

cubical boxes
"  each level has a unique grid spacing ‘h’ which differs by a

factor of 2x from its coarse and fine neighboring levels
"  boxes can either be smaller, the same size, or larger on

coarser levels (but total number of cells is always 8x less)

!  Boxes are distributed among processes
"  in level.c, a 3D array is created and populated with the MPI

rank of the owner of each box.
"  All communication routines are built using this 3D array
"  Researchers can replace the existing domain decomposition

options (populate this 3D array) with something more
sophisticated without changing any other code

!  On a given level, a process can have any
number of boxes (even none)
"  Not all processes have the same number of boxes (load

imbalance, fewer boxes deep in the v-cycle)
"  An ‘active’ process is a process that has work on the current

or deeper levels
"  Inactive processes drop out (complex MPI DAG)
"  HPGMG creates a subcommunicator for each level to

minimize any global communication

31

…or may have only one
box owned by process 0.

MPI processes 1, 2, and 3
would thus be inactive.

example for illustration purposes…

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Blocks (use case #1)
flatten computation for efficient threading of operators

!  HPGMG varies between coarse-
and fine-grained parallelism
"  One can have anywhere from 0 to perhaps 64

boxes per process
"  Due to agglomeration the active number of

boxes varies over the course of a solve
"  Depending on level in the v-cycle, the size of

each box varies exponentially
"  Although there are many ways of expressing

this parallelism in OpenMP (collapse(2),
nested, tasks, etc…), performance portability
across compilers is illusive

!  ‘Blocks’ are a tiling/flattening of the
loop iteration space
"  take highly-variable 4 deep loop nest (box,i,j,k)

and tile to create 4-deep loop nest
(block,bi,bj,bk) of roughly equal block sizes

"  blocks are just meta data !!!
 They are an auxiliary array of loop bounds
used to index into box data (actual FP data)

"  Smaller blocks provide more coarse-
grained TLP, but incur more overhead

"  Large blocks provide more fine TLP/SIMD
"  A block has dimension and both read and write

(source/dest) boxID, and i,j,k coordinates.
32

list of 2x2 blocks
(loop bounds that index into original box data)

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Blocks (use case #2)
Ghost Zone Exchanges

!  Ghost zone exchanges can be
difficult to implement efficiently

!  For each box, you need to
determine whether its neighbors
are on- or off-node.

!  If the latter, one should aggregate
data together and minimize the
number of messages (amortize
MPI overheads)

!  This process is complex/expensive.

!  HPGMG reuses the ‘block’
mechanism to cache this traversal
of meta data for fast replay
"  pack list (box->MPI buffer)
"  local list (box->box)
"  unpack list (MPI buffer->box)

33

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Blocks (use case #2)
Ghost Zone Exchanges

!  Ghost zone exchanges can be
difficult to implement efficiently

!  For each box, you need to
determine whether its neighbors
are on- or off-node.

!  If the latter, one should aggregate
data together and minimize the
number of messages (amortize
MPI overheads)

!  This process is complex/expensive.

!  HPGMG reuses the ‘block’
mechanism to cache this traversal
of meta data for fast replay
"  pack list (box->MPI buffer)
"  local list (box->box)
"  unpack list (MPI buffer->box)

34

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Blocks (use case #2)
Ghost Zone Exchanges

!  Ghost zone exchanges can be
difficult to implement efficiently

!  For each box, you need to
determine whether its neighbors
are on- or off-node.

!  If the latter, one should aggregate
data together and minimize the
number of messages (amortize
MPI overheads)

!  This process is complex/expensive.

!  HPGMG reuses the ‘block’
mechanism to cache this traversal
of meta data for fast replay
"  pack list (box->MPI buffer)
"  local list (box->box)
"  unpack list (MPI buffer->box)

35

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Blocks (use case #2)
Ghost Zone Exchanges

!  Ghost zone exchanges can be
difficult to implement efficiently

!  For each box, you need to
determine whether its neighbors
are on- or off-node.

!  If the latter, one should aggregate
data together and minimize the
number of messages (amortize
MPI overheads)

!  This process is complex/expensive.

!  HPGMG reuses the ‘block’
mechanism to cache this traversal
of meta data for fast replay
"  pack list (box->MPI buffer)
"  local list (box->box)
"  unpack list (MPI buffer->box)

36

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Blocks (use case #2)
Ghost Zone Exchanges

!  Currently, HPGMG implements all
distributed memory operations with
MPI2.

