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Emerging Programming Paradigms for Large-Scale Scientific Computing 

High performance computing (HPC) systems are experiencing a rapid evolution 
of node architectures as power and cooling constraints limit increases in 
microprocessor clock speeds. In response to this power wall, computer architects 
are dramatically increasing on-chip parallelism to improve overall performance. 
The traditional doubling of clock speeds every 18 to 24 months is being replaced 
by increasing the number of cores for explicit parallelism. During the next 
decade, the level of parallelism on a single microprocessor will rival the number 
of nodes in the most massively parallel supercomputers of the 1980s. By 2020, 
extreme scale HPC systems are anticipated to have on the order of 100,000 to 
1,000,000 sockets, with each socket containing between 100 and 1000 
potentially heterogeneous cores. These enormous levels of concurrency must be 
exploited efficiently to reap the benefits of such exascale systems. 

This explosion of parallelism has two significant challenges from a programming 
perspective. The first is how to best manage all the available resources to ensure 
the most efficient use of the peak performance provided by the hardware 
designs. The other, and equally important, question is how the enormous 
potential of these systems can be effectively utilized by a wide spectrum of 
scientists and engineers who are not necessarily parallel programming experts. 
The problem for application programmers is further compounded by the diversity 
of multicore architectures that are now emerging, ranging from complex out-of-
order CPUs with deep cache hierarchies, to relatively simple cores that support 
hardware multithreading, to chips that require explicit use of software-controlled 
memory. Algorithms must therefore expose parallelism at multiple levels to 
effectively exploit these diverse architectures. 

These changes are forcing the computational community to re-examine 
fundamental approaches in the design of parallel languages and runtime 
systems, as they have a profound effect on the productivity and efficiency of 
application design and execution. This special issue examines several key 
research topics geared towards productively enabling high utilization of next-
generation supercomputing systems. Broadly speaking, researchers have taken 
two paths for leveraging the parallelism provide by modern platforms. The first 
focuses on optimizing parallel programs as aggressively as possible by 
leveraging the knowledge of the underlying architecture; thus quantifying a 
methodology for maximizing system performance. The second path provides the 
tools, libraries, and runtime systems to simplify the complexities of parallel 
programming, without sacrificing performance, thereby allowing domain experts 
to leverage the potential of high-end systems. 

The first four papers in this special issue pursue the strategy of optimizing 
applications to take advantage of the system architecture. The paper by Madduri 
et al. presents an analysis of four modern multi-core architectures in the context 



of gyrokinetic particle-in-cell methods. This paper showcases different 
optimization techniques that can be applied to various computing platforms to 
realize best performance. This case study uses three “traditional” multicore CPU 
designs and one General Purpose GPU (GPGPU) to analyze the performance 
characteristics of a fusion simulation. Thus the difficulty of parallel performance 
optimization is further compounded by the subtle but non-trivial architectural 
differences as well as the irregular memory access patterns and fine-grain 
synchronization requirements of the underlying algorithms. 

Modern architectural designs are also witnessing a paradigm shift towards 
heterogeneous HPC platforms, which now constitute some of the world’s largest 
supercomputers. These systems prove to be extremely challenging optimization 
targets as they contain numerous levels of parallelism (and sometimes different 
programming models at each level) and the need to efficiently orchestrate 
communication and computation among all the available resources. This special 
issue presents three studies that explore detailed code optimization on 
heterogeneous platforms. Two of the papers, one by Xian and Takayuki, and the 
other by Feichtinger et al., analyze the Lattice Boltzmann Method (LBM) as an 
alternative for solving the Navier-Stokes equations for computational fluid 
dynamics (CFD) problems. Applications in the Xian and Takayuki paper were run 
on a multi-node nVIDIA GPGPU cluster using CUDA with MPI via a host server. 
The research group of Feichtinger et al., on the other hand, used a 
heterogeneous cluster consisting of CPUs and GPGPUs with varying node 
configurations. The third study by Kerbyson et al. shows how wave-front 
algorithms can be optimized on the petascale Roadrunner platform that is based 
on the Sony Toshiba IBM (STI) Cell processor. All these algorithms are important 
not only for their wide applicability in computational science but also as case 
studies for other applications with similar memory access characteristics. 

The remaining five papers in this special issue focus more on hiding the afore-
mentioned difficulties and nuances of parallel computing, while allowing 
application domain experts to leverage performance benefits of parallelization 
without resorting to hand optimizing their codes. Two of these articles examine 
the motivations for different parallel programming models and their associated 
runtime environments. They focus on the implementation of efficient 
communication runtimes to deliver high network performance while maintaining 
simple interfaces to their associated libraries. The first work by Jin et al. shows 
how a popular parallel programming paradigm, MPI+OpenMP, can be modified to 
further leverage locality and exploit the hierarchical memory layout of multicore 
architectures. Results demonstrate the viability of this hybrid approach to 
improve load balance and numerical convergence. The authors claim that 
although modern parallel languages are maturing, the traditional MPI+OpenMP 
strategy is still widely used on SMP clusters. The paper by Nishtala et al. 
investigates how to build collective operations, i.e. data movement functions that 
require participation amongst all the nodes involved, across a wide variety of 
modern platforms. The paper points out the need for automatically selecting the 
best communication algorithm, schedule, and topology in order to maximize 



parallel performance. It also analyzes the tradeoffs associated with one- and two-
sided communication mechanisms for the data transfers. 

Lastly, we present three papers that propose higher-level language semantics to 
further abstract the problems of parallel computing. Gay et al. show the benefits 
of a new programming language called Yada. The key feature of Yada is that 
programming is parallel by default with constructs for expressing serialized 
execution. Evaluations of a prototype on a dozen algorithms and applications 
demonstrate good parallel speedup with only a few minor modifications being 
necessary. A study by Plimpton and Devine shows how the popular cloud 
computing paradigm, MapReduce, can be applied to graph algorithms, even 
those that need access to out-of-core data. Their MPI implementation allows 
efficient processing of terabyte-scale datasets on distributed-memory clusters. 
The final investigation by Wilde et al. focuses on improving parallel programming 
productivity by simplifying the process of composing numerous parallel programs 
together. Their parallel scripting language called Swift reduces the complexities 
of data management and application execution in two ways: first by making file 
system structures accessible via language constructs, and second by allowing 
domain-specific codes to be decomposed into parallel scripts.  

Overall, the articles in this special issue provide an excellent overview of the 
different research areas in programming paradigms engaged by the parallel 
computing community. Numerous teams have made significant impact; however, 
the dream of allowing domain experts to quickly and simply express an efficient 
computational program at scale is yet to be realized. We hope that the variety of 
topics presented in these studies will help provide the insights needed by future 
researchers to build and deliver the languages, runtimes, and libraries that attain 
the goal of productive, efficient, and portable programming for tomorrow’s 
exascale systems and beyond. 

 
 

Leonid Oliker 
Computational Research Division / NERSC, 

Lawrence Berkeley National Laboratory, 
Berkeley, CA 94720, USA 

 
Rajesh Nishtala 

Department of Electrical Engineering and Computer Science 
University of California,  

Berkeley, CA 94720, USA 
 

Rupak Biswas 
NAS Division, 

NASA Ames Research Center, 
Moffett Field, CA 94035, USA 

Tel: +1 650 604 4411; fax: +1 650 604 3957 
E-mail address: rupak.biswas@nasa.gov 


