Cosmic Microwave Background Map-Making at the
Petascale and Beyond

Rajesh Sudarsan Julian Borrill
Leonid Oliker Horst Simon Yili Zheng

Theodore Kisner Kamesh Madduri

Christopher Cantalupo

Computational Research Division, Lawrence Berkeley National Laboratory
_ _ Berkeley, CA 94720, USA _
{rsudarsan, jdborrill, cmcantalupo, tkisner, kmadduri, loliker, hdsimon, yzheng}@Ibl.gov

ABSTRACT

The analysis of Cosmic Microwave Background (CMB) ob-
servations is a long-standing computational challenge, driven
by the exponential growth in the size of the data sets be-
ing gathered. Since this growth is projected to continue for
at least the next decade, it will be critical to extend the
analysis algorithms and their implementations to peta-scale
high performance computing (HPC) systems and beyond.
The most computationally intensive part of the analysis is
generating and reducing Monte Carlo realizations of an ex-
periment’s data. In this work we take the current state-
of-the-art simulation and mapping software and investigate
its performance when pushed to tens of thousands of cores
on a range of leading HPC systems, in particular focusing
on the communication bottleneck that emerges at high con-
currencies. We present a new communication strategy that
removes this bottleneck, allowing for CMB analyses of un-
precedented scale and hence fidelity. Experimental results
show a communication speedup of up to 116X using our
alternative strategy.

1. INTRODUCTION

The CMB is the remnant radiation from the Big Bang it-
self. Last scattered when the Universe first cooled enough for
neutral hydrogen to form, some 400,000 years after the Big
Bang, it provides the earliest possible image of the Universe.
Tiny fluctuations in the CMB across the sky encode not only
the basic parameters of cosmology, but also, using the Big
Bang as the ultimate particle accelerator, insights into fun-
damental physics at energies some 12 orders of magnitude
higher than those of the Large Hadron Collider beams [9].
However the faintness of these fluctuations requires us to
gather and process enormous data sets to achieve sufficient
signal-to-noise to decode them, and as a result, CMB data
analysis is an extremely computationally intensive endeavor.
Since CMB data sets have been growing exponentially in the
last two decades, and are projected to continue to do so for at
least the next decade, their analysis presents a long-standing
challenge to scale the algorithms and implementations to the
largest supercomputers available at any epoch.

The main focus of this work is to scale MADmap — a
state-of-the-art massively parallel CMB analysis code — to
the next generation of peta-scale supercomputers in order
to be able to apply it to CMB experiments currently being
fielded. Previous work by Cantalupo et.al [6] has shown that
the inter-node communication phase in MADmap becomes a
bottleneck when it is scaled to more than O(10*) MPT tasks.

The highly irregular communication required in MADmap
cannot be efficiently captured via nearest neighbor-based or
tree-based all-to-all communication schemes. We present a
novel approach that minimizes the data volume communi-
cated, and is generally applicable to any sparse, irregular
data distribution.

This paper presents two new optimizations towards allevi-
ating the communication bottleneck and scaling up MADmap.
The first one involves implementing the new communication
algorithm that replaces MPI_Allreduce with MPI_Allgather
operations (discussed in more detail in Section . We
also employ “hybrid” programming to reduce the number of
MPI tasks. We utilize one MPI task per socket, together
with as many with OpenMP [19] threads as there are cores
on the socket. We evaluate the costs and benefits of these
optimizations by running a strong scaling experiment on up
to 16K cores on four different systems, and show that these
combined optimizations significantly reduce the communi-
cation bottleneck, achieving a speedup of up to 116x. The
goal of this work is to provide an application-level portable
optimization for a broad variety of supercomputers used for
production CMB analysis.

The remainder of the paper is laid out as follows: Sec-
tion [2| gives an overview of CMB science in cosmology and a
brief introduction to the analysis of current and future CMB
experiments; Section [3]| details the design and implemen-
tation of MADmap, its current communication bottleneck,
and the optimizations implemented to alleviate it; Section
discusses the experimental setup used to evaluate the perfor-
mance of these new approaches; Section [5]shows the benefits
of these optimizations across a number of HPC systems; fi-
nally Section [6] presents our conclusions and directions for
future research.

2. CMB SCIENCE

Observations of the CMB have already had a profound
effect on our understanding of the Universe. Its very exis-
tence sounded the death-knell for the Steady State cosmol-
ogy, while its extraordinary isotropy posed questions that
were effectively addressed by the theory of Inflation, which
posits a period of exponential expansion in the first moments
after the Big Bang. However, it is the tiny fluctuations in
the CMB temperature and polarization that carry the most
detailed imprint of our cosmology. Already they have pro-
vided the strongest evidence for Inflation, as well as con-
straining the age, composition and overall geometry of the
Universe [16].

At the turn of the millennium, CMB results coupled with

the accelerating expansion of the Universe deduced from ob-
servations of type la supernovae, led to the surprising but
now widely accepted “Concordance Cosmology”, in which
the Universe is believed to comprise around 70% dark en-
ergy, 25% dark matter and 5% ordinary matter [10]. Un-
derstanding the nature and origin of these mysterious dark
components — some 95% of the mass-energy of the Universe
— is now the grand challenge in cosmology and fundamental
physics.

Future observations of the CMB promise to yield even
greater insight into the foundations of the Universe. The
Planck satellite [22] — launched in May 2009, and following
in the footsteps of the very successful COBE |27, [§] and
WMAP [32] missions — will provide the definitive measure-
ment of the temperature anisotropies, as well as the most
detailed polarization observations to date. These results
will be an essential complement to the numerous experi-
ments currently being developed to improve our understand-
ing of the dark energy (indeed the expected Planck results
are routinely assumed as given in such experiments’ perfor-
mance projections). Beyond Planck, first a series of sub-
orbital experiments and ultimately another satellite mission
will search for the faintest CMB signal, its B-mode polariza-
tion, which is expected to carry, amongst other signals, the
imprint of gravity waves emitted during Inflation. Precise
measurement of this polarization signal on all angular scales
constitutes the next great frontier for CMB research.

2.1 CMB Data Analysis

Most CMB experiments gather their data by scanning the
sky with an array of detectors at multiple frequencies to pro-
duce a time-ordered data set comprising sky signal (both
CMB and astrophysical foregrounds) and instrument noise.
These data are reduced to pixelized maps of the intensity (I)
and two polarization components (Q, U) of the microwave
sky at each observing frequency. These maps are then com-
bined to separate the CMB from the foreground contami-
nants, and the CMB IQU map-triplet is then used to deter-
mine the auto- and cross-angular power spectra of the CMB
temperature (T) and E- and B- polarization modes, from
which fundamental cosmological parameters can be deter-
mined.

This analysis is essentially data compression, progressively
reducing the dimensionality of the data from time samples
through multi- to single-frequency sky pixels to angular po-
wer spectral coefficients and ultimately cosmological param-
eters. However, the strength of the assumptions required by
each step progressively increases, with the first two steps de-
pending only on the experimental data (including perform-
ance monitoring data), the next two steps on the statistical
and/or astrophysical properties of the sky signal, and the
final step on a choice of a cosmology and its parameteri-
zation; for this reason the core data products of any CMB
experiment are its maps and power spectra.

Under minimal assumptions it is possible to write down
maximum likelihood expressions for the maps given the time-
ordered data and for the power spectra given the maps, and
to show that these represent lossless compression [5]. How-
ever, a key feature of CMB data is that their three ma-
jor components — the CMB itself, foregrounds, and detec-
tor noise — are individually correlated, and moreover, each
is most simply described in a different domain. Detector
noise is piecewise correlated in the time-domain; foregrounds

signals are spatially correlated pixel-templates; and the az-
imuthally symmetric CMB signal can be represented by its
angular correlations — indeed it is precisely the strength of
these that we want to determine. These various correla-
tions precludes the kind of divide-and-conquer embarrass-
ingly parallel approaches used to analyze very large data
sets in disciplines like accelerator physics. Instead, any CMB
analysis has to be able to manipulate an entire data set si-
multaneously and coherently, ideally keeping track not just
of the data in each basis, but also of their correlations as
they are reduced.

