
1

Hardware/Software Co-design of Global Cloud System Resolving
Models

Michael F. Wehner 1, Leonid Oliker 1, John Shalf 1, David Donofrio 1, Leroy A.
Drummond 1,Ross Heikes 3, Shoaib Kamil 1 2, Celal Konor 3, Norman Miller 1, Hiroaki
Miura 4, Marghoob Mohiyuddin 1 2, David Randall 3, Woo-Sun Yang 1

1 CRD/NERSC, Lawrence Berkeley National Laboratory, Berkeley CA, 94720, USA
2 EECS Department, University of California, Berkeley, CA, 94720, USA
3 Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523, USA
4 Center for Climate System Research, University of Tokyo, Kashiwa Chiba 277-8568, Japan

Manuscript submitted 07 04 2011

We present an analysis of the performance aspects of an atmospheric general circulation model at the ultra-high resolution required
to resolve individual cloud systems and describe alternative technological paths to realize the integration of such a model in
the relatively near future. Due to a superlinear scaling of the computational burden dictated by the Courant stability criterion,
the solution of the equations of motion dominate the calculation at these ultra-high resolutions. From this extrapolation, it is
estimated that a credible kilometer scale atmospheric model would require a sustained computational rate of at least 28 Petaflop/s
to provide scientifically useful climate simulations. Our design study portends an alternate strategy for practical power-efficient
implementations of next-generation ultra-scale systems. We demonstrate that hardware/software co-design of low-power embedded
processor technology could be exploited to design a custom machine tailored to ultra-high resolution climate model specifications
at relatively affordable cost and power considerations. A strawman machine design is presented consisting of in excess of 20
million processing elements that effectively exploits forthcoming many-core chips. The system pushes the limits of domain
decomposition to increase explicit parallelism, and suggests that functional partitioning of sub-components of the climate code
(much like the coarse-grained partitioning of computation between the atmospheric, ocean, land, and ice components of current
coupled models) may be necessary for future performance scaling.

To whom correspondence should be addressed.
Michael Wehner, 1 Cyclotron Road, MS: 50F1650, Berkeley, CA 94720
e-mail: MFWehner@lbl.gov

Journal of Advances in Modeling Earth Systems – Discussion

2 Wehner et al.

1. Introduction

As early as the beginning of the 20th century, modeling of the
Earth’s atmosphere was proposed to be possible by an appropri-
ate integration of the fluid equations of motion (Bjerknes 1904).
As the descriptions of atmospheric processes and computer re-
sources advanced, operational numerical weather simulation
eventually followed, as did the development of global atmo-
spheric general circulation models. Advances in the treatment
of the physical processes in the atmosphere continued through
the latter part of the 20th century, accompanied with rapid com-
putational and observational advances allowing long-term sim-
ulation of the climate system. However, systematic errors in
climate modeling persist to this day with one of the most fun-
damental sources for such errors being the description and sim-
ulation of clouds and their interaction with sources of solar and
infrared radiation (Solomon et al. 2007). Current global climate
models used to project the effects of anthropogenic changes
to greenhouse gases and other pollutants cannot resolve in-
dividual clouds or cloud systems due to computational con-
straints on the horizontal resolution. Hence, complex subgrid
scale processes, such as cumulonimbus convection, are param-
eterized rather than directly simulated. The advent of global
cloud system resolving models (GCSRMs) offers the possibil-
ity to break the current deadlock in the predictability of cloud
and precipitating systems by replacing mesoscale cumulus con-
vection parameterizations with direct numerical simulation of
cloud systems (Randall et al. 2003). GCSRMs resolve cloud
systems rather than individual clouds and must then contain
parameterizations of cloud microphysical processes. These mi-
crophysical cloud processes are closer to first principles than
are mesoscale cloud behaviors and offer the possibility of far
more realistic simulation of the entire atmosphere and climate
system. However, the computational requirements of a global
resolution model of near 1 km resolution remain a limiting fac-
tor for current generation supercomputers. A recent National
Research Council study (NRC 2001) states that current com-
puter architectures are insufficient for climate modeling needs,
and a 2009 meeting of the World Meteorological Organiza-
tion (Shukla et al. 2009) has set the goal of a 1 km resolution
climate model as a 10-year goal.

The global climate models used for the 2007 IPCC (Inter-
governmental Panel on Climate Change) 4th assessment re-
port (AR4) ranged in horizontal resolution from about 400km
to about 100km at the equator (Solomon et al. 2007). Sev-
eral modeling groups are currently preparing models as fine as
50km for the 5th assessment report. These production models
must be able to simulate decades to centuries of the climate in
a reasonable amount of time to provide input to these reports.
This constraint provides a meaningful metric for the minimum
computational throughput of a production climate model. Al-
though somewhat arbitrary, if a model can simulate the climate
a thousand times faster than real time, the production demands
of century scale climate simulation can be met in about three

weeks of dedicated machine time. A millennial scale control
run simulation would require a full year. For a point of refer-
ence, the standard version of the Community Climate System
Model (CCSM), a state of the art climate model from the Na-
tional Center for Atmospheric Research in Boulder, Colorado
was integrated at a rate of about 1650 times faster than real time
for the IPCC AR4. This is expected to increase to about 6000
times faster than real time for the IPCC fifth assessment report
on current systems. GCSRMs will require at least a thousand
times more computational cycles than current generation mod-
els like CCSM. One of the principal results reported in this pa-
per is a credible estimate of the computational rates and other
hardware attributes necessary to integrate GCSRMs in a man-
ner similar to the production climate models of today. We arrive
at these results through an analysis of several codes prepared at
the Colorado State University in Fort Collins, Colorado. The
estimates of overall machine requirements then provide the ba-
sis for our alternative path towards exascale scientific comput-
ing.

In previous papers, we proposed a radically new approach
to high-performance computing (HPC) design via application-
driven hardware and software co-design to leverage design
principles from the consumer electronics marketplace (Wehner
et al. 2008; 2009, Donofrio et al. 2009). Consumer electronics
such as cell phones, digital cameras and portable music players
have become ubiquitous in our modern lives. Because of the
need to prolong battery life, designers of these portable devices
must grapple with energy efficiency issues to an extent not nec-
essary for traditional desktop computing applications. Hence,
we look to this industry for solutions to the impending “power
wall” that mainstream HPC approaches must soon face. The
hardware/software co-design methodology we propose has the
potential of significantly improving energy efficiency, reduc-
ing procurement cost, and accelerating the development cycle
of exascale systems for targeted high-impact applications. Our
vision of hardware/software co-design involves extensive col-
laboration between specialists in climate model development,
software engineering and hardware design, especially chip ar-
chitectures and network layouts. We show in this paper that this
alternative path to exascale computing is ideally suited to the
production usage of GCSRMs as climate models and estimate
that such facilities could be up and running in as little as five
years, as has been previously demonstrated by similar systems
applied to other scientific disciplines such as the Anton molecu-
lar dynamics supercomputer (Shaw et al. 2009). Optimal hard-
ware and software characteristics for the efficient execution of
a specific climate model can be found iteratively. Much of this
part of the co-design process can be automated, as we demon-
strate in Section 6. However, iteration in the design of the cli-
mate model algorithm is not so readily automated. While there
are indeed many possibilities to explore in this regard, we focus
this study on a snapshot of a particular set of global atmospheric
models. Actual full implementation of such a co-design strat-
egy as we present here would entail expanding the model set to

JAMES-D

Co-design of Global Cloud System Resolving Models 3

include other types of atmospheric models along with similar
models of the other important components of the climate sys-
tem, such as the ocean, land, cryosphere and biosphere. The
optimal set of hardware and software characteristics in such a
co-designed system would be a compromise dictated by the dif-
ferences between the important model components. Nonethe-
less, these characteristics would be far more specialized than
that of a general purpose architecture and would lead to much
more power and cost efficient simulations of climate models at
these ultra-high resolutions.

2. Classes of Global Cloud System Resolving
Models

The equations governing the atmosphere can be divided into
roughly two categories. The first contains the equations of
fluid motion, known as the Navier-Stokes equations. The sec-
ond contains nearly everything else, including the description
of clouds, radiation, turbulence and other resolved and/or unre-
solved processes. These equations in the second category act as
source terms to the Navier-Stokes equations. They are gener-
ally operator split from the solution of the Navier-Stokes equa-
tions and can be governed by very different time scales. The
Navier-Stokes equations, often referred to simply as the “dy-
namics”, are nonlinear partial differential equations whose ex-
plicit stability is governed by a restriction known as the Courant
condition, a relationship between grid spacing, time step and
wind speed. At the ultra-high horizontal resolutions necessary
to simulate cloud systems, the Courant stability criterion causes
the dynamics portion of an atmospheric model to dominate the
total computational burden because of severe time step restric-
tions. Typically, on a kilometer-scale grid, the Courant condi-
tion on the dynamics time step in an explicit scheme is deter-
mined by the high winds of the jet stream to be about 3 sec-
onds. Implicit schemes allow this time step to be relaxed for
a stable solution, but accuracy concerns limit this relaxation to
about an order of magnitude or less. As mentioned above, other
physical processes may have their own controlling time scales.
For instance, the diurnal cycle, which is fixed at twenty-four
hours, directly controls the incoming solar radiation and indi-
rectly controls the outgoing infrared radiation. A relaxation
of the radiation time step to several minutes is often used (R.
Pincus 2010, personal communication). However, it may be
desirable to associate the time step controlling other processes,
such as those involving cloud physics or turbulence, with the
dynamics time step.

The Earth, to a high degree of accuracy, can be approxi-
mated as a sphere. Numerical integration of the Navier-Stokes
equations on a sphere has been performed in many different
ways over the years. In the 1960s, the usage of spherical
harmonic functions permitted extremely elegant and accurate
discretizations to the dynamics equations. This spectral trans-
form method arguably became the most widespread used tech-
nique in global atmospheric models for many decades and still

finds common usage today. An N logN dependence on se-
ries length in the Fast Fourier Transforms (FFT) and an N2

dependence on series length in the Legendre Transforms cause
the arithmetic count per time step to increase superlinearly as
resolution increases. Furthermore, in the absence of parallel
FFT and Legendre transforms in the regime of interest, one di-
mensional domain decomposition strategies limit parallelism
in these codes. However, despite predictions to the contrary,
the methodology has been demonstrated to be competitive with
grid based methods at resolutions up to T1279, approximately
16km at the equator (ECMWF 2010). It remains to be seen if
spectral transform solutions can be extended to kilometer scale
discretizations.

Grid based methods originally were based on latitude-
longitude meshes. This class of grid has the advantage of being
logically rectangular with easily calculated cell areas. It has
the disadvantage of polar singularities at the top and bottom of
the sphere. The effect of the singularities is to cause the cells
to become long and narrow near the pole. A variety of spe-
cially constructed filtering operators have been constructed to
damp computational instabilities and allow explicit time steps
determined by the grid spacing at lower latitudes overcoming
the grid deficiency. However, at a resolution of 1 km at the
equator, the most poleward cells have an aspect ratio in excess
of 10,000. Accurate solution of the Navier-Stokes equations in
such high aspect ratio grids is notoriously difficult. It is un-
likely that any latitude-longitude discretization of the Navier-
Stokes equations at cloud system resolving resolutions would
be accurate enough or computationally affordable.