!  As part of the DEGAS (X-Stack)
project, we are exploring PGAS
variants of HPGMG
"  UPC++ w/GASNet
"  but MPI3 is a possibility

!  In theory, one could extend the
block meta data to allow a copy
from local to remote memory.
"  P2P synchronization is still required
"  strided access pattern complicates matters

(copy a 3D tile from a local 3D array to a
remote 3D array).

"  would replace pack/local/unpack structure with
PGAS put’s that the runtime would differentiate

37

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Blocks (use case #3)
Boundary Conditions

!  Boxes on a domain boundary
(outer boxes) require enforcement
of a boundary condition (currently
linear homogeneous Dirichlet)

!  Currently the code has two options
for Dirichlet Boundary Conditions…
"  naïve approach (nearly serial)
"  fused with the stencil (overkill)

!  I am re-implementing the naïve
approach to leverage the block
concept
"  facilitates use of massive TLP for BC’s
"  will facilitate implementation of high-order

boundary conditions
"  due to data dependencies, BC’s must occur

after ghost zone exchange completes

38

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Blocks (use case #4)
Restriction and Interpolation

!  HPGMG leverages the block
mechanism for distributed restriction
and interpolation (prolongation)

!  However, rather than just block copy
(ghost zones), operations can be
block restrict or block interpolation

39

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

!  HPGMG leverages the block
mechanism for distributed restriction
and interpolation (prolongation)

!  However, rather than just block copy
(ghost zones), operations can be
block restrict or block interpolation

!  For restriction…
"  pack list (restrict box->MPI buffer)
"  local list (restrict box->box)
"  unpack list (copy MPI buffer->box)

40

Blocks (use case #4)
Restriction and Interpolation

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

!  HPGMG leverages the block
mechanism for distributed restriction
and interpolation (prolongation)

!  However, rather than just block copy
(ghost zones), operations can be
block restrict or block interpolation

!  For restriction…
"  pack list (restrict box->MPI buffer)
"  local list (restrict box->box)
"  unpack list (copy MPI buffer->box)

41

Blocks (use case #4)
Restriction and Interpolation

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

!  HPGMG leverages the block
mechanism for distributed restriction
and interpolation (prolongation)

!  However, rather than just block copy
(ghost zones), operations can be
block restrict or block interpolation

!  For restriction…
"  pack list (restrict box->MPI buffer)
"  local list (restrict box->box)
"  unpack list (copy MPI buffer->box)

42

Blocks (use case #4)
Restriction and Interpolation

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

!  HPGMG leverages the block
mechanism for distributed restriction
and interpolation (prolongation)

!  However, rather than just block copy
(ghost zones), operations can be
block restrict or block interpolation

!  For restriction…
"  pack list (restrict box->MPI buffer)
"  local list (restrict box->box)
"  unpack list (copy MPI buffer->box)

43

!  Interpolation is simply the reverse of
this process…
"  pack list (interpolate box->MPI buffer)
"  local list (interpolate box->box)
"  unpack list (copy MPI buffer->box)

Blocks (use case #4)
Restriction and Interpolation

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Potential Issues with Blocks

!  Currently, blocks can the following operations
"  box -> box/vector
"  box/vector -> pointer
"  pointer -> box/vector
"  pointer -> pointer

!  block data structure include a box ID or a pointer (double*)
!  use of a pointer is a nonissue for unified CPU memory architectures

!  If the presence of a pointer in the block data type is a problem,
let me know and I can easily change it to an integer (int bufID)

44

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Threading Lists of Blocks
(Currently OpenMP, alternate possibilities)

!  HPGMG currently uses OpenMP to thread across the list of blocks
!  HPGMG leverages c99’s _Pragma() to hide OpenMP pragmas inside

preprocessor macros…
"  allows programmers to change the macro once and have it affect all operators in the code

(rather than changing a hundred routines every time one changes OpenMP usage)
"  currently, there are three flavors…

•  parallel execution of the list (smoothers, vector-vector)
•  parallel execution of the list w/sum reduction (dot products)
•  parallel execution of the list w/max reduction (max/inf norms)

"  … all are implemented with variants of #pragma omp parallel for
"  Moreover, there are three levels of threading…

•  none (flat MPI is different than OMP_NUM_THREADS=1)
•  OpenMP 2.x (no max reductions). XL/C runs in this mode due to a compiler issue with _Pragma() and the max reduction
•  OpenMP 3.x (max reductions for norm calculations)

!  In theory, one could modify these to explore other programming models…
"  block becomes a task in OpenMP3’s task model
"  block becomes a team of threads in OpenMP4’s distribute
"  block becomes a gang of workers in OpenACC
"  block becomes a thread block in CUDA

45

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Performance Expectations

!  Performance on a single-node should be roughly STREAM-limited
!  Performance at scale is dependent on the network and MPI implementation.