In practice the computational tractability of any CMB
analysis depends on two data parameters: the numbers of
time-samples (N;) and sky-pixels (V). The first is the prod-
uct of the number of time streams, their sampling rate(s)
and the duration of the observation, while the second comes
from the ratio of the fraction of the sky observed to the size
of the detector beams. Together these set the overall sensi-
tivity of the experiment and the lower and upper limits of
its angular power spectral range.

Using preconditioned conjugate gradient techniques [11]
and exploiting the piecewise stationarity of the time-time
noise correlations, the floating point operation count for
maximum likelihood map-making scales as O(N;). However
the maximum likelihood power spectrum estimation flop-
count scales as O (NPS), making it impractical for data sets
with more than a few hundred thousand pixels; while it can
still play a role for low-resolution (low multipole) analyses of
current and future data sets, it has largely been replaced by
Monte Carlo pseudo-spectral methods [12]. These reduce
the map-domain operation count by simply taking spheri-
cal harmonic transforms of the actual maps to derive so-
called pseudo-spectra which are necessarily biased by the
maps’ incomplete sky coverage (since even full sky obser-
vations have to excise the galactic plane) and inhomoge-
neous, correlated noise. These effects are then corrected for
by Monte Carlo methods, simulating the time-ordered data
that would have been gathered by the experiment for a set
of known sky and noise realizations, mapping these, and us-
ing the pseudo-spectra derived from these maps to derive
the transfer function needed to convert pseudo to real spec-
tra. These methods therefore scale with the simulation and
map-making costs, both O(N;), and both with significant
pre-factors.

The dominant computational costs for CMB future mis-
sions will therefore come from manipulations of their time-
ordered data — primarily simulation (both for mission de-
sign and data analysis) and map-making, both often involv-
ing repetition over Monte Carlo realizations and/or itera-
tions. Table [2 shows the numbers of time samples gathered
or projected for all satellite and a sample of sub-orbital CMB
missions. Their evolution has been driven by the demands
of CMB science, first for smaller angular scale tempera-
ture and then for intrinsically fainter polarization signals,
each goal requiring larger data sets to achieve the necessary
signal-to-noise. In particular, measuring the B-mode polar-
ization spectrum will requires experiments with 1-2 orders of
magnitude more detectors, such as the EBEX [20] balloon-
borne, PolarBeaR (23] and QUIET [24] ground-based, and
ultimately CMBpol |7} |4] satellite missions.

Over the next 15 years we can expect CMB time-ordered
data volumes to grow by three orders of magnitude; co-
incidentally this exactly matches the projected growth in

Table 1: The evolution of all satellite and selected sub-orbital CMB experiments’ actual or projected sample
counts over time, driven by the sensitivities required to detect signals both at higher resolution and of lower
intrinsic brightness. Details of the proposed next-generation CMBpol satellite are from the EPIC mission

concept study.

Date Experiment Description Duration Streams Rate (Hz) Samples
1990-93 COBE Low-res, T 4 years 6 1 8x 108
1998 BOOMERanG Mid-res, T 10 days 16 63 9 x 10°
2001-10 WMAP Mid-res, TE 9 years 40 7.8-19.5 2 x 10'*
2009-11 Planck High-res, TE 2 years 74 32.5-172 6 x 10!
2011 EBEX High-res, TEB 14 days 1406 400 7 x 10*!
2011-13 PolarBeaR High-res, TEB 2 years 2548 200 3 x 10*3
2012-15 QUIET-II High-res, TEB 3 years 11200 100 1 x 104
20204+ CMBpol/EPIC High-res, TEB 4 years 1620 1000 2 x 10**

computing power over the same period assuming a contin-
uation of Moore’s Law. Since today’s CMB data analyses
are already pushing the limits of current HPC systems, this
implies that the algorithms and their implementations will
have to continue scaling on the leading edge of HPC tech-
nology for the next 10 epochs of Moore’s Law if we are to be
able fully to support first the design and deployment of these
missions and then the scientific exploitation of the data sets
they gather.

3. MADMAP
3.1 The Current MADmap Package

The last decade has seen the development of a general pur-
pose massively parallel CMB map-making code, MADmap,
together with its application to real and simulated data from
a number of experiments on many generations of HPC sys-
tems. As shown in Figure [l MADmap has already success-
fully been scaled through a 100-fold increase in concurrency,
600-fold increase in peak system performance and 1000-fold
increase in data volume; the next step is to enable MADmap
to make effective use of the next generation of peta-scale
HPC systems, with the particular scaling challenges they
will present, in order to be able to analyze the next genera-
tion of CMB polarization experiments.

MADmap is a massively parallel implementation of a pre-
conditioned gradient (PCG) solver for maximum likelihood
CMB map-making under the assumption that the noise is
Gaussian and piecewise stationary. Each datum is the sum
of instrument noise and a sky signal (CMB+foregrounds)

di =n¢ + st =ne + Pip sp

where P, is the pointing matrix, giving the weight of each
sky pixel p in sample t. Given the inverse time-time noise

correlation matrix N ;,1 the maximum-likelihood map m is

then given by [29, 28]
m=(P"N"'P) T PTN g
Writing
M = P'N'P
b = P'"N'd
this can be cast in PCG form

Q 'Mm=Q b

for some pre-conditioning matrix @ — typically chosen to be
the trivially-invertible block-diagonal white noise approxi-
mation to M, with each 3 x 3 IQU-block constructed us-
ing just the diagonal of N~!. Key to the MADmap im-
plementation is to note that, by construction, N~ is block
band Toeplitz in the time domain (with each block corre-
sponding to an interval over which the noise is stationary)
and therefore diagonal in the Fourier domain. Multiply-
ing a pixel-domain vector by M is therefore most efficiently
performed by explicitly un-pointing the vector to the time-
domain, Fourier transforming it, multiplying by the diagonal
matrix, inverse Fourier transforming it, and re-pointing to
the pixel-domain.

Until recently, the bottlenecks to scaling MADmap have
been its IO requirements — specifically reading the time-
ordered pointing and observation data. Like many massively
parallel CMB codes, MADmap uses the M3 data abstraction
layer [6), [17] to isolate the generic analysis algorithm from
the particular details of a specific experiment’s data format
and distribution, since these are invariably unique to each
experiment. Instead of individually recasting data to each
application’s preferred format and distribution, as used to
be the norm, the M3 data abstraction layer provides a simple
API for each CMB data type and uses an XML description
of the data files included in a particular analysis (in a run
configuration file, or RunConfig) to enable an application’s
generic data requests to be converted into the appropriate
specific file operations. By virtue of its support of arbitrary
data formats and distributions, M3 also allows application
codes transparently to access compressed, multi-component
or virtual data by uncompressing, combining or simulating
the requested data on demand.

Historically, CMB experiments would reconstruct the po-
inting for every sample from every stream and save these on
disk to be accessed by subsequent analyses. However this
detector-specific full pointing came from first reconstruct-
ing the pointing of a single fiducial line-of-sight (such as the
telescope boresight) from instruments like star trackers and
gyroscopes that are sampled much less frequently than the
detectors. Reducing the IO load of the pointing data has
been achieved by using the Generalized Compressed Point-
ing (GCP) library which takes the sparse-sampled fiducial
pointing and calculates the detector-specific full pointing
over some specific interval only when the application code re-
quests that data through the M3 interface. This compresses
the pointing data volume by factors of (i) the number of de-
tectors (10%-10%) and (ii) the ratio of the sampling rate of the

Figure 1: MADmap scaling to date: an O(10°%-
sample, 10°-pixel) BOOMERanG-98 temperature
map calculated in 2000 on 128 Cray T3E proces-
sors, an O(10'°-sample,10®-pixel) single-frequency
simulated Planck temperature map calculated in
2005 on 6000 IBM SP3 processors, and an O(10*-
sample,10°-pixel) simulated EBEX temperature and
polarization map triplet calculated in 2008 on 15360
Cray XT4 cores.

detectors to the sampling rate of the pointing instruments
(102-10%), for an overall reduction of 5-7 orders of magnitude
so that even the largest projected experiment only requires
a few GB of pointing data.

