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New investigative tools, combined with experiments and computational methods, are being developed to build 
a next-generation understanding of molecular-to-pore-scale processes in fluid-rock systems. A new numerical 
simulation modeling capability, known as Chombo-Crunch, resolves flow and transport processes in geometric 
features obtained from image data of realistic pore space at unprecedented scale and resolution.

W
hen CO2 is injected into the Earth’s 
subsurface, the system is forced far 
from equilibrium, both chemically 
and mechanically. The result is a non-

linear dynamical regime in which emergent behav-
ior develops at the pore and greater scales. These 
nonlinear interactions among multiphase flow, 
solute transport, mineral dissolution, and precipi-
tation have been addressed in a cursory fashion at 
the larger porous-continuum scale, where grains 
and pores aren’t resolved, but they’ve largely been 
neglected at the pore scale, where the chemical and 
physical environments undergo strong variations 
locally in space and time. Interest in the pore scale 
stems from the need to resolve explicitly (in con-
trast to the porous-continuum scale) the key fluid-
fluid (H2O and CO2) and fluid-solid interfaces in 
order to arrive at a mechanistic understanding of 
how to control CO2 injection in the subsurface. By 
carefully understanding processes at the pore scale, 
the overall scientific goal of this work is to bring 
such knowledge to bear on the macroscopic scale 
of a reservoir, which is the relevant scale for carbon 
sequestration.

This article reports a recent advancement that 
combines an embedded boundary (EB) algorithm 
with algebraic multigrid (AMG) method to pro-
duce an efficient, robust, and scalable approach for 
modeling flow and transport in very complex 3D 

geometries obtained from image data. Primarily, we 
identify the observed convergence problem of geo-
metric multigrid (GMG) methods in the presence of 
very complex geometries and demonstrate that the 
introduction of AMG into our elliptic solvers leads 
to a robust solution. We also demonstrate the new 
combined approach’s performance gains, with scal-
ability to more than 100,000 processor cores. We 
apply the method to complex pore-scale domains 
obtained from both constructive solid geometry as 
well as from image data of experiments that model 
processes associated with carbon sequestration.

Background
Several classes of methods model subsurface flow 
and transport in porous media, but most typi-
cally address flow and transport in aquifers over 
distances of 1 to 10 km. In these models, the pore 
space’s microscale geometry is treated as an “effec-
tive medium,” and flow and transport processes 
are replaced with averaged variables, balance equa-
tions, and bulk properties. For example, fluid mo-
mentum balance is governed by Darcy’s law as a 
function of a pressure gradient, elevation gradient, 
and a medium-dependent permeability parameter. 
However, processes that emanate at microscopic 
length scales (dissolution-diffusion-convection, 
for example) can evolve into larger-scale dynam-
ics over time,1 underlining the need to consider 
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the resolution of the pore-scale geometry and mi-
croscale processes.2

The geometry of subsurface pore space is 
often characterized by long, thin channels me-
andering between multiply connected domains 
in highly heterogeneous microscopic environ-
ments. Other characteristics of these media are 
low porosity, very high specific interfacial area, 
heterogeneous preferred flow paths (or wormhol-
ing), sharp cusps, and semidisconnected cavities. 
Consequently, in direct numerical simulation of 
pore-scale systems, the fluid incompressibility 
constraint and both viscous and diffusive forces 
result in the need for elliptic solvers in very com-
plex geometries. However, realistic geometries 
pose several challenges to numerical schemes and 
solvers in terms of stability, accuracy, flexibility, 
memory, and CPU demands.

An advantage of direct numerical simulation 
at the pore scale is that it can be used to perform 
validation studies of porous media experiments. 
This requires direct simulation in realistic geom-
etries obtained from image data, as in a geologic 
core sample or packed bed column. For the “image 
to simulation” process to be successful, the mesh-
ing technique used for gridding the geometry must 
not only be amenable to surface extraction tech-
niques for experimentally-derived image data but 
also consistent with an efficient and convergent 
discretization method for the equations of motion.

Complex geometries have more tradition-
ally been treated with conforming, body-fitted 
grids. However, as noted, porous media are typi-
cally highly irregular and dense, especially in the 
geologic subsurface. Under such circumstances, 
unstructured grid generation techniques are time-
consuming and involve much user interaction. Fur-
thermore, it’s difficult to generate grids that both 
preserve the geometry’s fidelity and lead to robust 
solvers. In addition, if the pore-space boundary 
changes due to, say, precipitation or dissolution in 
the geologic case, then a body-fitted gridding pro-
cess, which is already complicated, also  becomes 
time-dependent.

