
Silicon Nanophotonic Network-On-Chip Using
TDM Arbitration

Gilbert Hendry1, Johnnie Chan1, Shoaib Kamil2, Lenny Oliker2, John Shalf2, Luca P. Carloni3, and Keren Bergman1

1Lightwave Research Laboratory, Columbia University, New York, NY
2CRD/NERSC, Lawrence Berkeley National Laboratory, Berkeley, CA

3Department of Computer Science, Columbia University, New York, NY

Abstract—Silicon nanophotonics is an emerging technology
platform for offering high-bandwidth connectivity with extreme
energy efficiency for future networks-on-chip. Using circuit-
switching as an arbitration mechanism takes advantage of the
low transmission energy in end-to-end communication and high
bandwidth density of waveguides using WDM. However, pure
circuit-switching requires an electronic control network which
suffers from unfairness under heavy loads and can lead to high
latencies, low network utilization, and an overhead in power
dissipation. We propose time division multiplexed distributed
arbitration, which provides round-robin fairness to setting up
photonic circuit paths. Our design can supply 2-4× the band-
width at network saturation for random traffic, and is an
order of magnitude more efficient when simulated with scientific
application traces compared to both electronic and other photonic
network architectures.

I. INTRODUCTION

Current trends in computer architecture suggest that the
network-on-chip (NoC) will play a critical role in future high-
performance microprocessors. How this role is played out will
impact many areas of computing, including the programming
models, architecture designs and manufacturing.

Though electronics offers a convenient and cheap medium-
term solution for networks-on-chip, it is becoming apparent
that purely electronic solutions may not scale to solve all
the communication challenges in future high-performance chip
multiprocessors (CMPs). The electronic interconnect is already
responsible for up to 50% of dynamic power on-chip [1],
a number that is too high given that the NoC is central to
performance scaling through CMP parallelism.

Photonics offers key advantages in these areas, and has
recently gained consideration as the leading emerging commu-
nications technology of future high-performance CMPs. Pho-
tonics can achieve a bandwidth density orders of magnitude
higher than electronics using wavelength division multiplexing
(WDM), a technique of simultaneously transmitting many
optical signals on different wavelengths in parallel on a single
transmission line. In addition, unlike electronics, the energy
dissipated for optical signal propagation through waveguides
and switches is independent of the datarate.

Recent numerous advances in silicon photonic integration
and the emerging field of CMOS photonics [2]–[6] allows us
to consider practical designs of full-scale interconnects using

this technology platform. Many such novel photonic-enabled
network architectures have been recently proposed that can
deliver performance improvement over equivalent electronic
interconnect designs [7]–[13].

In this work, we propose an all-optical broadband network
architecture that uses time-division multiplexing (TDM) to
arbitrate photonic communication channels. We describe the
problem of statically scheduling photonic network transmis-
sions in TDM slots, and implement a genetic algorithm to
search the solution space for a near-optimal solution. We
evaluate an instantiation of our network design for a 64-
core network using both random traffic and traces of different
scientific applications, and show that our TDM design achieves
higher resource utilization and lower energy per bit compared
with equivalent electronic and previously proposed photonic
network architectures.

II. RELATED WORK

Research into photonic circuit-switched networks-on-chip
has progressed in the past few years, leading to a more
complete understanding of the challenges both at the system
level and the device level. Many advances have been made
towards the integration of silicon nanophotonic devices into
the traditional CMOS production line [2]. Ring-resonators
have become a prevalent building block for broadband spatial
switches, wavelength filters, and modulators because of their
compact area and low power consumption [14].

System-level implications of photonics have made a large
impact on the way architects are thinking of future CMPs.
Reducing the cost of cross-chip, off-chip, and chip-chip com-
munication allows a system designer to rethink programming
models, memory hierarchy, and cost-performance optimiza-
tion.

Next-generation NoC designs using silicon nanophotonic
technology have been proposed in other work. The Corona
network is an example of an architecture that uses optical
arbitration via a wavelength-routed token ring to reserve access
to a full serpentine crossbar made from redundant waveguides,
modulators, and detectors [7]. Similarly, wavelength-routed
bus-based architectures have been proposed which take ad-
vantage of WDM for arbitration [8], [9].



Batten et al. proposed an architecture for off-chip com-
munications which takes advantage of WDM to dedicate
wavelengths to different DRAM banks, forming a large ring-
resonator matrix as a central crossbar [10]. Phastlane was de-
signed for a cache-coherent CMP, enabling snoop-broadcasts
and cacheline transfers in the optical domain [11].