Unlike the pointing data, real detector data do not have
the kind of redundancy that allows for compression and re-
construction on the fly. However, by far the majority of the
detector data used in CMB analyses is simulated — either
for mission design studies, or as Monte Carlo realizations
for power spectrum estimation. In these cases simulation
is immediately followed by analysis, which has traditionally
meant first performing the simulation and writing the detec-
tor data out to disk, and then reading those data back in for
analysis. To reduce the 10 load of such detector data the On-
The-Fly Simulation (OTFS) library simulates an interval of
a particular detector’s data data only when requested by the
analysis application, again through the M3 data abstraction
interface. Since these data now need never touch disk, this
approach can completely solve the simulated detector data
IO problem for any application using the M3 interface, albeit
at the cost of re-calculation for each re-analysis.

3.2 Communication Bottleneck

With the IO bottleneck solved, the next scaling issue to
emerge has been in MADmap’s communication requirements.
Since the dominant computational cost scales with the num-
ber of time samples, load-balancing requires these time or-
dered data to be equally distributed over the processes. Gi-
ven this data distribution, each process then has some of the
information about some subset of the pixels (i.e. those pixels
observed by its time-ordered data). At each PCG iteration,
these pixel data must be reduced over all of the processes to
generate the complete updated map.

The mapping between time-ordered data and sky pix-
els depends on the experiment’s scanning strategy. Re-
solving CMB maps in the presence of non-white detector
noise means that a fraction of the pixels in the map must
be re-observed after some significant time has passed, and
preferably in an orthogonal direction to the first scan. This
technique is known as cross-linking, and it is precisely these
re-observed pixels that end up being shared across the pro-
cesses.

The required communication can most simply be per-
formed with MPI’s global reduction collective MPI_Allreduce,
although often there is insufficient memory available to each
process to store the entire map and the reduction must be
buffered. Having chosen a supportable buffer size (n), a
pipelined reduction on the entire map is performed with one
call to MPI_Allreduce for each buffer. The buffer is filled with
the value stored locally, or the identity of the reduction op-
erator if no data is stored locally. The reduction is then
performed, and each process copies the pertinent values out
of the buffer into a local pixel vector before the operation is
repeated.

We can utilize a simple network performance model to de-
scribe the complexity of this communication step. Assume
that the time taken to send a message between two processes
is given by a + nB, where « is a term that accounts for the
latency per message, 3 is the transfer time per byte (inverse
of bandwidth), and n is the message size. This model does
not account for network congestion, message sizes, or the
network topology. However, prior work suggests
that this is a reasonable first-order approximation for com-
paring alternative algorithmic approaches.

Most current MPI implementations employ Rabenseifner’s
approach for MPI_Allreduce with large message sizes.
This algorithm performs a reduce-scatter using the recursive-
halving technique and then a gather operation using a bino-
mial tree approach. For p processes, the complexity of this
algorithm in terms of the a-3 model is

—1
2logpa + QnPT,B

The bandwidth component of this algorithm is a notable
reduction over an older binomial tree-based algorithm for
Allreduce, which has a nlogp 3 term. Our buffered reduc-
tion approach based on Rabenseifner’s Allreduce algorithm
would thus have a complexity of

-1
2%10gpoz—|— ZNPLB
Ny P

Note that the volume of data exchanged in this approach
may be much larger than necessary. If every process ob-
serves every pixel (i.e., we perform a reduction over a dense
vector), then this approach would be optimal. On the other

hand if the number of pixels shared between processors is
comparatively small (as is often the case), then much of
the data communicated in this technique will be the iden-
tity operator for the reduction, which is wasteful. Although
Rabenseifner’s algorithm may not be used in all MPI im-
plementations, any binomial tree-based reduction algorithm
only changes our analysis by a potentially larger n * logp
bandwidth component.

3.3 Collective Communication Optimization

The collective problem in MADmap can be generalized
and formally stated as follows: each process ¢ locally stores
n; key-value pairs, with E’l’ni = nqu. The keys are non-
negative integers that lie in the range [0,C]. A global re-
duction operation with a binary associative operator is per-
formed, but a process only needs to store the updated values
of its local keys. Our objective is to minimize the total ex-
ecution time for this collective operation, which is a sum of
the local computation time and time spent in communica-
tion (which we will express in terms of the - model). Also,
let 0;; denote the key counts shared by processes 7 and j,
and Nymar = max (n;),1 <i < p.

This problem definition captures several common global
communication patterns observed in parallel scientific com-
puting. For instance, consider the Allreduce collective over
a dense vector. In this case, n; = Nimaz = Nau/p = C for
all 1 <i<pando;; =C forall 1 <i,j <p. Further, since
keys are ordered in [0,C] and sorted, they need not be ex-
plicitly represented. In this case, Rabenseifner’s algorithm
may be appropriate, as it achieves a good balance between
the number of messages sent and the data volume exchanged
over the network.

Nearest-neighbor communication would correspond to the
case where 0;; is non-zero when |i—j| = 1, and 0 for all other
i # j. Here, the optimal strategy would be to have neigh-
bors exchanging the data they share and then performing
reductions locally. The corresponding communication cost
would be 2a + 2Nimaz -

A third case that lies in between the dense vector reduc-
tion and nearest neighbor communication patterns is when
each process shares data with a few other processes (say,
more than one, but less than log p). Hoefler et al. [14] study
this problem and its variations, and design new, specialized
collectives to address this problem. Hoefler and Traff |15
also make the case for better support of “sparse” communi-
cation patterns within MPI, where the sparsity refers to the
number of communicating processes.

Clearly, the distribution of keys within [0, C|] for each pro-
cess, the key overlap count between pairs of processes, the
count of keys owned by each process, the values of C' and
nai, all contribute to determining the optimal reduction
strategy for a parallel platform.

To drive our design of a faster communication approach,
we analyze the sparsity pattern exhibited by the sky pixel
data partitioning . Figure 2] gives the count of sky pixels
shared by one MPI process (process 0 in this case) with all
other processes, for an experiment where N, is 150 million.
The data represents a distribution of pixels corresponding to
a year of Planck simulated data using four 217 GHz chan-
nel detectors. Analysis shows that process 0 shares a sig-
nificantly large fraction of its total number of local pixels
(98.5%) with a few other processes (in this case, process IDs
1-20), and shares at least few pixels (say, < 1000) with al-

1E+09 -

1E+08 -

1E+07 -

1E+06

1E+05

1E+04 -

1E+03 -

1E+02 -

Number of pixels shared by
process 0 with other processes

1E+01 +

1E+00

1 10 100 1000

Process ID (800-way partitioning)

Figure 2: A depiction of the overlap pattern exhib-
ited by a typical distributed sky-pixel data represen-
tation (Planck simulation data, A, is 150 million).

most all other processes. Conversely, few pixels appear in
the local partitions of almost all processes, and a major-
ity of pixels appear in the local partitions of less than 20
processes. Additionally, the actual pixel integer identifiers
that are local to each process are not contiguously ordered,
i.e., process 0 contains roughly A, /p pixels, but the pixel
identifiers IDs are spread out in the entire range of [0, Np].
Restating these observations in terms of the collective prob-
lem definition, C' would be equal to Np, nau is typically
2-6x the value of C, and the overlap counts and patterns
are neither nearest-neighbor nor amenable to a sparse col-
lective implementation. Furthermore, the values of C' can
be very large, and thus accumulation of all pixel identifiers
and values on a single process may not possible.

