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Abstract

We consider multigrid methods for symmetric positive definite linear sys-
tems. We develop an algebraic analysis of V-cycle schemes with Galerkin
coarse grid matrices. This analysis is based on the Successive Subspace Cor-
rection convergence theory which we revisit. We reformulate it in a purely
algebraic way, and extend its scope of application to, e.g., algebraic multigrid
methods. This reformulation also yields more accurate bounds. Considering
a model problem, we show that our results can give a satisfactorily sharp
prediction of actual multigrid convergence.

Key words. multigrid, V-cycle, successive subspace correction,
convergence analysis

AMS subject classification. 65F10, 65N55, 65F50

∗Supported by the Belgian FNRS (“Aspirant”)
†Supported by the Belgian FNRS (“Directeur de recherches”)



1 Introduction

We consider multigrid methods for solving symmetric positive definite (SPD) n×n
linear systems

Ax = b. (1.1)

Multigrid methods are based on the recursive use of a two-grid scheme. A basic
two-grid method combines the action of a smoother, often a simple iterative method
such as Gauss-Seidel, and a coarse grid correction, which involves solving a smaller
problem on a coarser grid. A V-cycle multigrid method is obtained when this coarse
problem is solved approximately with 1 iteration of the two-grid scheme on that
level, and so on, until the coarsest level on which an exact solve is performed.
Other cycles may be defined, for instance the W-cycle based on two stationary
iterations at each level, see, e.g., [22].

Multigrid methods have been analyzed in several ways. Optimal convergence
properties (with respect to the number of levels) can be proved via so-called
smoothing and approximation properties, or via the theory of Successive Sub-
space Correction (SSC) methods (using the multilevel splitting of finite element
spaces), see, e.g., [3, 5, 10, 11, 12, 13, 14, 18, 19, 26, 30]. However, bounds derived
in this way do not, in general, give satisfactorily sharp predictions of actual multi-
grid convergence [22, p. 96]. Of course, the latter comment does not apply to the
analysis in [27], which provides a sharp identity. However, to our knowledge, so
far attempts to apply this identity to V-cycle multigrid methods have only lead to
qualitative results.

On the other hand, accurate bounds may be obtained for two-grid methods,
either by means of Fourier analysis [21, 22, 25], or using some appropriate algebraic
tools [6, 8, 9, 16, 20]. In particular, the latter approach may be applied to algebraic
multigrid (AMG) methods. This focus on two-grid schemes is motivated by the
fact that, “if the two-grid method converges sufficiently well, then the multigrid
method with W-cycle will have similar convergence properties” [22, p. 77] (see also
[4, pp. 226–228] and [17]). However, V-cycle multigrid schemes are often preferred
to W-cycle in practice, although, so far, no theoretical result seems sufficiently
sharp to prove their actual potentialities. Moreover, there are known examples
where the two-grid method converges relatively well, whereas the V-cycle multigrid
scheme scales poorly with the number of levels [15]. Hence V-cycle analysis has to
be, to some point, essentially different from two-grid analysis.

In this paper, we develop an algebraic analysis of V-cycle multigrid inspired
from the SSC convergence theory as stated in [26, 30]. Whereas the original for-
mulation seems only applicable to finite elements discretizations resulting from the
refinement of a given coarse problem, our algebraic reformulation is applicable to
any linear system (1.1) solved with a multigrid method satisfying the basic assump-
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tions stated in the next section. Moreover, our approach also results in sharper
bounds. Applied to the model Poisson problem with damped Jacobi smoothing,
we show that the convergence factor is below 0.625 for the multigrid method with
V-cycle, which is not far from the two-grid rate, approximately equal to 0.391 .
To our knowledge, this is the first time that one proves such a sharp estimate for
V-cycle multigrid.

Alternatively, we could have taken inspiration from the theories developed in
[10, 27], which enhance the SSC convergence theory in [26, 30]. However, the
approach followed here seems to us the shortest path to bounds like those obtained
this paper, with self-contained proofs based on matrix algebra.

The reminder of this paper is organized as follows. In Section 2, we state the
general setting of this study and gather the needed assumptions. The theoretical
analysis is developed in Section 3, and is illustrated on an example in Section 4.

Notation

Let I denote the identity matrix and O the zero matrix. When the dimensions are
not obvious from the context, we write more specifically Im for the m×m identity
matrix, and Om×l for the m × l zero matrix.

For any square matrix C , σ(C) is its spectrum and ρ(C) is its spectral radius
(that is, its largest eigenvalue in modulus); ‖C‖ =

√
ρ(CT C) is the usual 2–norm,

‖C‖F =
√∑

i,j C2
ij the Frobenius norm, and ‖C‖A = ‖A1/2CA−1/2‖ is the A–norm

(often referred to as energy norm).

2 General setting

We consider a multigrid method with J + 1 levels (J ≥ 1); index J refers to the
finest level (on which the system (1.1) is to be solved), and index 0 to the coarsest
level. The number of unknowns at level k , 0 ≤ k ≤ J , is denoted by nk (thus
nJ = n).

Our analysis applies to symmetric multigrid schemes based on the Galerkin
principle for the SPD system (1.1); that is, the restriction is the transpose of
the prolongation and the matrix Ak at level k , k = J − 1, . . . , 0 , is given by
Ak = P T

k Ak+1Pk , where Pk is the prolongation from level k to level k + 1 ; we
also assume that the smoother Rk is SPD and that the number of pre-smoothing
steps νk is equal to the number of post-smoothing steps. The algorithm for V-cycle
multigrid is then as follows.

