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SUMMARY

A convergence analysis of two-grid methods based on coarsening by (unsmoothed) aggregation is
presented. For diagonally dominant symmetric (M-)matrices, it is shown that the analysis can be conducted
locally; that is, the convergence factor can be bounded above by computing separately for each aggregate
a parameter, which in some sense measures its quality. The procedure is purely algebraic and can be
used to control a posteriori the quality of automatic coarsening algorithms. Assuming the aggregation
pattern is sufficiently regular, it is further shown that the resulting bound is asymptotically sharp for
a large class of elliptic boundary value problems, including problems with variable and discontinuous
coefficients. In particular, the analysis of typical examples shows that the convergence rate is insensitive
to discontinuities under some reasonable assumptions on the aggregation scheme. Copyright � 2010 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

We consider multigrid methods [1–3] for solving large sparse n×n linear systems

Ax=b (1)

with symmetric positive-definite (SPD) system matrix A. Multigrid methods are based on the
recursive use of a two-grid scheme. A basic two-grid method combines the action of a smoother,
often a simple iterative method, and a coarse grid correction, which corresponds to the solution of
the residual equations on a coarser grid. The convergence depends on the interplay between this
two components and, when simple smoothers are used, it relies essentially on the coarsening; that
is, on the way the fine grid equations are approximated by the coarse system.

Here, we consider coarsening by aggregation. In such schemes, the fine grid unknowns are
grouped into disjoint sets, and each set is associated with a unique coarse grid unknown. Piecewise
constant prolongation is then a common choice, which means that the solution of the residual
equation computed on the coarse grid is transferred back to the fine grid by assigning the value
of a given coarse variable to all fine grid variables associated with it. This makes the coarse grid
matrix easy to compute and usually as sparse as the original fine grid matrix.
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Aggregation schemes are not new and trace back to [4, 5]. They did not receive much atten-
tion till recently because of the difficulty to obtain grid independent convergence on their basis
[6, p. 522–524], see also [7, p. 663], where an accurate three grid analysis is presented for the
model Poisson problem. This may be related to the fact that the piecewise constant prolongation
does not correspond to an interpolation which is at least first-order accurate, as required by the
standard multigrid theory [2, Sections 3.5 and 6.3.2].

That is why aggregation is often associated with smoothed aggregation, a procedure in which
a tentative piecewise constant prolongation operator is smoothed [8, 9]. This allows to develop
an appropriate convergence theory, but, at the same time, some of the attractive features of pure
(unsmoothed) aggregation are lost. In particular, assuming the same aggregation pattern, the coarse
grid matrices are less sparse and more costly to compute when using smoothed aggregation.

In this paper, we investigate such pure aggregation schemes based on the piecewise constant
prolongation. They may indeed lead to two-grid methods with grid-independent convergence
properties, as recently shown in [10] for model constant coefficient discrete partial differential
equations (PDE) problems. There is no contradiction with the above quoted results, whose focus is
on the convergence properties of two-grid methods used recursively in so-called V-cycle scheme [1].
Indeed, aggregation-based multigrid methods tend to scale poorly with the number of levels
when using simple V- or even W-cycles, even though the two-grid scheme converges nicely
[10, 11]. However, this may be cured using more sophisticated K-cycles, in which Krylov subspace
acceleration is used at each level [12]. It is also possible to improve the scalability by increasing
the number of smoothing steps on coarser levels [13].

Now, the (Fourier) analysis developed in [10] only addresses constant coefficient problems with
artificial (periodic) boundary conditions. Although there are numerical evidences that aggregation-
based methods can be robust in the presence of varying or discontinuous coefficients [11] (see
also [14]), this yet remains to be proved. On the other hand, it is also lacking an analysis that
would not only allow to assess a given aggregation scheme for a problem at hand, but could also
serve as a guideline in the development of aggregation algorithms, in much the same way the
coarsening strategies used in the classical AMG methods may be derived from the objective to
keep reasonably bounded some convergence measure of the resulting two-grid scheme [6, 15–17].

In this paper, we fill these gaps by developing a convergence analysis that relates the global
convergence to ‘local’ quantities associated with each aggregate. This analysis is based on a general
algebraic result, which requires only the knowledge of a splitting of the system matrix A satisfying
some given properties, and we show how this splitting can be constructed in a systematic way when
the matrix is diagonally dominant. Furthermore, the needed local quantities are easy to compute
solving an eigenvalue problem of the size of the aggregate. They can also be assessed analytically
in a number of cases. This assessment reveals that the convergence is to a large extent insensitive to
variations or discontinuities in PDE coefficients if one can introduce some reasonable assumptions
on the aggregation scheme.