Finite-volume methods have been shown to be 
computationally efficient as well as accurate and 
stable for modeling microscale flow and transport 
in irregular geometries. In particular, the EB meth-
od is a finite-volume approach to gridding complex 
geometry that’s specifically intended to enable di-
rect simulation from image data. In this approach, 
the irregular domain is discretized as a collection 
of control volumes formed by the intersection of 

the problem domain with the cubic Cartesian grid 
cells, as in a “cut cell” approach. The various opera-
tors are approximated by applying the divergence 
theorem on the irregular control volumes, with 
the fluxes computed by using primary discretized 
dependent variables that approximate the solution 
evaluated at the centers of the original Cartesian 
cells. Away from the boundary, the finite-volume 
method reduces to a standard finite-difference ap-
proximation. This approach has been used as the 
basis for second-order accurate methods for ellip-
tic, parabolic, and hyperbolic partial differential 
equations in two and three dimensions,3,4 shown to 
scale efficiently for elliptic problems,5 and extended 
to flow and transport in complex microscale ge-
ometries6 as well as time-dependent fixed and free 
boundary problems.7 Coupled with adaptive mesh 
refinement (AMR), the EB approach provides a 
powerful high-resolution tool for modeling multi-
scale, multiphysics problems.

The EB method makes use of matrix-free 
GMG methods to solve the elliptic Poisson and 
positive definite Helmholtz equations that result 
from a semi-implicit predictor-corrector formula-
tion for incompressible viscous flow and transport 
(scalar advection-diffusion-reaction [ADR]).6,8 
We’ve observed that generic GMG performs poorly 
for very complex flow domains, and, in some cases, 
it doesn’t even converge. An important reason for 
GMG’s poor performance is that the geometri-
cally coarsened grid doesn’t represent the physical 
boundary in a porous medium; technically, the op-
erator has a null space in the pressure-Poisson case. 
As an alternative, AMG methods9,10 construct 
coarse grid spaces algebraically and, more impor-
tantly, create coarse grid operators using an alge-
braic Galerkin process, which is very robust with 
respect to complex geometry. The AMG approach 
has also been applied to Navier-Stokes equations in 
complex geometries and demonstrated for simple 
problems in two dimensions.11

Technical Approach
Our technical approach is a predictor-corrector 
type based on a Godunov projection method.

equations
First, we consider the incompressible Navier-Stokes 
(INS) equations with constant density and the sca-
lar transport equations

t
p( · ) ν

∂
∂
+ ∇ =−∇ + ∆

u
u u u  (1)
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∇ × u = 0 (2)

u
∂
∂
+ ∇ =∇⋅ ∇ +

c
t

c D c R( · ) ,  (3)

where u is fluid velocity, ∇p is pressure gradient, 
ν is kinematic viscosity, c is a scalar density, D is 
the scalar’s diffusivity, and R is a reaction source 
term.

We’ve developed a semi-implicit predictor- 
corrector projection method12 based on a previous13 
and more recent work6,7 to solve the equations of 
motion. This method previously used GMG-based 
elliptic solvers to model reactive transport at the 
pore scale, as in a separate study.8 Here, we discuss 
the details of these new elliptic solvers based on the 
hybrid EB-AMG approach needed by the predic-
tor-corrector method to solve flow and transport in 
very complex geometries.

Two types of elliptic problems must be solved 
within this predictor-corrector framework. The first 
is the Poisson equation resulting from the pressure 
projection formulation:

Δf = ∇ × u∗,n+1 on Ω (4)

n × ∇f = 0 on ∂ Ω. (5)

The second is a positive definite Helmholtz equa-
tion resulting from the implicit treatment of the 
viscous term:

(αI – βΔ)u∗,n+1 = f (un, un+1/2) on Ω (6)

u = 0 on ∂ Ω. (7)

Similar to Equation 6, a positive definite 
Helmholtz equation results from scalar diffusion 
in transport problems. For ease of discussion, we 
address the Helmholtz problem resulting from the 
velocity equation and note that the approach also 
applies to transport, although the relaxation pa-
rameter is different (species diffusivity). In each of 
these cases, an H1-elliptic problem must be solved.

Algebraic Multigrid
Multigrid is well known as an optimal solution 
method for H1-elliptic problems on structured 
meshes with a serial complexity of O(n) (with n 
degrees of freedom) and O(log n) parallel com-
putational depth.9,14–16 Multigrid methods are 
motivated by the observation that a low-resolu-
tion discretization of an operator can capture er-
ror modes or components that are expensive to 

 compute directly on a highly resolved discretiza-
tion. For example, an inexpensive iterative method 
such as Gauss-Seidel is effective at reducing high-
frequency or high-energy error via geometrical 
smoothing. More generally, any poorly locally 
determined solution component has the potential 
to be resolved with coarser representation. This 
process can be applied recursively with a series of 
coarse grids, thereby requiring that each grid re-
solve only the components of the error that it can 
solve efficiently. These coarse grids have fewer grid 
points—typically, about a factor of two in each di-
mension—such that the total amount of work in 
multigrid iterations can be expressed as a geometric 
sum that converges to a small factor of the work on 
the finest mesh.