Fortunately, research into other grid discretizations is well
developed. The “cubed sphere” mesh (Sadourny 1972, McGre-
gor 1996) is one of these, and begins with a cube, discretized
on each face into square cells. Then the cube is topologically
transformed into a sphere. As an analogy, consider a child’s
inflatable toy shaped as box that is overinflated into a ball. The
original cells undergo a regular transformation and remain or-
thogonal to each other on the surface of the sphere. The eight
corners of the original cube become special points where con-
nectivity of the mesh is different. At these points, three cells
border on each other. Everywhere else four cells border on
each other. At very high resolution, the cells near the corners
of an orthogonal cubed sphere mesh can vary greatly in area
compared to cells near the interior of the original cube faces.
This difference in area can be rectified by relaxing the orthog-
onality of the mesh resulting in a favorable range of cell areas
across the entire sphere (Rancic et al. 1996). The Rancic equal
angle grid is used in nearly all modern cubed sphere techniques.
Recent work has shown that solutions on highly nonorthogonal
gnomic grids are of an acceptable accuracy and far more com-
putationally efficient that conformal orthogonal grids (Putnam
and Lin 2007). Hence, modern finite element and finite vol-
ume methods do not require special treatment at these special
points.

The models that are analyzed in the present paper are based

Journal of Advances in Modeling Earth Systems – Discussion

4 Wehner et al.

Figure 1: The geodesic mesh used by the Colorado State
University group to represent the Earth’s atmosphere is
generated from an icosahedron (upper left panel). In this
scheme, the triangular faces of the icosahedron are first
bisected (upper middle panel). Then the new vertices
are projected onto a sphere (upper right panel), as if it
were a ball being inflated. This procedure is repeated
(lower panels) until the desired resolution is obtained.
This study’s target resolution after 12 bisections is 167,
772, 162 vertices.

on a geodesic grid. In this class of mesh, the starting geometry
is an icosahedron. A grid is generated by successively bisect-
ing the triangular faces of the icosahedron as shown in Figure 1.
Similar to the cubed sphere grid, a projection onto the sphere
completes the grid generation. Because the distortion from
icosahedron to sphere is smaller than from cube to sphere, the
grid cells need no further modification to maintain an accept-
able range of cell areas, even at ultra-high resolution (Heikes
and Randall 1995). However, icosahedral meshes contain 12
points of special connectivity that require a special treatment
and care must be taken to avoid imprinting these points on the
numerical solution. Table 1 summarizes the number of cells
and their approximate spacing between grid points for geodesic
meshes as the number of bisections increases. The mesh of in-
terest in this study is Level 12, with a ∼2km cell size.

In this study, we are not advocating a particular methodology
to the solution of partial differential equations on the sphere.
The solution methods analyzed here are only a convenient
first step in developing a comprehensive hardware/software co-
design procedure. A convincing co-design strategy must con-
tain analyses of all credible solution techniques and remain
flexible enough to accommodate changes in those techniques.

Levels (# of # of Average Cell
Bisections) Vertices Size (km)

1 42 4003.2
2 162 2001.6
3 642 1000.8
4 2562 500.4
5 10242 250.2
6 40962 125.1
7 163842 62.6
8 655362 31.3
9 2621442 15.7
10 10485762 7.8
11 41943042 3.9
12 167772162 2.0
13 671088642 1.0

Table 1: Properties of the geodesic grid. The average cell
size is the average spacing between grid points

2.1. The Colorado State University Family
of Geodesic Models

The geodesic grid described in the previous section provides
a starting point for a uniform highly resolved GCSRM. The
next step in building such a model is the choice of equations
to be solved on the grid. At the coarse resolutions of the cli-
mate models used in the IPCC AR4 and the upcoming AR5,
the hydrostatic approximation is generally used. This simpli-
fying assumption, valid when the horizontal extent of a cell
greatly exceeds its vertical extent, results in the vertical com-
ponent of the wind being treated as a diagnostic rather than a
prognostic field. At the ultra-high resolutions required to re-
solve cloud systems, the assumptions behind this approxima-
tion breakdown and the atmospheric flow has non-hydrostatic
features. Not all atmospheric waves in a fully non-hydrostatic
system are important to weather prediction or climate simula-
tion. In particular, resolution of vertically propagating sound
waves are unnecessary in these applications. If not somehow
damped, they impose a severe time step restriction due to the
large speed of sound and its effect on the Courant condition.
The anelastic approximation damps these waves by neglecting
the local time derivative of density in the continuity equation.
This approximation uses a uniform reference state to advance
the solution that is not a particularly good assumption for Earth
with its wide variations from equator to pole. By contrast, the
“unified” system (Arakawa and Konor 2009) restores the local
time derivative of density in the continuity equation but as a
diagnostic rather than a prognostic field in the primitive equa-
tions and does not use a reference state. The unified system
damps the vertically propagating sound waves while permit-
ting accurate representation of other wave processes on a wide

JAMES-D

Co-design of Global Cloud System Resolving Models 5

momentum vector vorticity
red blue

hydrostatic available not planned
anelastic available available
unified in development in development

Table 2: The CSU family of geodesic grid based global
atmospheric models.

range of horizontal scales, from three-dimensional turbulence
to long Rossby waves. This system is fully compressible for
quasi-hydrostatic motion and anelastic for nonhydrostatic mo-
tion. The continuous equations conserve both mass and total
energy. Hence, it is ideal for use in GCSRMs.

At Colorado State University (CSU), two alternative sets of
primitive equations are under study. The first, referred to as the
red approach, is more traditional and is based on momentum.
The second, based on vector vorticity, is referred to as the blue
approach (Arakawa and Konor 2009). A set of codes for each
of these primitive equation formulations is under development.
A pair of codes based on the anelastic approximation has been
developed first, to be followed by extensions to the unified sys-
tem. In a comparison of the normal mode solutions obtained by
the fully-compressible, unified, nonhydrostatic anelastic, non-
hydrostatic pseudo-incompressible and quasi-hydrostatic sys-
tems, the unified system produces virtually identical solutions
to the fully-compressible system, with an exception that the
vertically propagating acoustic waves are filtered in the unified
system (Arakawa and Konor 2009). These codes have been
designed based on an implicit time stepping scheme to allow
for time steps in excess of that imposed by the Courant condi-
tion but requiring the solution of an elliptic equation. We note
that other icosahedral code designs have used explicit or semi-
explicit time stepping schemes forgoing the elliptic equation,
for instance (Satoh et al. 2008). For the CSU red approach, the
dynamical pressure is obtained from the elliptic solver, for the
blue approach, the vertical velocity is the result. In both cases,
the elliptic solver poses interesting computational challenges
and opportunities that are discussed later in this paper. There
are six possible permutations of the CSU codes, summarized in
Table 2.

3. Computational Requirements of CSU Family
of GCSRMs

In this section, we present a model of GCSRM computational
requirements by measuring each of these components sepa-
rately at resolutions coarser than that required to resolve cloud
systems. Extrapolations to such ultra-high resolutions are made
after suitable scaling behavior is demonstrated. Because a com-
plete GCSRM is not available, it is not possible at this time

to diagnose a working production code. However, the compu-
tational characteristics of a GCSRM can be described if each
component can be profiled independently. Hence in the analy-
sis that follows, we separate the code into the following com-
ponents: 1) Dynamics: (a) Equations of motion (momentum or
vorticity equations), (b) Advection equations, (c) Elliptic solver
and (2) Physics: (a) Fast time scales, (b) Slow time scales.

In this breakdown, we have separated advection of passive
tracer quantities from the solution of momentum or vorticity
because the number of tracers is not necessarily fixed. Fur-
thermore, we separated the elliptic solver from the rest of the
dynamics as its efficient evaluation presents special challenges.
The source terms to the dynamics (i.e. the physics) is further
separated into two broad categories: fast, those processes eval-
uated at the dynamics time steps and slow, those processes eval-
uated at larger time steps.

3.1. Equations of Motion
Theoretically, the number of computational cycles required to
integrate the equations of motion for a fixed time period scales
with the cube of the horizontal grid size. For instance, if the
horizontal resolution were doubled, there would be four times
as many horizontal grid points. Additionally, the time step
would be halved because of the Courant condition thus dou-
bling the number of calls to the relevant routines and loops.
However, memory requirements are independent of time step,
so this computational requirement scales with the square of the
horizontal grid size. The result is that the ratio of required
memory size to cycle rate (e.g. bytes/flops) decreases with the
inverse of the grid size as resolution in increased. Hence, in
our example of a doubling of horizontal resolution, the bytes
per flops ratio is halved. This fundamental property of fluid
codes is a critical consideration in the design of efficient ma-
chines tailored to these applications.

We evaluate this theoretical scaling behavior of the CSU
red codes by running the Jablonowski test problem at multiple
resolutions (Jablonowski and Williamson 2006). This three-
dimensional test problem does not contain radiation or mois-
ture specifications and is a test solely of the dynamical core.
Table 3 shows the number of floating point operations required
to integrate the momentum and continuity equations for a sin-
gle day at several resolutions as measured in the CSU proto-
type red code using the TAU performance monitoring and tun-
ing system (Shende and Malony 2006) and hardware counter
data gathered with the PAPI utility (Browne et al. 2000). To
verify that the extrapolations of these measured numbers of-
fer a good prediction of the theoretical number of operations
that will likely be required for the full simulation at the higher
resolutions, we compared actual measured results to extrapo-
lations from neighboring resolutions. The extrapolated results
are obtained through simple linear extrapolation by taking the
measured highest resolution result and scaling to both finer and
coarser resolutions by a factor of eight. The linear trend pre-

Journal of Advances in Modeling Earth Systems – Discussion

6 Wehner et al.

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1 10 100 1000

Pflops

Grid size (km)

Flop Rate to Achieve 1000X Real Time
Red HydrostaAc Measured
Red HydrostaAc Extrapolated
Red AnelasAc Measured
Red AnelasAc Extrapolated
Physics w/ equal Ame steps
Physics w/ unequal Ame steps
AdvecAon (3 scalars)
Total (Unified)

Figure 2: The sustained computational rate (Pflops) re-
quired to integrate the hydrostatic and anelastic dynami-
cal cores of the red versions of the CSU GCSRMs with
128 vertical levels. Also shown are similar results for the
physics parameterizations and advection routines mini-
mally necessary for a GCSRM.

dicted by our extrapolation fits the measured data very well
with the exception of the coarsest resolution hydrostatic result.
This is a result of a coding artifact which can be ignored. (This
particular code was designed in a way such that at higher res-
olutions the local process generates only its portion of the grid
while at coarser resolutions all processes contain global grid
information to offset the communication costs.) Note that the
anelastic code, although it involves more prognostic variables,
requires fewer operations than the hydrostatic code. We inter-
pret this as a real world phenomena when working with pro-
duction codes. The newer anelastic code is simply more effi-
cient due to better software engineering. These raw operations
counts can be converted into the execution rate to integrate at
a throughput of 1000 times faster than real time. The mea-
sured CSU codes were configured with 25 vertical levels. This
is not enough to adequately resolve cloud systems. A value
of 128 for the vertical dimension is a more reasonable choice
and will prove useful later for domain decomposition purposes.
As changing vertical resolution does not alter the time step, it
suffices to multiply the measured operations counts by the frac-
tional increase (5.12) in vertical levels to revise them to higher
resolution. Figure 2 shows the sustained floating-point opera-
tions rate required to integrate this portion of the CSU red codes
at a rate of 1000 times faster than real time expressed in Pflops
(1015 flops). At the 12th level of discretization, the ∼2km tar-
get resolution of this study, this sustained computational rate
for the red anelastic dynamics code is approximately 16 Pflops.