46

0.00#

0.05#

0.10#

0.15#

0.20#

0.25#

0.30#

0.35#

0.40#

1# 10# 100# 1,000# 10,000# 100,000#
H
PG

M
G
%F
V
(S
ol
ve
(T
im

e(
(s
ec
on

ds
)(

NUMA(Nodes((2M(DOF/NUMA(Node)(

HPGMG%FV(Weak(Scaling(
Hopper#
Titan(CPU8only)#
Mira#
K#
SuperMUC#
Stampede(CPU8only)#
Edison#
Babbage(MIC8only)#
Stampede(MIC8only)#

!  Consider…
"  vanilla MPI+OpenMP with one process per

socket (numa node)
"  tuned BLOCKCOPY_TILE* on MIC/BGQ
"  aprun –n[#] [affinity] ./hpgmg 7 1
"  weak scaled to # numa nodes (flat is perfect)
"  single process solve times should be <50ms

on most intel processors (SNB/IVB/MIC)
"  If single node solve time is significantly greater

than 50ms, something is wrong

!  This figure provides a means of
comparing your performance &
speedup to today’s conventional
approaches

!  Given M memory per node and P
Processes, HPGMG should…
"  move O(M) data to/from DRAM
"  send O(log2(M*P)) messages
"  perform 1 global MPI_Allreduce
"  perform many local MPI_Allreduce’s

LAWRENCE BERKELEY NATIONAL LABORATORY

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

Co-Design
Questions

47

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

HPGMG Configuration
for CoDesign

!  Nominally, HPGMG is configured as a Top500 benchmark
!  For Co-Design purposes, a few additional compiler flags are required.

!  use the helmholtz operator (-DUSE_HELMHOLTZ)
!  compare Chebyshev & GSRB (-DUSE_CHEBY vs. -DUSE_GSRB)
!  start a few smallish boxes per process (e.g. 8 x 643) by running

 mpirun –n# […] ./run 6 8

48

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Does Exascale Enable
Strong Scaling or Consolidation?

!  run with at least one process per NUMA node (per GPU)
!  use more than one process (more than one GPU) to quantify impact of

communication
!  note, HPGMG’s structure never stabilizes. It continually adapts to process

count and problem size

!  how does performance vary as one varies box size (e.g. 323!1283) and
number (e.g. 8!64 boxes)
 mpirun –n# […] ./run 5 8 vs. mpirun –n# […] ./run 5 64
 mpirun –n# […] ./run 6 8 vs. mpirun –n# […] ./run 6 64
 mpirun –n# […] ./run 7 8 vs. mpirun –n# […] ./run 7 64

!  This provides insights to the CoDesign center as to whether
algorithmic changes are required/sufficient (e.g. shift LMC to a 4D
parallelization scheme)

49

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

How do we efficiently and
succinctly manage locality?

!  active working sets vary by factors of 8x
!  there can be >7 levels in MG (working sets vary from GB’s to KB’s)
!  With an AMM like the X-Stack program’s target of 10 levels of software-

controlled memory, different levels are lit up as the algorithm progresses…
 L1, L2,L1,L2, L3,L2,L1,L2,L3, L4,L3,L2,L1,L2,L3,L4, … L8,L7,L6,L5,L4,L3,L2,L1,L2,L3,L4,L5,L6,L7,L8

!  How does one concisely orchestrate data movement through the
memory hierarchy?
"  the same routine (same pragmas?) can be called with either a GB working set or

a KB working sets
"  the arrays touched (double*) can be different for the same routine

50

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

How sensitive is exascale to
operations with limited parallelism?

!  MG’s computational complexity is premised on the assumption that N/8
flops requires N/8 time.
"  N+N/8+N/64… = O(N) flops ~ O(N) time

!  Today, the performance of MIC/GPU processors decreases substantially
when parallelism falls below a certain threshold (underutilization)

!  If time ceases to be tied to N but saturates at some constant, then
"  N+N/8+N/8+N/8+…N/8 ~ O(Nlog(N))

!  Does your FastForward processor performance on coarse (coasrer)
grids impede overall multigrid performance?
"  Are there architectural features you can exploit to avoid this?
"  If so, how do you succinctly specialize code to exploit them?

 (i.e. do we really have to write every routine twice?)
"  Are there other approaches to ensure coarse grid operations are not a

bottleneck?

51

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY 52

Acknowledgements

!  All authors from Lawrence Berkeley National Laboratory were supported by
the DOE Office of Advanced Scientific Computing Research under contract
number DE-AC02-05CH11231.