Multigrid communicates between grids through 
prolongation and restriction. The columns of pro-
longation operator, P, are the discrete representation 
of the coarse grid functions; we use P to map correc-
tions to the solution from the coarse grid to the fine 
grid. Residuals are mapped from the fine grid to the 
coarse grid with the restriction operator, R, which 
is often equal to PT. The coarse grid matrix can be 
formed in one of two ways: either algebraically to 
form Galerkin (or variational) coarse grids (Acoarse ← 
RAfine P) or by creating a new discrete problem on 
each coarse grid (if an explicit coarse grid is avail-
able), thereby letting the application construct the 
operator. Figure 1 shows the standard multigrid  
V-cycle with smoother x ← S(A, x0, b).

Although multigrid was originally developed 
with explicit coarse grids (geometric multigrid), 
the method only requires a prolongation operator if 
R = PT. Over the past decade, AMG methods have 
been developed for unstructured problems that 
generalize the construction of the prolongation op-
erator. AMG methods, by the broadest definition, 
construct the coarse grid operators with a Galer-
kin process. More specifically, AMG methods re-
fer to multigrid methods that construct the coarse 
grid spaces and operators from the matrix alone. 
Many AMG methods have been developed, such 
as smoothed aggregation17 and “classic” algebraic 
multigrid.10

In this work, we apply a standard smoothed 
aggregation method in the Portable Extensible 
Toolkit for Scientific computing (PETSc) for 
pressure correction in Equation 4 and the positive 
definite Helmholtz in Equation 6. (The operators 
that result from the EB formulation used here 
aren’t symmetric and are discussed in the follow-
ing section.)
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Structured grid Method
Our solver stencils are based on a finite-volume 
discretization of elliptic problems in the pres-
ence of complex geometries.6 We use an EB 
approach whereby the problem domain is inter-
sected with a rectangular Cartesian grid result-
ing in irregular, or cut, cells near the boundary, 
as in Fig ure 2. A discrete form of the divergence 
theorem can then be applied in the irregular 
cells to form a conservative approximation to 
the divergence of a f lux:
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where a is the area fraction of a cell face, h is the 
mesh spacing, and κ is the cell’s volume fraction; 
�
+Fi ed1
2
ˆ  indicates that the flux has been interpolated 

to the face centroid using linear (2D) or bilinear 
(3D) interpolation of face-centered fluxes. For 

Figure 2. Embedded boundary (EB) approach.6 (a) Example of an irregular geometry on a Cartesian grid, (b) close-up view of embedded 
boundaries “cutting” regular cells, and (c) single irregular cut cell showing boundary fluxes (right). Shaded area represents volume of 
cells excluded from domain, and dots represent cell centers. X’s represent centroids.

Figure 1. Multigrid V(ν1, ν2)-cycle algorithm.

(a)

(b)

(c)

function M GV(Ai,bi)

if there is a coarser grid i + 1

xi ← S
v1 (Ai,0,bi) –

ri ← bi−Axi

ri+1 ← Ri+1 (ri) – restriction of residual to coarse grid

ei+1 ← M GV (Ri+1 Ai Pi+1,ri+1) – the recursive application

xi ← xi + Pi+1 (ei+1) – prolongation of coarse grid correction

xi ← S
v2 (Ai,xi,bi) – υ2 iterations of the (post)smoother

else

xi ← A
1 bi – exact solve of coarsest grid

return xi

υ1 iterations of the (pre)smoother
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 example, given the cell edge with outward normal 
ê1, with centroid x�, the 2D linearly interpolated 
flux in the d (d ≠ 1) direction is defined by
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We can write the 3D bilinear interpolation of 
the flux for the face with normal ê1  as follows:
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where d′ ≠ d, d′ ≠ 1.
The divergence theorem’s conservative dis-

cretization provides a flux-based formula for el-
liptic operations in irregular cells. In the context 
of Poisson’s equation, the operator is the Lapla-
cian and the flux is simply the gradient of a sca-
lar F
�

ϕ=∇  with Neumann boundary conditions 
F n̂ 0B ϕ= ⋅∇ =  at the EB. However, in the con-
text of Helmholtz, the irregular boundary is a no-
slip boundary for the velocity, requiring an elliptic 

operator with Dirichlet boundary conditions at the 
EB. In this case, the flux at the EB, F n̂B ϕ= ⋅∇ , 
must be constructed while maintaining the meth-
od’s global accuracy. (For the scalar transport 
Helmholtz equation, the boundary condition is 
Neumann.)