Finally, much work has been done using TDM with optical
communications for multiprocessor networks [15]–[17]. While
many of the principles discussed in these works can still apply
to the NoC design space, some of the mechanisms required
to implement them may be infeasible or unfavorable on the
chip-scale.

III. PHOTONIC CIRCUIT-SWITCHING

On-chip hybrid photonic networks which use electronics
for circuit-switching control have been proposed by Shacham
et al. [18] and Petracca [12]. The fundamental switching unit
in these designs is the photonic switching element (PSE),
which is able to shift the periodic resonance of the device to
align with the optical signals present in the nearby waveguide
by injecting carriers through a p-n junction. This operation is
shown in Figure 1.

These PSEs are strictly spatial switches, much like conven-
tional electronic ones, which means paths from one port to
another must be arbitrated before data can be sent through
them. The arbitration function is further complicated by the
fact that no photonic equivalent of a buffer exists, requiring
that the path be completely set up from source to destination
before data can be passed through the network. This challenge
has been solved by using a conventional packet-switched
electronic control network which circuit-switches a photonic
data plane [18]. The idea behind this method is that once the
optical path is set up between two nodes, the transmission of
the data can amortize the setup latency with high-bandwidth
WDM.

However, dynamically allocated circuit-switching via an
electronic control network contains no implicit mechanism
which ensures fairness, and can lead to degraded performance
due to path blocking if messages are short or interfere with
each other [19]. This work improves on these designs by
removing the electronic control network responsible for allo-
cating network resources and replacing it with a time-division-
multiplexing distributed arbitration of photonic switches.

IV. TDM ARBITRATION

We propose using TDM to arbitrate end-to-end photonic
circuit paths in a network of ring-resonator based photonic
switches. The basic concept behind this is as follows: during a
specified amount of time, or time slot, switches in the network
are configured to allow communication between one or more
pairs of access points. Each time slot is of length

tslot = tsetup + ttransmission + tpropagation (1)

where tsetup is the time it takes to change the state of a
ring resonator, ttransmission is the time each node is allowed
to transmit data per time slot, and tpropagation is the worst-case



T
ra

ns
m

is
si

on
 

0V0V 0V1V

Waveguide Multi‐wavelength signal
n‐regionp‐region

Ring resonator

Electronic Control

Injected Wavelengths

Off‐resonance profile

On‐resonance profile

Fig. 1: PSE operation, switching from OFF to ON state, shifting
wavelengths.

propagation latency between any two valid communicating
pairs. If each switch is able to keep track of the current
time slot using a global clock, it can be made aware of its
correct configuration using control registers for any given time
slot. This allows the control of the switches to be completely
distributed.

This concept should be distinguished from TDM mecha-
nisms in other networks. Typically, requests to use network
resources are arbitrated by sources or individual network nodes
to dynamically allocate a temporal schedule for access to
virtual channels, physical links, switches, or virtual circuits,
thus providing fairness guarantees to latency and bandwidth
[20]–[24]. Our method aims at providing the same fairness,
but because there is no practical equivalent to a buffer imple-
mentation in silicon photonic integrated technology, we must
apply TDM arbitration through the entire network by creating
end-to-end optical circuit paths. Here, the scheduling of nodes’
access to network resources is done statically, at design-time.
If there are Nslot time slots, each of duration tslot, then the
total TDM period, TTDM is

TTDM = Nslot × tslot (2)

Our design stipulates that full network communication cover-
age must be implemented, or that every network node is able
to send messages to every other node within TTDM .

In this arbitration scheme, the network repeatedly cycles
through every time slot. If a network node has data to send to
another node, it waits for the correct time slot. If a node has
multiple messages to different destinations queued up, it can
send them out of order. Also, by statically selecting different
values for ttransmission, we can vary the granularity of the



arbitration. If, for instance, the system architecture specifies
that only fixed-length messages may be sent on the network
(i.e. cache lines), then we can adjust ttransmission to exactly
match that size.

The naive way to accomplish the resource scheduling is to
assign a single time slot to every communicating pair in the
network. Thus, we would require

Nslot = N × (N − 1) (3)

time slots to implement full coverage, where N is the
number of nodes in the network. A 64-node network would
therefore require 4032 time slots. This naive scheduling of
one transmission per time slot in the network achieves the
worst-case network utilization. As we will see, it is possible
to statically allocate the network to many transmissions during
a single time slot.