We also measured the total memory required by the dynam-
ical cores of the red CSU codes. Table 4 and Figure 4 sum-
marize these results for the 128 vertical level versions of the

codes. Again, the expected scaling behavior predicted by linear
extrapolation provides a good fit to the measured results. In this
case, the difference between the hydrostatic and anelastic code
requirements is negligible. At the ∼2km target resolution, the
total memory requirement for this portion of the anelastic code
is about 1.8 PB. Finally as expected, our preliminary analysis
of the full “unified” model reveals no measurable differences
in either memory or operations rate requirements than for the
anelastic model.

3.2. Multigrid Elliptic Solver
Like many implicit dynamics schemes, the CSU dynamical
cores require the solution of elliptic equations. The current ver-
sions of the codes use multigrid (MG) solvers to achieve this.
The multigrid solver uses iterative techniques and may require
multiple passes to achieve convergence. Since the number of
iterations required to reach convergence is data and problem
dependent, this adds some uncertainty to the computational re-
quirements for the dycore. In this section, we will describe the
parameterized approach to extrapolating the computational cost
of the elliptic solve. In Section 5.5 we will show how multigrid
computations may be mapped effectively onto a massively par-
allel computing architecture, and why multigrid efficiency fur-
ther motivates a hardware design consisting of a smaller num-
ber of more powerful many-core chips (processor containing
arrays of hundreds or thousands of computational elements per
chip) rather than a larger number of computational nodes con-
taining fewer processing elements each.

Multigrid methods provide a powerful technique to accel-
erate iterative algebraic solvers that are commonly required in
computational fluid dynamics problems, but pose challenges
to sustained application performance and scalability. A con-
ventional iterative solver operating on a full resolution grid
would take many iterations to converge globally due to the
slow propagation of error information across the entire grid.
Multigrid techniques iterate towards convergence on the full-
resolution grid and a hierarchy of lower-resolution (coarsened)
representations of the grid data. The coarsened grids accelerate
information propagation by damping out errors at large spa-
tial frequencies while the fine grids efficiently damp out high-
frequency errors, thus improving the convergence rate for the
iterative solver.

MG methods consist of the following primary phases:

• relaxation: This is a conventional Jacobi, SOR, or Gauss-
Seidel solver iteration involving a stencil sweep over the
computational grid and a subsequent halo-exchange to
provide updated values for the ghost-cells

• restriction: This operator interpolates the fine grid data
into a coarsened grid.

• prolongation: This operator is the inverse of restriction,
where the information on the coarse grid is interpolated
back into the fine grid.

JAMES-D

Co-design of Global Cloud System Resolving Models 7

Figure 3: The convergence rate for the multigrid elliptic
solver starting from a worst case (identically zero) ini-
tial guess and 16 relaxation steps for the bottom-solver
on the coarsest grid level for resolutions ranging from
the Level 9 grid bisection (∼14km) to the Level 12 grid
bisection (∼1.8km) . The horizontal axis shows the num-
ber of multigrid V-cycles required to achieve conver-
gence. At the GCSRM scale (level 12), convergence can
be achieved with fewer than 9 cycles.

The multigrid method operates in what is called a V-cycle
where the restriction operator is used to copy information from
the finest grid to progressively coarser grids. In the CSU codes,
the coarser grids are half the resolution in each dimension as the
fine grid from which they are derived. There is a relaxation step
at each level of the V-cycle to squeeze out errors at each level.
Current experience running kilometer scale models on existing
petascale architectures suggests convergence can typically be
achieved in 7-9 V-cycles as shown in Figure 3 given worst-
case initial guess. However, we believe convergence can be
achieved much faster in practice (fewer than 7 cycles) given the
input data to the elliptic solve is seeded with a preconditioned
solution using data from the previous timestep. This property
would prove useful, for in million-way parallel systems it may
not be practical to go all the way to the bottom of the multigrid
V-cycle under any circumstances. Rather, early termination of
V-cycle and the application of a bottom-solver is far more likely
to be the most efficient method.

There are two additional optimizations that are important to
deal with explicitly parallel computing systems.

• repartitioning: If a coarsened grid becomes so small that
it can no longer be domain-decomposed across existing
processors, the grid must be re-partitioned amongst a
smaller subset of processors so that the V-cycle can con-
tinue to lower levels. The theoretical limit case is when
the grid is composed of a single cell. Normally a practical
parallel implementation would switch to a bottom-solver

before we get to this extreme case.

• bottom-solve: The coarsening stages of the V-cycle can
be cut-off early and an iterative relaxation (bottom-solve)
performed until convergence is achieved. This mitigates
the worsening exploitable parallelism and communication
performance, but may slow the convergence rate because
many iterations must be performed to damp out errors in
the largest spatial frequencies.

Repartitioning within a multicore chip is relatively inexpen-
sive (nearly free), but repartitioning between nodes in a dis-
tributed memory system is extremely expensive. Therefore, we
must carefully balance the trade-off between the computational
cost of repartitioning against lost convergence efficiency from
shifting to the bottom solver too early. In the specific case of
the CSU red hydrostatic code, the MG portion of the code con-
sists of layered 2-dimensional solvers where each level of the
atmosphere constitutes a separate solver that wraps around the
globe using the icosahedral domain decomposition. This sim-
ple implementation performsNL independent multigrid solves,
where NL is the number of vertical levels. The more sophisti-
cated implementation in the Red Anelastic code implements a
2.5 dimensional solver where each layer of the atmosphere is
solved in tandem. The latter implementation enables more ef-
fective messaging aggregation, which enables the code to send
larger messages (above the latency limit) for the halo exchange
at each relaxation step. These communication issues are de-
ferred until Section 5.5. Table 3 shows that computational cost
of the 2.5 dimensional multigrid package with 5 steps in the V-
cycle and 20 steps in the bottom solver is negligible compared
to the other major components of the GCSRM.

3.3. Advection Equations
Our estimates of the computational cost of dynamics include
advection of momentum (a vector) and temperature (a scalar).
A full climate model requires the advection of other scalars
necessary for the subgrid scale physics parameterizations. At a
minimum, advection of moisture related quantities must be in-
cluded in any realistic estimate of the total computational bur-
den. The cloud microphysical parameterizations in the Sys-
tem for Atmospheric Modeling code (SAM), a limited area
cloud system resolving model, are a good candidate for use in a
GCSRM (Khairoutdinov and Randall 2003). An investigation
of the advected variables in this code reveals three additional
prognostic scalars. These are the total precipitating water, to-
tal non-precipitating water and turbulent kinetic energy. The
computational requirement to advect three additional scalars in
the red anelastic dynamical core is shown in Table 3 and Fig-
ure 2. At the ∼2km target resolution with 128 vertical levels,
the required sustained computational rate to achieve an integra-
tion rate 1000 times faster than actual time is 9 Pflops. We note
that modern climate models including sophisticated treatments
of aerosol forcings can require many more prognostic scalar

Journal of Advances in Modeling Earth Systems – Discussion

8 Wehner et al.

Red Red Red Red Physics w/ Physics w/
Grid Total Hydrostatic Hydrostatic Anelastic Anelastic Equal Time Unequal Time Advection Multigrid

Level Spacing (Unified) Measured Extrapolated Measured Extrapolated Steps Steps
5 225.0 1.3E+11 2.6E+12 6.8E+11 6.7E+11 3.7E+11 3.26E+11
6 112.5 2.1E+13 2.1E+13 5.3E+12 5.3E+12 3.0E+12 1.30E+12
7 56.3 1.6E+14 1.7E+14 4.3E+13 4.3E+13 2.4E+13 5.22E+12
8 28.1 1.3E+15 1.3E+15 3.4E+14 1.9E+14 2.09E+13
9 14.1 1.1E+16 2.7E+15 1.5E+15 8.35E+13

10 7.0 8.5E+16 2.2E+16 1.2E+16 3.34E+14
11 3.5 3.0E+17 6.8E+17 1.7E+17 1.5E+17 3.1E+16 9.7E+16 1.34E+15
12 1.8 2.4E+18 5.4E+18 1.4E+18 1.2E+18 2.4E+17 7.7E+17 5.34E+15
13 0.9 1.9E+19 4.3E+19 1.1E+19 9.4E+18 1.9E+18 6.2E+18 2.14E+16

Table 3: The number of operations required to integrate for a single day the momentum and continuity equations for
the CSU red codes with 128 vertical levels. The “measured” values were obtained from a 25 vertical level code and
scaled to 128 levels. Multigrid performance was measured using 81 levels, and re-projected for 128 levels with 5 steps
in the V-cycle and 20 steps in the bottom solver.

variables. In the Eulerian advection scheme used in the CSU
models, the number of operations scales linearly with the num-
ber of advected variables. For very large numbers of prognostic
variables, semi-Lagrangian or pure Lagrangian techniques are
likely to exhibit significant advantages in computational cost.

3.4. Subgrid Physics Parameterizations
An estimate of the computational requirements of the subgrid
scale physics parameterizations portion of the model can be di-
rectly obtained by diagnosing an existing limited area cloud
system resolving model such as the SAM code described in
Section 3.3. A critical design choice for this portion of the
model is the time step. The Courant condition, necessary for
stability of the dynamics, does not apply to the parameteriza-
tions. Rather, the physics time step is chosen from accuracy
considerations. Although there have been some limited studies
on the effects of the choice of time step in coarse resolution
global atmospheric models (Williamson 2008, Li et al. 2010),
this is an unresearched area in terms of global cloud system re-
solving models. Limited area models such as SAM, run some
portion of the subgrid scale physics at similar time steps to the
dynamics. However, at these resolutions, the Courant time step
is so small, it may be possible to divide the physics into “fast”
and “slow” portions by relaxing the time step in the “slow” pa-
rameterizations if changes in their output vary slowly enough.

A prime candidate for such a relaxation is the radiation trans-
port parameterizations as they are very CPU intensive and the
solar intensity is controlled by the diurnal cycle, which obvi-
ously does not vary with resolution. Arguably, at the high res-
olutions considered in this study, existing radiation parameteri-
zations in cloud system resolving models do not capture multi-
angle scattering adequately. Inclusion of such effects would
increase the computational cost even more. Consider then, that

the time step for radiation transport and the planetary boundary
layer turbulence (another rather slowly varying yet costly pa-
rameterization) can be increased to two minutes. Also consider
that all the cloud microphysical and other moist physics param-
eterizations are calculated at the Courant time step. The result-
ing computational burdens to run the are shown in Figure 2 and
Table 3. We show only results for resolutions under 4 km, as
these parameterizations are not applicable to coarser models.
At the ∼2km target resolution with 128 vertical levels, the re-
quired sustained computational rate to achieve an integration
rate 1000 times faster than actual time is 2.8 Pflops. We note
that separating this portion into fast and slow portions affords
considerable speedup. If all components of the physics parame-
terizations are calculated at the Courant limit, the required sus-
tained computational rate is 13 Pflops, almost as much as the
dynamics. At high resolutions, the stability and accuracy of the
model can be dependent on the relationship of the dynamics
and physics timesteps. These two estimates bracket the range
of possibilities. We did not measure the additional memory re-
quired by the physics parameterizations; however, as each ad-
ditional prognostic variable requires only an additional 173 GB
at ∼2km target resolution, we are comfortable with asserting
that the addition of temperature and moisture variables will not
be a significant increase in total memory requirements.