Multigrid with V-cycle at level k: xn+1 = MG(b, Ak, xn, k)
(1) Relax νk times with smoother Rk : x̄n = Smooth(xn, Ak, Rk, νk, b)
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(2) Compute residual: rk = b − Akx̄n

(3) Restrict residual: rk−1 = P T
k−1rk

(4) Coarse grid correction: if k = 1 , e0 = A−1
0 r0

else ek−1 = MG(rk−1, Ak−1, 0, k − 1)
(5) Prolongate coarse grid correction: ˆ̄xn = x̄n + Pk−1ek−1

(6) Relax νk times with smoother Rk : xn+1 = Smooth(ˆ̄xn, Ak, Rk, νk, b)

When applying this algorithm the error satisfies

A−1
k b − xn+1 = E

(k)
MG

(
A−1

k b − xn

)

where the iteration matrix E
(k)
MG is recursively defined from

E
(0)
MG = O and, for k = 1, 2, . . . , J :

E
(k)
MG = (I − R−1

k Ak)
νk

(
I − Pk−1(I − E

(k−1)
MG )A−1

k−1P
T
k−1Ak

)
(I − R−1

k Ak)
νk

(2.1)

(see, e.g., [22, p. 48]). Our main objective is the analysis of the spectral radius of

E
(J)
MG , which governs the convergence on the finest level. Our analysis makes uses

of the following general assumptions.

General assumptions
• n = nJ > nJ−1 > · · · > n0 ;

• Pk is an nk+1 × nk matrix of rank nk , k = J − 1, . . . , 0 ;

• AJ = A and Ak = P T
k Ak+1Pk , k = J − 1, . . . , 0 ;

• Rk is SPD and such that ρ(I − R−1
k Ak) < 1 , k = J, . . . , 1 .

Note also that most of our results do not refer explicitly to Rk , but are stated
with respect to the matrices Mk defined from

I − M−1
k Ak = (I − R−1

k Ak)
νk . (2.2)

That is, Mk is the smoother which provides in 1 step the same effect as νk steps
with Rk . The results stated with respect to Mk may then be seen as results stated
for the case of 1 pre- and 1 post-smoothing steps, which can be extended to the
general case via the relations (2.2).

We also define

ω = max

(
1 , max

1≤k≤J
max

wk∈R
nk

wT
k Akwk

wT
k M

(ν)
k wk

)
, (2.3)

ω1 = max

(
1 , max

1≤k≤J
max

wk∈R
n

k

wT
k Akwk

wT
k Rkwk

)
. (2.4)
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Our assumption ρ
(
I − R−1

k Ak

)
< 1 implies that ω, ω1 < 2.

Another useful definition is

P̌J = I

P̌k = P̌k+1 Pk , k = J − 1, . . . , 0 ,
(2.5)

which can be viewed as prolongation matrices from level k to the finest level.

3 Theoretical results

Our main result is stated in Theorem 3.1 below. This result is inspired by Theo-
rem 4.4 and Lemma 4.6 in [26], and Theorem 5.1 in [30]. Our, approach, however,
is purely algebraic. The general lines of the proof follow the general lines of the
original proofs in [26, 30], but the technical developments needed in between the
major substeps are significantly different.

Theorem 3.1 contains some degrees of freedom, namely the matrices Gk , k =
J − 1, . . . , 0 , which may be seen as pseudo restriction since Gk has the size of P T

k .
One may freely choose these matrices so as to minimize the bound on the spectral
radius. Two concrete choices for Gk are discussed later in this section. Similarly
to (2.5), we also define

ǦJ = I

Ǧk = Gk Ǧk+1 , k = J − 1, . . . , 0 .
(3.1)

Theorem 3.1 Let E
(J)
MG be defined by (2.1) with Pk , k = 0, . . . , J − 1 , Ak ,

k = 0, . . . , J , and Rk , k = 1, . . . , J satisfying the general assumptions stated
in Section 2. For k = 1, . . . , J , let Mk be defined by (2.2), and set M0 = A0 .

Let Gk , k = 0, . . . , J − 1 , be nk × nk+1 matrices, and, for k = 0, . . . , J , let P̌k

and Ǧk be defined by, respectively, (2.5) and (3.1). Set P−1 = G−1 = On0×n0
.

Let

K = max
v∈Rn

∑J
k=0 vT ǦT

k (I − Pk−1Gk−1)
T Mk(I − Pk−1Gk−1)Ǧkv

vT Av
, (3.2)

Γ =




0 γ01 · · · γ0J

0 · · · γ1J

. . .
...

0 γ(J−1)J

0




, (3.3)
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where, for k = 0, . . . , J − 1 and l = k + 1, . . . , J ,

γkl = max
wk∈R

nk

max
v∈Rn

vT ǦT
l (I − Pl−1Gl−1)

T P̌ T
l AP̌kwk

(wT
k Mkwk)1/2(vT ǦT

l (I − Pl−1Gl−1)T Ml(I − Pl−1Gl−1)Ǧlv)1/2
.

(3.4)

Then,

ρ(E
(J)
MG) ≤ 1 − 2 − ω

K(1 + ‖Γ‖)2
(3.5)

where ω is defined by (2.3). Moreover,

‖Γ‖ ≤ ω√
2

√
J(J + 1) . (3.6)

Proof. We first gather some useful notation:

Qk = (I − Pk−1Gk−1)Ǧk , k = 0, . . . , J , (3.7)

Tk = P̌k(Mk)
−1P̌ T

k A , k = 0, . . . , J , (3.8)

Fk = (I − Tk)(I − Tk−1) · · · (I − T1)(I − T0) , k = 0, . . . , J . (3.9)

In addition we set F−1 = I .
Following an idea in [24, Proposition 5.1.1], we note that

I − P̌k(Ink
− E

(k)
MG)A−1

k P̌
T
k A

= I − P̌k

(
Ink

− (Ink
− M

−1
k Ak)(Ink

− Pk−1(Ink−1
− E

(k−1)
MG )A−1

k−1Pk−1Ak)(Ink
− M

−1
k Ak)

)
A

−1
k P̌

T
k A

= I − P̌kM
−1
k (2Mk − Ak)M

−1
k P̌

T
k − (I − P̌kM

−1
k P̌

T
k A)P̌k−1(Ink−1

− E
(k−1)
MG )A−1

k−1P̌
T
k−1A(I − P̌kM

−1
k P̌

T
k A)

= (I − Tk)(I − P̌k−1(Ink−1
− E

(k−1)
MG )A−1

k−1P̌
T
k−1A)(I − Tk) .