!  This research used resources of the National Energy Research Scientific
Computing Center, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231.

!  This research used resources of the Argonne Leadership Computing
Facility at Argonne National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under contract DE-
AC02-06CH11357.

!  This research used resources of the Oak Ridge Leadership Facility at the
Oak Ridge National Laboratory, which is supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-
AC05-00OR22725.

LAWRENCE BERKELEY NATIONAL LABORATORY

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

Questions?
SWWilliams@lbl.gov

53

LAWRENCE BERKELEY NATIONAL LABORATORY

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

Backup Slides

54

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Combustion Proxy Apps

!  HPGMG-FV
"  proxies MG solves in LMC
"  6K lines of C
"  allows true distributed V-Cycles
"  boundary conditions generalized (currently Dirichlet or periodic)
"  multiple smoother options (GSRB, weighted and L1 Jacobi, Chebyshev, symgs)
"  multiple coarse grid solver options (point relaxation, BiCGStab, CABiCGStab,…)
"  true Full Multigrid (FMG) implementation
"  allows for easy(?) ports to alternate programming models
"  allows for easy exploration of high-order operators

!  AMR_EXP_Parabolic
"  Explicit AMR (no MG)
"  proxies AMR issues in LMC with subcycling in time
"  Fortran
"  requires BoxLib

55

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Memory Capacity Issues

!  In AMR MG Combustion codes, you need a separate field/component/
vector for each chemical species (NH4, CO2, …) on each AMR level

!  As such, given today’s memory constraints, the size of each process’s
subdomain might be small (643…1283)

!  Future machines may have 10x more memory than today’s…
"  100GB of fast memory
"  1TB of slow memory

!  Why not run larger problems to amortize inefficiencies?
"  Application scientists would prefer to use it for new physics or chemistry.

 e.g. increase the number of chemical species from 20 to 100
"  AMR codes could use the memory selectively (where needed) with deeper AMR hierarchies.
"  The memory hierarchy can be used to prioritize the active working set…

 e.g. fit the MG solve on current species of the current AMR level in fast memory

!  If performance is not feasible, we need to know soon as significant
changes to LMC would be required to increase on-node parallelism

56

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

Choice of Smoother

!  In the manycore era, the choice of smoother:
"  must balance mathematical (convergence) and architectural constraints (TLP/SIMD/BW).
"  may see up to a 100x performance hit without threading on a Xeon Phi (MIC)

!  Using HPGMG-FV we observed differences in performance among smoothers…
"  GSRB and w-Jacobi were the easiest to use
"  SYMGS required fewer total smooths, but its performance per smooth was very poor.
"  Based on Rob/Ulrike’s paper, L1 Jacobi was made as fast as w-Jacobi
"  Chebyshev was fastest in the net (smooth was little slower, but required fewer smooths)
"  Unfortunately, Chebyshev is a bit twitchy as it needs eigenvalue estimates.

57

Gauss-Seidel
Red-Black

Chebyshev
Polynomial

weighted
Jacobi

L1
Jacobi

SYMGS
(blocked)

Convergence

Threading?

SIMD?

good
(2-3 GSRB)

very good
Degree 2 or 4

slow
(8+ smooths)

slow
(8+ smooths)

very good
(2 SYMGS)

spectral properties
of the operator

not necessarily
stable

yes yes yes yes extremely
difficult

inefficient
(stride-2) yes yes yes extremely

difficult

Requirements
(in addition to D-1)

L1 norm N/A to high-order
operators

P E R F O R M A N C E A N D A L G O R I T H M S R E S E A R C H G R O U P

LAWRENCE BERKELEY NATIONAL LABORATORY

GMG vs. AMG

GMG
!  uses a structured grid
!  operator (A) is a stencil

"  variable coefficient finite volume stencil
requires 32 bytes per stencil

"  same is true for 27pt or higher order

!  R and P are defined geometrically
based on properties of the underlying
numerical method.

!  constructs the coarse grid operator
directly as if it were a fine grid

!  decomposition, communication, and
optimization are straightforward.

!  works very well for many problems of
interest.

!  when it fails, try alternate bottom solve
or use AMG.

58

AMG
!  uses a arbitrary graph
!  operator (A) is a sparse matrix

"  assembled matrix requires ~12 bytes and a
FMA per point in the stencil

"  low compute intensity regardless of
discretization

!  R and P are constructed based on the
graph and the operator.

!  constructs the coarse grid operator
using the A2h = RhAhPh triple product
(expensive)

!  good decomposition becomes a graph
partitioning problem

!  more general approach, but
performance optimization is challenging