Our new algorithm is primarily motivated by the potential
data volume reduction that can be achieved by avoiding the
buffered Allreduce approach. Note that mng; is not more
than 6 times the value of N, at process concurrencies up
to 8000, and that the pixel counts per process are roughly
the same. Furthermore, analysis of Figure [2| shows that
Yo;; is bounded by 2njmas, for all the processes. Thus, if
each process were to exchange only the data it shares with
other processes and then perform the reduction locally, the
bandwidth term in the o-3 model would decrease from N,
t0 2Nmaz, Which is almost a O(p) reduction.

This pairwise exchange scheme is implemented in a two-
step approach. In the first “preprocessing” routine, each
process determines the pixel identifiers (keys) that it shares
with all other processes. Since the cumulative pixel overlap
count per process is bounded, this information can be stored
in memory for the duration of the simulation. Whenever a
global reduction needs to be performed, each process only
sends the values corresponding to the keys it shares with
every other process. This is accomplished using a single
call of the MPI_Alltoallv collective, which internally relies on
pair-wise sends and receives to communicate the data.

Figure [3| presents the execution time of the various sub-
routines in the preprocessing step, on the Franklin system
(described in Section. Our algorithm stores the local pixel
identifiers in a sorted array on every process, and begins by
determining nmaqz, Which allows the estimate of ng.; and
the associated buffer sizes used for all the communication
steps. Next, memory is allocate memory and initialize the
data buffers to be exchanged (labeled as “Init buffer index”

Preprocessing cost

8 —— MPI Allgather "wuw MPI Allreduce ==~ P‘ixelo‘verlap'
2 1€+08 ... |nit buffer index- =~ Sorting i
s -w- Sifting «wae MPI Alltoallv
8 1e+06
17}
8 1e+04
©
5 1e+02 r
©
S 1e+00
Q.
IS -
S e-02 Losmmes \ : ‘ ‘ L
0.5 1 2.5 5 10 15

Number of cores (x1 03)

Figure 3: A breakdown of the local computation and
communication components (on the Franklin sys-
tem) in the preprocessing phase of the new collective
algorithm.

in Figure . At this stage, we calculate all pairwise over-
lap counts and shared pixel locations. Exploiting symmetry,
the pairwise count can be reduced from p? to p(p—1)/2. In-
stead of pairwise exchanges of data, the MPI_Allgather rou-
tine is utilized in a buffered fashion (“MPI Allgather” in
Figure [3). This reduces the number of pairwise message
exchanges, as MPI Allgather implementations typically uti-
lize a tree-based algorithm. Each process inspects the pixel
identifiers received from all other processes and notes the
shared pixels. The local pixels are then stored in a Judy ar-
ray data representation [3| to permit very fast membership
queries. The step labeled “Sifting” in the figure captures
the time taken for these lookups. Finally, the overlap pix-
els identifiers are stored compactly in a sorted array. The
communication complexity of the preprocessing step is

n -1

in the a-8 model (dominated by the MPI_Allgather step),
and the local computation is O(pnimaes) due to the initial-
ization and sift operations. Figure |3| indicates that these
three steps — Allgather, sift, and initialization — are indeed
the steps that dominate the overall execution time. Future
work will investigate additional performance optimizations
such as simultaneous, asynchronous execution of the gather
and sift steps using non-blocking collectives, and further op-
timization of the initialization routines.

Subsequent calls to a global reduction involve pairwise
data exchanges utilizing the shared pixel information col-
lected in the preprocessing routine. This step would be dom-
inated by the cost of the Alltoallv routine: pa + knimaz0 ,
where k is a small number that bounds the overlap count
in terms of nymez. The quadratic scaling of the number
of messages exchanged may be a potential drawback of our
scheme. All-to-all communication is a known bottleneck for
MPI implementations and high concurrency runs [2]. How-
ever, this message count is inevitable if we rely on pairwise
exchanges of data and try to minimize the total data vol-
ume. In future work, we will investigate approaches that
would reduce the number of messages from p to a smaller,
manageable value. For instance, the subset of pixels identi-
fiers that appear on a majority of processes can be identified
in the preprocessing step and reduced separately. This may

necessitate an increase in the preprocessing step’s local com-
putation. Note that our approach does not directly utilize
hardware-accelerated collective primitives for communica-
tion, but instead, optimizes code for compliant MPI func-
tions. Our communication algorithm will automatically ben-
efit from vendor-optimized MPI, which we expect to leverage
hardware acceleration internally where available.

3.4 Threading Optimization

Our approach can also alleviate the communication cost
by reducing the total number of MPI tasks p. To do so,
we adopt a hybrid implementation that uses a single MPI
task per socket or node, and as many OpenMP threads per
task as there are cores socket/node. This hybrid approach
required the implementation of new multithreaded routines
for computationally demanding MADmap components, in-
cluding FFTs (using the threaded ACML(1] or IMKL|18] li-
braries depending on their availability on a particular plat-
form); the mapping of global to local pixel indices (using
a threaded lookup with Judy arrays|3|); and the pointing
matrix-vector multiplication, calculation and application of
the pre-conditioner in the conjugate gradient calculation,
calculation of the pixel overlap in the communication pre-
processing step, and parts of the GCP and M3 libraries (all
primary in their for-loops). OpenMP pragmas are used to
parallelize the code, creating additional auxiliary data struc-
tures wherever required (such as thread-local copies for pri-
vate buffers) in a space-efficient manner.

A few computational phases have not yet been threaded
because of for-loops present in non-canonical form. These in-
clude inverse matrix multiplication, derivation of pixel data
distribution, initializing data structures for convolution al-
gorithm, calculation involved before writing output maps,
and some parts of M3. Due to these unthreaded components,
the cumulative computational time of threaded MADmap is
currently 50% slower that the unthreaded case (i.e, with one
MPI task per core). Implementing multithreaded versions
of these remaining components as well as increasing the effi-
ciency of threading in MADmap will be a key area of focus
in our future work.

4. EXPERIMENTAL SETUP

To investigate the benefits of the new communication algo-
rithm and hybrid programming in MADmap, we performed
strong scaling experiments on a typical Planck-scale dataset
on four different implementations of MADmap on five HPC
systems, described in Section [£.2] — Franklin and Hopper at
NERSC, Jaguar at Oak Ridge National Lab, and Pleiades-H
and Pleiades-W at NASA Ames Research Center.

4.1 Data Analyses

MADmap is evaluated at eight different concurrencies rang-
ing from 256 to 16384 cores, at powers of two for Franklin
and Pleiades-H (with four cores per socket) and at the closest
multiple of six to these for Hopper, Jaguar, and Pleiades-W
(with six cores per socket). At each concurrency, we mea-
sured the overhead for communication, computation, and
disk I/O incurred by MADmap when analyzing simulated
data corresponding to a year of Planck observations of the
entire sky from all 12 detectors at one of its key observing
frequencies, so that (NV; ~ 7.5x10' and N, ~ 1.5x10%). All
the runs were executed for 50 iterations of the PCG solver, a
typical number for mapping polarized data, and to compare

Table 2:

Highlights of CPU and node architectures for examined platforms, all evaluated processors are

superscalar, out-of-order. MPI bandwidth is measured as the maximum MPI point-to-point bandwidth with
message sizes from 4 Bytes to 256 MBytes. MPI latency is measured with 4-Byte messages.

