
Elastic-Buffer Flow Control for On-Chip Networks

George Michelogiannakis, James Balfour and William J. Dally
Computer Systems Laboratory, Stanford University, Stanford, CA 94305

{mihelog,jbalfour,dally}@cva.stanford.edu

Abstract

This paper presents elastic buffers (EBs), an efficient
flow-control scheme that uses the storage already present
in pipelined channels in place of explicit input virtual-
channel buffers (VCBs). With this approach, the channels
themselves act as distributed FIFO buffers. Without VCBs,
and hence virtual channels (VCs), deadlock prevention is
achieved by duplicating physical channels. We develop
a channel occupancy detector to apply universal globally
adaptive load-balancing (UGAL) routing to load balance
traffic in networks using EBs. Using EBs results in up
to 8% (12% for low-swing channels) improvement in peak
throughput per unit power compared to a VC flow-control
network. These gains allow for a wider network datapath to
be used to offset the removal of VCBs and increase through-
put for a fixed power budget. EB networks have identical
zero-load latency to VC networks operating under the same
frequency. The microarchitecture of an EB router is con-
siderably simpler than a VC router because allocators and
credits are not required. For 5×5 mesh routers, this results
in an 18% improvement in the cycle time.

1 Introduction

Semiconductor technology scaling allows more process-
ing and storage elements to be integrated on the same die.
Networks-on-chip (NoCs) provide a scalable communica-
tion infrastructure [5,7]. With wires available in abundance
on chip, channel bandwidth is plentiful, rendering buffers
and flip-flops (FFs) expensive in comparison [5]. Thus,
reducing buffering requirements and implementing buffers
more efficiently increases network efficiency.
This paper presents elastic buffers (EBs), an efficient

flow-control scheme that uses the storage already present in
pipelined channels instead of input virtual-channel buffers
(VCBs). Removing VCBs reduces the area and power con-
sumed by routers, but prevents the use of virtual-channel
flow-control for performance and deadlock avoidance. Du-
plicate physical channels can be used in the same way

as virtual channels (VCs) to prevent deadlocks and to de-
fine traffic classes. Dividing a network into sub-networks
provides duplicate physical channels and increases perfor-
mance and power efficiency [1] in virtual-channel networks
(VCNs), which we find to hold for elastic-buffered net-
works (EBNs).
We use universal globally-adaptive load-balanced

(UGAL) routing [18] in a flattened butterfly (FBFly) [11]
network to balance network load. We develop a channel
congestion sensing mechanism for EBNs that is used in
place of the credit count that is typically used to sense
congestion in VCNs.
For a FBFly with UGAL routing, performance and

power efficiency are almost equal for EBNs and VCNs with
low-swing channels, with a 3% loss for EBNs with full-
swing channels. EBN gains in 2D mesh networks reach 8%,
increasing to 12% with low-swing channels. EBN gains de-
pend on the fraction of cost represented by VCBs. Since
the EBN datapath must be widened to compensate for the
removal of VCBs, EBNs tend to occupy more area. For
a fixed area budget, datapath widths are similar, and VCNs
are more area efficient. Zero-load latency is equal for VCNs
and EBNs operating at the same clock frequency.
EB routers are simpler than VC routers because they

use arbiters rather than allocators, and do not use credit-
based flow-control. Consequently, the critical paths in an
EB router are shorter than a comparable VC router. An EB
router can operate at a faster clock frequency. For 5×5 mesh
routers, EB routers have an 18% reduced cycle time.
The rest of this paper is organized as follows: Section 2

discusses the basic building blocks of EBNs as well as dead-
lock avoidance, topology choices and adaptive routing. Sec-
tion 3 presents performance, area and power evaluations.
Section 4 discusses EBNs and trade-offs. Section 5 outlines
router implementation results. Finally, sections 6 and 7 con-
clude and discuss related work.

2 Elastic Buffer Networks

In this section we present EB channels and routers, the
fundamental EBN building blocks. We then discuss channel

To appear in the 15th International Symposium on High-Performance Computer Architecture (HPCA-15).

(a) A DFF implemented with a master and a
slave D latch.

(c) Expanded view of the EB control logic as a synchronous
FSM for two-slot EBs.

(b) An EB is a FF whose latches are con-
trolled by the EB control logic and used for
buffering.

(d) Logic diagram of the EB control FSM with 2 FFs and 10
gates.

Figure 1. EB Channels.
duplication, deadlock avoidance, and adaptive routing.

2.1 Elastic Buffer Channels

Figure 1(a) shows a D flip-flop (DFF) [19] that is imple-
mented using master and slave latches. By adding control
logic to drive the latch enable pins independently, each latch
can be used as an independent storage location. Thus, the
FF becomes an EB, a FIFO with two storage locations. This
is illustrated in Figure 1(b).
EB channels use many such EBs to form a distributed

FIFO. FIFO storage can be increased by adding latches to
EBs or by using repeater cells for storage [15]. EBs use a
ready-valid handshake to advance a flit (flow-control digit).
An upstream ready (R) signal indicates that the downstream
EB has at least one empty storage location and can store
an additional flit. A downstream valid (V) signal indicates
that the flit currently being driven is valid. A flit advances
when both the ready and valid signals between two EBs are
asserted at the rising clock edge. This timing convention
requires at least two storage slots per clock cycle delay to
avoid creating unnecessary pipeline bubbles.
The finite state machine (FSM) implementing the EB

control logic is illustrated in Figure 1(c), and the corre-
sponding logic is shown in Figure 1(d). The FSM outputs

that control the latch enables are qualified by the clock in
the same manner as FFs. A flit is latched in the master latch
at the end of the cycle and advances to the slave at the be-
ginning of the next cycle. The initial state, state 0, encodes
that there are no valid flits stored. E2 can be 0 in state 0
to save power or 1 to simplify FSM logic. Once a flit ar-
rives (V in=1), the FSM enters the state 1 new, because the
arriving flit is stored at the master latch at the beginning of
the cycle and thus needs to be moved to the slave latch by
asserting E2. If the flit does not depart and no new flit ar-
rives, the FSM enters the state 1 old, because the flit already
resides in the slave latch and it must not be overwritten. In
state 2, there are two stored flits which makes the FSM de-
assert both latch enables to prevent overwriting. The master
latch enable can be further qualified by the incoming valid
to avoid clocking the master latch when there are no incom-
ing flits. The total FSM cost is 2 FFs and 10 logic gates.
Two more AND gates are needed to qualify the FSM latch
enable outputs by the clock. Since flow-control is applied at
a flit granularity, control logic is amortized over the width
of the channel. The channel datapath is unaffected.
All components use the same clock. To avoid penalizing

its frequency, we hide the FSM setup time and clock-to-q
latency. Since the EB master latch is enabled only when the
clock is low, the first half of the clock cycle is long enough