Moreover, as seen below, the bounds deduced in this way can often be shown asymptotically sharp
provided that one assumes a simplified smoothing scheme with only one damped Jacobi pre- or
post-smoothing step. Hence, we not only develop a qualitative analysis, but also a quantitative one,
complementary to the Fourier analysis: this latter allows to assess the benefit ofmore smoothing steps
or increasing smoother quality, but is restricted to constant coefficient problems on rectangular grids.

Returning to a qualitative viewpoint, it should be mentioned that, since the bound depends only
on local quantities, it is independent of the global properties of the underlying PDE such as (full)
elliptic regularity. For instance, estimates derived in Section 4 do not need the assumption that the
underlying domain is convex, and, in fact, allows re-entering corners.

The presented results share some features with the analysis of element-based algebraic multigrid
(AMGe) approaches, as developed in [18–21]. Convergence estimates presented there are also
local and can be used to guide the coarsening process. The AMGe coarsening itself, however,
differs substantially from aggregation. It applies only to finite element problems and requires
the knowledge of element matrices, whereas the associated prolongation is denser than the basic
piecewise constant prolongation considered here.
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The remainder of this paper is organized as follows. The general framework of aggregation-based
two-grid methods is introduced in Section 2. The algebraic analysis is developed in Section 3, and
illustrated in Sections 4 and 5 on PDE problems with, respectively, continuous and discontinuous
coefficients. Concluding remarks are given in Section 6.

Notation

For any set �, |�| is its size. For any matrix B, R(B) is its range and N(B) is its null space.
For any square matrix C , �(C) is its spectrum and �(C) is its spectral radius (that is, its largest
eigenvalue in modulus). I stands for identity matrix.

2. AGGREGATION-BASED TWO-GRID SCHEMES

The coarsening procedure is based on the agglomeration of the unknowns of the system (1) into
nc non-empty disjoint sets called aggregates. The size of kth aggregate is denoted by n(k)>0. Note
that some aggregation procedures (e.g. [11]) leave part of the unknowns outside the coarsening
process, for instance because the corresponding row is strongly dominated by its diagonal element.
As will be seen below, our analysis gives a theoretical support to this approach. Therefore, besides
the nc regular aggregates we define the (pseudo) 0th aggregate as the (possibly empty) set of n(0)

unknowns that are left outside the coarsening process. For the ease of presentation, and without
loss of generality, we assume the ordering of the unknowns such that those belonging to (k+1)th
aggregate have higher indices that those belonging to kth aggregate, k =0, . . . ,nc −1.

The regular aggregates are the variables of the next (coarse) level in the multigrid hierarchy.
Once they are defined, the n×nc prolongation matrix is given by

(P)ij =
{
1 if i belongs to j th aggregate, j =1, . . . ,nc,

0 otherwise.
(2)

Hence, setting 1m = (1,1, . . . ,1)T, with m being the vector size, we have

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0

1n(1)

1n(2)

. . .

1n(nc )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3)

In what follows, we assume a slightly more general form of (3)

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0

p(1)

p(2)

. . .

p(nc)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4)

with p(k) being a vector of size n(k). We shall see, however, that for the considered examples the
choice p(k)=1n(k) is at the same time simple and natural.

Once the prolongation P is known, the nc ×n restriction matrix is set to its transpose and the
nc ×nc coarse grid matrix is given by the Galerkin formula Ac = PTAP . In order to complete the
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definition of a two-grid scheme, one also needs to specify the pre- and post-smoother matrices M1,
M2, as well as the numbers �1 and �2 of pre- and post-smoothing steps, respectively. The iteration
matrix ETG of the two-grid cycle is then given by

ETG= (I − M−1
2 A)�2 (I − PTA−1

c P A)(I − M−1
1 A)�1 . (5)

The main objective of this paper is the analysis of its spectral radius �(ETG) (that is, its largest
eigenvalue in modulus), which governs the convergence of the two-grid scheme.