Core AMD AMD Intel Intel AMD
Architecture Budapest Istanbul Harpertown Westmere MagnyCours
Clock (GHz) 2.30 2.6 3 2.93 2.1
DP Peak (GFlop/s) 9.20 10.4 12 11.72 8.4
Private L1 Data Cache 64 KB 64 KB 32 KB 32 KB 64 KB
Private L2 Data Cache 512 KB 512 KB — 256 KB 512 KB
Socket /Node Opteron 1356 Opteron 2435 Xeon E5472 Xeon X5670 Opteron 6172
Architecture Budapest Istanbul Harpertown Westmere Magny-Cours
Cores per Socket 4 6 4 6 12
Shared Cache per Socket 2 MB L3 6 MB L3 12 MB L2 12 MB L3 12 MB L3
Sockets per SMP 1 2 2 2 2
Node DP Peak (GFlop/s) 36.8 124.8 96 140.6 201.6
DRAM Pin Bandwidth (GB/s) 12.8 25.6 21.33 32.0 25.6
Node DP Flop:Byte Ratio 2.9 4.9 4.5 4.4 7.9
. Cray XT4 Cray XT5 Intel Cluster Intel Cluster Cray XE6
System Architecture Franklin Jaguar Pleiades-H Pleiades-W Hoppelﬂ
Interconnect Seastar2 Seastar2+ Infiniband Infiniband Gemini
3D Torus 3D Torus DDR QDR 3D Torus
Total Nodes 9,660 18,688 5,888 2,048 6,392
Peak Bandwidth
(GB/s per direction) 38 4.8 25 g 18
Measured MPI point-point 1.65 1.6 1.66 3.13 5.95
bandwidth (GB/s) 8.15 8.26 1.32 1.83 1.4
Measured MPI latency (us)
Compiler vendor, version PGI 10.1 PGI 10.3 Intel 11.1 Intel 11.1 PGI 10.9
MPI Vendor, MPT version Cray 4.0.3 Cray 4.0 SGI 1.25 SGI 1.25 Cray 5.1.2

performance of four different MADmap versions.
Unthreaded Allreduce: The existing (original) version of
MADmap that uses MPI_Allreduce for communication. This
application is not threaded and runs with one MPI process
per core.
Unthreaded Allgather: This version of MADmap re-
places MPI_Allreduce with the new collective communication
algorithm discussed above, but without threading (one MPI
task per core). Since the cost of our new algorithm is dom-
inated by the MPI_Allgather in the preprocessing step, we
refer to this as Allgather-based approach. Evaluating this
version at various concurrencies addresses the question of
whether the new algorithm by itself is sufficient to eliminate
the high concurrency communication bottleneck.
Threaded Allreduce: In this version, existing implemen-
tation of MADmap is threaded using OpenMP pragmas.
Evaluating this version tells us whether reducing the num-
ber of communicating processes with threading alone can
provide a solution to the communication bottleneck at high
concurrencies.
Threaded Allgather: This version includes both the opti-
mized communication algorithm as well as OpenMP thread-
ing, and quantifies the impact of including both the opti-
mization strategies.

Note that both Threaded Allreduce and Threaded All-
gather run with one MPI task per socket, combined with as
many OpenMP threads as there are cores in that socket.

4.2 Architectural Platforms

To evaluate MADmap in a range of HPC environments
we conduct our experiments on five large-scale HPC plat-
forms, the Cray XT4, XT5 and XE6 and two generations
of Intel/Infiniband clusters. The Cray XT is designed with
tightly integrated node and interconnect fabric, opting for
a custom network ASIC and messaging protocol coupled
with a commodity AMD processor. In contrast, the Intel/IB
cluster is assembled from off-the-shelf high-performance net-
working components and Intel server processors.These rep-
resent common design trade-offs in the high performance
computing arena. Table [2| shows architectural highlights of
the examined platforms.

Franklin: Cray XT4: Franklin, a 9,660 node Cray XT4
supercomputer, is located at Lawrence Berkeley National
Laboratory (LBNL). Each XT4 node contains a quad-core
2.3 GHz AMD Opteron processor, which is tightly integrated
to the XT4 interconnect via a Cray SeaStar2 ASIC through
a HyperTransport (HT) 2 interface capable of 6.4 Gbyte/s.
All the SeaStar routing chips are interconnected in a 3D
torus topology with each link is capable of 7.6 Gbyte/s peak
bidirectional bandwidth, where each node has a direct link
to its six nearest neighbors. Typical MPI latencies will range
from 4.5 - 8.5 us, depending on the size of the system and

To reviewers and PC members: the Hopper system
is still under evaluation, thus the presented Hopper data is
currently confidential. Hopper will be accepted in time for
the final paper version, allowing public distribution of its
performance data.

the job placement. The Opteron Budapest processor is a
superscalar out-of-order core that may complete both a sin-
gle instruction-multiple data (SIMD) floating-point add and
a SIMD floating-point multiply per cycle, the peak double-
precision floating-point performance (assuming balance be-
tween adds and multiplies) is 36.8 GFlop/s. Each core has
both a private 64 Kbyte L1 data cache and a 512 Kbyte L2
victim cache. The four cores on a socket share a 2 Mbyte
L3 cache. Unlike Intel’s older Xeon, the Opteron integrates
the memory controllers on chip and provides an inter-socket
network (via HT) to provide cache coherency as well as di-
rect access to remote memory. This machine uses DDR2-800
DIMMs providing a DRAM pin bandwidth of 12.80 Gbyte/s
per socket.

Jaguar: Cray XT5: The 18,688 node Jaguar X'T'5 plat-
form is currently the number two system on the TOP500 |31].
This successor to the XT4 line contains nodes with two
hexa-core 2.6 GHz AMD Opteron processors, and a Cray
SeaStar2+ 3D torus interconnect capable of 9.6 Gbyte/s.
Typical MPI latencies will range from 4.5 - 8.5 us, depending
on the size of the system and the job placement. The next-
generation Opteron Istanbul processor has a larger 6MB
semi-exclusive L3 cache and a peak theoretical node rate
of 124.8 double-precision GFlop/s. To mitigate snoop ef-
fects and maximize the effective memory bandwidth, Istan-
bul uses 1MB of each 6MB cache for HT assist (a snoop
filter). The snoop filter enables higher bandwidth on large
multi-socket SMPs.

Pleiades-H: Intel Harpertown Cluster: The 9,216
node Pleiades cluster, located at NASA Ames Research Cen-
ter consists of three Xeon-based clusters, two of which are
examined in this study. The Pleiades-H cluster consists of
5,888 dual-socket nodes utilizing 3.0 GHz quad-core Intel
Harpertown processors, connected via a DDR IB network
in partial 11D hypercube. Providing an interesting compar-
ison to the Opterons, the Xeon E5472 (Harpertown) uses
a modern superscalar out-of-order core architecture coupled
with an older frontside bus (FSB) architecture in which two
multichip modules (MCM) are connected with an external
memory controller hub (MCH) via two frontside buses.Un-
fortunately the limited FSB bandwidth (10.66 Gbyte/s) bot-
tlenecks the substantial DRAM read bandwidth of 21.33
Gbyte/s (subsequently released Nehalem processors have ab-
andoned the front-side bus in favor of on-chip memory con-
trollers). Each core runs at 3 GHz, has a private 32 KB L1
data cache, and, like the Opteron, may complete one SIMD
floating-point add and one SIMD floating-point multiply per
cycle. Unlike the Opteron, the two cores on a chip share
a 4 Mbyte L2 and may only communicate with the other
two cores of this nominal quad-core MCM via the shared
frontside bus.

Pleiades-W: Intel Westmere Cluster: Our study
also examines performance on the Pleiades-W cluster that

consists of 2,048 dual-socket nodes containing 2.93 GHz octal-

core Intel Westmere processors connected via a QDR IB net-
work. This recently released design the latest enhancement
to the Intel “Core” architecture, and represents a dramatic
departure from Intel’s previous multiprocessor designs. It
abandons the front-side bus (FSB) in favor of on-chip mem-
ory controllers. The resultant QuickPath Interconnect (QPI)
inter-chip network is similar to AMD’s HyperTransport (HT)
and it provides access to remote memory controllers and I/O
devices, while also maintaining cache coherency. Each core

has a private 256 KB L1 and a 1 MB L2 cache, and each
socket instantiates a shared 12 MB L3 cache. Additionally,
each socket integrates three DDR3 memory controllers pro-
viding up to 32 GB/s of DRAM bandwidth to each socket.