3.5. Total Computational Burden
Our estimates for the total throughput rate required to integrate
a complete GCSRM at 1000 times faster than real time are ob-
tained by adding together our estimated requirements for the
red anelastic dynamics, the multigrid solver, the advection of
three additional prognostic scalars and the physical parameter-
izations and are shown in Figure 2 and Table 3. We assume
that the additional cost of modifying the dynamics to solve the

JAMES-D

Co-design of Global Cloud System Resolving Models 9

Red Red Red Red
Grid Hydrostatic Hydrostatic Anelastic Anelastic

Level Space Measured Extrapolate Measured Extrapolate
5 225.0 0.10 0.12 0.11 0.11
6 112.5 0.39 0.47 0.43 0.43
7 56.25 1.68 1.89 1.73 1.73
8 28.13 7.54 7.54 6.94
9 14.06 30.18 27.75

10 7.03 120.71 110.99
11 3.52 482.85 443.97
12 1.76 1931.39 1775.87
13 0.88 7725.54 7103.47

Table 4: The total memory (TB) required for the mo-
mentum and continuity equations portion of the CSU red
codes with 128 vertical levels.

unified set of dynamics equations is negligible based on our
preliminary measurements. At the ∼2km target resolution with
128 vertical levels, a machine containing at least 1.8 PB of ad-
dressable memory and capable of sustaining at least 28 Pflops
is minimally required for this task. These requirements are ma-
chine architecture independent and provide a starting point for a
hardware/software co-design. Interprocessor communications
requirements are machine and implementation dependent and a
critical element of co-design. One possible set of requirements
is presented in following sections of this study.

Uncertainty in these estimates of machine requirements is
difficult to quantify. Clearly, analysis of different approaches
to the solutions of the dynamical equations, including different
grids and different solution techniques, would yield different
estimates. Also, other radiation and cloud microphysics param-
eterizations could require more or less computation. However,
for the particular codes analyzed here, our estimates may be
on the high side as professional software analysts have not at-
tempted any optimization. Automated approaches to optimiza-
tion will prove critical to our view of hardware/software co-
design and some aspects of this are discussed in later sections
of this paper.

3.6. Climate model co-design
As stated in the introduction, one of the principal purposes of
this study is to use a snapshot of a GCSRM to demonstrate
that hardware/software co-design provides a route to a rapid
power and cost efficient integration of these ultra-high resolu-
tion models. As described in the following sections, many of
the hardware and software engineering issues can be explored
via automated tools. This is not true for algorithmic aspects
of climate model design where changes to solution techniques
must be exhaustively analyzed as to their validity in the regimes

0.10

1.00

10.00

100.00

1000.00

10000.00

1 10 100 1000

TB

Grid size (km)

Total Memory

Red Hydrosta:c Measured

Red Hydrosta:c Extrapolated

Red Anelas:c Measured

Red Anelas:c Extrapolated

Figure 4: The total memory (TB) required for the mo-
mentum and continuity equations portion of the CSU red
codes with 128 vertical levels.

of interest. It is beyond the scope of this paper to provide quan-
titative rationales for one algorithm or another. However, we
will speculate on which aspects of GCSRM algorithms may
provide leverage.

Model intercomparison projects (Taylor et al. 2009) have
shown that confidence in future climate projection is increased
by the usage of multiple models. Hence, it is vital that any
actual machine developed by a hardware/software co-design
strategy be able to efficiently execute multiple codes with very
different underlying algorithms. As discussed in Section 2,
the underlying mesh is fundamental to design of the dynam-
ics algorithm and credible GCSRMs will exploit multiple vari-
ations. Time stepping algorithms also provide multiple op-
portunities for optimization. Fully-implicit, semi-implicit and
explicit methods in the dynamics equations all have different
computational properties. We examine the multi-grid method
of solving the elliptic equation dictated by implicit techniques
in details in Sections 3.2 and 5.5. Other methods of elliptic
equation solution may be more or less suitable to co-design.
Additionally, explicit time stepping may be found to be su-
perior or inferior to implicit time stepping in such a context.
The time-splitting algorithm between the dynamics and sub-
grid scale physics was analyzed briefly in Section 3.4. More
computationally expensive parameterizations may prove to be
necessary for both moist physics and radiation transport. The
explicit inclusion of multi-angle shortwave radiation scatter-
ing may prove to be necessary as grid cells approach the same
scales in the horizontal and vertical dimensions. Modern cli-
mate models are including more radiatively active trace compo-
nents in the atmosphere including as aerosols and other gaseous
compounds. These components must be advected which could
lead to this portion of the model dominating the computational
expense. It is clear that every portion of climate model algo-
rithms must be examined in a co-design spirit if execution is to

Journal of Advances in Modeling Earth Systems – Discussion

10 Wehner et al.

be optimally efficient.

4. Embedded Processor Supercomputing and
Hardware/Software Co-design

The described computational rates require machines far faster
than what is available today. In previous studies (Wehner et al.
2008; 2009, Donofrio et al. 2009), we discussed how the power
requirements of exascale machines extrapolating from architec-
tures based on personal computer or server technologies could
be prohibitively expensive. Consistent with other studies (Si-
mon et al. 2008, Kogge et al. 2008, Shalf et al. 2011), the elec-
tric bill of facilities drawing in excess of 150MW would be
a major, if not the largest, portion of the total cost of owner-
ship. Also related to power concerns, we discussed how the
trend in CPU design is not towards faster clock speeds but to-
wards multiprocessor chips, as the number of transistors per
unit area continues to grow by Moore’s Law. Hence the overall
computing rate of a single chip will continue to increase but
greater parallelism is required of applications to exploit these
increases.

Our previous studies thus presented a new approach to sci-
entific computing. Two decades ago, high performance sci-
entific computing changed from using highly customized vec-
tor based machines with a few processors to massively paral-
lel processor machines based on personal computer and server
technologies driven by the consumer market. Presently, we are
witnessing another significant change in the consumer market
that can impact high performance scientific computing, namely
the widespread usage of portable consumer electronics devices
such as smart phones, e-books and digital cameras. This seg-
ment of the hardware market has already surpassed the personal
computer segment in a financial sense and is expected to con-
tinue to grow for the foreseeable future (Shalf 2007).

In our previous papers, we argued that the “embedded pro-
cessor” technology behind this current market shift is ideal for
the construction of specialized supercomputers at much lower
acquisition and power costs. Embedded processor chip design-
ers use pre-verified functional units to rapidly produce semi-
custom designs. In this new model for high performance com-
puter design, the commodity product basis is not the hardware
components themselves, but rather the embedded processor de-
sign toolset. Just as consumer electronics chip designers choose
a set of processor characteristics appropriate to the device at
hand, high performance computer designers can choose pro-
cessor characteristics appropriate to a specific application or
class of applications, such as GCSRMs. The resulting machine,
while remaining fully programmable, would achieve maximum
performance on the limited target set of applications. In that
sense, such a machine is less general purpose than the typical
supercomputers of today. However, the savings appear to be
so favorable that multiple machines, each targeted to one of
the few truly exascale applications areas, would be more cost
effective than a single general purpose exascale machine.

The rapid chip design cycle enabled by embedded proces-
sor toolsets enables a true co-design process of hardware and
software. In our previous work we described three technolo-
gies that enable efficient co-design for scientific applications.
The first of these, called “auto-tuning”, allows for automated
code optimization for the myriad of possible chip designs. The
second, known as co-design, iterates between the optimal auto-
tuned code and the chip designs themselves. Finally, these steps
can be greatly accelerated by simulating the chip performance
on Field Programmable Gate Arrays (FPGAs) rather than using
chip emulators written in software. Examples of these tech-
nologies are discussed later in this paper.

5. A Strawman Machine Design

We now present an overview of our proposed co-designed sys-
tem specifically designed to run ultra-high resolution, cloud-
resolving simulations. We have named our climate computer
concept design “Green Flash” after the well known atmo-
spheric phenomenon. More details of the Green Flash project
and architecture can be found in recent publications (Donofrio
et al. 2009, Wehner et al. 2009, GreenFlash 2010).

5.1. Multi-million Way Parallelism
Our fundamental premise behind the use of embedded proces-
sor chips in a targeted supercomputer is that there is enough
parallelism in the applications to scale to the requisite over-
all processing speed. GCSRM codes are good candidates for
this hardware/software co-design as the number of three di-
mensional grid points is in excess of twenty billion. Further-
more, there are opportunities to exploit the nested levels of par-
allelism afforded by multi-processor chips.

From Table 1, the icosahedral discretization of surface of
the globe contains 167,772,162 vertices at our ∼2km target
resolution. A logically rectangular two-dimensional domain-
decomposition strategy can be used to partition this geodesic
grid among processors. A regular decomposition into 64 grid
points arranged in an 8X8 configuration results in 2,621,440
horizontal domains. The vertical dimension offers additional
parallelism. Assuming that we could decompose the 128 layers
into eight separate vertical domains, the total number of phys-
ical subdomains could be 20,971,520. If the communications
demands in this decomposition are practical, 20-million way
parallelism could be obtained on a GCSRM of this scope by
assigning a single processor core to each distinct subdomain.
The generation of this domain decomposition can be visualized
similar to the generation of the geodesic grid in Figure 1. The
first panel of Figure 5 shows the icosahedron projected onto
a sphere, while the middle panel has the border between cer-
tain of the original triangular faces of the icosahedron removed
resulting in parallelograms. These parallelograms, projected
onto the sphere, can be successively bisected until the desired
decomposition is achieved.

JAMES-D

Co-design of Global Cloud System Resolving Models 11

Figure 5: A visualization of the generation of a regular
domain decomposition of the geodesic grid.

5.2. Processor Requirements
Putting aside the rather complex communication issues for the
moment, it is straightforward to estimate minimum require-
ments for the most basic of the individual processor charac-
teristics. In Section 3.5, we determined that a total sustained
computational throughput of 28 Pflops is required to integrate
a ∼2km/128 level version of the CSU GCSRM. This translates
to an averaged sustained computational rate of 1.3 Gflops for
each computational core in the strawman machine design de-
scribed above. From Table 4, the total memory footprint for
such a code is less than 2 PB leading to a requirement that each
processor core have about 1 GB of accessible memory. Addi-
tionally, further code optimization could reduce both of these
requirements. Methodologies to optimize other processor char-
acteristics, such as cache size, energy requirements, and chip
area are discussed in Section 6.

The number of processors (cores) on a single chip is an im-
portant consideration with ramification to both machine and
code design. Using current 45nm fabrication techniques, 128
processing cores on a single chip is feasible. With this tech-
nology, the strawman machine design described above would
require 163,840 chips. Future conventional fabrication tech-
niques of 22nm and beyond (anticipated in the 2016-2018 time-
frame) would enable 512 or more processing cores on a single
chip, requiring only 40,960 chips for the full system — which
is fewer than the number of nodes in contemporary Petascale
supercomputers such as BlueGene and Cray XT systems. Al-
though the individual processing core requirements would re-
main the same in these two scenarios, significant differences in
the overall machine design would be affected. On the one hand,
mean time to failure would likely decrease with fewer compo-
nents of the 512-core configuration and the network topology
would be simpler. However, as discussed in the next section,
demands on that network would be more severe.

5.3. Cache Size Requirements
One of the major consumers of chip resources, including area
and energy, for processors is on-chip cache, which is essential

for performance. Caches attempt to mitigate large wait times to
read and write from main memory by exploiting temporal and
spatial locality. Ideally, caches should be sized to guarantee
that computation occurs at close to peak rates (that is, ensure
the code is not memory bandwidth-bound) while not being so
large as to result in wasted resources and power. One possible
way to ensure this happens is to study the code at the granu-
larity of each computational loop, and ensure that each loop
has enough cache to store all data items accessed; this way,
caches are only flushed after each loop, and the data used by
the loop that follows can be brought into cache simultaneously
or double-buffered to overlap with computation.