It is often convenient to define a ‘global’ smoother X via the relation

I − X−1A= (I − M−1
1 A)�1 (I − M−1

2 A)�2 . (6)

X has the same effect in one iteration as �2 steps of post-smoothing followed by �1 steps of
pre-smoothing. In what follows, we assume that X is SPD. In particular, this is the case when
either

(i) M1= M2= M is symmetric and satisfy �(I − M−1A)<1 (as, e.g. in the case of weighted
Jacobi); or

(ii) M1= MT
2 = M , �1=�2 and there holds �((I − M−1A)(I − M−TA))<1 (as, e.g. in the case

of symmetric Gauss–Seidel).

3. ALGEBRAIC ANALYSIS

The starting point of our analysis is a well-known identity for the two-grid convergence rate intro-
duced in [22, Theorem 4.3] (see also [23, Theorem 3.19]). We recall it up to a slight generalization
in Theorem 3.1 below. The generalization, that is based on the results in [24], allows to consider
the above (i) smoothing scheme with �1 �=�2; in particular, �1=1 and �2=0 is allowed. This latter
case is somehow important because the parameter �D for D =diag(A), which is investigated in the
remainder of this paper, appears then directly connected to the convergence factor of a simplified
two-grid scheme with only 1 pre- or post-smoothing step.

Theorem 3.1
Let A be an n×n SPD matrix and let P be an n×nc matrix of rank nc<n. Let M1, �1 and M2,
�2 be such that X , defined by (6), is an n×n SPD matrix and let ETG be the two-grid iteration
matrix defined by (5).

Then, setting �X = P(PTX P)−1PTX , we have

�(ETG)�max

(
�max(X

−1A)−1,1− 1

�X

)
, (7)

where

�X = max
v∈Rn\{0}

vTX (I −�X )v
vTAv

.

Moreover, for any n×n SPD matrix D, setting �D = P(PTD P)−1PTD and

�D = max
v∈Rn\{0}

vTD(I −�D)v
vTAv

there holds

�X�
(

max
v∈Rn\{0}

vTXv
vTDv

)
�D. (8)

In particular, if M1= M2=�−1D with �−1��max(D−1A), one has

�(ETG)=1− 1

�X
(9)
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with

�X��−1�D, (10)

where an equality is reached when �1+�2=1.

Proof
The inequality (7) is a direct consequence of [24, Theorem 2.1 and Corollary 2.1], combined with
the assumptions that A and X are SPD, which implies

max
v∈Rn\{0}

vTX (I −�X )v
vTAv

=�max(A
−1/2X (I −�X )A

−1/2)=�max(A
−1X (I −�X )).

The inequality (8) follows from Corollary 3.20 in [23] (or, alternatively, from Corollary 2.2 in
[24], setting in this latter Y = D, LY = D1/2 and Q =�D).

To prove (9), observe that �−1��max(D−1A) implies, together with (6), �max(X−1A)�1. Hence,
since it is known by [24, Theorem 2.1] that �X�1, the second term in (7) is larger than the first
one. It follows then from the proof of [24, Corollary 2.2] that inequality (7) becomes an equality,
hence (9).

The inequality (10) follows from (8) combined with

max
v∈Rn\{0}

vTXv
vTDv

= �−1 max
v∈Rn\{0}

vT�D−1v
vTX−1v

= �−1 max
v∈Rn\{0}

vTv−vT(I −�A1/2D−1A1/2)v
vTv−vT(I − A1/2X−1A1/2)v

��−1,

where the last inequality holds because I − A1/2X−1A1/2= (I −�A1/2D−1A1/2)�1+�2 . Eventually,
when �1+�2=1, one has X =�−1D, which implies X (I −�X )=�−1D(I −�D), and, hence, that
(10) is an equality. �

When D is chosen independently of P , the first factor in the right-hand side of (8) depends only
on the smoothing scheme. If M1= MT

2 = M and �1=�2, setting S = I − M−1A, one has further

vTXv
vTDv

��−1 ∀v∈Rn\{0}⇐⇒‖Sv‖2A�‖v‖2A −�‖v‖AD−1A ∀v∈Rn .

Hence, when D =diag(A) (the choice that is privileged in the rest of this work) the value of �
is nothing but of the smoothing factor in the Ruge–Stüben analysis [6]. On the other hand, the
second factor in the right-hand side of (8) depends on P but not on X , and keeping it bounded
amounts to satisfy an approximation property.

Now, our analysis is based on the splitting of A as

A= Ab + Ar , (11)

where Ab and Ar are both symmetric non-negative definite and Ab is block diagonal

Ab =

⎛⎜⎜⎜⎜⎜⎜⎝
A(0)

A(1)

. . .