To appear in the 15th International Symposium on High-Performance Computer Architecture (HPCA-15).

for the single AND gate to drive E1. However, E2 needs to
be stable during the first half of the clock cycle. Therefore,
we split the FFs holding state bits a and b into their master
and slave latches. The outputs of the master latches are used
to generate E2, allowing E2 to stabilize before the end of the
previous clock cycle.
To cover the overhead of the ready and valid ports, the

ready and valid wires are optimized for delay by promot-
ing them to higher metal layers with lower RC delays, by
increasing wire width and spacing, or by engineering the
wires for delay using more aggressive repeaters. The ready-
valid overhead consists of an 1 fanout-of-four (FO4) latch
data-to-q delay, 3 FO4 logic delay (for the three levels of
gates in the FSM next-state and output functions), and 3
FO4 to fanout the latch enables to the channel EBs, for a to-
tal of 7 FO4. In our implementation technology, explained
in section 3.1, if we assume 1mm EB spacing, the 7 FO4
overhead can be hidden by targeting a ready and valid wire
delay of 360ps/mm instead of 500ps/mm. The minimum
propagation delay for wires engineered solely for delay is
150ps/mm in our technology.

2.2 Router Architecture

Unlike input-queued VC routers [16], EB routers do not
use VCs and thus do not have VCBs and VC allocators.
Furthermore, since inputs may request only one output, EB
routers use output arbiters instead of switch allocators. Each
input has an EB to buffer flits and ensure the first stage
has a full clock cycle in which to operate. Credits are not
used to track occupancy at the downstream router, and thus
there are no credit channels. The ready-valid handshake is
used to determine when output EBs are ready to receive flits
and to detect valid flits arriving at the inputs. Arbitration is
performed on a per-packet basis to prevent the interleaving
deadlock described in section 2.6.
A block diagram of an EB router is shown in Figure 2.

Only one input and one output are illustrated in detail. The
router consists of two pipeline stages. Routing computation
(RC) and switch arbitration (SA) occur in the first stage,
and switch traversal (ST) in the second. Routing decisions
are stored in state registers when head flits arrive at the RC
block and are used to forward body flits. After routing, each
head flit requests its output from an arbiter in the SA block.
After a head flit wins arbitration, the output is held for the
duration of the packet to prevent interleaving of flits from
multiple packets. The SA block forwards the ready signal
from the output EB back to the input EB so that flits only
advance when there is room for them in the output buffer.
When the input EB receives a ready signal, the flit advances
to the intermediate pipeline register. During the next cycle,
the flit traverses the switch and is stored into the output EB.
An extra storage slot is required in the output EBs to cover
the pipeline latency because arbitration is performed one

Figure 2. EB Router microarchitecture.

Figure 3. A 2D 4×4 FBFly.
cycle in advance of switch traversal (and without credits).
Each output EB asserts its ready signal when it has two or
more free slots or when it has one free slot and ready was
low on the previous cycle—so there is no flit currently in
transit.
We also consider an EB router with EBs at the cross-

points of the switch. The ready-valid handshake facilitates
movement to and from the crosspoints. This design im-
proves performance if entire packets can be buffered at the
crosspoints. Such packet-sized buffers, however, are pro-
hibitively expensive for realistic packet sizes. Also, since
a FF is 5.3 times larger than an inverter of twice the driv-
ing strength in our technology library, adding an EB at ev-
ery crosspoint makes the crossbar area dominated by the
crosspoints even for a small number of incoming and out-
going wires. Apart from the increased area, a pair of ready
and valid wires to and from each crosspoint EB is required,
causing an increased power consumption. This effect be-
comes worse when trying to design a low-swing crossbar.
Therefore, we do not consider a buffered crossbar further.

2.3 Topologies

This work focuses on the 2D mesh and 2D FBFly [11]
topologies. The 2D mesh is a common topology choice be-
cause it is simple. The 2D FBFly is similar to the 2D mesh,
except that every router connects to every other router in the
same row and column instead of only its neighbors, as illus-
trated in Figure 3. Topologies with non-uniform channel

To appear in the 15th International Symposium on High-Performance Computer Architecture (HPCA-15).

(a) The two routers, one for each sub-network. Illustrated
for a 4×4 UGAL FBFly.

(b) A 3×3 UGAL FBFly. Non-minimal router (NM) connect to
minimal routers (M – shaded) via X’ channels.

Figure 4. The UGAL FBFly. Two traffic classes are defined by two sub-networks.
lengths, such as the FBFly, require VC routers with differ-
ent amounts of buffering at each input to account for the
different credit round-trip delays, which increases the de-
sign complexity, or with large enough buffers to accommo-
date the longest channels. EBNs avoid this because they do
not use credits.
Using UGAL routing (section 2.5) in an EBN requires

separate traffic classes to handle minimal and non-minimal
traffic to prevent cyclic dependencies (section 2.6). As dis-
cussed in section 2.7, the most efficient way to implement
these traffic classes is to provide separate sub-networks for
minimal and non-minimal traffic. A single FBFly router is
replaced by a router for each of the two sub-networks, as
illustrated in Figure 4(a). The X’ and Y’ channels handle
non-minimal packets while the X and Y channels handle
minimal traffic. The Y’ channels connect the non-minimal
routers to other non-minimal routers in the same column.
The X’ channels connect the non-minimal routers to the
minimal routers in the same row. After a packet takes an
X’ hop it is done with non-minimal routing and proceeds
to its destination on the minimal sub-network. One of the
X’ channels connects each non-minimal router to the mini-
mal router with the same coordinates. This handles packets
that do not require a non-minimal hop in X. Traffic sources
inject traffic to the non-minimal sub-network. Destinations
eject traffic from the minimal sub-network. A 3×3 UGAL
FBFly is shown in Figure 4(b).