Since E
(J)
MG = I − P̌J(I − E

(J)
MG)A−1P̌ T

J A (because P̌J = I), applying recursively

this identity yields (using E
(0)
MG = O and M0 = A0)

E
(J)
MG = (I − TJ)(I − TJ−1) . . . (I − T1)(I − T0)(I − T1) . . . (I − TJ−1)(I − TJ) .

Further, since A−1(I − Tk)
T = (I − Tk)A

−1 and (I − T0)
2 = I − T0 , one has

E
(J)
MG = FJA−1F T

J A , showing that

ρ(E
(J)
MG) = ρ(A1/2E

(J)
MGA−1/2) = ρ(A1/2FJA−1F T

J A1/2) = ‖FJ‖2
A = max

v∈R
n

‖FJv‖2
A

vT Av
.

Using this relation, we first show that (3.5) holds if

vT Av ≤ K (1 + ‖Γ‖)2

(
J∑

l=0

vTF T
l−1ATlFl−1v

)
∀v ∈ Rn . (3.10)

6



Indeed, since ATk = T T
k A , one has, ∀v ∈ Rn ,

||Fk−1v||2A − ||Fkv||2A = (Fk−1v)TAFk−1v − (Fk−1v)T (I − Tk)
T A(I − Tk)Fk−1v

= 2vTF T
k−1ATkFk−1v − (Fk−1v)TT T

k ATk(Fk−1v)

= 2vTF T
k−1ATkFk−1v − (Fk−1v)TAP̌kM

−1
k P̌ T

k AP̌kM
−1
k P̌ T

k A(Fk−1v)

= 2vTF T
k−1ATkFk−1v − (Fk−1v)TAP̌kM

−1
k AkM

−1
k P̌ T

k A(Fk−1v)

≥ 2vT F T
k−1ATkFk−1v − ω (Fk−1v)T AP̌kM

−1
k P̌ T

k A(Fk−1v)

= (2 − ω) vT F T
k−1ATkFk−1v .

Summing both sides for k = 0, . . . , J shows that, ∀v ∈ Rn ,

‖v‖2
A − ‖FJv‖2

A ≥ (2 − ω)

(
J∑

l=0

vT F T
l−1ATlFl−1v

)
,

and it is straightforward to check that this relation, together with (3.10), implies
(3.5), so that we are left with the proof of (3.10).

Now, observe that

J∑

l=0

P̌lQl =
J∑

l=0

P̌l(I−Pl−1Gl−1)Ǧl =
J∑

l=0

(
P̌lǦl − P̌l−1Ǧl−1

)
= P̌JǦJ−P̌−1Ǧ−1 = I .

For any v ∈ Rn , one may then decompose vT Av as the sum of two terms (remem-
bering that F−1 = I):

vT Av =

J∑

l=0

vT AP̌lQlv =

J∑

l=0

vT F T
l−1AP̌lQlv +

J∑

l=1

vT (I−F T
l−1)AP̌lQlv . (3.11)

In order to prove (3.10), we bound separately the two terms in the right hand side
of (3.11).

Regarding the first term, one has

J∑

l=0

vT F T
l−1AP̌lQlv ≤

J∑

l=0

(vT F T
l−1AP̌lM

−1
l P̌ T

l AFl−1v)1/2(vT QT
l MlQlv)1/2

≤
(

J∑

l=0

vT F T
l−1ATlFl−1v

)1/2( J∑

l=0

vT QT
l MlQlv

)1/2

(3.12)

To estimate the second term, first observe that

I − Fl−1 = I − (I − Tl−1)Fl−2 = (I − Fl−2) + Tl−1Fl−2 = · · · =
l−1∑

k=0

TkFk−1 .
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Therefore,

J∑

l=1

vT (I − F T
l−1)AP̌lQlv =

J∑

l=1

l−1∑

k=0

vT F T
k−1T

T
k AP̌lQlv ,

whereas, for any 0 ≤ k < l ≤ J , using (3.4) with wk = M−1
k P̌ T

k AFk−1v ,

vT F T
k−1T

T
k AP̌lQlv = (vT F T

k−1AP̌kM
−1
k )P̌ T

k AP̌lQlv

≤ γkl(v
TQT

l MlQlv)1/2(vT F T
k−1AP̌kM

−1
k P̌ T

k AFk−1v)1/2

= γkl(v
T QT

l MlQlv)1/2(vT F T
k−1ATkFk−1v)1/2

Hence, since ‖Γ‖ = maxy
‖Γy‖
‖y‖

= maxx,y
xT Γy
‖x‖ ‖y‖

,

J∑

l=1

vT (I − F T
l−1)AP̌lQlv ≤

J∑

l=1

l−1∑

k=0

γkl(v
TQT

l MlQlv)1/2(vT F T
k−1ATkFk−1v)1/2

≤ ‖Γ‖
(

J∑

l=0

vTQT
l MlQlv

)1/2( J∑

k=0

vT F T
k−1ATkFk−1v

)1/2

Combining this latter result with (3.12), one gets

vT Av ≤ (1 + ‖Γ‖)
(

J∑

l=0

vT QT
l MlQlv

)1/2 ( J∑

l=0

vTF T
l−1ATlFl−1v

)1/2

.

Taking the square of both sides, and using (3.2) (which amounts to
∑J

l=0 vT QT
l MlQlv ≤

K vT Av) straightforwardly leads to (3.10), which completes the proof of (3.5).