A(nc)

⎞⎟⎟⎟⎟⎟⎟⎠ , (12)

where A(k), k =0, . . . ,nc, is of size n(k)×n(k).
As an example, consider a symmetric diagonally dominant matrix A with positive diagonal

entries (in particular, if all off-diagonal entries are non-positive, the matrix is an M-matrix).
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The matrices A(k), k =0, . . . ,nc can be constructed by restricting the matrix A to the unknowns
belonging to the kth aggregate and then by subtracting the corresponding contribution C (k)=
diag(ci ) from its diagonal, in order to keep

Ar =

⎛⎜⎜⎜⎜⎜⎜⎝
C (0) ∗ · · · ∗
∗ C (1) · · · ∗
...

...
. . .

...

∗ ∗ · · · C (nc)

⎞⎟⎟⎟⎟⎟⎟⎠ (13)

diagonally dominant, and, hence, non-negative definite. Since A is diagonally dominant, any
contribution subtracted from the diagonal of each A(k) that allows to satisfy

|(A) j j |−
n∑

i=1
i �= j

|(A)ij|�(Ab) j j −
n∑

i=1
i �= j

|(Ab)ij|�0, j =1, . . . ,n (14)

lead to a possible splitting. The case when the upper inequality becomes an equality; that is, when

(Ar )jj −
n∑

i=1
i �= j

|(Ar )ij|=0, j =1, . . . ,n (15)

is of particular interest below.
Another splitting (11) of A can be constructed in the finite element context when each aggregate

contains all and only the nodes belonging to one element or to the union of several elements. The
matrices A(k), k =0, . . . ,nc, are then assembled from corresponding element matrices, whereas the
assembly of remaining element matrices gives the matrix Ar . The non-negative definitness of Ab
and Ar then follows from non-negative definiteness of the element matrices.

Once the splitting is known, the following theorem allows to estimate the ‘global’ approxi-
mation property constant �D by means of ‘local’ quantities �(k)D , k =0, . . . ,nc. Because each �(k)D
corresponds to a particular aggregate k, it may be seen as a measure of this aggregate’s quality.

Theorem 3.2
Let A= Ab + Ar be an n×n SPD matrix, with Ab and Ar symmetric non-negative definite and
Ab having the block-diagonal form (12). Let P be an n×nc matrix of rank nc<n and of the
form (4). Let

D =

⎛⎜⎜⎜⎜⎜⎜⎝
D(0)

D(1)

. . .

D(nc)

⎞⎟⎟⎟⎟⎟⎟⎠ (16)

be an n×n SPD matrix, let �D = P(PTD P)−1PTD and set

�D = max
v∈Rn\{0}

vTD(I −�D)v
vTAv

. (17)

Letting

�(0)D =

⎧⎪⎪⎨⎪⎪⎩
0 if n(0)=0,

sup
v(0)∈Rn(0)\N(A(0))

v(0)TD(0)v(0)

v(0)TA(0)v(0)
if n(0)>0
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and, for k =1, . . . ,nc,

�(k)D =

⎧⎪⎪⎨⎪⎪⎩
0 if n(k)=1,

sup
v(k)∈Rn(k)\N(A(k))

v(k)TD(k)(I −�(k)D )v(k)

v(k)TA(k)v(k)
if n(k)>1,

(18)

where

�(k)D =p(k)(p(k)TD(k)p(k))−1p(k)TD(k) (19)

there holds

�D� max
k=0,. . .,nc

�(k)D . (20)

Moreover, �(0)D <∞ if and only if n(0)=0 or A(0) is SPD, and, for k =1, . . . ,nc, �(k)D <∞ if and
only if N(A(k))⊂span{p(k)}, with, in the latter case,

�(k)D =

⎧⎪⎪⎨⎪⎪⎩
0 if n(k)=1,

max
v(k)∈R(A(k))\{0}

v(k)TD(k)(I −�(k)D )v(k)

v(k)TA(k)v(k)
if n(k)>1.