2.4 Sensing Channel Congestion

The UGAL [18] routing algorithm we use for the FBFly
topology requires a means of estimating channel conges-
tion. We evaluate five different congestion metrics for
EBNs that can be used instead of the credit counts used
by VCNs: blocked cycles, blocked ratio, output occupancy,
channel occupancy, and channel delay.
Blocked Cycles is a running average of the number of

cycles an output is blocked. Once an output is blocked,
a counter keeps track of the number of clock cycles un-

Figure 5. Measuring output occupancy.
til it unblocks. At that point it updates the running aver-
age. The new value for running averages is calculated as
newvalue = 0.3 × oldvalue + 0.7 × newsample.
Blocked Ratio is the ratio of the number of cycles an out-

put has been blocked, divided by its unblocked cycles. We
calculate this for the 20 most recent clock cycles.
Output Occupancy is the number of flits currently com-

mitted to an observation region of the channel. When the
head flit of a packet is routed, the occupancy counter for its
output is incremented by the packet length in flits. Output
counters are decremented by one for each flit leaving the
observation region, the output channel segment for which
we keep track of flits in transit.
We detect flits leaving the observation region using an

AND gate whose inputs are the ready and valid signals be-
tween the last EB of the region of observation and the next
EB. A circuit to measure output occupancy for a single out-
put is shown in Figure 5. The time required to propagate
the AND gate output back to the router, determined by the
length of the observation region, affects the speed of con-
gestion sensing. As discussed in section 2.1, that wire can
be optimized for delay to accommodate larger regions. In
our study, the observation region is the same length as the
shortest network channel. Propagation delay is half of that
channel’s delay, rounded up.
Channel Occupancy is similar to output occupancy, ex-

cept that an output’s counter is incremented when a flit ar-

To appear in the 15th International Symposium on High-Performance Computer Architecture (HPCA-15).

0 10 20 30 40 50 60

Progressive

Non-progressive

Average maximum throughput (flits/cycle * 100)

Channel Delay

Channel Occupancy

Output Occupancy

Blocked Ratio

Blocked Cycles

Congestion sensing mechanism and progressive adaptive routing evaluation

Figure 6. EBN Throughput comparison.
rives at the output EB instead of when its packet is routed
to that output.
Channel Delay measures the average number of cycles

needed by flits to leave the region of observation. A FIFO
at each output stores timestamps of flits entering the out-
put EBs. When a flit is detected to leave the region, the
timestamp at the head of this FIFO is removed and used to
determine the delay and update the running average.
Figure 6 compares the performance of these five conges-

tion sensing mechanisms. The setup used in the simulation
is explained in section 3.1. The metric of choice is out-
put occupancy. Occupancy metrics are also the simplest.
Metrics using running averages fail to adapt quickly to the
current network status. Output occupancy is preferable to
channel occupancy because it is important to account for
flits that have been routed and waiting for an output as well
as flits that have advanced to it. Otherwise, a router input is
not aware of other inputs’ choices. Thus, an output channel
which is never blocked appears as not loaded even though
many flits may be blocked waiting for that output because
all inputs are making the same choice.

2.5 Adaptive Routing

After flits are injected into the non-minimal network,
UGAL chooses a random intermediate destination, I . The
packet is routed to I (non-minimally to the final destination,
D) if the load of the output port on the route to I , multiplied
by the non-minimal hop count to D, is larger than the load
of the output port on the route to D multiplied by the hop
count of the minimal route to D. That decision is never
revisited.
Non-minimal packets are routed in Y’X’ dimension or-

der, to I in the non-minimal network and then in YX dimen-
sion order toD in the minimal network. Each dimension of
each sub-network is traversed with a single hop. Packets
that are routed minimally proceed directly to D in X’Y di-
mension order. The X’ hop places them into the minimal
network. If a non-minimal route has been chosen but there
is no X’ hop, the X hop becomes an X’ hop since flits would

have reached I in the non-minimal network. Therefore,
routing becomes Y’X’Y. The self-channel is used when a
traversal to the minimal network is required but there is no
X’ hop. Thus, an extra hop is created. Routing Y’X’YX re-
sults in better column load balancing than routing Y’X’XY,
since in the minimal network flits traverse the randomly
chosen column of I . Routing Y’X’XY makes flits use the
column of D, which, depending on the traffic pattern, can
result in load imbalance.
Although UGAL attempts to balance the load, routers

have congestion information only for their outputs and are
unaware of more distant congestion. To deal with distant
congestion, we apply progressive adaptive routing (PAR)1
which revisits the choice of I . For every non-minimal hop
towards I , another intermediate destination is chosen ran-
domly that would result in an output in the same axis as the
output towards I , to preserve dimension ordering. UGAL
is applied to choose the best option among I and the new
intermediate destination. That option then becomes I . If I
is not reached with that hop, routing proceeds in the next
dimension. Thus, there is still only up to one hop in ev-
ery dimension, which ensures forward progress. When the
most recently chosen intermediate destination I is reached,
routing proceeds to the minimal network. In addition, when
taking an X’ channel to the minimal network, another X’
channel is randomly chosen and UGAL is applied to keep
the best option. Routing in the minimal network is deter-
ministic. PAR is not applied in the minimal network since
the final destination is constant. An evaluation of PAR is
included in Figure 6. Disabling PAR reduces the maximum
throughput by 14% for output occupancy.
Because non-minimal routers have no X’ channels to

other non-minimal routers, they have a smaller radix.
Therefore, they have shorter critical paths and more cycle
time to make the complex adaptive routing decisions. How-
ever, having two separate networks means that all adaptive
routing decisions are made in the non-minimal network, to
preserve dimension-ordering in the minimal. These deci-
sions cannot consider the load of the minimal network be-
cause the minimal network routers the flit would traverse
are distant. Moreover, VCNs share channels and thus their
loads. Therefore, packets are routed non-minimally when
another output of the router making the decision is less
loaded. This is not feasible with separate networks because
load imbalance in the minimal network cannot be readily re-
solved by the routers attached to minimal network channels,
to preserve dimension-ordering. PAR is another cause for
load imbalance in the minimal network, because it makes
the intermediate destination choice not truly random. Oth-
erwise, traffic from the intermediate nodes to the minimal
network would be uniform random which would result in

1A slightly different form of progressive adaptive routing was first pro-
posed by Steve Scott of Cray for routing in a Dragonfly Network.