A. TDM Scheduling using Genetic Algorithm

We can improve on the naive implementation by scheduling
more than one transmission per time slot, thus reducing the
total number of time slots, and the worst-case latency of a
message waiting for its slot. In order to maintain correct
operation we must adhere to the following constraints during
a single time slot:

1) Source contention - A node can only send to one
destination, assuming a single set of modulators at an
access point.

2) Destination contention - A node can only receive from
one source, assuming a single set of detectors at an
access point.

3) Topology contention - Transmission cannot overlap in
the same waveguide.

Thus we are presented with the problem of scheduling in
both time and space at least one transmission from every node
to every other node in the network. We can accomplish this
by searching the solution space using a genetic algorithm.

Genetic algorithms attempt to optimize the solution to a
problem by simulating the process of evolution on a population
of valid solutions [25]. Starting with an initial population, ge-
netic algorithms iteratively apply selection, reproduction, and
mutation methods until a specified number of generations have
been simulated, or a sufficient solution has been found. Can-
didate solutions to the problem must have a fitness function,
which allows the comparison of members of the population. In
our case, a solution is a set of time slots containing individual
communications which collectively implement full network
communication coverage. We define the following methods
according to our problem:

a) Initialization: Our initial population is generated from
the naive solution by randomly merging two time slots.
Valid merges must adhere to source, destination, and topol-
ogy constraints throughout the genetic algorithm process.
This is done until the population contains P valid solutions.

b) Selection: We employ tournament selection for ease
of implementation [26]. A tournament is begun by select-
ing a subset kTS of the population at random. Fitness is
measured for each solution, which is the number of time
slots in the solution (lower number = better fitness). The
best solution is chosen with probability pTS , the second
best is chosen with probability pTS × (1− pTS), the third
best is chosen with probability pTS × (1 − pTS)2, and
so on. Another tournament is started until the selection
reaches a proportion pS of the population size P . This
selection process has a higher chance of selecting the more
fit solutions, but can still include some that are not as fit
to maintain population diversity.

c) Reproduction: After selection, two solutions are cho-
sen at random to mate, producing one child. This is done
according to the pseudo-code in Algorithm 1. To form a
child, two parents cycle through every possible communi-
cation, taking the larger time slot that contains each. The
child’s Add function filters out redundant communications.
In this way, the reproduction process favors more dense
time slots. This process continues until the population
count is back to P .

d) Mutation: After the next generation is formed, each
solution in the population has a chance pm to undergo the
mutation process. Mutation first ”unrolls” a random time
slot in the solution, forming a new time slot for each com-
munication contained in it. Then, the solution is iterated
over attempting to combine every time slot combination,
thereby spreading the unrolled communication back among
the other time slots.

We test our algorithm by running it multiple times for a
mesh topology. Table I shows the parameters to the algo-
rithm. Table II summarizes the results for N=16, 36, and 64.
Initial experimentation indicated how many generations were
necessary before solutions converged for each network size.

Algorithm 1 Reproduction Pseudo-code
Solution child = new Solution();
for i = 1 to N do

for j = 1 to N do
if i #= j then

Communication c = new Communication(i,j)
if !child.contains(c) then
TS1 = time slot containing c from parent1
TS2 = time slot containing c from parent2
if TS1.Count > TS2.Count then

child.Add(TS1)
else

child.Add(TS2)
end if

end if
end if

end for
end for



10

15

20

25

30

35

40

0 10 20 30 40 50

B
es

t S
ol

ut
io

n 
in

 P
op

ul
at

io
n 

(s
lo

t c
ou

nt
)

Generation

(a) N=16

20

30

40

50

60

70

80

90

100

110

120

0 10 20 30 40 50 60 70
Generation

(b) N=36

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90 100
Generation

(c) N=64

Fig. 2: Multiple runs of Genetic Algorithm on different network sizes for Mesh topology.

TABLE I: Genetic Algorithm Parameters

Parameter Description Value
P Population size 50
kTS Tournament size 5
pTS Selection probability 0.8
pS Selection size 0.6
pm Mutation probability 0.8

TABLE II: Genetic Algorithm Results

N=16 N=36 N=64

Generations 50 75 100
Best Solution 18 61 142
Execution time (s) 6 231 2855
% Selection 0.19 0.006 0.0005
% Reproduction 47.2 50.9 51.5
% Mutation 50.8 48.2 47.9

Execution time and the percentage of time spent in each stage
is reported, indicating that the computational complexity of
Reproduction and Mutation are dependent on network size
because they involve multiple iterations over all time slots.