Hopper: Cray XE6: The 6392 node Hopper cluster
debuted this year as the fifth fastest system on Top 500
list. Each node contains two 12-core 2.1 GHz AMD ‘Magny-
Cours’ processors and a Cray Gemini interconnect with an
effective bandwidth of 168 GB/s. Each processor has 2 dies
with 6 cores on each die. Each die has 2 memory channels
and is a NUMA node. There are 4 HyperTransport 3 (HT3)
links per processor providing a peak bandwidth of 25.6 GB/s
per processor. Each core has private L1 and L2 caches with
64KB and 512KB respectively and a L3 cache of 12 MB
shared between the two dies in a processor. The processors
are interconnected in a 3D torus topology with each node
providing an aggregate bandwidth of 168 GB/s.

S. RESULTS AND DISCUSSION

For each code configuration and concurrency, we time the
calculation, communication and IO components, across all
evaluated HPC systems — reporting our results in total
core-seconds; a constant value therefore represents perfect
scaling for this problem. Figure [] shows the performance
of Unthreaded Allreduce, Unthreaded Allgather, Threaded
Allreduce and Threaded Allgather on Franklin, Jaguar, and

Pleiades-H and -WEl Each column compares the perfor-
mance of the various implementations on a single system
and each row compares the performance of a particular im-
plementation across the systems. The threaded implemen-
tations are run with one process per socket and as many
threads as there are cores per socket; in addition, for all of
the dual-socketed systems use the Threaded Allgather ap-
proach alone via a single process per node with as many
threads as cores on the node.

5.1 Comparison Across Implementations

Results show that on all systems, the communication bot-
tleneck emerges in the Unthreaded Allreduce, with com-
munication dominating above a few thousand cores. The
Unthreaded Allgather approach increases the concurrency
at which communication become a bottleneck. But once it
does, its cost rapidly comes to exceed that of the Unthreaded
Allreduce. In both of the threaded cases, the communica-
tion cost is reduced, marginally for the Allreduce and sig-
nificantly for the Allgather. Both of these observations are
consistent with our complexity analyses, in which the Allre-
duce latency depends on logp, and the Allgather latency
on plogp and the transfer time on p. At a concurrency of
16K processors, the improvement in communication over-
head is maximum on Jaguar with a speedup of 14.2x using
threaded Allgather. On Franklin, Hopper, Pleiades-W, and
Pleiades-H the communication speedups are 1.95x, 2.35x%,
3.44x and 4.65x respectively. At the same time, the calcu-
lation cost increases due to the incomplete threading — as
expected from Amdahl’s Law — and the IO cost decreases,
since much of the data ingest is implemented by process 0
performing a serial read and broadcasting, now to a smaller
number of processes.

2To date we have been unsuccessful in completing 16K-way
unthreaded allgather run on Pleiades-H, and are working
with Nasa Ames staff to resolve this in time for publication

Unthreaded Allreduce Unthreaded Allgather Threaded Allreduce Threaded Allgather
1e+08 ;

1e+04

Franklin

Computational cost (core*sec)

05 1 25 5 1015 05 1 25 5 1015 05 1 25 5 1015

1e+08

/

1e+04

Hopper

Computational cost (core*sec)

05 1 25 5 1015 05 1 25 5 1015 05 1 25 5 1015 05 1 25 5 1015
Number of cores (x103) Number of cores (x103) Number of cores (x103) Number of cores (x1 03)

1e+08

7 /

o v

05 1 25 5 1015 05 1 25 5 1015 05 1 25 5 1015 05 1 25 5 1015

Jaguar

Computational cost (core*sec)

1e+04

1e+08

1e+07

1e+06

Pleiades-H

Computational cost (core*sec)

1e+05

1e+04

05 1 25 5 1015 05 1 25 5 1015 05 1 25 5 1015 05 1 25 5 1015

1e+08

1e+07 / .
16406 // //x :
16405 N// .

1e+04

Pleiades-W

Computational cost (core*sec)

05 1 25 5 1015 05 1 25 5 1015 05 1 25 5 1015 05 1 25 5 1015
Legend: ——Calc ——Comm - Comm-preproc —— Disk /0 —B—Total --f---Total-preproc

Figure 4: M ADmap scaling runs on different platforms. Threaded Allgather and Threaded Allreduce execute
with one process per socket with four or six threads. The dotted lines in Threaded Allgather represent the
total and communication time without the preprocessing overhead.

Unthreaded Allreduce Threaded Allreduce | Unthreaded Allgather Threaded Allgather
6e-03 6e-03 6e-04 6e-04
I
5e-03 5e-03 5e-04 5e-04
o § y=5e-9x+1e-02/ y=2e-9x+0.0008 © y=2e-9x+2e-05 © y=9e-10x+3e-05 /
2, 2, 2, 2,
E £ se-03 R?: 0.91447 46-03 R?: 0.88597 4e-04 R?: 0.9957 4e-04 R”: 0.9916
25 /
3|5 3e-03 3e-03 | 3604 3e-04
&2 + / / /
5 2e-03 2e-03 o 2e-04 / 2e-04
§1e-03 1e-03 1e-04 / 1e-04 / 4
0e+00 0e+00 0e+00 0e+00
03 06 09 12 0 03 06 09 12 15 0.02 006 0.1 0.14 01 02 03 04 05 0.6
Buffer size / log(P) (MB) Buffer size / log(P) (MB) Buffer size (MB) Buffer size (MB)
Legend: + Observed MPI_Allreduce/MPI_Allgather costs in communication — Linear least-squares fit

Figure 5: A least-squares fit of the observed Franklin communication costs (scatter data) for MPI_Allgather
and MPI_Allreduce, to the linear a-3 model expressions. The R? value indicates the deviation of the observed
data from the fit, with a value close to 1 indicating a good fit.

To check whether our theoretical expressions for the com-
munication costs are indicative of observed execution times
in practice, we perform a least-squares fit of the observed
data to linear model. Figure [5| depicts the MPI_Allreduce
and MPI_Allgather execution times per iteration and the
calculated trend line. For MPI_Allgather, we fit the data
to the complexity cost of a ring-based (not tree-based) algo-
rithm, since the MPI implementations employ a ring-based
algorithm for the buffer sizes in our experiments. Observe
from Figure[5]that the linear a-3 model is a reasonable fit for
MPI_Allreduce, and a very good fit for MPI_Allgather. The
slope of the line corresponds to 3 in our model, which is the
inverse of the sustained per-node network bandwidth for the
collectives. Examining these values shows that the sustained
bandwidth per process for the threaded case is greater by
a factor of two for both MPI_Allreduce and MPI_Allgather.
The measured point-to-point bandwidth and the small mes-
sage latency (see Table are upper and lower bounds re-
spectively for the empirically-determined « and (values,
thereby providing validation of our performance model. The
impact of latency term is negligible in the MPI_Allreduce
cost, due to the large message sizes and the tree-based al-
gorithm employed. To summarize, we observe a sustained
bandwidth of 0.86 GB/s for threaded Allreduce, 0.25 GB/s
for unthreaded Allreduce, 1.15 GB/s for threaded Allgather
and 0.58 GB/s for unthreaded Allgather. The communica-
tion costs on the remaining systems can be similarly ana-
lyzed, to estimate the potential for improvement in perfor-
mance of the MPI collectives, and will be the focus of future
investigations.