To appear in the 15th International Symposium on High-Performance Computer Architecture (HPCA-15).

balanced load, on average.
Furthermore, traffic from sources and destinations con-

nected to same-coordinate routers now need to change to
the minimal network, using network channels to make the
traversal. This makes them contend with other network traf-
fic, which is not true without sub-networks. This issue can
be solved by increasing network cost by adding more chan-
nels, such as ejection ports in the non-minimal network.

2.6 Deadlocks

EBNs use duplicate physical channels in the same man-
ner as VCs to define disjoint traffic classes and prevent
deadlocks. Moreover, another type of deadlock, interleav-
ing deadlock, appears in EBNs.
Protocol (request-reply) deadlocks [9] are solved by

guaranteeing that replies are always able to reach desti-
nations, bypassing blocked requests to the same destina-
tions. Destinations may be waiting for those replies be-
fore they can serve more requests. More complex protocols
may require more traffic classes. Cyclic dependencies [4]
are formed by a series of packets each depending on one
another in a cycle in order to progress. They are broken
by enforcing dimension-ordered routing (DOR) in topolo-
gies without physical channel cycles, such as our chosen
2D mesh and 2D FBFly. Otherwise, enough disjoint traffic
classes must be formed such that no cyclic dependency is
possible within and across classes.
EBNs suffer from another type of deadlock: interleav-

ing deadlock. Due to the FIFO nature of EB channels, flits
at the head must be sent to their outputs to let the next flit
coming to the same input be processed. If packets are in-
terleaved, blocked packets also block tails of other packets
that are interleaved with them. Therefore, a cyclic depen-
dency can be formed between the interleaved packets. For
instance, a new head flit may arrive at an input port with all
its routing computation registers occupied. Thus, that head
flit depends on tail flits from the packets occupying those
registers and interleaving with the new packet, to have rout-
ing computation registers released. However, those tail flits
also depend on that head flit in order to advance.
This deadlock can be easily avoided by preventing pack-

ets from being interleaved. This guarantees that a head flit
is followed by all the remaining flits of the same packet be-
fore another packet’s flits arrive. Therefore, only one rout-
ing computation status register is required for each input
port. Without VCs, disabling packet interleaving does not
degrade network performance assuming that sources trans-
mit flits of the same packet contiguously. To the contrary,
since packets are considered to have been delivered once
their tails arrive, this may decrease average packet latency.
Interleaving may result in tails arriving late, behind flits
from a number of other packets. Disabling interleaving also
makes mantaining packet identifiers in flits unnecessary.

2.7 Duplicating Physical Channels

Duplicating physical channels allows EBNs to differen-
tiate between traffic classes and provide isolation. We con-
sider three ways of duplicating channels and conclude that
using duplicate sub-networks is the preferred choice.
The first option is duplicating physical channels be-

tween routers but multiplexing them into the same router
port. To maintain non-interleaving, multiplexers and de-
multiplexers must select on a per-packet basis. Moreover,
routers need duplicate output EBs to prevent flits of differ-
ent classes from interacting. This option yields a small per-
formance gain since router ports remain the same, but there
is a disproportional increased overhead due to having an in-
creased channel clock and output EB area and power costs.
The second option is duplicating physical channels and

router ports. We find this to yield an excessive overhead
due to the crossbar cost increasing quadratically with the
number of router ports.
For the same reason, dividing into sub-networks—the

third option—proves to be an efficient choice, as already
shown for VCNs [1]. It doubles its available bisection
bandwidth and therefore its cost. However, when narrow-
ing channels down to meet the same power or performance
(maximum throughput) budget as the single network, cross-
bar cost decreases quadratically. This results in a more per-
formance and power efficient overall network, enabling us
to maintain a higher bisection bandwidth and performance
with the same power budget.

3 Evaluation

In this section we present evaluation results for EBNs.
We explain our methodology in section 3.1. We then present
results in section 3.2.

3.1 Methodology

Evaluation is performed with a modified version of
booksim [6]. We compare EBNs and VCNs using a 2D
mesh with DOR, and the 2D FBFly using UGAL routing as
described in section 2.3. For a fair comparison, both EBNs
and VCNs have separate request and reply sub-networks.
The 2D mesh has 16 terminals with 16 routers arranged in
a 4×4 grid. Injection and ejection channels have 1 cycle
of latency, and mesh network channels have 2 cycles of la-
tency.
For the FBFly, we consider a 64-terminal network with

16 routers arranged in a 4×4 grid and four terminals per
router. Short, medium and long channels have 2, 4 and 6 cy-
cles of latency, respectively. Self-channels have 1 cycle of
latency. The EB request and reply sub-networks each have
32 routers, 16 7×7 routers for the non-minimal sub-network

To appear in the 15th International Symposium on High-Performance Computer Architecture (HPCA-15).