In order to understand caching requirements for GCSRM
codes, we designed a simple experiment using the functional
simulator described in Section 6.3. First, we ran the code us-
ing the expected subdomain size and recorded the addresses
accessed for each computational loop. Then, these addresses
were analyzed to determine the number of unique cache lines
for each loop; this gives a reasonable estimate for the cache
size required for the loop. Using this methodology, the max-
imum cache footprint of the hydrostatic red code is approxi-
mately 256 KB, before tuning. This is the upper bound on the
per-core cache memory that should be included on-chip. Auto-
tuning techniques can further reduce this (see Section 6).

This on-chip cache is sized to capture all temporal recur-
rences for the stencils in the code. Hence, for any given loop
in the code where the same piece of data is referenced more
than once, the cache is chosen large enough so that the data
will not need to be fetched again from main memory (it would
be resident in-cache). The amount of on-chip memory required
to capture these temporal recurrences is far smaller than the
total amount of memory for all of the model information. It
also ensures that the ratio of execution rate to the rate memory
reads would remain the same (thus the bytes/flop ratio remains
constant).

A previous analysis of a regional version of the blue anelas-
tic CSU dynamical core (Donofrio et al. 2009) using auto-
tuning (see Section 6.1) and local store programming (Williams
et al. 2007) shows that 0.1 bytes per flop is sufficient for achiev-
ing the target sustained computation rate per core and permit-
ting the memory bandwidth requirement to be to be well within
the capabilities of existing technology.

5.4. Nearest Neighbor Communication
Except for the elliptic solver necessary for implicit time step-
ping schemes, all horizontal communications required for
this domain decomposition involve each subdomain’s near-
est neighbors. In domain decomposition strategies such as
this one, information is often communicated through “border”
cells, a set of additional cells surrounding the subdomain rep-
resenting the edge cells in the nearest neighbor subdomains.
The number of messages in the dynamical core is fixed for
each time step as is the distribution of message sizes. For

Journal of Advances in Modeling Earth Systems – Discussion

12 Wehner et al.

a logically rectangular mesh, these types of communication
costs can be reduced by carefully ordering the messages. The
first set, communicating to the neighboring domains above
and below (in logical space), is larger and are individually
8(i+2nb)nb(k+1)nv bytes in size. Here, i is one of the hori-
zontal dimensions of the subdomain, k is its vertical dimension
of the subdomain, nb is the number of border cells and nv is
the number of variables communicated.

The second set of messages, communicating to the right and
left of the subdomain are individually 8jnb(k + 1)nv bytes
long, where j is the other horizontal dimension. We have mea-
sured the communication patterns in the CSU global anelastic
model using the Integrated Performance Monitor (IPM) mes-
sage profiling tool (Skinner June 21-24, 2005) and determined
that there remains ample opportunity for optimization of com-
munications. These opportunities include removal of corner
messages by the method just stated as well as by consolida-
tion of messages. However, these measurements can serve as
an upper bound on the specifications for the strawman machine
design considered here.

From the IPM tool, we find that in the CSU anelastic global
momentum equations code each subdomain (processor) per-
forms 199 messages per time step in the horizontal dimension
when configured with 64 horizontal cells in an 8X8 configura-
tion. Associated with this is a total volume of data communi-
cated per time step of less than k18, 000 (bytes), where k, the
vertical subdomain dimension is determined by the vertical de-
composition and the total number of levels. In the 20,971,520
domain strawman design, there are eight vertical domains di-
viding up 128 levels. This results in a value of 16 for this
vertical dimension and hence an upper limit of 288 KB for
the amount of data communicated by each subdomain per time
step.

The dynamical time step, even in implicit schemes, scales as
the Courant condition. Table 5 shows the time steps at various
resolutions for the CSU dynamical cores. To reach the 1000
times faster than real time performance metric, each dynamics
cycle must be executed 1000 times faster than the time step val-
ues in Table 5. At level 12, the target resolution of this design
study, the dynamical time step is about 1 second indicating that
each dynamics cycle must be completed in 10−3 seconds.

At this point in our analysis, we consider that the amount of
time spent in communications routines is a hardware/software
design constraint. An aggressive target is to spend no more than
10% of the total execution time communicating. Under this
constraint, the communications must complete 10,000 times
faster than the time steps of Table 5. In other words, at level
12, each processor must send and receive 2 million messages
per second at a total rate of about 3 MB per second in the hori-
zontal directions.

We have not explicitly analyzed the vertical domain decom-
position strategies in the existing CSU codes as they have not
been designed to work in that manner. However, we can imag-
ine two general strategies. The first would be to decompose

Level Grid Spacing Time Step (sec)
5 225.00 120.00
6 112.50 60.00
7 56.25 30.00
8 28.13 15.00
9 14.06 7.50

10 7.03 3.75
11 3.52 1.88
12 1.76 0.94
13 0.88 0.47

Table 5: Time step (seconds) used in the CSU momen-
tum equation (red) codes at various resolutions.

the vertical domain into slabs and communicate the necessary
data, some of which would contain the entire column. The sec-
ond would be to alternate between domains containing slabs
and the entire column as has been done in the Community At-
mospheric Model (Mirin and Worley 2009). An optimal strat-
egy might be either of these or even a combination of them and
is left for future research. In any event, it is highly likely that
communication volumes would be significantly larger for a ver-
tical decomposition than we have measured for the horizontal
decomposition.

The number of processors contained on a single chip and
the manner in which subdomains are distributed on that chip
is another important hardware/software design constraint. On-
chip communication is anticipated to be at least two orders of
magnitude faster than off-chip communication through a net-
work. Since the vertical communication requirements would
be so large, it makes sense to assign an entire stack of verti-
cal subdomains to processors contained on a single chip. In
the 20,971,520 domain strawman design, each of these stacks
would require 8 processors. Optimal arrangement of horizon-
tal domains depends on the number of processors that can be
placed on a single chip. The 45nm lithography scale avail-
able today readily enables 128 lightweight processing ele-
ments per chip accommodating 16 horizontal subdomains effi-
ciently arranged in a 4X4 configuration. The resulting “super-
subdomain” shown in Figure 6 could exploit fast on-chip pro-
tocols for much of the required communication. Subdomain
boundary information interior to the super-subdomain, shown
in blue, resides entirely on-chip. The boundary information on
the outer edge of the super-subdomain, shown in red, must be
sent to the neighboring super-subdomains and requires off-chip
communication protocols, such as message passing. The total
number of off-chip messages can be significantly reduced if the
outer boundary data is collected from the subdomains and the
communications performed between super-subdomains rather
than between individual off-chip subdomains. The sizes of the
individual messages obviously must increase; however, this re-

JAMES-D

Co-design of Global Cloud System Resolving Models 13

Figure 6: A “super-subdomain” consisting of 16 hori-
zontal subdomains in a 4X4 arrangement. If assigned
entirely to processors on a single chip, the interior bound-
ary information (represented in blue) would be commu-
nicated across subdomains utilizing fast on-chip proto-
cols. The exterior boundary information (represented in
red) would be communicated between super-subdomains
using off-chip networking protocols.

duction in message latency demands comes with no increase in
the total amount of off-chip data that must be sent and received.

Our measurements of the message traffic in the CSU anelas-
tic global momentum equations code allow an estimate of the
nearest neighbor off-chip communication requirements. By
collecting the outer boundary information from all relevant sub-
domains, both in the horizontal and vertical directions, the off-
chip message rate remains at 2,000,000 messages per second
for each chip. The increase in the total amount of data to be
communicated per dynamical time step depends on the num-
ber of subdomains than can be accommodated on a single chip.
In the 128 processor per chip case, laid out in a 4x4x8 sub-
domain configuration, the off-chip communication volume is
about 72,000 ktotal, where ktotal = 128 and is the total num-
ber of vertical levels. If the communication is to consume no
more than 10% of the total execution time, each chip must com-
municate an aggregate of 9.2 GB of data to its four nearest
neighboring chips every second. In the 512 processor case, laid
out in an 8X8X8 subdomain configuration, this message rate
is increased by a factor of 4 to 37 GB/second. However, the
topology of the off-chip communication network is simplified
in this case as the total number of chips is reduced by a factor
of four. Furthermore, large many-core chip system designs will
more effectively scale with Little’s Law (the maximum number
of bytes in flight is equal to the bandwidth times the message
latency) than few or single core chip system designs (Little
1961). This stems from an expectation that future improve-
ments in latency are expected to be limited but bandwidth in-
creases will continue to modestly benefit from technology scal-

System Architecture 45nm 22nm
Cores per chip 128 512

Clock Frequency 650 MHz 650 MHz
GFlops / Core 1.3 1.3

Cache per core 256 KB 256 KB
GFlops / Chip 166 667

Subdomains per Chip 4x4x8 8x8x8
Inter-chip communication 9.2 GB/s 37 GB/s

Total cores 20,971,520 20,971,520
Total chip count 163,840 40,960

Table 6: Scaling of chip architecture with process tech-
nologies.

ing. The ”super-subdomain” approach to aggregating nearest-
neighbor communications described here is particularly well
matched to these hardware constraints as the rate of messages
remains fixed and the message sizes are proportional to the
number of processing cores per chip. This solution to commu-
nication requirements furthers the case for a large many-core
design approach to enhancing chip performance. Single (or
few-core) chip designs could become severely latency limited
as the number of processors approaches tens of millions. Fi-
nally, we note that the required communication rates described
for the CSU model are well within the capabilities of today’s
technologies.

A summary of the chip requirements using two process tech-
nologies, for 128- and 512-cores per chip is shown in Table 6.

5.5. Elliptic Solver Communication
The multigrid solutions to the elliptic equations in the CSU GC-
SRMs are introduced in Section 3.2. MG solvers typically it-
erate by successive aggregation to coarser meshes. After some
specified number of aggregations, a “bottom solver” is called
to finish the calculation (see Figure 7). As the data on the na-
tive mesh is distributed across processors, communications are
required at each aggregation step. In the strawman design de-
scribed above, the first several of these communications can
be performed using fast on-chip protocols. In the 128 proces-
sor chip design, the super-subdomains contain 1024 horizontal
cells and would not require repartitioning until the 3rd aggre-
gation in a naive implementation. For the 512 processor chip
design, the super-subdomains contain 4096 horizontal cells and
would not require communication for such an expensive repar-
titioning until the 5th aggregation. The off-chip repartitioning
is expensive because of the the large volume of off-chip com-
munication required to move all of the grid data to a subset
of the nodes. However, without repartitioning, the surface to
volume ratio for the ghost cells can become very unfavorable
and become ultimately limited by messaging latency. We have
proposed a new approach to laying out multigrid computations
on a manycore chip that reduces the pressure on costly off-chip

Journal of Advances in Modeling Earth Systems – Discussion

14 Wehner et al.

P
rolongation R

es
tri

ct
io

n

(a)
Time

Le
ve

l

Fine

Coarse

0

1

2

(b) (c)

Figure 7: (a) Multigrid prolongation and restriction (b) V-cycle for a multigrid iterative solve. (c) Graphical represen-
tation of a multigrid hierarchy for an icosahedral domain decomposition.

repartitioning that uses functional-partitioning.
The functional-partitioning approach lays out successive

levels of the multigrid hierarchy on different subsets of pro-
cessors on the chip. The biggest challenge posed in the kind of
massively parallel system we are considering is that the starting
local subdomain size is quite small. Therefore, there is very
little room for grid coarsening before arriving at the smallest
usable cell size. One must either repartition or move to the
bottom-solver and suffer slower convergence. However, a pro-
cessor design that focuses on a large number of cores per chip
remedies this situation. For a chip containing 128-cores, on
each restriction (coarsening) phase of the V-cycle, the number
of cores performing the relaxation can be reduced by a factor
of 4x. Repartitioning the problem within the chip is compara-
tively inexpensive. In so doing, an efficient algorithm performs
a maximum of 4 coarsening steps before repartitioning between
nodes, with each stage using 1/4 as many processors per node.
At 22nm, with 512 cores per chip, only 2 additional coarsening
cycles are permitted before having to do an off-chip repartition-
ing.