For the four evaluated systems with dual-socket nodes,
threading per node performance can be compared against
threading per socket. Since the former halves the number of
MPT tasks, one might expect node-level threading to result
in a similar reduction in the communication cost. However,
at higher concurrencies, the communication cost actually
increases on Jaguar and Pleiades-H, and stays roughly con-
stant on Pleiades-W. This is likely because a single process
per node is insufficient to saturate the available network in-
jection bandwidth on Jaguar and Pleiades-H. Results also
show the calculation cost roughly doubling due to the partial
threading of the application and NUMA effects of a single
process running on two sockets. Therefore, in our current

implementation, threading beyond the socket level does not
gain any additional benefit.

5.2 Comparison Across Systems

The communication cost for Unthreaded Allreduce at 16K
processors on Jaguar, Pleiades-W, Pleiades-H and Hopper
are 4.45, 3.85, 2.71 and 1.5 times the cost on Franklin re-
spectively. The reason for this slowdown is due to the in-
creased number of communicating processes per node on
these systems: 4, 12, 12, 8 and 12 for Franklin, Jaguar,
Pleiades-W, Pleiades-H, and Hopper, respectively. As a re-
sult, the per-node bandwidth is shared by all the processes
per node on these systems, although Hopper has roughly
three time the bandwidth per node compared to the other
systems and about 1.5 times the bandwidth per node com-
pared to Pleiades-W. Also, since the messages from multiple
processes is serialized at the network interface of the node,
increasing the number of MPI tasks per node limits scalabil-
ity. In addition, variability due to other factors such as the
type of interconnect used (Seastar2 or Infiniband), its config-
uration (3D Torus or Hypercube), and MPI implementation
details also influence the communication costs.

At a concurrency of 16K in threaded MADmap, Franklin
and Pleiades-H use 4096 MPI processes whereas Jaguar,
Pleiades-W and Hopper use only 2730 processes. Threaded
Allreduce reduces the communication overhead by 1.51, 2.66,
2.64, 1.12 and 1.44 with respect to their unthreaded counter-
parts on Franklin, Jaguar, Pleiades-H, Pleiades-W, Hopper
respectively at a concurrency of 16K processors. As seen
in the unthreaded case, the cost of Threaded Allreduce on
Jaguar, Pleiades-H, Pleiades-W and Hopper is 2.54, 1.55,
5.15 and 1.54 times slower than Franklin. Although the to-
tal number of processes compared to Franklin is lower in
Jaguar, each node has two MPI processes that share the
inter-node network bandwidth; whereas Franklin has just
one process per node. Compared to Franklin, the data per
process on Jaguar is more, which in turn increases the num-
ber of communicating MPI tasks (since the message size is
maintained constant). Unlike Jaguar and Pleiades-W that
have two MPI processes sharing the node bandwidth, Hop-
per has four MPI process per node. Thus with even with
more processes per node, the communication cost on Hop-
per is lower than all the other two sockets per node sys-

tems due to the availability of high bandwidth per node.
Threaded Allgather further reduces the communication as
the expensive preprocessing cost is incurred only once. At
a concurrency of 16K processors, the communication cost
for Threaded Allgather on Jaguar is 3.44 times faster than
Franklin. The main reasons for this improvement is that the
overhead of per-iteration communication is relatively inex-
pensive. The communication cost on Pleiades-H is compara-
ble to the cost on Franklin as they use same number of total
MPI processes. The marginal increase in cost in Pleiades-H
can be attributed to the overhead due to serialization of mes-
sages at the network interface from two processes in a sin-
gle node. On Pleiades-W, due the undetermined variability
in the MPI implementation, the MPI_Allgather cost in pre-
processing increases steeply at higher concurrency, thereby
increasing the overall cost of communication. Additionally,
Figure @ shows that the communication cost on Hopper is
comparable to Franklin and Pleiades-H.

The calculation cost with 16K processors for unthreaded
MADmap are comparable on Franklin, Jaguar, Hopper and
Pleiades-H. On Pleiades-W the application runs almost twice
as fast compared to Franklin, Jaguar, Hopper and Pleiades-
H respectively, as seen in Figure @ Although Pleiades-H has
a faster processor clock frequency compared to Pleiades-W,
the bus to core ratio in Pleiades-W in 22 compared to 7.5
in Pleiades-H — account for its faster calculation cost, as
higher ratio indicates greater bandwidth to transfer data.
In addition the Pleiades-W processors support a maximum
turbo frequency of 3.3GHz along with a Quick Path Inter-
connect (QPI) rate of 6.4GT /s compared to a front side bus
frequency of 1600MHz in Pleiades-H.

However, the calculation cost for threaded MADmap on
Pleiades-W is highest relative to the other platforms, includ-
ing Pleiades-H The reason for this slowdown is likely due to
different instruction set used in the compilation of applica-
tion binary. Threaded MADmap was compiled on Pleiades-
H with SSE4.1 instruction set whereas unthreaded MADmap
uses the application binary compiled on Pleiades-W with the
SSE4.2 instruction set. We could not successfully execute
the threaded binary compiled with SSE4.2 on Pleiades-W
and are investigating the problem. Finally, note that in all
cases, the calculation cost remains roughly constant across
all concurrencies, indicating a near-linear speedup.

5.3 Monte Carlo Analyses

While these results focus on a single analysis, actual CMB
data computations are dominated by generating (simulating
and mapping) sets of hundreds to tens of thousands of Monte
Carlo data realizations. For these large-scale experiments,
our methodology allows a single, off-line preprocessing step
once — since the communication pattern will be common to
all the realizations. Figure[]shows the speedup achieved by
the Threaded Allgather on all the platforms when the pre-
processing is excluded, showing the overall speedup (writ-
ten for each platform) as well as highlighting the dramatic
reduction of communication overhead. Although the cal-
culation costs have increased in the threaded code, this is
more than offset by the communication improvements, and
will be further optimized in subsequent studies. The overall
speedups attained are 4.14x, 2.88x, 2.41x, 1.48x, 1.27x
for Jaguar, Pleiades-H, Pleiades-W, Franklin and Hopper
(respectively). The (preprocessing amortized) communica-
tion speedups now account for only 2% — 4% of the overall

60
Computation+lO (optimized)

@0 Communication-preproc. (optimized)
O Computation+IO (original)

50 O Communication (original)

40

30

Core-seconds (x 10"6)

T T
Franklin Hopper Jaguar Pleiades-H Pleiades-W

Figure 6: The speedup achieved using our new com-
munication optimizations and inter-socket threading
on the five different parallel platforms and 16K core
concurrency. ‘Original’ and ’optimized’ correspond
to unthreaded Allreduce and threaded Allgather re-
spectively. The overall speedup value is indicated
above the optimized implementation bar. The new
communication algorithm preprocessing time is not
included in the cost of the optimized implementa-
tion, as it is amortized over 50 iterations.

runtime, showing impressive speedups compared to the orig-
inal version of up to 116x on Jaguar, with improvements of
8.3%x, 22.3x, 12.7x, and 10.8x on Franklin, Pleiades-W,
Pleiades-H and Hopper (respectively).

6. CONCLUSIONS

Observations of the CMB have the potential profoundly
effect on our understanding of the Universe and hence of
fundamental physics at the highest energies. However, the
exponential growth in the size of CMB datasets over the
next 15 years means that our analyses have to stay on the
bleeding edge of high performance computing for the next
10 epochs of Moore’s Law. At present, the state-of-the-art
in simulating and mapping CMB data sets is the MADmap
code, but it suffers from a serious communication bottleneck
when using more than a few thousand MPI tasks.