Figure 2 shows the evolution along generations from 10
runs (each differently colored) using the parameters in Table
I. Solutions begin at N × (N −1)−1, derivatives of the naive
solution. The black dotted lines indicate the number of slots
required for a network without topological constraints (non-
blocking), the minimum possible (N - 1) under this architec-
ture. Solutions from other runs with different parameters (vary-
ing P , kTS) typically came within 2 slots of the best solution
found, indicating that the algorithm is relatively insensitive to
its parameters. The next section discusses the implementation
of the photonic mesh for this network architecture.

V. NETWORK IMPLEMENTATION

Figure 3 shows a 64-core example of a CMP using a 4x4
instantiation of our photonic TDM network, consisting of three
basic components: a photonic switch, switch controller, and
network gateway. Switches are arranged in a mesh, each con-
trolled by their controller. Each gateway connects four cores,
known as gateway concentration. In addition, our network
design has an added advantage that it is tiled, aligning with
today’s chip design flow and manufacturing techniques.

1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0

Photonic Switch

Network Gateway Switch Controller

Processing Core

Fig. 3: Network Architecture.

A. Photonic Switch

Figure 4 shows the layout for the photonic switch in the
network. It consists of waveguide paths and electro-optically
controlled 200-µm ring resonator-based PSEs, which spatially
switch a broadband signal. Ports are labeled as North, South,
East, West, and Gateway (GW).

Because we optimized our arbitration assuming X-then-Y
routing, the switch does not need to implement full connectiv-
ity between the ports. Table III shows the port combinations,
and the PSE number that implements the path, referring to
Figure 4. For example, we can see in Figure 4 that the PSE
labeled as 1 can switch a signal from the gateway (modulator
bank) to the north port. Note that the signal must pass through



2

4

1

5

6

7

8

3

200
225

Control

N

S

E
W

GW

1400

1400

225

10

11

9

12

Fig. 4: Layout of photonic switch, showing waveguides and ring
resonators. Units in microns.

a ring only when coming from a gateway, entering a gateway,
and turning from an X- to Y-dimension, saving on insertion
loss when traveling in straight lines.

B. Switch Controller

In the proposed network architecture, each switch is con-
trolled by a local controller which is aware of the current
TDM slot by tracking ticks of a global TDM clock, and is
therefore aware of how the switch should be set. A global,
synchronous TDM clock can be implemented with waterfall
clock distribution, synchronous latency-insensitive design [27],
or optical clock distribution [28]. The period of this clock must
be the TDM period, tslot. As indicated later in Section VI, tslot
should be set to an expected average message transmission
time, so that time slots are just big enough to allow end-to-
end transmission. Taking into account time of flight overhead,
this value could be tens of nanoseconds equating to less than
250 MHz TDM clock frequency (depending on tslot), a very
feasible implementation by today’s standards.

The output logic can be implemented as a single lookup
table (LUT) which takes the switch ID register as an input,
allowing identical ROM instantiation among network tiles. In
practice, only the fraction of the table that is necessary to run
the local switch would be instantiated to save area and power.

The size of the output logic is proportional to the number of
TDM slots, which is dictated by the number of network nodes.
Specifically, there is one bit per PSE per TDM slot, indicating
whether the PSE is on or off. Since there are 12 PSEs per
switch, this means the ROM of each switch controller contains
1.5×Nslot bytes of information.

TABLE III: Switch Functionality

Inport Outport PSE
Mod N 1
Mod E 2
Mod S 3
Mod W 4

N Det 5
E Det 6
S Det 7
W Det 8
W N 9
E N 10
E S 11
W S 12

E/W W/E -
N/S S/N -

Temp 
Buffer

Core
Cache/Buffer

Core
Cache/Buffer

Core
Cache/Buffer

Core
Cache/Buffer

Electronic 
Crossbar

To/From 
Network

Deserializer
10 GHz 
ClockSerializer

...

...

TDM Control
1

2

2

3

4

Fig. 5: Network gateway microarchitecture.