To prove (3.6), note that ‖Γ‖ ≤ ‖Γ‖F =
(∑J

l=1

∑l−1
k=0 γ2

kl

)1/2

. Further, for any

0 ≤ k < l ≤ J and for any w ∈ Rn and wk ∈ Rnk ,

wT QT
l P̌ T

l AP̌kwk ≤ (wTQT
l P̌ T

l AP̌lQlw)1/2(wT
k P̌ T

k AP̌kwk)
1/2

= (wTQT
l AlQlw)1/2(wT

k Akwk)
1/2

≤ ω (wT QT
l MlQlw)1/2 (wT

k Mkwk)
1/2 ,

showing that γkl ≤ ω . The required result straightforwardly follows.

Note that (3.5) combined with (3.6) exhibits dependence on the number of
levels. However, as shown in Theorem 3.4 below, there are choices of the pseudo
restrictions Gk for which a further analysis of ‖Γ‖ is possible, opening the way to
bounds that are optimal with respect to the number of levels.

Now, before discussing how to select Gk in Theorem 3.1, let’s consider the in-
fluence of the number of pre- and post-smoothing steps νk . The following theorem
brings some light in this respect.
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Theorem 3.2 Let the assumptions of Theorem 3.1 hold. Assume, in addition that
νk = ν is the same for k = 1, . . . , J , and such that ν > 1 . Let ω, ω1 be defined by
(2.3), (2.4) respectively. Let R0 = A0 and

K1 = max
v∈Rn

∑J
k=0 vT ǦT

k (I − Pk−1Gk−1)
T Rk(I − Pk−1Gk−1)Ǧkv

vT Av
. (3.13)

Then,

ω ≤ ω̃ , (3.14)

K ≤ α−1 K1 , (3.15)

where K is defined as in Theorem 3.1, and where

ω̃ =

{
1 if ν is even

1 + (ω1 − 1)ν otherwise ,
(3.16)

α =

{
1−(ω1−1)ν

ω1
if ν is even

1
ω1

otherwise .
(3.17)

Moreover,

ρ(E
(J)
MG) ≤ 1 − 1 − (ω1 − 1)ν

ω1 K1(1 + ‖Γ‖)2
≤ 1 − 2 − ω1

K1(1 + ‖Γ‖)2
, (3.18)

Proof. One has ω = max
(
1 , maxk λmax(M

−1
k Ak)

)
(where λmax(·) denotes the

largest eigenvalue) with

λmax(M
−1
k Ak) = λmax

(
I − (I − R−1

k Ak)
ν
)

= max
λ∈σ(R−1

k
Ak)

1 − (1 − λ)ν .

From there, it is readily seen that ω̃ defined by (3.16) is an upper bound on ω .
On the other hand, K ≤ α−1K1 holds if, for 1 ≤ k ≤ J ,

vT Mkv ≤ α−1 vT Rkv ∀v ∈ Rnk ,

and the latter relation is true if and only if, ∀λ ∈ σ(R−1
k Ak) ,

1 − (1 − λ)ν ≥ α λ . (3.19)

This relation holds for α = 1 when λ ≤ 1 (since then 1−λ ≥ (1−λ)ν). When ν is
even, (1 − (λ − 1)ν) /λ is a decreasing function of λ for 1 < λ ≤ ω1 < 2 , thus not
smaller than (1 − (ω1 − 1)ν) /ω1 . On the other hand, when λ > 1 and ν is odd,

9



(3.19) holds for α = 1/ω1 since 1 + (λ − 1)ν ≥ 1 ≥ λ/ω1 . The conclusion follows

because, for ν > 1 , 1−(ω1−1)ν

ω1
≥ 1−(ω1−1)2

ω1
= 2 − ω1 .

The bound (3.18) improves when the number of smoothing steps increases.
However, the improvement is slight, and there is no improvement if ν = 2 or
ω1 = 1 . Therefore Theorem 3.2 essentially shows that the estimates derived for
the case ν = 1 may serve as worst case estimate for the general case, but does
not allow to really assess the effect of an increase of the number of smoothing
steps. In the next section, we show on an example that this effect is better seen
by computing directly the constant K with Mk defined from (2.2).

Analysis in generalized hierarchical basis

Our analysis holds for any Gk of appropriate dimensions. However, looking at the
numerators of (3.2), (3.13), there is some advantage in setting Gk in such a way
that PkGk is a projector: then, each term of the sum involves Mk restricted to a
particular subspace. Note that PkGk is a projector when GkPk = Ink

.
Now, often Pk has the form

Pk =

(
Jk

Ink

)
(3.20)

where Jk is a (nk+1 − nk) × nk “interpolation” matrix. Then, an obvious choice
for Gk is

Gk =
(

Onk×(nk+1−nk) Ink

)
, (3.21)

which further gives
Ǧk =

(
Onk×(n−nk) Ink

)
.

With this form of Pk and this choice of Gk , it is interesting to introduce the
(generalized) hierarchical basis associated to the transformation

Sk =

(
Ink+1−nk

Jk

Ink

)
. (3.22)

For finite element problems with regular refinement, and assuming that Jk in (3.20)
is the standard interpolation matrix, this corresponds to the usual transformation
that brings a vector defined in the hierarchical basis at level k+1 to the nodal basis.
When there are more than two levels, a global basis transformation is obtained
with

Šk = Sk

(
Ink+1−nk

Šk−1

)
, k = 1, . . . , J − 1 . (3.23)
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Outside the finite element context, (3.22) defines a generalized hierarchical basis
transformation as introduced in [7], and (3.23) may be seen as the proper multilevel
extension of this concept.

The matrix A in (generalized) hierarchical basis is

Â = ŠT
J−1AŠJ−1 , (3.24)

and we would like to analyze the constant K in this basis; that is, to analyze

K = max
v∈Rn

(∑J
k=0 vT ŠT

J−1Ǧ
T
k (I − Pk−1Gk−1)

T Mk(I − Pk−1Gk−1)ǦkŠJ−1v
)

vT Âv
.