In this work we presented a two step approach to al-
leviate the communication bottleneck. The first step in-
volves using a new algorithm that minimizes the commu-
nication data volume by replacing global reductions that
include transfers of large amounts of redundant data with
pairwise point-to-point communication, which only includes
data that must be communicated. The second step lever-
ages the OpenMP /MPI hybrid programming model, reduc-
ing the number of MPI tasks to only one per socket. Our
work presents an extensive performance evaluation of these
steps (both individually and in concert) across a wide range
of large-scale HPC platforms and shows that at high con-
currencies, our combined methodologies result in significant
improvement of communication overhead — with reductions
of one to two orders of magnitude compared with the orig-
inal approach. As a result of these optimizations, the com-
munication cost is no longer the bottleneck, thus causing

the calculation phase to emerge as the dominant overhead
component. This bottleneck shift is well suited for next gen-
eration supercomputers whose computational throughput is
expected to grow faster than interconnect messaging speeds.
Future work will focus on effectively threading the remaining
unthreaded computations, as well as exploring the potential
of using accelerator-based systems such as GPUs to reduce
the computation time.

Overall, this work enables CMB data analysts to take ad-
vantage of the largest peta-scale HPC systems, which will be
essential to achieve the full scientific potential of the coming
generation of B-mode CMB experiments.

7. ACKNOWLEDGEMENTS

This research used resources of the National Energy Re-
search Scientific Computing Center, which is supported by
the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231, the Oak Ridge Leader-
ship Facility at the Oak Ridge National Laboratory, which
is supported by the Office of Science of the U.S. Depart-
ment of Energy under Contract No. DE-AC05-000R22725,
and the NASA Advanced Supercomputing facility at the
Ames Research Center. This work was supported by the
NSF PetaApps program under grant AST-0905099.

8. REFERENCES

[1] AMD Core Math Library, 2010.
http://www.amd.com/acml.

[2] P. Balaji, D. Buntinas, D. Goodell, W. Gropp,

S. Kumar, E. Lusk, R. Thakur, and J.L. Traff. Mpi on
a million processors. In Proc. 16th European
PVM/MPI Users’ Group Meeting on Recent Advances
in Parallel Virtual Machine and Message Passing
Interface, pages 20-30. Springer-Verlag, 2009.

[3] D. Baskins. Judy arrays web page, 2004.
http://judy.sourceforge.net/.

[4] J. Bock et al. The experimental probe of inflationary
cosmology (EPIC): A mission concept study for
NASA’s Einstein inflation probe.
http://arxiv.org/abs/0805.4207v1, 2008.

[5] J.R. Bond, A.H. Jaffe, and L. Knox. Estimating the
power spectrum of the cosmic microwave background.
Phys. Rev. D, 57(4):2117-2137, 1998.

[6] C.M. Cantalupo, J.D. Borrill, A.H. Jaffe, T.S. Kisner,
and R. Stompor. MADmap: A Massively Parallel
Maximum Likelihood Cosmic Microwave Background
Map-maker. The Astrophysical Journal Supplement
Series, 187:212, 2010.

[7] CMBPol mission concept study, 2010.
http://cmbpol.uchicago.edu/|

[8] COBE, 2010.
http://lambda.gsfc.nasa.gov/product/cobe.

[9] S. Dodelson. Modern Cosmology. Academic Press,
2003.

[10] J. Dunkley et al. Five-year wilkinson microwave
anisotropy probe observations: Likelihoods and
parameters from the wmap data. The Astrophysical
Journal Supplement Series, 180(2):306, 2009.

[11] G.H. Golub and C.F. Van Loan. Matriz computations.
Johns Hopkins University Press, 3rd edition, 1996.

[12] E. Hivon et al. MASTER of the cosmic microwave
background anisotropy power spectrum: A fast

method for statistical analysis of large and complex
cosmic microwave background data sets. The
Astrophysical Journal, 567(1):2, 2002.

[13] R.W. Hockney. The communication challenge for
MPP: Intel Paragon and Meiko CS-2. Parallel
Computing, 20(3):389-398, 1994.

[14] T. Hoefler, C. Siebert, and A. Lumsdaine. Scalable
communication protocols for dynamic sparse data
exchange. In Proc. 15th ACM SIGPLAN symposium
on Principles and practice of parallel programming
(PPoPP ’10), pages 159-168. ACM, 2010.

[15] T. Hoefler and J.L. Triff. Sparse collective operations
for mpi. In Proc. 14th Int’l. Workshop on High-Level
Parallel Programming Models and Supportive
Environments (HIPS09), 2009.

[16] E. Komatsu et al. Five-year wilkinson microwave
anisotropy probe observations: Cosmological
interpretation. The Astrophysical Journal Supplement
Series, 180(2):330, 2009.

[17] M3 data abstraction library, 2010.
http://crd.1bl.gov/ cmc/M3/.

[18] Intel Math Kernel Library, 2010.
http://software.intel.com/en-us/intel-mkl,

[19] The OpenMP API specifications, 2010.
http://openmp.org/wp.

[20] P. Oxley et al. The EBEX experiment. Proc. SPIE,
5543(1):320-331, 2004.

[21] J. Pjesivac-Grbovié, T. Angskun, G. Bosilca, G.E.
Fagg, E. Gabriel, and J.J. Dongarra. Performance
analysis of mpi collective operations. Cluster
Computing, 10(2):127-143, 2007.

[22] Planck science team home, 2010. http:
//www.rssd.esa.int/index.php?project=PLANCK.

[23] PolarBeaR, 2010.
http://bolo.berkeley.edu/polarbear.

[24] QUIET, 2010. http://quiet.uchicago.edu.

[25] R. Rabenseifner. New optimized MPI reduce
algorithm, 2010. https:
//fs.hlrs.de/projects/par/mpi/myreduce.htmll

[26] R. Rabenseifner and J.L. Traff. More efficient
reduction algorithms for non-power-of-two number of
processors in message-passing parallel systems. In
Proc. Recent Advances in Parallel Virtual Machine
and Message Passing Interface, pages 309-335, 2004.

[27] G.F. Smoot et al. Preliminary results from the COBE
differential microwave radiometers - large angular
scale isotropy of the cosmic microwave background.
Astrophysics Journal, 371:L1-L5, 1991.

[28] R. Stompor et al. Making maps of the cosmic
microwave background: The MAXIMA example.
Phys. Rev. D, 65(2):022003, 2001.

[29] M. Tegmark. CMB mapping experiments: A
designer’s guide. Phys. Rev. D, 56(8):4514-4529, 1997.

[30] R. Thakur, R. Rabenseifner, and W. Gropp.
Optimization of collective communication operations
in MPICH. Int’l. Journal of High Performance
Computing Applications, 19(1):49-66, 2005.

[31] Top500 supercomputer sites, 2010.
http://top500.o0rg.

[32] WMAP, 2010. http://map.gsfc.nasa.govl

http://www.amd.com/acml
http://judy.sourceforge.net/
http://arxiv.org/abs/0805.4207v1
http://cmbpol.uchicago.edu/
http://lambda.gsfc.nasa.gov/product/cobe
http://crd.lbl.gov/~cmc/M3/
http://software.intel.com/en-us/intel-mkl
http://openmp.org/wp
http://www.rssd.esa.int/index.php?project=PLANCK
http://www.rssd.esa.int/index.php?project=PLANCK
http://bolo.berkeley.edu/polarbear
http://quiet.uchicago.edu
https://fs.hlrs.de/projects/par/mpi/myreduce.html
https://fs.hlrs.de/projects/par/mpi/myreduce.html
http://top500.org
http://map.gsfc.nasa.gov

	1 Introduction
	2 CMB Science
	2.1 CMB Data Analysis

	3 MADmap
	3.1 The Current MADmap Package
	3.2 Communication Bottleneck
	3.3 Collective Communication Optimization
	3.4 Threading Optimization

	4 Experimental Setup
	4.1 Data Analyses
	4.2 Architectural Platforms

	5 Results and Discussion
	5.1 Comparison Across Implementations
	5.2 Comparison Across Systems
	5.3 Monte Carlo Analyses

	6 Conclusions
	7 Acknowledgements
	8 References