C. Network Gateway

Figure 5 shows the microarchitecture of a network gateway,
providing network and memory access to four cores. This is
done by a main TDM controller, which arbitrates access to the
network. The gateway operation consists of five main steps,
numbered in Figure 5:

1) Communication requests are made to the TDM con-
troller, which controls an electronic crossbar that con-
nects the various gateway components.

2) When the network is in the correct TDM slot, the TDM
controller sets the crossbar from the requesting core
to the serializer, which ramps the data up to 10 Gb/s
modulation. This bitrate clock is also transmitted on a
seperate wavelength for data recovery at the receivers.

3) When a signal is received, it is first deserialized, clocked
by the received transmission clock.

4) If the data has reached its destination, it sits in a
temporary buffer, waiting for access to the electronic
crossbar. Access will be immediately available unless
cores in the same gateway are communicating locally
through the crossbar.



The temporary buffer is only used to store received trans-
missions that are destined for the cores in the gateway. The
TDM controller gives priority to the temporary buffer over
local core-core communication, therefore it needs to hold
a maximum of 3 transmissions: one for receiving incoming
transmissions, one for sending the last received transmission
on to the correct core, and one buffer in case of destination
contention.

One important function of the gateway in our TDM archi-
tecture is to allow out-of-order access to the network from the
cores, a property inherent in the TDM architecture. In other
words, if a request from one core can be sent during a time
slot, it does not have to wait for other requests from other
cores that need other time slots to be serviced even if their
requests arrive to the controller first. This property motivates
the microarchitecture design decision to use concentration to
increase the network utilization.

VI. NETWORK EVALUATION

We evaluate our design using PhoenixSim [29], a pho-
tonic interconnection network simulator. We compare a 64-
core instantiation of our architecture (P-TDM) to a similarly-
configured packet-switched Electronic Mesh (E-Mesh) and a
circuit-switched Photonic Mesh (P-Mesh).

E-Mesh routers have 4 virtual channels (VCs), 1024 bits
per VC, and can issue 2 grants per cycle. Links are 128
bits wide, and optimally repeatered according to ORION [30],
the electronic router model used in PhoenixSim. All E-Mesh
components run at 2.5 GHz. The electronic control network for
the P-Mesh has 32-bit links with 1 VC and 128-bit buffers at
1 GHz clock. Both P-Mesh and P-TDM use 128 wavelengths
for WDM with 10 Gb/s signaling.

We run uniform random traffic in the network for 10ms with
256B, 8kB, and 256kB messages, and varying the arrival rate
until saturation. Values for tslot were set at 4, 13, and 30ns,
respectively, assuming the network can be configured ahead
of time for traffic with fixed-length messages. Section VII
investigates applications with variable message sizes, fixing
tslot.

Figure 6 shows the latency vs. total bandwidth in the
network for the different message sizes (S). We see that Pho-
tonicTDM achieves superior bandwidth in all cases, between
2-4× over the next best network. This is partly due to the
fact that the PhotonicTDM network gateway allows requests
to be handled out of order, essentially bypassing head-of-line
blocking which is enabled by the architecture. However, the P-
TDM network also exhibits slightly higher latency under light
loads, when requests must wait for their time slot to transmit.

To gauge the power consumption of the networks, we can
look at energy per bit, shown in Table IV. Our design achieves
superior energy per bit in all cases, except very large messages
where the P-Mesh is roughly equivalent.

VII. CASE STUDY: SCIENTIFIC APPLICATIONS

In addition to uniform random traffic, we evaluate our
network design in PhoenixSim using scientific application

0.01

0.1

1

10

0.01 0.1 1 10 100 1000Av
g.

 L
at

en
cy

 (µ
s)

Measured Bandwidth (GB/s)

E‐Mesh
P‐Mesh
P‐TDM

(a) S=256B

0.01

0.1

1

10

100

10 100 1000 10000

Av
g.

 L
at

en
cy

 (µ
s)

Measured Bandwidth (GB/s)

E‐Mesh
P‐Mesh
P‐TDM

(b) S=8kB

1

10

100

1000

1 10 100 1000 10000Av
g.

 L
at

en
cy

 (µ
s)

Measured Bandwidth (GB/s)

E‐Mesh
P‐Mesh
P‐TDM

(c) S=256kB

Fig. 6: Latency vs. measured bandwidth for random traffic
with different message sizes.