(21)

Proof
We first prove the if and only if result for k =1, . . . ,nc, the case k =0 being trivial. The if statement
assumes N(A(k))⊂span{p(k)} which means that either N(A(k))={0} or N(A(k))=span{p(k)}.
In the former case the supremum in (18) becomes a maximum over Rn(k)\{0}=R(A(k))\{0}, hence,
(21) and �(k)D <∞. In the latter case, decomposing any vector that does not belong to N(A(k)) as

v=	p(k)+w, w∈R(A(k))\{0}, and using D(k)(I −�(k)D )p(k)= (D(k)(I −�(k)D ))Tp(k)=0, we have

�(k)D = sup
v∈Rn(k)\N(A(k))

vTD(k)(I −�(k)D )v

vTA(k)v
= max

w∈R(A(k))\{0}
wTD(k)(I −�(k)D )w

wTA(k)w

leading to the same conclusions. The only if statement is proved assuming N(A(k))�span{p(k)}
and showing that �(k)D =∞. Indeed, taking v=	u+w with w∈N(A(k))\span{p(k)} (exists by
assumption) and u∈R(A(k)) leads to

�(k)D = sup
	∈R\{0}

|wTD(k)(I −�(k)D )w+2	uTD(k)(I −�(k)D )w+	2uTD(k)(I −�(k)D )u|
	2uTA(k)u

.

Since wTD(k)(I −�(k)D )w �=0 by construction of w, this last expression is unbounded for 	→0.

We now prove (20). Note that this inequality is obvious when �(k)D =∞ for at least one k. Hence,

without loss of generality we may assume �(k)D finite for k =0, . . . ,nc. Moreover, since nc<n, there
holds �D>0.

Now, observe that

D(I −�D)=

⎛⎜⎜⎜⎜⎜⎜⎝

D(0)

D(1)(I −�(1)D )

. . .

D(nc)(I −�(nc)
D )

⎞⎟⎟⎟⎟⎟⎟⎠ (22)
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and, hence,

�D = max
v∈Rn\{0}

vTD(I −�D)v
vTAv

= max
v∈Rn\{0}

vTD(I −�D)v
vTAbv+vTAr v

= max
v∈Rn\{0}

∑
k=1,. . .,nc

v(k)TD(k)(I −�(k)D )v(k)+v(0)TD(0)v(0)∑
k=0,. . .,nc

v(k)TA(k)v(k)+vTAr v
. (23)

Let v∗ = (v(0)∗ Tv(1)∗ T . . .v(nc)∗ T)T be the vector that realizes this maximum. Notice that∑
k=0,. . .,nc

v(k)∗ TA(k)v(k)∗ >0. Indeed, because of the boundness of �(k)D , k =0, . . . ,nc, the equality∑
k=0,. . .,nc

v(k)∗ TA(k)v(k)∗ =0 would imply a zero numerator in the right-hand side of (23), whereas,

since A is SPD, vT∗ Ar v∗>0, which would further lead to �D =0. This latter contradicts our
assumption nc<n.

Next, since by assumption �(k)D , k =1, . . . ,nc, is finite, v(k)∗ ∈N(A(k)) implies

v(k)∗
TD(k)(I −�(k)D )v(k)∗ =0.

Therefore, since �(k)D = I when n(k)=1 (entailing D(k)(I −�(k)D )=0)

�D =
∑

k=1,. . .,nc
v(k)∗ TD(k)(I −�(k)D )v(k)∗ +v(0)∗ TD(0)v(0)∗∑

k=0,. . .,nc
v(k)∗ TA(k)v(k)∗ +vT∗ Ar v∗

�
∑

k=1,. . .,nc
v(k)∗ TD(k)(I −�(k)D )v(k)∗ +v(0)∗ TD(0)v(0)∗∑

k=0,. . .,nc
v(k)∗ TA(k)v(k)∗

� max
k=0,...,nc

v(k)∗ /∈N(A(k))

v(k)∗ TD(k)(I −�(k)D )v(k)∗
v(k)∗ TA(k)v(k)∗

� max
k=0,. . .,nc

�(k)D .

�

A practical consequence of this theorem is to show that nodes for which the corresponding row
is strongly dominated by its diagonal element may be kept outside the aggregation process by
putting them into the (pseudo) 0th aggregate. The proposition below presents a simple estimate of
the pseudo aggregate’s quality based on the diagonal dominance excess of corresponding rows.

Proposition 3.3
Assume that A is diagonally dominant, that the splitting A= Ab + Ar satisfies (15) for j =1, . . . ,n(0)

and that D(0)=diag{(A)i i |i =1, . . . ,n(0)}. If n(0)>0, one has

�(0)D = max
v∈Rn(0)

vTD(0)v
vTA(0)v

� max
i=1,. . .,n(0)

(A)i i
(A)i i −

∑n
j=1, j �=i |(A)ij|

. (24)

Proof
Set 
i = (A)i i −

∑n
j=1, j �=i |(A)ij| and note that if 
i =0 at least for one i�n(0), the inequality is

trivially satisfied. Otherwise, observing that A(0)�diag(
i ), the inequality (24) follows. �
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Regarding aggregates 1, . . . ,nc, it is clear that the value of �(k)D strongly depends on p(k). In the
theorem below we further indicate the scope of variation of the aggregate’s quality measure if A(k)

and D(k) are given, and determine the p(k) that leads to the the best quality estimate.