We construct a Dirichlet flux at boundaries by 
solving the least squares linear system for ∇j:

x x x
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The stencil of points (m = 1, 2, ..., p), ex-
cluding the irregular cell that contains the EB, 
is determined by the list of cells along a mono-
tone path from the irregular root cell given some 
radius of influence. In 2D, the minimum stencil 
size for uniqueness is p = 3; in 3D, it’s p = 7. 
Figure 3 shows exemplary stencils. For very com-
plex geometries, a radius of influence of 3 ensures 
robustness.

We note that our finite-volume approach to 
discretization of elliptic operators reduces to a 
standard finite-difference approximation in regu-
lar cells away from boundaries (5-point Laplacian 
stencil in 2D; 7-point Laplacian stencil in 3D). 
However, porous media domains require a large 
number of cut-cell discretizations due to tortuous, 

Figure 3. Least squares stencil to obtain flux for Dirichlet boundary condition on embedded boundary in (a) 2D and 
(b) 3D.6
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microscopic pore space. Therefore, the  required 
stencils are much more complicated in the irregular 
cut cells due to interpolation of face and boundary 
fluxes, thus supporting our claims of complexity 
and asymmetry compared to standard finite-differ-
ence operators.

Results
Our flow and conservative transport solver, 
known as Chombo-Crunch, is based on adaptive 
EB methods developed in the Chombo software 
framework (http://chombo.lbl.gov). Chombo gen-
erates the computational grid, be it from construc-
tive solid geometry techniques (synthetic) or image 
data surface reconstruction (realistic), processes the 
geometries, decomposes the domain into sets of 
boxes on individual processor cores, and forms the 
operators (matrix and right-hand side). 

A key feature of this framework is the integra-
tion of the PETSc scalable equation solver library 
into the Chombo libraries to facilitate access to 
many other linear and nonlinear solvers besides 
GMG.18 We used a smoothed aggregation AMG 
solver native to PETSc v3.4 (-pc type gamg -pc 
gamg sym graph true) written by one of the au-
thors (Mark F. Adams). We also compared the 
gamg solver’s performance with hypre (-pc type 
hypre -pc hypre type boomeramg).19 We used 
the GMRES Krylov method because EB generates 
nonsymmetric matrices, preconditioned with one 
AMG V(1,1)-cycle. The convergence criterion for 
the norm of the residual error of the elliptic opera-
tor was a relative tolerance of 10−12.

Scalability and Parallel efficiency
To test the scalability of Chombo-Crunch, we 
performed a weak scaling test for flow through a 
cylinder packed with spheres. We obtained the ge-
ometry via constructive solid geometry techniques 
that use an implicit function representation on a 
grid. We performed 10 time steps of the flow code 
and took the average time per time step in seconds 
for comparison. We used a sweet spot for domain 
decomposition and load balancing of one box per 
processor core, where one box was 323 cells. We 
conducted these tests on the NERSC Cray XC30 
system, Edison, for up to 131,072 cores. This weak 
scaling test is a replication scaling test in which 
we took a fixed number of spheres (or near fixed, 
due to random placement of spheres) per 323 patch 
of the domain and assigned one patch per proces-
sor core for three different aspect ratios of flow in 
a cylinder: a 1-to-1 (750 packed spheres) run on 

512-4,096-32,768 cores, a 2-to-1 (1,500 packed 
spheres) run on 1,024-8,192-65,536 cores, and 
a 4-to-1 (3,000 spheres) run on 2,048-16,384-
131,072 cores.

Due to the random placement of the spheres 
in the packing, we were only able to guarantee 
true replication (number of spheres per box scaled 
with number of processors) within one set of runs 
(512-4,096-32,768) and not necessarily between 
the three sets (512-1,024-2,048). However, theo-
retically, the scaling should be very close to rep-
licated data. Figure 4 shows all the data points 
on one plot, with the three official sets of weak 
scaling depicted by shape. A slight dip at N = 
4,096 was likely due to a lower number of irregu-
lar cut cells from refinement of the geometry. We 
observed an increased slope in the weak scaling 
curve at the two highest concurrencies, but over-
all, the time only increased 50 percent from the 
lowest concurrency (512) to the highest (131,072). 
Overall, we saw about 67 percent efficiency from 
43 to 10,923 sockets, which we consider to be 
excellent for a vast range of concurrencies and 
considering the complex flow physics and geom-
etry modeled here. We obtained nearly equivalent 
scaling numbers when we used hypre instead of 
gamg. Furthermore, this benchmark scaling prob-
lem clearly demonstrates that we achieve two to 
three time steps per minute when using a domain 
decomposition and load balancing sweet spot of 
323 patches per core. From experience, we find 
that one time step per minute is satisfactory for 
large-scale computations of fluid dynamics in 
very complex geometries.

