

An Overview of Berkeley Lab Checkpoint/Restart (BLCR) for Linux Clusters

Paul Hargrove with Jason Duell and Eric Roman http://ftg.lbl.gov/checkpoint

March 18, 2008

CRD

- BLCR is...
 - Berkeley Lab Checkpoint/Restart
 - System-level preemptive checkpointer

BLCR is...

- Linux specific
- Single-node, multi-process
- Extensible for multi-node (e.g. MPI)
- Kernel module + stub library
- x86, x86-64, ppc64 and ARM

CRD Linux checkpoint/restart

Outline

Project goals / motivation

BERKELEY LAP

- System design
- Extension interface
- Current status
- Future work

Uses of Checkpoint/Restart

- Gang scheduling
 - . No queue drain for maintenance, policy change
 - . Higher utilization and/or more flexible scheduling
- Process migration
 - Save job if node failure imminent
 - Pack jobs for optimal network performance
- Periodic backup
 - . Not our main focus
 - . Application can always do more efficiently
 - But may be useful for systems with long jobs, fast I/O, and/or high node failure rates

RD Implementation Strategies

- Application-based checkpointing
 - . Efficient: save only needed data as step completes
 - . Good for fault tolerance: bad for preemption
 - . Requires per-application effort by programmer
- Library-based checkpointing
 - . Portable across operating systems
 - . Transparent to application (but may require relink, etc.)
 - . Can't (generally) restore all resources (ex: process IDs)
 - . Can't checkpoint shell scripts (children, etc.)
- . Kernel-based checkpointing
 - Not portable, and harder to implement
 - . Can save/restore (nearly) all resources

- Target: parallel scientific applications
 - MPI is a must
 - . But allow support for other programs/models, too
 - Esoteric features (ptrace, Unix domain sockets) have lower implementation priority
- Implementation: Linux kernel module
 - . Lower barrier to adoption than kernel patch
 - . Allows upgrades, bug fixes, without reboot
 - No interpose = no added runtime overheads

Design Goals II

- Provide 'toolkit' for distributed C/R
 - . We provide single node checkpoint/restart
 - We don't support distributed operating system features
 - No built-in support for TCP sockets, bproc namespaces, etc.
 - . We provide hooks to allow parallel runtimes/libraries to implement distributed checkpoint/restart
 - So the MPI library needs to know about checkpointing, but user applications don't

- We realized that we couldn't do it all
 - TCP/IP might be possible
 - But would be a terrible restriction on MPIs
 - We could never expect to save/restore state of all high-speed network drivers (InfiniBand, Myrinet, Quadrics, etc.)
 - We could become experts in maybe one MPI implementation, but not all

- Chose to write an *extensible* singlenode checkpointer of most POSIXdefined resources
- Inter-node communication was "somebody else's problem"
 - BLCR provides a callback-based mechanism to extend capabilities
 - MPI is most obvious "somebody"
 - More on this later...

Extension Interface

- Callback functions
 - . Registered at start-up (or as needed)
 - . Run at checkpoint time, then resume at restart/continue
 - . Handle parallel coordination and/or unsupported objects

Two types of callbacks

- . Signal handler context
 - . No thread-safety needed
 - . But callback limited to calling signal-safe functions (small subset of POSIX)
- . Separate thread context
 - . Can call any function
 - . But code needs to be thread-safe
- **Critical sections**
 - . Protect uncheckpointable sections of code

March 18, 2008

Status: BLCR Coverage

- Handle most POSIX-specified resources
- Handle processes, process groups and sessions
 - Single and multi-threaded (pthreads) apps
 - Pipes, sharing and parentage restored
- Still some key exceptions
 - No socket support (TCP/IP, etc.)
 - Terminal I/O not supported (no emacs or vi)
 - SysV IPC not supported

Status: MPI Coverage

- Available today
 - OSU's MVAPICH2 over InfiniBand "gen2"
 - LAM/MPI 7.x over sockets and GM
 - MPICH-V 1.0.x over sockets (MPICH 1.2 ch_p4 derived)
- The future
 - OpenMPI (succeeds LAM/MPI, FT-MPI, LA-MPI & PACX-MPI)
 - IIRC: Hope for 1.3 release
 - MPICH2 over sockets and over GM
 - Some work done by MPICH-V folks and at ANL (status?)
 - Cray over portals (for NERSC procurement)
 - Will support for XT4 + CNL est. Mid '08 (Kramer@SC06)
 - At least one other commercial vendor
 - At least one other academic project

- TORQUE prototype
 - Now in Cluster Resources' SVN repo
 - Expect "ports" to OpenPBS and PBS Pro
 - Also needed for Cray's deliverables to NERSC
- SGE "how to" report (predates sessions)
 - New SGE-work in progress (external)
- Cobalt (ANL)
 - Work to be done within CIFTS funding
- At least one commercial vendor
- I know of no work for RMS or LSF

- Continue to update w/ Linux Kernel
- More integration w/ batch systems
- Continued and improved MPI support
- Additional files support
- Additional POSIX resource support