Theorem 3.4
Let A(k) and D(k) be, respectively, an n(k)×n(k) non-zero symmetric non-negative definite matrix
and an n(k)×n(k) SPD matrix, with n(k)>1. Let p be a non-zero vector of size n(k). Let

�(k)D = sup
v∈Rn(k)\N(A(k))

vTD(k)(I −�(k)D )v

vTA(k)v
, (25)

where �(k)D =p(pTD(k)p)−1pTD(k) and let �1��2� · · ·��n(k) be the eigenvalues of D(k)−1A(k).
Then,

�−1
2 ��(k)D ��−1

1 . (26)

Moreover, if

D(k)−1A(k)p=�1p (27)

then

�(k)D = 1

�2
(28)

and, assuming �(k)D finite,

vTD(k)(I −�(k)D )v=�(k)D vTA(k)v for some v∈R(A(k))

if and only if

D(k)−1A(k)v=�2v with vTD(k)p=0. (29)

Proof
Note that the case �(k)D =∞ implies non-empty N(A(k)) and, hence, �1=0. The inequalities (26)
are then trivially satisfied. Moreover, according to Theorem 3.2 we have then N(A(k))�span{p}.
Hence, if (27) holds, dim(N(A(k)))�2, which in turn implies �2=0 and, therefore, (28).

Now, consider �(k)D <∞which, according to Theorem 3.2, impliesN(A(k))⊂span{p}, and, hence,
�2>0. If N(A(k)) is non-empty, then N(A(k))=span{p} and �1=0, which in turn implies (27).
Therefore, for all v∈R(A(k)), pTD(k)v=0, and, hence, �(k)D v=0. Then, according to Theorem 3.2,
we further have

�(k)D = max
v∈R(A(k))\{0}

vTD(k)(I −�(k)D )v

vTA(k)v
= max

v∈R(A(k))\{0}
vTD(k)v
vTA(k)v

=�−1
2 .

In addition, a vector v reaches the maximum if and only if (29) holds.
Finally, we treat the case where N(A(k)) is empty and, hence, A(k) is invertible. Let xi be the

eigenvector of D(k)−1A(k) associated with the eigenvalue �i . To prove the left inequality (26),
we set

v=

⎧⎪⎨⎪⎩
x2 if pTD(k)x2=0,

x1−
(

pTD(k)x1
pTD(k)x2

)
x2 otherwise

and note that �(k)D v=0. Injecting such v �=0 into (25) we find

�(k)D �vTD(k)v
vTA(k)v

��−1
2 .
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The right inequality (26) follows from

�(k)D = max
v∈Rn(k)\{0}

vTD(k)(I −�(k)D )v

vTA(k)v
� max

v∈Rn(k)\{0}

vTD(k)v
vTA(k)v

=�−1
1 .

Moreover, if p=x1, then xi , i =1, . . . ,n(k) are also eigenvectors of A(k)−1D(k)(I −�(k)D ) with corre-

sponding eigenvalues �̃i such that �̃1=0 and, for i>1, �̃i =�−1
i . Since �(k)D is the smallest eigenvalue

of A(k)−1D(k)(I −�(k)D ), (28) follows. Moreover, (29) holds if and only if v is an eigenvector

A(k)−1D(k)(I −�(k)D ) associated with �−1
2 =�(k)D , which is in turn equivalent to vTD(k)(I −�(k)D )v=

�(k)D vTA(k)v. �

By the way of illustration, consider a symmetric diagonally dominant M-matrix and assume
that the splitting A= Ab + Ar is based on the lower bound of (14); that is, zero sum is required for
every row of Ab. Then, each A(k) is singular with its null space equal to span{1n(k)}. Theorem 3.2
then shows that one has to use p(k)=1n(k) to keep �(k)D finite, in which case, by Theorem 3.4, �(k)D =
�2(D(k)−1A(k))−1. When the diagonal dominance is strict, the two-side inequality (14) indicates
that there is some freedom in the choice of the diagonal entries of Ab, and one may wonder how
to exploit it at the best. The following remarks give some clues in this respect.