For example, the finest-resolution grid (the top-level of the
MG solve), could occupy the local memory of 64 processor
cores on the 128-core chip design with a local subdomain size
of 16x16x16 (performing the 2.5D elliptic solve on 16 layers
of the atmosphere at the time). The coarsened level the next
level down in the hierarchy would occupy 32 cores of the chip,
and have a local subdomain size of 8x8x16 as its grid is half
the resolution of the previous level. This process can be con-
tinued recursively for 7 levels, down to a patch of 2x2x16 run-
ning on a single core (a total of 127 cores occupied to concur-
rently represent 7 levels of the multigrid hierarchy as shown
in Figure 8). The layout on chip and the partitioning process
is very similar to that of a MIPmapping process used for opti-
mizing multi-resolution texture maps for accelerated graphics
cards (Williams 1983).

The prolongation and restriction operations can rely on di-
rect communication using the high-speed on-chip interproces-
sor communication fabric to dramatically improve the energy
efficiency of the first 7 levels of the multigrid V-cycle. How-

ever, the relaxation timesteps for interim grids would require
interprocessor communication for each cycle. Communication
can be delayed by increasing the number of ghost-cells to de-
lay the first halo-exchange until we have descended 7 levels
in the multigrid V-cycle, but at a cost of doubling the mem-
ory footprint for the multigrid solve. This is a design trade-off
that we have not yet fully evaluated, but could enable dramatic
improvements in performance if the increased memory require-
ments remain affordable. We note that the current CSU codes
use a V-cycle that is 5-7 levels deep and achieves an acceptable
convergence rate at the target resolution. Therefore, with a chip
design containing at least 128 discrete cores, all of the reparti-
tions can be performed on-chip, avoiding the costly repartition-
ing across nodes. Furthermore, we can use hardware support
for direct inter-processor messaging to pipeline the iteration,
restriction and prolongation steps to maximally support over-
lap of data movement and computation.

5.6. I/O requirements
Data input and output in machine containing in excess of 20
million processors is a daunting and highly speculative problem
with practically no published literature. It is, however, likely,
that the number of processors that can access disc drives will be
a small fraction of the total. The amount of data input to climate
models is generally far less than the amount of data output. This
is likely to be the case for GCSRMs as well and we do not pro-
vide any further analysis of data input, although it will certainly
be a challenging problem. Designation of a certain fraction of
the machine as output processors and overlapping simultaneous
output with the integration of the model is likely to be a favor-
able strategy to deal with what will be climate model datasets
of unprecedented size. In this case, given an estimate of the
volume of output data, a minimum output rate can be deter-
mined using the time required to integrate a single dynamical
time step. This rate would include both the time required for
the output processors to receive messages from the integration
processors containing the output data and the time required to
write the files to disc. Estimating the volume and frequency of

JAMES-D

Co-design of Global Cloud System Resolving Models 15

!"#$#%&'(#%)
*+,-"./(#%)

Figure 8: MIPmapping is a technique for storing multi-
resolution images (texture maps) in a compact layout
for graphics cards. This same layout and partitioning
method can be used to store successively coarsened lev-
els of a multigrid hierarchy on many-core chip. A 128
core chip containing the first 7 levels of a multigrid hier-
archy in a MIPmap layout is depicted here along with the
local subdomain size associated with each core. The fast
on-chip interprocessor messaging network can be used to
efficiently communication data for the prolongation and
restriction operations that interpolate and coarsen data
between neighboring layers of the multigrid hierarchy.

data required to be output is difficult as this is usually deter-
mined at run time by the model user. In fact, in many cases,
analysis of output at the model’s grid resolution is unnecessary.
At the targeted ∼2km geodesic resolution discussed in this pa-
per, global data sets contain more points than there are pixels
on a screen (Prabhat 2010, personal communication). However,
regional analyses may be able to exploit this full resolution, so
it is likely that some fields will be saved at it.

One credible minimum estimate is to consider the re-
quired output for the Coupled Model Intercomparison Project
(CMIP3), the standard model configuration for the Fourth As-
sessment Report (AR4) of the Intergovernmental Panel on Cli-
mate Change (IPCC). The CMIP3 protocol specifies output at
both monthly and daily intervals. For the atmospheric compo-
nent, the monthly interval specification is seven fields with all
three spatial dimensions and 44 two-dimensional surface fields.
The daily interval specification is for four full fields and four-
teen surface fields. The rates necessary for the output proces-
sors to stay ahead of an integration running 1000 times faster
than real time are shown in Figure 9. Note that the total vol-
ume of data required by the daily output significantly exceeds
the monthly output. At the targeted ∼2km geodesic resolution,
the minimum CMIP3 output is a modest 8 GB/s. Storage re-
quirements however are significant, the total monthly plus daily
output would be 7 PB per simulated century at this resolution.

0.00001

0.0001

0.001

0.01

0.1

1

10

1 10 100 1000

G
B/
s

Grid Resolu1on (km)

CMIP3 Specs Output Rate (GB/s)

Monthly

Daily

Figure 9: Minimum CMIP3 output rates to maintain a
simulation rate of 1000 times faster than real time assum-
ing that I/O processing is completely overlapped with the
integration of the GCSRM.

Hence, a single calculation would be considerably larger than
the entire multi-model CMIP3 database (Meehl et al. 2005).
Higher temporal resolution data is useful for certain analyses at
current climate model resolution. It is certain that will also be
the case for GCSRMs, further compounding the storage issues.

5.7. Fault Resilience
An important question arises when proposing computing sys-
tems consisting of tens of millions of processors: How does one
deal with fault resilience? Although the problem is certainly
not trivial, neither is it unusual. As long as the total number
of discrete chips is not dramatically different, any large-scale
design faces the challenge of aggregating conventional server
chips into large-scale systems. Across silicon design processes
with the same design rules, hard failure rates (i.e. hardware fail-
ure) are proportional to the number of system sockets and typ-
ically stem from a mechanical failure. Soft error rates (error in
signal or datum not cause by hardware defect) are proportional
to the chip surface area, not how many cores are on a chip, and
bit error rates tend to increase with clock rate. The Green Flash
architecture concept is unremarkable in all these respects and
should not pose challenges beyond those that a conventional
approach faces. Simply stated, our strawman design contains
no more parts than do the largest existing scientific computing
systems.

To deal with hard errors, redundant cores can be added to
the chips to cover defects. An old trick in the memory busi-
ness, the strategy is apparent in designs such as the 188-core
Cisco Metro chip (Eatherton 2005), and it is entirely feasi-
ble for hardware/software co-designs as well. Moreover, low
power dissipation per chip (7 to 15W) will reduce the mechan-
ical and thermal stresses that often result in a hard error. Soft

Journal of Advances in Modeling Earth Systems – Discussion

16 Wehner et al.

errors can be addressed by standard reliability and error recov-
ery design practices in the memory subsystem, including full
ECC (error correcting code) protection for all hierarchical lev-
els. Low target clock frequency provides a lower signal-to-
noise ratio for on-chip data transfers. Finally, to enable faster
rollback if an error does occur, our design makes it possible
to incorporate a nonvolatile RAM controller onto each SMP so
that each node can perform a local rollback as needed. This
strategy enables much faster rollback, relative to user-space
checkpointing. These and other chip design parameters can be
fully explored by the techniques described in Section 6.3 prior
to any actual fabrication.

The Blue Gene system at Lawrence Livermore National
Laboratory uses similar fault resilience strategies and contains
a comparable number of sockets to our strawman proposal, yet
its mean time between failures (MTBF) is 7 to 10 days, which
is much longer than systems with far fewer processor cores.
Because hardware/software co-design, as we interpret it, tai-
lors the architecture to the application, a machine based on
the criteria detailed in this study would deliver considerably
more performance than a machine with a comparable number
of sockets, thus reducing its exposure to both hard and soft er-
rors. Applying well-known fault-resilience techniques together
with novel mechanisms to extend fault resilience, such as local-
ized nonvolatile RAM checkpoints, yields an acceptable MTBF
for extreme-scale implementations.

6. Further Processor Design Refinements

As mentioned earlier, the opportunities to reduce the requisite
flop rate and memory footprint of a GCSRM are somewhat lim-
ited and generally would require costly algorithmic changes.
However, other processor design specifications are sensitive to
the particular coding constructs. We detail some of these spec-
ifications and the techniques developed to optimize both the
hardware and software simultaneously in this section.

6.1. Auto-Tuning
In a hardware/software co-design exercise such as described in
this study, the number of different processor configurations is
nearly limitless. Manual optimization of a large code such as
a GCSRM is not feasible for each and every processor option.
Even for a single loop on a single processor design, the number
of coding possibilities is very large rendering the determina-
tion of the optimal result by hand uncertain. As the optimal
coding construct rules are different for every loop and every
processor design, only an automated search through the space
of coding possibilities could feasibly produce a large optimized
code. This technique, known as auto-tuning, parses loops writ-
ten by humans, rewrites them in a large number of predefined
ways, and tests each rewritten loop on the processor design in
question. The optimal choice may be determined by examin-
ing the loops’ performance in a high dimensional space of pro-

cessor design relevant specifications. A principal advantage of
this technique is that programmers can write loops in styles that
make intuitive physical sense but the processor compiler sees a
loop from which it can construct the most efficient executable
code.

We present an example using a recently developed auto-
tuning framework for stencil computations (Kamil et al. 2010).
In this example, we study the buoyancy loop from the CSU
blue anelastic vorticity equation model. The procedure begins
by parsing the annotated loop, converting it into an intermediate
representation. Then, the framework generates candidate ver-
sions of the loop with combinations of different optimizations,
including loop unrolling and loop reordering. These candidates
are run using a generated test harness and timed. Lastly, the
best-performing version of the loop, selected on considerations
relevant to the co-design, is included in a library to be called by
the application. Figure 10 shows results obtained from analy-
sis buoyancy loop from the CSU blue anelastic code, revealing
that number of total operations is dramatically impacted by the
choice of loop structure and cache configuration.

As a first exercise, consider the impact of a single optimiza-
tion technique, loop reordering, on cache memory footprint.
This exercise alters the order of the nested computational loops
which changes the memory access pattern. By reordering loops
properly, the cache footprint of the loop is reduced by over
100x from ∼100 KB to ∼1 KB. In fact, choosing the lowest
cache footprint option also changes the mix of total number
of operations required to compute the loop. In Figure 11, the
mix of operations is shown in the original and optimized loops.
Prior to optimization, a little less than half of the total opera-
tions are floating point operations, the remainder being integer
and control operations necessary to set up the arithmetic. After
optimization, these integer and control operations are substan-
tially reduced. The number of floating point operations are not
reduced by the auto-tuning, hence dominate the remaining op-
erations.