and 16 10×10 routers for the minimal sub-network. Pro-
gressive adaptive routing, as described in section 2.5, is ap-
plied to all FBFly networks.
Sources generate fixed-size 512 bit packets according to

their injection rate and enqueue them to the network in-
terface buffer of the proper sub-network. Non-empty net-
work interface buffers inject one flit per cycle to their sub-
network, and flits are ejected from each sub-network at a
rate of one flit per cycle.
The set of traffic patterns [6] used for the evaluation is

uniform random, random permutations, shuffle, bit compar-
ison, tornado, and neighbor traffic for the 2D mesh. For
the FBFly we also include transpose and an adversarial
traffic pattern. The adversarial traffic pattern aims to load
specific network channels by making all sources connected
to one router send to destinations connected to one other
router. Transpose illustrates the effect of traffic destined to
the same-coordinate router now contenting with other net-
work traffic to switch to the minimal network, as explained
in section 2.5. Results are averaged over the set of traffic
patterns for each sample point. The maximum throughput
is the average of the maximum throughput of each traffic
pattern. The consumed power is the average of the power
consumptions at the maximum throughput of each traffic
pattern.
Area and power models are based on those described

in [1]. We model channel wires as being routed above other
logic and report only the area of the repeaters and FFs.
Router area is estimated using detailed floorplans, and in-
put buffers are implemented as SRAM. Device and inter-
connect parameters are for a 65nm general-purpose CMOS
technology. We use a clock frequency of 2GHz, about 20
FO4 inverter delays. Critical devices in the channels and
router datapaths, such as the repeaters used to drive large
wire capacitances, are sized to ensure circuits will oper-
ate at the clock frequency. The power model includes all
of the major devices in the channels and routers, and in-
cludes leakage currents. The flip-flops in the channels are
clock-gated locally. Aggressive low-swing channel designs
can achieve up to a 10x traversal power per bit reduction
compared to full-swing [10]. As a conservative estimate,
our low-swing channel model has 30% of the full-swing re-
peated wire traversal power, and double the channel area.
VCNs use a two-stage router design. The first stage con-

sists of input buffering, routing, and VC and switch allo-
cation. The second stage is switch traversal. We do not
assume input buffer bypassing. Our study focuses at the
saturation points at which this has minimal effect. We set
the number of VCs and buffer slots to maximize the VCN
performance and power efficiency. For each VCN datap-
ath width used in the simulations, we sweep the number of
VCs and buffer slots to maximize the ratio of the average
maximum throughput over the consumed power per unit of

throughput (power divided by throughput). We only con-
sider buffer depths that cover the credit round trip latency
to avoid penalizing latency. For 64-bit wide channels, 4
VCs is the optimal choice for both DOR and UGAL on the
FBFly, of 10 slots each for full-swing and 8 slots for low-
swing channels. For the mesh, the optimal choice is 4 VCs
of 9 slots each for full-swing and 8 for low-swing channels.

3.2 Results

Figure 7 shows Pareto optimal curves for the FBFly and
the 2D mesh for full and low-swing channels. The curves
were generated by sweeping datapath width from 28 to 192
bits in numbers divisible by the packet size. Points represent
an optimal design point, associating power consumption
and maximum throughput, or area and maximum through-
put. Thus, they illustrate the characteristics of a network
with a certain area, power or performance budget.
Figure 8 presents throughput-latency curves for uniform

traffic and 64-bit channel widths. The VCN was configured
for low-swing channels.
Figure 9 shows an area and power breakdown, by net-

work component, for the full-swing model. Figure 10
presents the same power breakdown for the low-swing
model. All results are for a single DOR FBFly network
with a 64-bit datapath under uniform random traffic, making
EBN and VCN flits traverse the same paths. This provides
a fair comparison given the different congestion metrics for
UGAL routing. Figure 11 presents a power breakdown for
the 2D mesh with low-swing wires, under a 2% packet
injection rate for uniform random traffic. VCB power is
25% of the overall, compared to 21.5% for the DOR FBFly.
Channel traversal refers to the power to traverse a segment
with repeaters. For EBNs, input buffer read power is the
traversal power for the intermediate router register shown
in Figure 2. Low-swing networks have the same area break-
down except for the channel area which is doubled.
Table 1 summarizes the percentage gains for each of the

two topologies. For each comparison, EBNs and VCNs
have the metric shown in the first column equalized by ad-
justing the EBN datapath width. The percentage gains com-
pare VCNs and EBNs against the two other aspects. That
percentage is calculated by calculating the distance at each
sampling point between the Pareto curve that associates
each aspect under comparison with the normalized aspect,
dividing by the value of the aspect under comparison, and
averaging among all sampling points. A positive percentage
means that EBNs provide gains for that comparison, and
thus the percentage was calculated against the aspect under
comparison value of VCNs. Likewise, negative percentages
indicate gains for VCNs.
This section assumes a constant clock frequency, thus

ignoring EBN gains presented in section 5.

To appear in the 15th International Symposium on High-Performance Computer Architecture (HPCA-15).

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

Power consumption (W)

A
ve

ra
ge

 s
at

ur
at

io
n

ra
te

 (p
ac

ke
ts

/c
yc

le
 *

 1
00

)

EB full−swing FBFly Pareto curve. UGAL routing.

VC−buffered two sub−networks
EB two sub−networks

0 5 10 15 20
5

10

15

20

25

30

35

40

45

50

Power consumption (W)

A
ve

ra
ge

 s
at

ur
at

io
n

ra
te

 (p
ac

ke
ts

/c
yc

le
 *

 1
00

)

EB full−swing mesh Pareto curve. Dim−ordered routing.

VC−buffered two sub−networks
EB two sub−networks

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

Area (square mm)

A
ve

ra
ge

 s
at

ur
at

io
n

ra
te

 (p
ac

ke
ts

/c
yc

le
 *

 1
00

)

EB low−swing FBFly Pareto curve. UGAL routing.

VC−buffered two sub−networks
EB two sub−networks

0 10 20 30 40 50
0

5

10

15

20

25

30

35

Power consumption (W)

A
ve

ra
ge

 s
at

ur
at

io
n

ra
te

 (p
ac

ke
ts

/c
yc

le
 *

 1
00

)
EB low−swing FBFly Pareto curve. UGAL routing.

VC−buffered two sub−networks
EB two sub−networks

0 1 2 3 4 5 6
5

10

15

20

25

30

35

40

45

50

Area (square mm)

A
ve

ra
ge

 s
at

ur
at

io
n

ra
te

 (p
ac

ke
ts

/c
yc

le
 *

 1
00

)

EB low−swing mesh Pareto curve. Dim−ordered routing.

VC−buffered two sub−networks
EB two sub−networks

0 2 4 6 8 10 12 14
5

10

15

20

25

30

35

40

45

50

Power consumption (W)

A
ve

ra
ge

 s
at

ur
at

io
n

ra
te

 (p
ac

ke
ts

/c
yc

le
 *

 1
00

)

EB low−swing mesh Pareto curve. Dim−ordered routing.