Remark 3.1
When A(k) is irreducible and diagonally dominant with non-positive off-diagonal entries, and
when D(k) is a diagonal matrix, D(k)−1A(k) is an irreducible M-matrix and, hence, an eigenvector
whose components are positive (e.g. 1n(k) when the rows of A(k) have zero sum) is necessarily the
eigenvector associated with the smallest eigenvalue, which is unique.

Remark 3.2
Consider a diagonally dominant M-matrix for which the splitting A= Ab + Ar is based on (14).
If the diagonal dominance is strict for some rows associated with aggregate k, assuming p(k)=1n(k) ,
a nice way to quickly obtain a useful estimate consists in choosing diagonal entries of Ab as
large as possible while satisfying (14) with the additional constraint that 1n(k) is an eigenvector
of D(k)−1A(k), so that the condition ensuring (28) holds. In particular, when D(k) is a diagonal
matrix, it amounts to using A(k)= A(k)

0 +
D(k) with A(k)
0 having all rows with zero sum and with


 being the largest constant such that (14) still holds.

Note that, for the discrete PDE problems with constant or piecewise constant coefficients, the
procedure in Remark 3.2 corresponds to the splitting (15), except possibly in the neighborhood of
the boundary. Therefore, in the reminder of this paper we use the splitting (15) for the aggregates
in the interior of the domain. In what follows, we also choose D =diag(A).

4. DISCRETE PDEs WITH CONSTANT AND SMOOTHLY VARYING COEFFICIENTS

4.1. Preliminaries

We start considering matrices associated with the 5-point stencil⎡⎢⎣
−	y

−	x 	d −	x

−	y

⎤⎥⎦ with 	x ,	y>0 and 	d�2(	x +	y) (30)

on a rectangular grid of arbitrary shape. For such matrices we want to assess boxwise aggregates
with four nodes per aggregate (as on Figure 1(a)) and linewise aggregates with two, three and
four nodes (as on Figure 1(b)). The prolongation vector is p(k)=1n(k) , k =1, . . . ,nc and, as can
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Figure 1. Examples of (a) boxwise; (b) linewise; and (c) L-shaped aggregation patterns.

be checked from (31) and (33) below, it is an eigenvector of D(k)−1A(k) associated with the
smallest eigenvalue �d	−1

d , where �d =	d −2(	x +	y)�0. Theorem 3.4 then implies that �(k)D =
�2(D(k)−1A(k))−1=	d�2(A(k))−1.

Considering more specifically boxwise aggregates, we have

A(k)=

⎛⎜⎜⎜⎜⎝
	x +	y −	x −	y 0

−	x 	x +	y 0 −	y

−	y 0 	x +	y −	x

0 −	y −	x 	x +	y

⎞⎟⎟⎟⎟⎠+�d I (31)

and, hence,

�(k)D = 2	x +2	y +�d

2min(	x ,	y)+�d
, (32)

whereas for linewise aggregation of size m in the x direction

A(k)=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

	x −	x

−	x 2	x
. . .

. . .
. . . −	x

−	x 	x

⎞⎟⎟⎟⎟⎟⎟⎟⎠
+�d I (33)

and, hence, the following formula holds for m =2, . . . ,4:

�(k)D = 2	x +2	y +�d

(2−√
m−2)	x +�d

. (34)

It follows that linewise aggregates of size 4 oriented in the direction of strong coupling become
more attractive than boxwise aggregates whenever max(	x ,	y)>(2+√

2)min(	x ,	y). Always
choosing the best aggregate shape, we have then

�(k)D �3+
√
2. (35)

Since linewise aggregates of size 3 and 2 have better quality estimates than linewise aggregates of
size 4, as can be concluded from (34), this upper bound holds for them as well.

4.2. Constant coefficients

We now discuss more specifically the five-point finite difference approximation of

�
�x

(
	x

�u

�x

)
+ �

�y

(
	y

�u

�y

)
+�u = f on � (36)
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(as can be obtained using the mesh box integration scheme [25]) with uniform mesh size h in both
directions, where the boundary �� of the domain �∈R2 is the union of segments parallel to the
x or y axis and connecting the grid nodes. Note that � is possibly not convex and may contain
holes.