In this view, we first observe that Gk is unchanged under hierarchical basis trans-
formation:

Š−1
k−1GkŠk = Š−1

k−1

(
Onk×(nk+1−nk) Ink

)( Ink+1−nk

Šk−1

)

=
(

Onk×(nk+1−nk) Ink

)
.

Therefore,

Š−1
k−1ǦkŠJ−1 = Š−1

k−1GkŠkŠ
−1
k Gk+1Šk+1 · · · Š−1

J−2GJ−1ŠJ−1 = GkGk+1 · · ·GJ−1 = Ǧk

and

(I−Pk−1Gk−1)ǦkŠJ−1

= (I − Pk−1Gk−1)Šk−1Ǧk

=

(
Ink−nk−1

−Jk−1

Onk−1×nk−1

)(
Ink−nk−1

Jk

Ink−1

)(
Ink−nk−1

Šk−2

)
Ǧk

=

(
Ink−nk−1

Onk−1×nk−1

)(
O(nk−nk−1)×(n−nk) Ink−nk−1

Onk−1×(n−nk) Šk−2

)

=

(
O(nk−nk−1)×(n−nk) Ink−nk−1

Onk−1×(n−nk) Onk−1×nk−1

)
. (3.25)

Here, it is interesting to note that, for k = 1, . . . , J , the prolongation Pk−1

of the form (3.20) induces a partitioning of unknowns at level k into “fine grid
unknowns” (the first block of size nk − nk−1) and “coarse grid unknowns” (the
remaining block of size nk−1). Accordingly, Mk and Rk may be partitioned in 2×2
block form

Mk =

(
M

(FF )
k M

(FC)
k

M
(CF )
k M

(CC)
k

)
, Rk =

(
R

(FF )
k R

(FC)
k

R
(CF )
k R

(CC)
k

)
, (3.26)
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and we may define the n × n block diagonal matrices which concatenate the top
left block of these matrices:

DM =




M
(FF )
J

. . .

M
(FF )
1

A0


 , DR =




R
(FF )
J

. . .

R
(FF )
1

A0


 .

(3.27)
With (3.25), it is straightforward to check the following theorem.

Theorem 3.3 Let the assumptions of Theorem 3.1 hold. Assume in addition that
Pk , k = 0, . . . , J − 1 , has the form (3.20) and let Gk , k = 0, . . . , J − 1 , be defined
by (3.21). Let Â be defined by (3.24), where ŠJ−1 is defined from (3.22), (3.23),
and let DM , DR be defined by (3.26), (3.27).

Then:

K = max
v∈Rn

vT DMv

vT Âv
, K1 = max

v∈Rn

vT DRv

vT Âv
(3.28)

where K and K1 are defined by, respectively, (3.2) and (3.13).

Several works address the conditioning of finite element matrices in the hi-
erarchical basis, sometimes with respect to some well-conditioned block diagonal
matrix [1, 2, 28, 29]. The main goal is a proof that the so-called hierarchical basis
multigrid method has near optimal convergence. In this latter method, only fine
grid unknowns are relaxed during smoothing steps, which makes the connection
with the conditioning in hierarchical basis straightforward [23]. With Theorem 3.3,
one sees that the good conditioning of the matrix in the hierarchical basis also
proves the near optimality of standard multigrid methods. This extends to more
than two levels one of the conclusions in [16]: when the fast convergence of the
hierarchical basis multigrid method can be proved, standard multigrid methods
also converge fast, so that the former cannot have, from a theoretical viewpoint,
a decisive advantage over the latter.

A-orthogonal projection

A more powerful and more general choice than (3.21) is obtained with

Gk = A−1
k P T

k Ak+1 . (3.29)

With this choice, PkGk is a Ak+1–orthogonal projector: Ak+1PkGk = (PkGk)
T Ak+1 .

One has also
Ǧk = A−1

k P̌ T
k A , (3.30)

and P̌kǦk is a A–orthogonal projector.
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Theorem 3.4 Let the assumptions of Theorem 3.1 hold, and let Gk , k = 0, . . . , J−
1 , be defined by (3.29). Then, K , Γ , defined as in Theorem 3.1, and K1 , defined
as in Theorem 3.2, satisfy

K = max

(
1 , max

1≤k≤J
max

wk∈R
nk

wT
k (I − πAk

)T Mk(I − πAk
)wk

wT
k (I − πAk

)T Ak(I − πAk
)wk

)
(3.31)

= max

(
1 , max

1≤k≤J
max

wk∈R
n

k

wT
k (I − πAk

)T Mk(I − πAk
)wk

wT
k Akwk

)
, (3.32)

K1 = max

(
1 , max

1≤k≤J
max

wk∈R
n

k

wT
k (I − πAk

)T Rk(I − πAk
)wk

wT
k (I − πAk

)T Ak(I − πAk
)wk

)
(3.33)

= max

(
1 , max

1≤k≤J
max

wk∈R
nk

wT
k (I − πAk

)T Rk(I − πAk
)wk

wT
k Akwk

)
, (3.34)

Γ = 0 , (3.35)

where
πAk

= Pk−1Gk−1 = Pk−1A
−1
k−1P

T
k−1Ak . (3.36)

Proof. We first prove (3.35). Using (3.30), one has, for any 0 ≤ k < l ≤ J and
all wk ∈ Rnk , v ∈ Rn ,

wT
k P̌ T

k AP̌l(I − Pl−1Gl−1)Ǧlv = wT
k P̌ T

k AP̌lA
−1
l P̌ T

l Av − wT
k P̌ T

k AP̌l−1A
−1
l−1P̌

T
l−1Av

= wT
k P T

k · · ·P T
l−1

(
P̌ T

l AP̌lA
−1
l

)
P̌ T

l Av

− wT
k P T

k · · ·P T
l−2

(
P̌ T

l−1AP̌l−1A
−1
l−1

)
P̌ T

l−1Av

= wT
k P T

k · · ·P T
l−1P̌

T
l Av − wT

k P T
k · · ·P T

l−2P̌
T
l−1Av

= wT
k P̌ T

k Av − wT
k P̌ T

k Av

= 0 ;