VC−buffered two sub−networks
EB two sub−networks

Figure 7. Paretto optimal curves for full and low-swing channel networks.

To appear in the 15th International Symposium on High-Performance Computer Architecture (HPCA-15).

0 2 4 6 8 10 12
0

20

40

60

80

100

120

140

Injection rate (packets/cycle * 100)

A
ve

ra
ge

 la
te

nc
y

(c
lo

ck
 c

yc
le

s)
Not normalized. FBFly, UGAL routing. Width = 64 bits.

VC−buffered two sub−networks
EB two sub−networks

0 5 10 15 20
20

40

60

80

100

120

140

160

Injection rate (packets/cycle * 100)

A
ve

ra
ge

 la
te

nc
y

(c
lo

ck
 c

yc
le

s)

Not normalized. Mesh, dim−ordered routing. Width = 64 bits.

VC−buffered two sub−networks
EB two sub−networks

Figure 8. Throughput-latency curves for uniform random traffic.

0 0.5 1 1.5 2 2.5

VC-Buff

EBN

Full-swing power breakdown (4% packet injection rate)

Output clock

Output FF

Crossbar control

Crossbar power

Input buffer write

Input buffer read

Channel FF

Channel clock

Channel traversal

(W)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

VC-Buff EBN

Full-swing area breakdown

Channel Crossbar Input buffer Output

(mm2)

Figure 9. Cost breakdowns for a DOR FBFly with 64-bit full-swing channels under uniform traffic.

4 Discussion

As the results show, EBNs yield larger gains in a 2D
mesh. In a mesh, each flit takes many router hops, incur-
ring buffering costs at each router. Thus, a flit in the mesh
network consumes more energy to reach its final destination
than a flit in the FBFly, and VCB energy is a more signif-
icant portion. Therefore, 2D mesh EBNs exhibit greater
power savings because more energy is consumed in the
VCBs. The additional power consumed in the intermedi-
ate EBN router pipeline register is much less than the input
VCB. These results demonstrate that topology, specifically
as it affects average hop counts, affects the gains that are
realized by EBNs.
The dominant portion of the overall power for the full-

swing model is the power to traverse the repeated wires
in the channels. Low-swing channels reduce the overall
power, making VCB power a more significant portion of
the overall network power. Therefore, EBNs yield a greater
power improvement from removing VCBs in a network that
uses low-swing channels.
Our analysis assumes efficient VCBs implemented with

Table 1. EBN Percentage gains.
Norm DOR Mesh UGAL FBFly
Comp: Area Perf Power Area Perf Power

Full-swing
Area - 1% 7% - -10% 10%
Perf 2% - 8% -20% - -3%
Power -11% 8% - -16% -2% -

Low-swing
Area - 2% 10% - -11% 15%
Perf 2% - 12% -23% - 0%
Power -15% 10% - -24% 0% -

SRAM cells. Latch or FF array implementations are less ef-
ficient, increasing VCB overhead and making EBNs more
attractive. Doubling channel area due to differential wiring
has a small impact because the majority of the area is occu-
pied by the router crossbar.
EBNs consume less power compared to VCNs of the

same datapath width. To normalize EBNs and VCNs for
a fixed power budget, we increase the EBN datapath width.
In that case, EBNs can support a higher maximum through-
put. Alternatively, we can normalize the two networks for

To appear in the 15th International Symposium on High-Performance Computer Architecture (HPCA-15).

0 0.2 0.4 0.6 0.8

VC-Buff

EBN

Low-swing power breakdown (4% packet injection rate)

Output clock

Output FF

Crossbar control

Crossbar power

Input buffer write

Input buffer read

Channel FF

Channel clock

Channel traversal

(W)
Figure 10. Low-swing power breakdown.

0 0.2 0.4 0.6 0.8

VC-Buff

EBN

Mesh low-swing power breakdown (2% packet injection rate)

Output clock

Output FF

Crossbar control

Crossbar power

Input buffer write

Input buffer read

Channel FF

Channel clock

Channel traversal

(W)
Figure 11. Mesh power breakdown.

the same maximum throughput by choosing another EBN
datapath width. In that case, EBNs can consume less power.
Therefore, EBNs are more performance and power efficient
compared to VCNs. SRAM VCBs occupy a small amount
of area. Thus, area normalization makes datapath widths
equal or almost equal, resulting in similar networks as bi-
section bandwidth normalization.
Due to the FIFO nature of EB channels, packets in

the same sub-network share the same resources. Thus, a
blocked flit blocks all flits behind it, making EBNs more
sensitive to contention. As a solution, more duplicate sub-
networks can be provided. Consequently, quality of service
(QoS) guarantees are only possible across sub-networks.
Therefore, the effect of having VCBs in networks com-

pared to EBNs of the same datapath width is higher link uti-
lization and maximum throughput with a higher maximum
power consumption, but with a favorable performance

power ratio.
Designs that need the highest performance possible with a
fixed area budget should use VCNs. This is because the
SRAM VCBs occupy little area, so removing them yields
minimal area savings. However, increasing the datapath
width increases the crossbar area quadratically.
As explained in section 2.7, dividing the network into

sub-networks improves performance and power efficiency.
However, this is only true up to a certain number of sub-
networks. After that, each sub-network’s control over-
head dominates and serialization latency becomes signifi-
cant. Moreover, duplicating networks increases source and
destination network interface radix. Thus, for each network

configuration there is an optimal number of sub-networks
for performance and power efficiency. VCNs are a favor-
able choice for complex protocols or adaptive routing algo-
rithms requiring more sub-networks than that number.
The amount of buffering in EB channels scales directly

with channel length, affecting EBN performance. Topolo-
gies with double the channel length have an increased per-
formance of 8-10% in the UGAL FBFly, but on the other
hand almost double the channel power for a total power
increase of approximately 60%. Topologies with half the
channel length show a similar trend. VCN performance is
affected by the different size of VCBs, due to the different
round-trip time. The 2D mesh shows a similar trend. This
shows that the dominant factor affecting maximum through-
put in EBNs is the contention in the bufferless routers.
However, designers might still find it beneficial to add stor-
age slots in channels, as explained in section 2.1, depending
on their topology, layout and router radix.
EB channels have the same zero-load latency when mea-