6.2. Co-Tuning
Conventional approaches to hardware design use benchmarks
to search for an efficient hardware architecture. However, the
success of software auto-tuning has shown that untuned codes
like benchmarks are unable to utilize the full performance po-
tential of the underlying hardware. Thus, this benchmark-based
approach to hardware design can lead to sub-optimal hard-
ware designs. As a solution, we propose hardware/software co-
design as an approach of using auto-tuned software instead of
benchmark codes in the process of hardware design. Since the
software is auto-tuned, hardware/software co-design enables
the automatic exploration of the optimal hardware and software
configurations in a systematic manner. Hardware/software co-
design enables scientific application developers to directly in-
fluence the design of supercomputers in a coordinated way.
Fast emulation platforms using field programmable gate arrays

JAMES-D

Co-design of Global Cloud System Resolving Models 17

 5.5e+07

 6e+07

 6.5e+07

 7e+07

 7.5e+07

 8e+07

 8.5e+07

 9e+07

 0 100 200 300 400 500 600

C
y
cl

e
s

(L
o
w

e
r

is
 B

e
tt

e
r)

Loop Version

16K Cache
32K Cache

16K Cache Baseline
32K Cache Baseline

Figure 10: Total cycle count to execute a variety of auto-
matically generated versions of anelastic vector vorticity
model’s buoyancy loop.

Floating point
Integer

Other

(a) Loop before reordering (b) Loop after reordering

Control
Bitwise

Figure 11: The mix of operations in the anelastic vector
vorticity model’s buoyancy loop before and after auto-
tuning to reduce cache size.

(FPGAs) can accelerate this the design exploration process by
orders of magnitude and make this approach practical.

As a demonstration of the co-tuning approach, we co-tuned
the buoyancy loop (mentioned in Section 6.1) along with the
various cache parameters. We considered different hardware
configurations by varying the total cache size, the associativity
of the cache and the cache line size. For each hardware configu-
ration, we auto-tuned the buoyancy loop and report the best per-
formance. Figures 12 show the impact of the cache parameters
on performance and energy consumption of the buoyancy loop
computation respectively. Figure 12(a) shows that auto-tuning
can significantly improve performance for small cache sizes.
The impact of tuning is small for large cache sizes as the prob-
lem can completely fit in the cache. Furthermore, Figure 12(b)
shows that although larger caches have the best performance,
they have a higher energy consumption as each cache access
consumes more energy.

6.3. Rapid design prototyping
Thus far we have discussed potential processor and architecture
improvements based on requirements from analysis of individ-
ual GCSRM components as well as a methodology to simul-
taneously optimize hardware and software. The final step of
our hardware/software co-design methodology is to develop a
highly tuned architecture for specific applications (in our case
GCSRMs) based on commodity components and existing in-
tellectual property (IP). The large search space in hardware and
software configuration requires the creation of a fast, accurate
emulation environment. Traditionally this performance predic-
tion would be done using software simulators. However, the
relatively slow execution time of software simulators prohibits
the iterative testing of the large number of possible configura-
tions necessary to achieve optimal performance. Furthermore,
complex codes such as GCSRMs are not well described by sim-
ple kernels leading to the necessity of co-designing with the
entire code. To address this shortcoming, we have combined

software-based simulation methods with hardware emulation
using FPGAs.

The embedded processor toolchain we have chosen gen-
erates both a functional model and a performance modeling
framework based on C++. While useful for initial software de-
velopment and initial performance measurements, these simu-
lators break down at real-world problem sizes such as an en-
tire GCSRM. The same toolchain is also able to generate reg-
ister transfer level (RTL) code that can be synthesized onto
an FPGA. Leveraging the FPGA emulation provides a two-
order of magnitude speed improvement over comparable soft-
ware based methods and allows gigabytes of memory to be al-
located per processor. The many-core design proposed here for
the strawman concept cannot fit on a single FPGA, however,
multi-FPGA boards such as available from BEECube or Con-
vey allow tens of cores to be emulated in parallel. The accuracy
of FPGAs is inherently better than software based methods, as
it requires an actual representation of the hardware to be con-
structed. The increase in speed and memory available to the
emulated cores allow the full application to be benchmarked
with realistic problem sizes rather than relying on representa-
tive loops. The ability to benchmark full applications on an
emulated embedded processor was first demonstrated by our
team at Supercomputing 2008. The dynamics portion of a re-
gional version of the blue anelastic CSU atmospheric model
was ported to the Tensilica Xtensa LX2 processor and ran at
25MHz. The comparable software simulation of the LX2 runs
at ∼100 KHz, giving the FPGA emulation environment a 250x
speed advantage. These performance modeling techniques are
not limited to climate models and have been successfully ap-
plied to other applications.

Drawing on a library of independently developed Verilog
modules it is possible to quickly assemble multicore systems.
We have demonstrated dynamically sizable caches and can ex-
tend the configurability to more architectural features, such
as DRAM memory interfaces and on-chip network topology.
A typical drawback to hardware based emulators is the lack

Journal of Advances in Modeling Earth Systems – Discussion

18 Wehner et al.

16 32 64 16 32 64 16 32 64 16 32 64 16 32 64 16 32 64 16 32 64 16 32 64 16 32 64

0

100

200

300

400

500

600

C
yc

le
s

(m
ill

io
ns

of
cy

cl
es

)

1 way 2 way 4 way 1 way 2 way 4 way 1 way 2 way 4 way

1k 4k 32k

Untuned loop
Tuned loop

(a)

16 32 64 16 32 64 16 32 64 16 32 64 16 32 64 16 32 64 16 32 64 16 32 64 16 32 64

0

0.2

0.4

0.6

0.8

1

1.2

1.4

E
ne

rg
y

(m
ill

ijo
ul

es
)

1 way 2 way 4 way 1 way 2 way 4 way 1 way 2 way 4 way
1k 4k 32k

Untuned loop
Tuned loop

(b)

Figure 12: (a) Effect of auto-tuning the buoyancy loop on performance as a function of the cache parameters. The
cache line size was varied as 16, 32, 64 bytes, associativity was varied as 1, 2, 4 and total size was varied as 1K, 4K,
32K. The impact of tuning is dramatic on small caches but performance saturates when the cache is large enough.
(b) Impact of auto-tuning the buoyancy loop on energy consumed for the processor and cache. Because performance
saturates when the cache is large, energy consumption increases for larger cache because they consume more energy
per access.

of performance information available. However, the Tensilica
processors provide a continuous stream of debug information
fully describing the processor’s activity. This data can be trans-
lated into performance statistics that can be collected enabling
the necessary performance profiling for effective co-tuning.
Dynamic reconfiguration and detailed performance informa-
tion enable our FPGA based emulation platform to achieve sim-
ilar flexibility and state visibility found within software based
methods. The value in the credibility of an FPGA based em-
ulation goes beyond providing accurate performance projec-
tions. From a practical standpoint, any co-design process must
involve both hardware vendors and scientists that will, likely
be from differing labs and industry partners. IP issues can be-
come a barrier to innovation as hardware vendors are often re-
luctant to share low-level details of future designs. To further
enhance vendor interaction, the flexible nature of the tools used
to rapidly prototype designs can be extended to provide a proxy
architecture for vendor specific technologies. The availability
of a proxy architecture model that is highly credible is a pow-
erful tool to influence industry as the hardware designers and
architects are not constrained by products that must fit into a
vendors existing product roadmap.

7. Discussion and Conclusion

We have estimated the computational requirements necessary
to integrate a Global Cloud System Resolving Model (GC-
SRM) at rates appropriate for climate research by analyzing
each of its major components separately. We find that a sus-

tained computational rate of 28 Pflops and 1.8 PB of total mem-
ory would enable such a model to simulate the atmosphere one
thousand times faster than real time. These requirements are
machine architecture independent. We have also presented a
strawman machine architecture tailored to the GCSRM as an
example to illustrate our philosophy of hardware/software co-
design. 20,971,520 processors could be mapped onto a global
geodesic grid of ∼2km resolution with 128 vertical levels using
a three-dimensional domain decomposition. An on-chip cache-
size of 256 Kb per core would be sufficient to accommodate
the working set size of every loop of the dynamics kernel. A
more modest 64 Kb L1 cache per core, would fit the working
set for more than 80% of the dycore loops. Network require-
ments depend on the number of processing cores on a chip.
In fact, fast on-chip interprocessor communications allows a
grouping of subdomains into a “super-subdomain” to signifi-
cantly simplify communication patterns. For instance, if a sin-
gle chip contains 512 cores, the strawman architecture would
contain 40,960 individual chips allowing an equivalent num-
ber of super-subdomains. 2,000,000 nearest neighbor off-chip
messages must be sent per second at a bandwidth of 37 GB per
second to maintain the desired throughput rate. These archi-
tectural specifications are well within other credible estimates
for future exascale systems (Simon et al. 2008) (Shalf et al.
2011) (Stevens and White 2009).

The strawman sustained computational rate of 1.3 Gflop per
core is a formidable barrier. Modern climate models rarely sus-
tain better than five percent of the overall peak machine per-
formance. The implied peak rate of 27 Gflop per core and

JAMES-D

Co-design of Global Cloud System Resolving Models 19

the corresponding overall machine peak rate of 560 Pflop are
unlikely in the foreseeable future. Power, cost and heat dis-
sipation conspire against such an architecture. An aggressive
hardware/software co-design can increase code efficiency and
enable designers to optimize the trade-offs between energy ef-
ficiency, cost, and delivered application performance. The in-
creased efficiencies due to hardware/software co-design means
that lower peak performances can achieve the required GCSRM
integration rates sooner and at lower cost. We have demon-
strated that auto-tuning can reduce the number of required non-
floating point operations in selected loops from the dynamics,
and expose opportunities for more efficient hardware designs.
Improved automation of this process to optimize entire codes
is an essential component of our co-design philosophy. An ac-
curate census of the mix of instructions as well as other ma-
chine relevant quantities required by the GCSRM algorithm al-
lows iteration of processor design tailoring chip characteristics
to the GCSRM. This aspect of co-design increases efficiency
of the system by reducing waste. Chip complexity and power
requirements can be significantly reduced as a result of elimi-
nating hardware resources that would otherwise not contribute
to the performance of the application. We have demonstrated
that the performance of any desired processor/chip configura-
tion can be efficiently simulated by FPGAs, thus enabling rapid
iterative prototyping of candidate co-designs.

One criticism of this approach is that it can result in a highly
optimal design for a single code for a single snapshot of time.
We agree that pursuing co-design methods to their logical ex-
treme would result in such over-specialized machines. Hence,
it is ill-advised to limit a co-designed architecture to a single
code as it is well recognized that multi-model simulations are
critical to the understanding of the climate system. However,
our machine design is comprised of fully general purpose/fully-
programmable cores, so the design is flexible enough to han-
dle a broad range of climate code implementations (as demon-
strated by our investigation of a broad range of codes in this
study) so long as the discretization method is scalable. Our vi-
sion for a co-designed architecture must then be able to perform
well for a variety of GCSRM algorithms. This necessitates the
need to characterize the instruction mix and machine relevant
quantities for each model of interest. Other credible kilometer-
scale schemes, such as those based on the cubed sphere grid,
undoubtedly require different processor characteristics. How-
ever, we expect that the differences in machine requirements
between one climate code and another are very much less than
that required for a full general purpose machine design and that
appropriate compromises in co-design are possible.

Our strawman design pushes the limits of what can be ac-
complished by simple decomposition of the physical domain
of the GCSRM. Additional computational burden, whether by
increasing model complexity or resolution will push the single
processor sustained computational rate past what we believe
achievable. For example, to reach our target execution rate
for this code, our strawman design required extremely small

8x8x10 subdomain sizes. Further refinement of the subdo-
mains to attempt more parallelism are unlikely to be fruitful
due to increased communication burdens. Also, increased sin-
gle processor clock rates would not maintain optimal energy
efficiency. Rather than continuing this SPMD (Single Program
Multiple Data) type of parallelism to further improve perfor-
mance, functional partitioning with different components of the
model executing concurrently can overcome these granularity
and processor speed limitations. Fast exchange of data via on-
chip messaging between cores is a key machine architecture
design feature required to permit this additional source of par-
allelism.