The simulation data in Figure 5 demonstrates 
the flow and reactive transport capability at high 
resolution (<5 mm). The three flow components 
demonstrate tortuosity in the packed cylinder, with 
hot colors indicating fast flow paths and cold colors 
slow flow paths or even recirculation. The reactive 
component (calcium released in the dissolution of 
calcite) reveals that rates are a function of flow con-
ditions. In zones with slow flow or near stagnant 
conditions, dissolution rates are transport con-
trolled—that is, dissolution is faster than transport 
(mostly by diffusion) of reactants.8

Heterogeneous Image Data
We demonstrated the robustness of the EB-AMG 
algorithm for the simulation of flow in a complex 
pore-scale geometry obtained from image data of 
a flow-through capillary tube experiment packed 
with mineral grains (calcite). The cylinder had a 
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length of 0.71235 cm in z and a diameter of 0.0524 
cm; resolution was 512 × 512 × 6144 (1.19 mm). 
The mean inlet velocity was 0.035 cm/sec. 

The top of Figure 6 shows the discrete EB 
representation of crushed calcite packed in a cyl-
inder with two magnifications below; the middle 
panel is the steady-state velocity field, and the 

bottom  panel is a transient snapshot of a passive 
scalar being advected and diffused in the do-
main. We ran these simulations on 49,152 pro-
cessor cores at NERSC. In terms of performance 
for this problem, the code averaged one time step 
per minute, which we found to be an adequate 
benchmark for achieving validatable scientific 
results.20

C hombo-Crunch is an efficient and scalable 
framework for direct numerical simula-

tion of pore-scale flows and reactive transport 
from experimental image data. It uses a new ap-
proach for solving elliptic partial differential equa-
tions (PDEs) in very complex geometries based 
on AMG and an EB finite-volume method. The 
EB-AMG approach integrated into the Chombo-
Crunch code framework can facilitate modeling 
pore-scale flow and transport in geometries ob-
tained from image data of heterogeneous media, as 
in the geologic subsurface or energy materials. The 
advantage of AMG is evident for a range of geom-
etries, from a thin single pore throat to the more 
complex pore space derived from  experiments. 
Scaling results show not only converged solutions 
over previous GMG results, which didn’t converge 
in some cases, but also improved performance at 
higher concurrencies.5 A more appropriate load-
balancing algorithm that includes hyperbolic 
solver performance in addition to elliptic will po-
tentially improve the parallel speedup for scaling 
tests. We also plan on investigating further some 
of the dips in the weak scaling plot, as well as per-
forming a comparison of the gamg solver with an 
AMG solver in hypre.

Predictive simulation of the flow field at un-
precedented resolution serves as a basis for simu-
lating reactive transport processes associated with 
carbon sequestration.2,20 This new capability is use-
ful for future reactive transport studies regarding 
the scale dependence of parameters, interactions 
between processes spanning multiple scales, and 
distillation of apparent physical laws from fine-
scale simulations. It can also be used to investigate 
diffusion control of chemical reaction rates at sol-
id-fluid interfaces. 
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Figure 4. Weak scaling test results, with average time spent per time step in 
seconds. Three sets of weak scaling datasets—512-4,096-32,768 squares, 
1,024-8,192-65,536 triangles, and 2,048-16,384-131,072 circles—are 
shown in a single plot due to replication of the domain while maintaining one 
323 box of cells per core.

Figure 5. Flow and reactive transport in a packed cylinder. From top left, 
counterclockwise, (a–c) three components of velocity in a 2-cm long cylinder 
packed with 3,000 spheres computed on 131,072 processor cores on 
Edison at NERSC. Inflow velocity is 0.01 cm/sec. (d) Transient reactive 
transport in a 1-cm long cylinder packed with 1,500 spheres run on 65,536 
processor cores.
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Figure 6. Flow simulation in a geometry obtained from images of a capillary tube experiment. From top to bottom, 
full computational domain, two magnifications of domain, steady-state velocity, and the nonreactive component at  
3 seconds. Experimental mage data courtesy of J. Ajo-Franklin and L. Yang, Lawrence Berkeley National Laboratory.
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