sured in clock cycles, since the ready-valid protocol de-
scribed in section 2.1 does not add any latency. Moreover,
the EB router described in section 2.2 consists of two stages,
as the assumed VC router model. We also assume that
VCB depth is large enough to cover the credit processing
and propagation delay. Zero-load latency in the EB UGAL
FBFly is increased by 3.3% by average, due to the extra hop
very few flits have to take, as explained in section 2.5. As
the injection rate increases, latency increases in a similar
manner between EBNs and VCNs. However, EBNs satu-
rate earlier for equal-width datapaths due to their sensitivity
to contention. Datapath width affects serialization latency
and thus zero-load latency. In practice, as discussed in sec-
tion 5, EBN routers are more likely to require fewer cycles
to traverse, or will operate at a higher clock frequency, due
to their simplified design.
EBNs provide a higher throughput for the same power

budget, or consume less power for the same throughput.
However, designs with strict area budgets which prioritize
performance will find VCNs to be the preferable choice.
Designs that need other features from the network should
investigate how to implement those in EBNs and compare
according to their priorities. Circuit techniques such as low-
swing channels that reduce the power consumption of com-
ponents outside the VCBs so that VCBs consume a greater
fraction of the overall power will favor the use of EBNs. For
fairness, this study uses SRAM-based VCBs, the most ef-
ficient design. Using VCBs based on latches or FFs would
significantly increase area and power, and hence EBN gains.

5 Router Implementation

An EBN router is much simpler than a corresponding
VCN router. Table 2 shows a comparison of area, delay,

To appear in the 15th International Symposium on High-Performance Computer Architecture (HPCA-15).

Table 2. Router implementation comparison.
Aspect VC router EB router
ports 703 683
nets 16202 5581
gates 60010 13917
cells 15943 4143
Area (μm2) 63515 14730
Cycle time (ns) 3.3 2.7
Dyn. power (mW) 2.59 0.12

and power for 5 × 5 mesh routers implemented in a 45nm
low-power CMOS technology under worst-case conditions.
The results were obtained by synthesizing the design using
Synopsys Design Compiler and placing and routing the syn-
thesized design using Cadence Silicon Encounter. Power
was measured from simulations using uniform random traf-
fic and 24% flit injection rate in each router input, to avoid
saturating either router. Realistic router input and output
timing constraints, loads and driving strengths were used.
The VC router had 2 VCs of 8 buffer slots each. Routing
pre-computation [8] was used. Due to library constraints,
input buffers were implemented from FF arrays.
Results show a 77% decrease in occupied area, an 18%

decrease in cycle time and a 95% decrease in dynamic
power. The reduced cycle time enables the network to
be clocked at a higher frequency, thus achieving a higher
throughput per absolute time, or a lower zero-load latency
if the pipeline stages in the VC router are increased.
The cycle time of the EB router is constrained by the out-

put EB occupancy counters and read/write logic. The output
EB was implemented as a FIFO due to the high complex-
ity of a three-slot FSM EB. We expect that optimizing the
output EB will further decrease the EB cycle time.
The VC router cycle time is constrained by the VC and

switch allocators. Increasing the number of VCs increases
the complexity of the first stage.
The 95% decrease in dynamic power is due to using FFs

to implement the VCBs, instead of SRAM cells.

6 Related Work

An alternative EB channel implementation is described
in [15]. Unlike our EB channels, those channels are un-
pipelined and use repeater cells for storage rather than
latches. Using repeater cells for storage adds transistors af-
fecting the channel datapath.
A hybrid VCB–EB scheme was explored in [13]. How-

ever, due to the FIFO nature of channels, the interleaving
deadlock, presented in section 2.6, can still occur. Prevent-
ing it requires transmitting flits without a credit (which may
be stored in the EB channel) only if they are non-head, sig-
nificantly limiting gains from using EB channels. For the
same reason, there is no isolation between flits of different

VCs. Blocked flits in EB channels block flits from other
VCs, even though there may be available buffer space in the
router. We have found such hybrid schemes to be beneficial
only for very small VCBs. However, such small VCBs rep-
resent an inefficient design choice since they can be made
larger for a small power cost, but with a significant perfor-
mance gain — assuming SRAM VCB implementations.
Compressionless routing also does not use VCs [12]. It

relies on feedback from the network sent back to network
interfaces. Time division circuit-switching flow-control has
also been proposed [14]. Connection-based routing can also
be used for deadlock-free adaptive routing [20] by allow-
ing intermediate nodes to tear down and modify end-to-end
virtual circuits. A hybrid packet-connected circuit has also
been proposed, requiring the routers to have buffer space
only for request packets [21]. Bufferless networks can avoid
dropping packets by emitting packets in a non-ideal direc-
tion, also called deflective routing [17].
The vast majority of NoC implementations focus on

packet switched networks with a per-input VCB scheme [3].
Such networks enable easy deadlock avoidance, optimized
wire utilization, improved performance and QoS [2]. These
characteristics along with a reasonable design complexity
make VCs the current dominant NoC flow-control scheme
and VCNs the comparison metric for this work.