γkl = 0 and therefore Γ = 0 readily follows.
We next prove (3.31), (3.32). The proof of (3.33), (3.34) is similar and will be

omitted. We first show that

J∑

k=0

ǦT
k (I − Pk−1Gk−1)

T Ak(I − Pk−1Gk−1)Ǧk = A . (3.37)

Indeed, using (3.30), one has, for k = 1, . . . , J :

ǦT
k (I − πAk

)T Ak(I − πAk
)Ǧk

= (A−1
k P̌ T

k A − Pk−1A
−1
k−1P̌

T
k−1A)T Ak(A

−1
k P̌ T

k A − Pk−1A
−1
k−1P̌

T
k−1A)

= A(P̌kA
−1
k − P̌k−1A

−1
k−1Pk−1)(P̌

T
k − AkPk−1A

−1
k−1P̌

T
k−1)A

= A(P̌kA
−1
k P̌ T

k − P̌k−1A
−1
k−1P̌

T
k−1)A ,

13



hence

J∑

k=0

ǦT
k (I − Pk−1Gk−1)

T Ak(I − Pk−1Gk−1)Ǧk

=

J∑

k=1

A(P̌kA
−1
k P̌ T

k − P̌k−1A
−1
k−1P̌

T
k−1)A + ǦT

0 A0Ǧ0

= A

(
J∑

k=1

(
P̌kA

−1
k P̌ T

k − P̌k−1A
−1
k−1P̌

T
k−1

)
+ P̌0A

−1
0 P̌ T

0

)
A

= A .

Then,

K = max
v∈Rn

∑J
k=0 vT ǦT

k (I − Pk−1Gk−1)
T Mk(I − Pk−1Gk−1)Ǧkv∑J

k=0 vT ǦT
k (I − Pk−1Gk−1)T Ak(I − Pk−1Gk−1)Ǧkv

(3.38)

= max
v∈Rn

∑J
k=1 vT ǦT

k (I − πAk
)T Mk(I − πAk

)Ǧkv + vT ǦT
0 A0Ǧ0v∑J

k=1 vT ǦT
k (I − πAk

)T Ak(I − πAk
)Ǧkv + vT ǦT

0 A0Ǧ0v

≤ max

(
1 , max

1≤k≤J
max

wk∈R
nk

wT
k (I − πAk

)T Mk(I − πAk
)wk

wT
k (I − πAk

)T Ak(I − πAk
)wk

)
.

This proves that the right hand side of (3.31) is an upper bound on K ; the right
hand side of (3.32) is a further upper bound since

max
wk∈R

nk

wT
k (I − πAk

)T Rk(I − πAk
)wk

wT
k Akwk

≥ max
vk∈R

nk

vT
k (I − πAk

)T Rk(I − πAk
)vk

vT
k (I − πAk

)T Ak(I − πAk
)vk

,

as seen by restricting the maximum in the left hand side to wk = (I − πAk
)vk

(taking into account that (I − πAk
)2 = (I − πAk

)).
To prove that the right hand sides of (3.31), (3.32) are also a lower bound on

K , let, for k = 0, . . . , J , Qk = (I − Pk−1Gk−1)Ǧk , then rewrite (3.38) as

K = max
v∈Rn

∑J
k=0 vT QT

k MkQkv∑J
k=0 vT QT

k AkQkv
(3.39)

Since GkPk = Ink
for k = 0, . . . , J − 1 , Lemma A.1 in appendix proves that, for

0 ≤ l, k ≤ J with k 6= l ,

QlP̌lQl = Ql and QkP̌lQl = Onk×n .

14



Restricting the maximum in (3.39) to v = P̌lQlw for some 0 ≤ l ≤ J yields

K ≥ max
w∈Rn

wT QT
l MlQlw

wTQT
l AlQlw

= max
w∈Rn

wT ǦT
l (I − Pl−1Gl−1)

T Ml(I − Pl−1Gl−1)Ǧlw

wT ǦT
l (I − Pl−1Gl−1)T Al(I − Pl−1Gl−1)Ǧlw

= max
wl∈R

nl

wT
l (I − Pl−1Gl−1)

T Ml(I − Pl−1Gl−1)wl

wT
l (I − Pl−1Gl−1)T Al(I − Pl−1Gl−1)wl

,

the last equality stemming from the fact that Ǧl has full rank (from (3.30), and
because P̌k has full rank by virtue of our general assumptions). The conclusion
follows because

wT
l (I − Pl−1Gl−1)

T Al(I − Pl−1Gl−1)wl = wT
l (I − πAl

)T Al(I − πAl
)wl

= wT
l (Al − AlPl−1A

−1
l−1P

T
l−1Al)wl

≤ wT
l Alwl .

Comparison with the original SSC theory

Theorem 3.1 resembles its counterparts in [26, 30]. However, a further comparative
discussion is difficult because the way we exploit this result via Theorems 3.3 and
3.4 is different in spirit from the way the analysis is conducted in [26, 30].

In [26, 30], the focus is on the proof that K = O(1) for a class of finite
element problems. No attempt is made to derive expressions that could be assessed
in concrete examples, despite some similarities between the choice (3.29) for Gk

and the so-called a–orthogonal subspace decomposition used in [30]. Moreover,
the constant which plays the role of ‖Γ‖ in our analysis is also not analyzed as
accurately. In [26], it is just stated that this constant does not exceed ωJ , which
is less sharp than (3.6). In [30], it is indeed observed that γkl = 0 for k < l when
using the a–orthogonal subspace decomposition, but the constant appearing in the
bound also involves γkl for k = l , and the reader is left with the argument that
this constant is O(1) , without further comments.