TABLE IV: Energy Consumption at Saturation (pJ/bit)

Message Size
Network 256B 8k 256k
E-Mesh 8.43 9.11 9.24
P-Mesh 5.31 0.39 0.22
P-TDM 0.011 0.19 0.24

traces, also used in [19]. A custom-designed library was
implemented to efficiently trace communication behavior of
MPI code running on multiprocessor systems. MPI programs
are appropriate for evaluating our network design because we
envision a data-centric programming model which can take
advantage of core-to-core send commands

Traces are organized into phases, in which all communi-
cation must take place in order to advance to the next phase.
Synchronization broadcasts to and from a single ”master” core
enforce the barriers between phases. Communication events
occur as fast as the network allows. The TDM slot time (tslot)
is set at 6ns, about 5kb of data.

We investigate four SPMD-style applications of interest
within the scientific computing community:

• Cactus - astrophysics computation toolkit designed to
solve coupled nonlinear hyperbolic and elliptic equations



TABLE V: Benchmark Statistics

Num Num Total Avg Msg
Benchmark Phases Messages Size (B) Size (B)

Cactus 2 285 7.3M 25600
GTC 2 63 8.1M 129796

MADbench 195 15414 86.5M 5613
PARATEC 34 126059 5.4M 43.3

arising from General Relativity [31].
• GTC (Gyrokinetic Toroidal Code) - 3D particle-in-cell

application developed to study turbulent transport in
magnetic confinement fusion [32].

• PARATEC (PARAllel Total Energy Code) - materials sci-
ence application using Density Functional Theory (DFT)
method [33].

• MADbench - benchmark based on MADspec cosmology
code, calculating the maximum likelihood angular power
spectrum of the cosmic microwave background [34].

Table V summarizes the characteristics of each application.
An interesting feature of this set of applications is their
diversity, ranging from a few large messages (cactus, gtc) to
many small messages (PARATEC) and somewhere in between
with many phases (MADbench).

Trace thread ID’s are randomly mapped onto cores in the
network, a practice commonly used in the scientific computing
community when the best mapping is not known or it is not
possible to choose it. Figure 7 shows the average execution
time and energy consumption for the application traces for
each network across fifty runs, with one standard deviation
shown in the error bars.

Figure 7a shows the execution time of each application
trace across the three compared networks. We can observe
that the photonic networks outperform the E-Mesh for Cactus
and GTC by about 3× with little difference between P-Mesh
and P-TDM, while all three networks are essentially equivalent
for MADbench. The P-Mesh network, however, suffers greatly
under PARATEC, which is comprised of a large number of
very small messages.

Figure 7b shows the network energy consumption of each
application across the three networks. In a trend similar to
execution time, the photonic networks use much less energy
(over an order of magnutide) than the E-Mesh for Cactus,
GTC, and MADbench. For PARATEC, the P-TDM network
achieves an order of magnitude lower energy consumption than
both the E-Mesh and P-Mesh.

When considering both execution time and energy consump-
tion, the photonic networks equally outperform the electronic
baseline for Cactus, GTC, and MADbench, all of which exhibit
fairly large message sizes. Though our P-TDM design gives
up a very small hit in performance and energy compared to
the P-Mesh, this is outweighed by the order of magnitude
less execution time and energy consumption the P-TDM gains
from PARATEC. This directly illustrates the versatility of
our network design which provides fair access to network
resources compared to the purely circuit-switched P-Mesh,
which exhibits path-setup blocking and latency.

0.00001

0.0001

0.001

0.01

Cactus GTC MADbench PARATEC

Ex
ec

ut
io

n 
Ti

m
e 

(s
) E-Mesh P-Mesh P-TDM

(a)
0.00001

0.0001

0.001

0.01

0.1

Cactus GTC MADbench PARATEC
En

er
gy

 (J
)

E-Mesh P-Mesh P-TDM

(b)

Fig. 7: Execution time and energy consumption for appli-
cation traces (values towards top of graph are better).

0.001

0.01

0.1

1

10

100

1000

Cactus GTC MADbench PARATEC

Ef
fic

ie
nc

y 
Im

pr
ov

em
en

t P-Mesh P-TDM

Fig. 8: Network efficiency improvement over E-Mesh for scien-
tific applications.