For example in the case of a GCSRM, we could concurrently
schedule all or parts of the physics computations with the dy-
namic core of the climate code, thereby increasing the number
of utilized processors and hence overall throughput. However,
conventional C and Fortran coding techniques make it difficult
to manage such functional partitioning, so there is a new thrust
to explore new asymmetric and asynchronous approaches to
achieving strong-scaling performance improvements from ex-
plicit parallelism (Song et al. 2009, Amato and An 2000). Tech-
niques that resemble class static dataflow methods are garner-
ing renewed interest because of their ability to flexibly sched-
ule work and to accommodate state migration to correct load
imbalances and failures for this kind of functional partitioning
model. Successful demonstration of such parallelization pro-
cedures for a range of leading extreme-scale applications can
then be utilized by other similar codes at smaller scales, which
will accelerate development efforts for the entire field.

We stress that our results are not a complete estimate for a
fully coupled climate model. Additional throughput and mem-
ory would be required to include ocean, sea ice, land surface,
biogeochemistry and atmospheric chemistry processes. Many
existing fully coupled climate models already exploit func-
tional parallelism by assigning different processor sets to each
major scientific component of the model (DeLuca et al. 2000).
Due to differing computational loads, this is an effective strat-
egy if the right combinations of processors can be determined
to load balance the entire model. In a co-designed system, there
is no requirement that all the processing chips be the same. If
the circumstances dictate, it would be possible to co-design dif-
ferent parts of a machine to be optimal for different model com-
ponents. Carrying the idea of this type of heterogeneity even
further, there is no requirement that all processors on a single
chip be identical. This would allow process parallelism within
a model component. For instance, for chips assigned to the at-
mospheric model component, some of the processors could be
tailored to advection, another group of them tailored to radi-
ation transport, yet a third group tailored to dynamics and so
on. Fast on-chip communication between these code portions
would permit assignment of multiple processors to a single sub-
domain in this fashion. In a simpler sense, our strawman idea
for vertical decomposition relies on the same basic concept by
co-locating different vertical data at the same horizontal points

Journal of Advances in Modeling Earth Systems – Discussion

20 Wehner et al.

on the same chip.

References

N. Amato and P. An. Task scheduling and parallel mesh-sweeps
in transport computations. Technical report, Parasol Labo-
ratory, Texas A&M University, 2000.

A. Arakawa and C. S. Konor. Unification of the Anelas-
tic and Quasi-Hydrostatic Systems of Equations. Monthly
Weather Review, 137(2):710–726, February 2009. doi:
10.1175/2008MWR2520.1.

S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A
Portable Programming Interface for Performance Evaluation
on Modern Processors. International Journal of High Per-
formance Computing Applications, 14:189–204, Fall 2000.

C. DeLuca, J. W. Larson, L. Buja, A. Craig, and
J. Drake. Community Climate System Model Soft-
ware Engineering Plan 2000-2005, November 2000.
URL http://www.cesm.ucar.edu/working_
groups/Software/plan2000-2005.

D. Donofrio, L. Oliker, J. Shalf, M. F. Wehner, C. Rowen,
J. Kruger, S. Kamil, and M. Mohiyuddin. Energy-Efficient
Computing for Extreme Scale Science. IEEE Computer
Magazine, pages 52–60, October 2009.

W. Eatherton. The push of network processing to the top of
the pyramid. http://www.cesr.ncsu.edu/ancs/
slides/eathertonKeynote.pdf, 2005.

ECMWF, 2010. URL http://www.ecmwf.int/
products/data/operational_system/
evolution/evolution_2010.html#
24June2010.

GreenFlash, 2010. URL http://www.lbl.gov/cs/
html/greenflash.html.

R. P. Heikes and D. A. Randall. Numerical integration of the
shallow water equations on a twisted icosahedral grid. part
i: Basic design and results of tests. Mon. Wea. Rev., 123:
1862–1880, 1995.

C. Jablonowski and D. L. Williamson. A Baroclinic Instability
Test Case for Atmospheric Model Dynamical Cores. Q. J. R.
Meteorol. Soc., 132(621C):2943–2975, October 2006. doi:
10.1256/qj.06.12.

S. Kamil, C. Chan, L. Oliker, J. Shalf, and S. Williams.
An Auto-Tuning Framework for Parallel Multicore Stencil
Computations. In IEEE International Symposium on Paral-
lel Distributed Processing (IPDPS), pages 1–12, April 2010.

M. F. Khairoutdinov and D. A. Randall. Cloud Resolving Mod-
eling of the ARM summer 1997 IOP: Model Formulation,
Results, Uncertainties and Sensitivities. Journal of Atmo-
spheric Sciences, 60:607–625, 2003.

P. Kogge et al. Exascale computing study: Tech-
nology challenges in achieving exascale systems.
http://users.ece.gatech.edu/˜mrichard/
ExascaleComputingStudyReports/exascale_
final_report_100208.pdf, 2008.

F. Li, W. Collins, M. F. Wehner, D. L. Williamson, J. G. Olson,
and C. Algieri. Impact of Horizontal Resolution on Simu-
lation of Precipitation Extremes in an Aqua-Planet Version
of Community Atmospheric Model (CAM3). Submitted to
Tellus, 2010.

J. D. C. Little. A proof of the queuing formula: L=λw. Op.
Res., 9:383–387, 1961. doi: doi:10.1287/opre.9.3.383.

J. L. McGregor. Semi-lagrangian advection on conformal-
cubic grids. Mon. Wea. Rev., 124:13111322, 1996.

G. M. Meehl, C. Covey, B. McAvaney, M. Latif, and R. J.
Stouffer. Overview of the Coupled Model Intercomparison
Project. Bulletin of American Meteorological Society, 86:
89–93, 2005.

A. A. Mirin and P. H. Worley. Issues and Techniques
for Performance Optimization at Scale: Recent Progress
with the Community Atmosphere Model. LLNL Re-
port LLNLPRES-411317, Oakridge National Laboratory,
Oakridge, Tennessee, USA, 2009. Climate 2009: Eleventh
International Specialist Meeting on Next Generation Models
on Climate Change and Sustainability for Advanced High-
Performance Computing.

W. Putnam and S.-J. Lin. Finite-volume transport on various
cubed-sphere grids. J. Comput. Phys., 227:55–78, 2007.

M. Rancic, R. Purser, and F. Mesinger. A global shallow-water
model using an expanded spherical cube: Gnomonic versus
conformal coordinates. Quart. J. Roy. Meteor. Soc., 122:
959–982, 1996.

D. A. Randall, M. F. Khairoutdinov, A. Arakawa, and
W. Grabowski. Breaking the Cloud Parameterization Dead-
lock. Bulletin of the American Meteorological Society, 84:
1547–1564, March 2003. doi: 10.1175/BAMS-84-11-1547.

R. Sadourny. Conservative finite-difference approximations
of the primitive equations on quasi-uniform spherical grids.
Mon. Wea. Rev., 100:136–144, 1972.

M. Satoh, T. Matsuno, H. Tomita, H. Miura, T. Nasuno,
and S. Iga. Nonhydrostatic icosahedral atmospheric model
(nicam) for global cloud resolving simulations. J. Comp.
Phys., 227:3846–3514, 2008.

JAMES-D

Co-design of Global Cloud System Resolving Models 21

J. Shalf. The new landscape of parallel computer architecture.
Journal of Physics: Conference Series, 78(1), 2007.

J. Shalf, J. Morrison, and S. Dosanj. Exascale computing
technology challenges. Lecture Notes on Computer Science
(LNCS 6449), 6449:1–25, 2011.

D. E. Shaw et al. Millisecond-Scale Molecular Dynam-
ics Simulations on Anton. In Conference on High Per-
formance Computing, Networking, Storage and Analysis
(SC09), 2009.

S. S. Shende and A. D. Malony. The Tau Paral-
lel Performance System. International Journal of
High Performance Computing Applications, 20:287–311,
May 2006. ISSN 1094-3420. doi: 10.1177/
1094342006064482. URL http://portal.acm.org/
citation.cfm?id=1125980.1125982.

J. Shukla, B. Hoskins, J. Kinter, J. Marotzke, M. Miller,
J. Slingo, and M. Beland. Workshop Report: World Mod-
elling Summit for Climate Prediction, Reading, UK, 6-9
May 2008, January 2009. World Climate Research Program
Report #131.

H. Simon, T. Zacharia, R. Stevens, et al. Modeling and Simu-
lation at the Exascale for Energy and the Environment (E3).
DOE ASCR Program Technical Report, DOE Office of Ad-
vanced Scientific Computing Research, 2008.

D. Skinner. Integrated Performance Monitoring: A portable
profiling infrastructure for parallel applications. In Proc.
ISC2005: International Supercomputing Conference, Hei-
delberg, Germany, June 21-24, 2005.

S. Solomon, D. Qin, M. Manning, M. Marquis, K. Averyt,
M. M. B. Tignor, J. Henry Leroy Miller, and Z. Chen. Con-
tribution of Working Group I to the Fourth Assessment Re-
port of the Intergovernmental Panel on Climate Change.
Cambridge University Press, 2007.

F. Song, J. Dongarra, and S. Moore. A scalable non-blocking
multicast scheme for distributed dag scheduling. In Proceed-
ings of the International Conference on Computational Sci-
ence (ICCS), pages 195–204. Springer, 2009.

R. Stevens and A. White. Scientific grand chal-
lenges: Architectures and technology for extreme
scale computing. http://extremecomputing.
labworks.org/hardware/reports/FINAL_
Arch&TechExtremeScale1-28-11.pdf, 2009.

K. E. Taylor, R. J. Stouffer, and G. A. Meehl. A Summary of
the CMIP5 Experiment Design, 2009. URL \url{http:
//www-pcmdi.llnl.gov/}.

M. F. Wehner, L. Oliker, and J. Shalf. Toward Ultra-High
Resolution Models of Climate and Weather. International
Journal of High Performance Computing Applications, 22
(2):149–165, May 2008. doi: 10.1177/1094342007085023.

M. F. Wehner, L. Oliker, and J. Shalf. Low Power Supercom-
puters. IEEE Spectrum, October 2009.

L. Williams. Pyramidal parametrics. In Computer Graphics
(SIGGRAPH 83 Proceedings, 1983.

S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and
K. Yelick. Scientific Computing Kernels on the Cell Proces-
sor. International Journal of Parallel Programming, 35(3):
263–298, 2007.

D. L. Williamson. Convergence of aqua-planet simulations
with increasing resolution in the Community Atmospheric
Model, Version 3. Tellus A, 60:848–862, October 2008. doi:
10.1111/j.1600-0870.2008.00339.x.

Acknowledgments.All authors from LBNL were supported
by the Office of Advanced Scientific Computing Research or
the Regional and Global Climate Modeling Program of the
Office of Biological and Environmental Research in the De-
partment of Energy Office of Science under contract number
DE-AC02-05CH11231. In addition, LBNL authors were sup-
ported by the LBNL Laboratory Directed Research Program
project, Holistic Approach to Energy Efficient Computing Ar-
chitecture. David Randall, Celal Konor, Ross Heikes and Hi-
roaki Miura were supported by Cooperative Agreement DE-
FC02-06ER64302 from the U.S. Department of Energy. This
research used resources of the National Energy Research Sci-
entific Computing Center, which is supported by the Office of
Science of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231.

Journal of Advances in Modeling Earth Systems – Discussion