On the other hand, with our algebraic approach, the way towards a (near)
optimal bound on the convergence factor can also be straightforward. Regarding
Theorem 3.3, this is discussed above in connection with the conditioning in the
hierarchical basis. On the other hand, K as given in Theorem 3.4 is the maximum
over all levels of an expression which involves only two subsequent levels. Any anal-
ysis proving a bound for this expression that is independent of the grid size shows
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therefore ρ(E
(J)
MG) ≤ 1− (2−ω)/K = O(1) . However, our approach is not limited

to qualitative results. We first develop an accurate analysis of ‖Γ‖ , given either by
the general bound (3.6), or by the particular result in Theorem 3.4. Furthermore,
as illustrated in the next section, K as given in Theorem 3.4 may be numerically
and/or analytically assessed in concrete examples, yielding a satisfactorily sharp
prediction of actual multigrid convergence.

V-cycle versus two-grid convergence analysis

One may observe some similarities between the bound resulting from Theorems 3.1
and 3.4 and the two-grid convergence estimates derived in [8, 9]. The results in [8]
involve a freely chosen projector Q onto the range of P (this freedom is somehow
comparable to that of choosing Gk in Theorem 3.1). Now, for two levels (J = 1),
our analysis re-gives the bound obtained by combining Theorem 2.2 and Lemma 2.3
in [8], for the special case Q = πA. For this case we therefore prove that the bound
on the two-grid convergence rate also applies to V-cycle multigrid.

However, there are multigrid methods which scale poorly with V-cycle but
have nice convergence properties when only two levels are used. This, in particular,
holds for (non-smoothed) aggregation-based multigrid methods [15]. In such cases,
the analysis of the constant K in Theorem 3.4 has to reveal a dependence with
the problem size. On the other hand, as shown in [9], there are choices of the
projector Q for which the analysis in [8] is sharp and therefore has to show the
grid-independent convergence of the two-grid variant. Hence there are subtle but
essential differences between our results and the two-grid convergence results in
[8, 9]. A further analysis should then help to understand the conditions under
which an optimal two-grid method remains optimal when used recursively in a V-
cycle scheme – a question unanswered so far. Its discussion lies, however, outside
the scope of the present paper.

4 Example

We consider the linear system resulting from the bilinear finite element discretiza-
tion of

−∆ u = f in Ω = (0, 1) × (0, 1)

u = 0 in ∂Ω
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on a uniform grid of mesh size h = 1/NJ in both directions. This leads to the
following nine point stencil




−1 −1 −1
−1 8 −1
−1 −1 −1


 , (4.1)

which also corresponds, up to some scaling factor, to the 9-point finite difference
discretization.

We assume NJ = 2JN0 for some integer N0 , allowing J steps of regular ge-
ometric coarsening. We consider prolongations of the form (3.20), where Jk is
the standard interpolation associated with bilinear finite element basis functions.
The restriction P T

k corresponds then to “full weighting”, as defined in, e.g. [22] 1.
With these choices, the stencil (4.1) is preserved throughout all grids (up to some
unimportant scaling factor), and K as given in Theorem 3.4 may be assessed by
analyzing

max
wk

wT
k (I − πAk

)T Mk(I − πAk
)wk

wkAkwk
(4.2)

for a matrix Ak corresponding to stencil (4.1) applied on a grid with mesh size hk =
1/Nk . Considering two successive grids is therefore sufficient, and, to alleviate
notation, we let N = Nk , A = Ak , M = Mk , P = Pk−1 , Ac = Ak−1 = P T AP and
πA = πAk

= PA−1
c P T A .

To assess (4.2), we resort to Fourier analysis. The eigenvectors of A are, for
m, l = 1, . . . , N − 1 , the functions

u
(N)
m,l = sin(mπx) sin(lπy)

evaluated at the grid points. The eigenvalue corresponding to u
(N)
m,l is

λ
(N)
m,l = 4(3sm + 3sl − 4smsl) (4.3)

where
sm = sin2(mπ/2N) , sl = sin2(lπ/2N) . (4.4)

The prolongation P satisfies (see, e.g., [22, p. 87])

P T





u
(N)
m,l

u
(N)
N−m,N−l

−u
(N)
N−m,l

−u
(N)
m,N−l





= 4





(1 − sm)(1 − sl)
smsl

sm(1 − sl)
(1 − sm)sl





u
(N/2)
m,l

1up to some scaling factor; the scalings of the prolongation and restriction are unimportant
when using coarse grid matrices of the Galerkin type.
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for 1 ≤ m, l ≤ N/2 − 1 , with P Tu
(N)
m,l = 0 for m = N/2 or m = N/2 . Expressed

in the Fourier basis (that is, in the basis of eigenvectors of A), I − πA is therefore
block diagonal with, for 1 ≤ m, l ≤ N/2 − 1 , 4 × 4 blocks

(I − πA)m,l = I4 − Pm,l

(
A

(c)
m,l

)−1

P T
m,lAm,l (4.5)

where

P T
m,l = 4

(
(1 − sm)(1 − sl) smsl sm(1 − sl) (1 − sm)sl

)

Am,l = diag
(
λ

(N)
m,l , λ

(N)
N−m,N−l , λ

(N)
m,N−l , λ

(N)
N−m,l

)

A
(c)
m,l = P T

m,lAm,lPm,l = 64
(
3sm(1 − sm) + 3sl(1 − sl) − 16sl(1 − sl)sm(1 − sm)

)
.

For m = N/2 , 1 ≤ l ≤ N/2 − 1 and l = N/2 , 1 ≤ m ≤ N/2− 1 , (I − πA)m,l = I2

is a 2 × 2 identity block, whereas (I − πA)N

2

N

2

= 1 reduces to the scalar identity.