7 Conclusion

This work presented EBNs, an efficient NoC flow-
control scheme. EBNs make use of already-existent
pipeline FFs in channels for storage, using channels as dis-
tributed FIFOs. The power gains from removing the VCBs
can be spent on widening the EBN datapath, essentially
trading VCBs for increased bandwidth, for networks with a
fixed power budget. Duplicate physical channels are used
instead of VCs to prevent cyclic dependency and proto-
col deadlocks. Dividing the network into sub-networks in-
creases performance and power efficiency when normaliz-
ing for a fixed performance or power budget.
We compare a number of congestion sensing mech-

anisms for EBNs, and show that the output occupancy
mechanism provides the best performance. Using this
congestion sensing mechanism, minimal and non-minimal
sub-networks, and progressive adaptive routing, we apply
UGAL routing to FBFly EBNs.
For UGAL FBFly EBNs, performance and power effi-

ciency is almost equal in the low-swing model, with a 3%
loss for EBNs in the full-swing case, compared to VCNs.
EBN gains in 2D mesh networks reach 8% for the full-
swing channel model, and 12% for the low-swing. On
the other hand, due to having a wider datapath, EBNs oc-
cupy more area when normalized for power or performance.
Zero-load latency is equal between EBNs and VCNs of the

To appear in the 15th International Symposium on High-Performance Computer Architecture (HPCA-15).

same clock frequency.
EB routers are considerably simpler due to the removal

of allocators, credits and other overhead, such as VC and
packet IDs. This results in an 18% reduced cycle time com-
pared to VC routers for 5×5 mesh routers. This allows
EBNs to be clocked at a higher frequency, or reduces the
zero-load latency if the VC router pipeline stages are in-
creased to meet that frequency.
For many power-constrained on-chip networks, EBNs

substantially increase network efficiency while at the same
time simplifying the router design.

Acknowledgments

This work was supported in part by the National Science
Foundation under Grant CCF-0702341, in part by the Na-
tional Security Agency under Contract H98230-08-C-0272,
in part by the Semiconductor Research Corporation under
Grant 2007-HJ-1591, in part by the Defense Advanced Re-
search Projects Agency under contract FA8650-07-C-7726-
P00001—monitored by the Air Force, in part by the Robert
Bosch Stanford Graduate Fellowship, and in part by the Ca-
dence Design Systems Stanford Graduate Fellowship.

References

[1] James Balfour and William J. Dally. Design tradeoffs for
tiled CMP on-chip networks. In ICS ’06: Proceedings of the
20th annual International Conference on Supercomputing,
pages 187–198, 2006.

[2] T. Bjerregaard and S. Mahadevan. A survey of research
and practices of network-on-chip. ACM Computing Surveys,
38(1):1, 2006.

[3] William J. Dally. Virtual-channel flow control. IEEE Trans-
actions on Parallel and Distributed Systems, 3(2):194–205,
1992.

[4] William J. Dally and Hiromichi Aoki. Deadlock-free adap-
tive routing in multicomputer networks using virtual chan-
nels. IEEE Transanctions on Parallel and Distributed Sys-
tems, 4(4):466–475, 1993.

[5] William J. Dally and Brian Towles. Route packets, not wires:
On-chip interconnection networks. InDAC ’01: Proceedings
of the 38th Conference on Design Automation, pages 684–
689, 2001.

[6] William J. Dally and Brian Towles. Principles and Practices
of Interconnection Networks. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2003.

[7] Giovanni de Micheli and Luca Benini. Networks on chip:
A new paradigm for systems on chip design. In DATE ’02:
Proceedings of the conference on Design, Automation and
Test in Europe, page 418, 2002.

[8] Mike Galles. Spider: A high-speed network interconnect.
IEEE Micro, 17(1):34–39, 1997.

[9] Andreas Hansson, Kees Goossens, and Andrei Rădulescu.
Avoiding message-dependent deadlock in network-based
systems on chip. VLSI Design, May 2007.

[10] Ron Ho, Ken Mai, and Mark Horowitz. Efficient on-chip
global interconnects. In Symposium on VLSI Circuits, pages
271–274, 2003.

[11] John Kim, William J. Dally, and Dennis Abts. Flattened
butterfly: a cost-efficient topology for high-radix networks.
In ISCA ’07: Proceedings of the 34th annual Interna-
tional Symposium on Computer Architecture, pages 126–
137, 2007.

[12] Jong H. Kim, Ziqiang Liu, and Andrew A. Chien. Compres-
sionless routing: a framework for adaptive and fault-tolerant
routing. SIGARCHComputer Architecture News, 22(2):289–
300, 1994.

[13] Avinash Kodi, Ashwini Sarathy, and Ahmed Louri. Design
of adaptive communication channel buffers for low-power
area-efficient network-on-chip architecture. In ANCS ’07:
Proceedings of the 3rd ACM/IEEE Symposium on Architec-
ture for Networking and Communications Systems, pages
47–56, 2007.

[14] Jian Liu, Li-Rong Zheng, and H. Tenhunen. A guaranteed-
throughput switch for network-on-chip. In Proceedings of
International Symposium on System-on-Chip, pages 31–34,
2003.

[15] Masayuki Mizuno, , William J. Dally, and Hideaki Onishi.
Elastic interconnects: repeater-inserted long wiring capable
of compressing and decompressing data. In ISSCC ’01: Pro-
ceedings of IEEE International Solid-State Circuits Confer-
ence, pages 346–347, 464, 2001.

[16] Robert Mullins, Andrew West, and Simon Moore. Low-
latency virtual-channel routers for on-chip networks. In
ISCA ’04: Proceedings of the 31st annual International Sym-
posium on Computer Architecture, page 188, 2004.

[17] Erland Nilsson, Mikael Millberg, Johnny Oberg, and Axel
Jantsch. Load distribution with the proximity congestion
awareness in a network on chip. In DATE ’03: Proceedings
of the conference on Design, Automation and Test in Europe,
pages 1126–1127, 2003.

[18] Arjun Singh. Load-Balanced Routing in Interconnection
Networks. PhD in electrical engineering, Stanford Univer-
sity, 2005.

[19] Vladimir Stojanovic and Vojin G. Oklobdzija. Compara-
tive analysis of master-slave latches and flip-flops for high-
performance and low-power systems. IEEE Journal of Solid-
State Circuits, 34(4):536–548, Apr 1999.

[20] Yoshio Turner and Yuval Tamir. Deadlock-free connection-
based adaptive routing with dynamic virtual circuits. Journal
of Parallel and Distributed Computing, 67(1):13–32, 2007.

[21] Daniel Wiklund and Dake Liu. SoCBUS: Switched network-
on-chip for hard real time embedded systems. In IPDPS ’03:
Proceedings of the 17th International Symposium on Parallel
and Distributed Processing, page 78.1, 2003.

To appear in the 15th International Symposium on High-Performance Computer Architecture (HPCA-15).