To make this point clearer, we can combine execution time
and energy consumption into a single value for Efficiency, η,
defined as:

η =
1

E × t
(4)

where E is the total energy consumption, and t is the execu-
tion time of the application. Figure 8 shows the improvement
over E-Mesh, where a value of 1 indicates even efficiency.
We notice the dichotomy of the circuit-switched P-Mesh for
changing traffic patterns: many small messages perform signif-
icantly worse compared to few, large messages. Our P-TDM
design achieves efficiency which is an order of magnitude
higher than E-Mesh for Cactus, GTC, and MADbench, while
maintaining a 4× improvement for PARATEC.



VIII. CONCLUSIONS

We present a novel photonic NoC architecture which intro-
duces the concept of fairness for end-to-end high bandwidth
optical circuits by round-robin scheduling all possible com-
munications in both time and space on an arbitrary topology.
Studied on a 64-core concentrated mesh, this method proves an
effective way to increase network utlization, leading to 2-4×
improved effective throughput under random traffic at network
saturation while achieving orders of magnitude better energy
per bit compared with the electronic solution. TDM arbitration
of photonic circuits enables at least 4× better efficiency for
real scientific application traces over the baseline making it a
highly versatile network architecture, compared to a traditional
circuit-switched photonic mesh which can be highly sensitive
to message size and traffic pattern. Future work will focus on
gracefully scaling the network design, using solutions to the
scheduling problem already explored in previous work, and
incorporating off-chip memory access.

ACKNOWLEDGEMENTS

This research is partially supported by DARPA MTO under
grant ARL-W911NF-08-1-0127, the NSF (Award #: 0811012),
and the FCRP Interconnect Focus Center (IFC).

REFERENCES

[1] N. Magen, A. Kolodny, U. Weiser, and N. Shamir, “Interconnect-power
dissipation in a microprocessor,” in SLIP ’04: Proceedings of the 2004
international workshop on System level interconnect prediction. ACM,
2004, pp. 7–13.

[2] L. Chen, K. Preston, S. Manipatruni, and M. Lipson, “Integrated GHz
silicon photonic interconnect with micrometer-scale modulators and
detectors,” Optics Express, vol. 17, no. 17, August 2009.

[3] B. Guha, B. B. C. Kyotoku, and M. Lipson, “CMOS-compatibile
athermal silicon microring resonators,” Optics Express, vol. 18, no. 4,
Feb. 2010.

[4] H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon
electro-optic switch for on-chip optical networks,” Optics Express,
vol. 17, no. 25, Dec. 2009.

[5] M. R. Watts, “Ultralow power silicon microdisk modulators and
switches,” in 5th Annual Conference on Group IV Photonics, 2008, pp.
4–6.

[6] A. Melloni, F. Morichetti, R. Costa, G. C. an dP. Boffi, and M. Martinelli,
“The ring-based optical resonant router,” in IEEE ICC, 2006, pp. 2799–
2804.

[7] D. Vantrease et al., “Corona: System implications of emerging nanopho-
tonic technology,” Computer Architecture, International Symposium on,
vol. 0, pp. 153–164, 2008.

[8] Y. Pan, P. Kumar, J. Kim, G. Memik, Y. Zhang, and A. Choudhary, “Fire-
fly: illuminating future network-on-chip with nanophotonics,” SIGARCH
Comput. Archit. News, vol. 37, no. 3, pp. 429–440, 2009.

[9] N. Kirman et al., “Leveraging optical technology in future bus-based
chip multiprocessors,” in MICRO 39: Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitecture. Washing-
ton, DC, USA: IEEE Computer Society, 2006, pp. 492–503.

[10] C. Batten et al., “Building manycore processor-to-dram networks with
monolithic silicon photonics,” in HOTI ’08: Proceedings of the 2008
16th IEEE Symposium on High Performance Interconnects. IEEE
Computer Society, 2008, pp. 21–30.

[11] M. J. Cianchetti, J. C. Kerekes, and D. H. Albonesi, “Phastlane: a
rapid transit optical routing network,” SIGARCH Comput. Archit. News,
vol. 37, no. 3, pp. 441–450, 2009.

[12] M. Petracca, B. G. Lee, K. Bergman, and L. P. Carloni, “Design ex-
ploration of optical interconnection networks for chip multiprocessors,”
in HOTI ’08: Proceedings of the 2008 16th IEEE Symposium on High
Performance Interconnects. IEEE Computer Society, 2008, pp. 31–40.