If M in the Fourier basis has the same block diagonal structure, we are left with
the analysis of

ρm,l = ρ
(
(I − πA)T

m,lMm,l(I − πA)m,lA
−1
m,l

)
. (4.6)

Now, we consider more specifically damped Jacobi smoothing with ωJac = 0.5 ;
that is Rk = R = 2diag(A) = 16 I . Then, for any number of pre- and post-
smoothing steps νk = ν , M is diagonal in the Fourier basis, with diagonal entries
depending on the eigenvalues of A ; that is (see (4.3)), depending on sm and sl .To
obtain grid independent bounds, it is then interesting to consider ρm,l = ρ(sm, sl)
(with (I − πA)m,l as in (4.5)) as a function of sm , sl , and let these parameters vary
continuously in [0, 1] , excluding the corner points where sm(1−sm) = sl(1−sl) = 0 ,
which correspond to singularities. For both ν = 1 and ν = 2 , ρ(sm, sl) presents
the following symmetries: ρ(sm, sl) = ρ(sl, sm) = ρ(1−sm, ss) = ρ(sm, 1−sl) =
ρ(1−sm, 1−sl) . Further, numerical investigations reveal that the maximum on the
considered domain is located at the boundary, i.e., corresponds to, e.g., sm = 0 .
Because of the symmetries it is sufficient to analyze this latter case. One may
check that ρ(0, sl) is the largest eigenvalue in modulus of

1

4




slµ1+slµ4

3
0 0 −slµ1+slµ4

3

0 µ2

3−(1−sl)
0 0

0 0 µ3

3−sl

0

−µ1(1−sl)+µ4(1−sl)
3

0 0 (1−sl)µ1+(1−sl)µ4

3


 ,

where {µi}i=1,...,4 are the 4 diagonal entries of Mkl . Thus:

ρ(0, sl) = max

(
µ3

3 − sl
,

µ2

3 − (1 − sl)
,

µ1 + µ4

3

)
.
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For ν = 1 , µi = 16 for all i , hence ρ(0, sl) ≤ 8/3 . Inspecting 2 × 2 blocks and
the 1 × 1 remaining block reveals that 8/3 is also an upper bound on ρm,l when
m = N/2 or l = N/2 . Hence we have

K ≤ 8

3
,

showing that, since ω = 1 for this smoother,

ρ(E
(J)
MG) ≤ 1 − 1

K
≤ 0.625

(‖Γ‖ = 0 because we are in the framework of Theorem 3.4).
We also used Fourier analysis to compute the convergence factor of the corre-

sponding two-grid method, which is σ2 ≈ 0.391 . This is also a lower bound on the
V-cycle convergence factor, and one sees that our upper bound above is not far
from this lower bound. On the other hand, the standard bound on the W-cycle
convergence factor is σ2/(1 − σ2) ≈ 0.642 [17]. This is less favorable than our
bound for the V-cycle. Since the W-cycle convergence factor cannot be worse than
the V-cycle convergence factor, our bound gives also, in this case, a slightly better
estimate for the W-cycle.

For ν = 2 ,
M = R(2R − A)−1R = 256(32I − A)−1 ,

entailing that, for sm = 0 , µ1 = 64/(8 − 3sl) , µ2 = 64/(8 − (2 + sl)) , µ3 =
64/(8 − (3 − sl)) and µ4 = 64/(8 − 3(1 − sl)) . Hence,

ρ(0, sl) = max

[
16

(5 + sl)(3 − sl)
,

16

(6 − sl)(2 + sl)
,

16

3

(
1

8 − 3sl
+

1

5 + 3sl

)]
.

The last term is maximum for sl = 0 or sl = 1 , yielding ρ(0, sl) ≤ 26/15 . Here
again, inspecting 2× 2 blocks and the 1× 1 remaining block reveals that 26/15 is
also an upper bound on ρm,l when m = N/2 or l = N/2 . Hence

K ≤ 26

15
,

showing that,

ρ(E
(J)
MG) ≤ 1 − 1

K
≤ 0.423 .

Theorem 3.2 gives thus only a worst case estimate, whereas computing directly K
with Mk defined from (2.2) allows to prove better convergence factors when the
number of smoothing steps increases.
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Appendix A

Lemma A.1 Let Pk , k = 0, . . . , J − 1 be nk+1 × nk matrices of rank nk with
n = nJ > nJ−1 > · · · > n0 . Let Gk , k = 0, . . . , J − 1 be nk+1 × nk matrices such
that

Gk Pk = Ink
.

Set P−1 = G−1 = On0×n0
and let, for k = 0, . . . , J , P̌k be defined by (2.5), Ǧk be

defined by (3.1), and Qk = (I − Pk−1Gk−1)Ǧk .
There holds, for 0 ≤ l, k ≤ J with k 6= l ,

QkP̌kQk = Qk and QlP̌kQk = Onl×n .

Proof. Note that Gk Pk = Ink
implies ǦkP̌k = Ink

. The first statement follows
then from

(I − Pk−1Gk−1)ǦkP̌k(I − Pk−1Gk−1) = (I − Pk−1Gk−1)(I − Pk−1Gk−1)

= I − Pk−1Gk−1 .

To prove the second statement, we consider two cases. If l > k ,

(I − Pl−1Gl−1)ǦlP̌k = (I − Pl−1Gl−1)Gl · · ·GJ−1PJ−1 · · ·PlPl−1 · · ·Pk

= (I − Pl−1Gl−1)Pl−1 · · ·Pk

= Pl−1(I − Gl−1Pl−1)Pl−2 · · ·Pk

= Onl×nk
,

whereas, if l < k ,

ǦlP̌k(I − Pk−1Gk−1) = Gl · · ·Gk−1Gk · · ·GJ−1PJ−1 · · ·Pk(I − Pk−1Gk−1)

= Gl · · ·Gk−1(I − Pk−1Gk−1)

= Gl · · ·Gk−2(I − Gk−1Pk−1)Gk−1

= Onl×nk
.
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