[13] A. Joshi et al., “Silicon-photonic clos networks for global on-chip
communication,” in NOCS ’09: Proceedings of the 2009 3rd ACM/IEEE
International Symposium on Networks-on-Chip. IEEE Computer Soci-
ety, 2009, pp. 124–133.

[14] Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon
micro-ring modulators for wdm optical interconnection,” Optics Express,
vol. 14, no. 20, Oct. 2006.

[15] C. Qiao and R. Melhem, “Reducing communication latency with path
multiplexing in optically interconnected multiprocessor systems,” IEEE
Transactions on Parallel and Distributed Systems, vol. 8, pp. 97–108,
1997.

[16] X. Yuan, R. Melhem, and R. Gupta, “Distributed path reservation
algorithms for multiplexed all-optical interconnection networks,” IEEE
Trans. Comput., vol. 48, no. 12, pp. 1355–1363, 1999.

[17] C. Qiao and R. Melhem, “Reconfiguration with time division multi-
plexed mins for multiprocessor communications,” IEEE Transactions
on Parallel and Distributed Systems, vol. 5, pp. 337–352, 1994.

[18] A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-
chip for future generations of chip multiprocessors,” IEEE Transactions
on Computers, vol. 57, no. 9, pp. 1246–1260, 2008.

[19] G. Hendry et al., “Analysis of photonic networks for a chip multiproces-
sor using scientific applications,” in NOCS ’09: Proceedings of the 2009
3rd ACM/IEEE International Symposium on Networks-on-Chip. IEEE
Computer Society, 2009, pp. 104–113.

[20] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch, “Guaranteed band-
width using looped containers in temporally disjoint networks within the
nostrum network on chip,” in DATE ’04: Proceedings of the conference
on Design, automation and test in Europe. IEEE Computer Society,
2004, p. 20890.

[21] K. Goossens, J. Dielissen, and A. Radulescu, “Æthereal network on chip:
Concepts, architectures, and implementations,” IEEE Des. Test, vol. 22,
no. 5, pp. 414–421, 2005.

[22] M. Schoeberl, “A time-triggered network-on-chip,” in International
Conference on Field-Programmable Logic and its Applications (FPL
2007), Amsterdam, Netherlands, August 2007, pp. 377 – 382.

[23] Z. Lu and A. Jantsch, “Tdm virtual-circuit configuration for network-
on-chip,” IEEE Trans. Very Large Scale Integr. Syst., vol. 16, no. 8, pp.
1021–1034, 2008.

[24] C. Paukovits and H. Kopetz, “Concepts of switching in the time-
triggered network-on-chip,” in RTCSA ’08: Proceedings of the 2008 14th
IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications. IEEE Computer Society, 2008, pp. 120–129.

[25] N. Barricelli, “Esempi numerici di processi di evoluzione,” Methodos,
pp. 45–68, 1954.

[26] B. L. Miller and D. E. Goldberg, “Genetic algorithms, tournament
selection, and the effects of noise,” Complex Systems, vol. 9, pp. 193–
212, 1995.

[27] A. Edman and C. Svensson, “Timing closure through a globally
synchronous, timing partitioned design methodology,” in DAC ’04:
Proceedings of the 41st annual Design Automation Conference. ACM,
2004, pp. 71–74.

[28] J.-F. Zheng et al., “On-chip optical clock signal distribution,” in OSA
Topical Meeting on Optics in Computing, 2003.

[29] J. Chan, G. Hendry, A. Biberman, K. Bergman, and L. P. Carloni,
“Phoenixsim: A simulator for physical-layer analysis of chip-scale
photonic interconnection networks.” in DATE: Design, Automation, and
Test in Europe., Mar. 2010.

[30] H. Wang et al., “ORION: A power-performance simulator for intercon-
nection networks,” in 35th International Symposium on Microarchitec-
ture, 2002.

[31] “Cactus,” 2004, http://www.cactuscode.org.
[32] Z. Lin, S. Ethier, T. Hahm, and W. Tang, “Size scaling of turbulent

transport in magnetically confined plasmas,” Physical Review Letters,
vol. 88, 2002.

[33] A. Canning, L. Wang, A. Williamson, and A. Zunger, “Parallel empir-
ical pseudopotential electronic structure calculations for million atom
systems,” Journal of Computational Physics, vol. 160, pp. 29–41, 2000.

[34] J. Borrill et al., “Integrated performance monitoring of a cosmology
application on leading HEC platforms,” in International Conference on
Parallel Processing (ICPP), 2005.