If the PDE coefficients 	x , 	y and � are constant, the above results allow to assess aggregate’s
quality for some typical aggregate shapes. It is also easy to extend the reasoning to further
aggregation schemes, leading to bound above �(k)D by a modest constant if either coefficients
are isotropic (	x =	y) or if one uses linewise aggregation along the strong coupling direction.
For instance, if 	x =	y , (34) with m =3 also applies to L-shaped aggregates as illustrated on
Figure 1(c).

Regarding Neumann boundary conditions, the quality of aggregates that contain boundary nodes
cannot be directly deduced from the above analysis.‡ Again, however, isotropic coefficients and
linewise aggregates aligned with strong coupling yield bounds similar to (32) and (34). For instance,
if 	x =	y and �=0, boxwise aggregation near a Neumann boundary result in matrices A(k) and
D(k) that have the form analyzed in Theorem 5.1 below, with 	1=	2 and 	3=	4=0 (boundary
aligned with grid lines), 	2=	3=	4=0 (resorting corners), or 	1=	2=	3 and 	4=0 (re-entering
corners). As shown in this theorem, one has then �(k)D �2 in the two former cases and �(k)D �2.23

in the latter, compared to �(k)D =2 away from the boundary.
Note that our analysis does not require all aggregates having the same shape, which in fact

seldom occurs with practical aggregation algorithms (see [11] for an example). One should just
take care that the global �D is not larger than desired because of a few irregular aggregates, which
in practice can be prevented by breaking them into smaller pieces.

4.3. Smoothly varying coefficients

Consider now the same discrete PDE (36) but with smoothly varying coefficients. Because the
matrices A(k) and D(k) are local to the aggregate at hand, they are equal, up to a O(h) perturbation,
to the matrices A(k)

0 and D(k)
0 corresponding to PDE coefficients that are constant and equal to

the mean value inside the aggregate. Furthermore, 1n(k) remains the eigenvector of D(k)−1A(k)

associated with the smallest eigenvalue either because �=0 and, hence, N(A(k))=span{1n(k)}, or
by using the trick suggested at the end of Section 3 in Remark 3.2 (see also Remark 3.1). Hence,
as shown in Theorem 3.4, �(k)D is the inverse of the second smallest eigenvalue of D(k)−1A(k). Since
the eigenvalues of a matrix are continuous function of its entries, it means that, asymptotically (for
h →0), �(k)D tends to the smallest eigenvalue of D(k)

0
−1A(k)

0 ; that is, to the value obtained in the
constant coefficient case. Therefore, the results of the previous subsection carry over the variable
coefficient case, at least when the mesh size h is small enough.

4.4. Numerical example

We consider the linear system resulting from the 5-point finite difference discretization of (36) on
�= [0,1]×[0,1] with Dirichlet boundary conditions and constant coefficients 	x , 	y and �=0.
The discretization is performed on a uniform rectangular grid of mesh size h = (N +1)−1 in both
directions.

For the sake of simplicity, we let N be a multiple of 12, which allows that the whole domain
is covered with aggregates of the same shape. Using the rule (15), the matrix A(k) is the same for
all interior aggregates; the same A(k) is further considered for aggregates near the boundary. Since
D(k) is also the same for all aggregates, so is the quality estimate �(k)D .
We consider first an isotropic situation (	x =	y). The columns from 2 to 7 of Table I then give

the values of �D and of its upper bound �(k)D for three types of aggregation pattern, presented

‡The considered discretization scheme implies that off diagonal entries along Neumann boundary are divided by a
factor of two compared with entries connecting interior nodes. Hence, the matrices A(k) for aggregates that contain
Neumann boundary nodes are not the same as those for aggregates in the interior of the domain.
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Table I. The value of �D and of its upper bound (20) for different grid sizes.

	x =	y , �d =0 	x =10	y , �d =0

Linewise Linewise
Pairwise L-shaped Boxwise (size=3) (size=4) Boxwise

N �(k)D �D �(k)D �D �(k)D �D �(k)D �D �(k)D �D �(k)D �D

12 2 1.940 4 2.315 2 1.959 2.2 2.184 3.756 3.638 11 8.431
24 2 1.984 4 2.377 2 1.989 2.2 2.196 3.756 3.744 11 10.185
48 2 1.996 4 2.394 2 1.997 2.2 2.199 3.756 3.753 11 10.778
96 2 1.999 4 2.399 2 1.999 2.2 2.200 3.756 3.755 11 10.943

in Figure 1. Observe that when nodes are added to an aggregate, its quality is not necessarily
deteriorated, as can be seen comparing L-shaped and box aggregates. We next consider in columns
8 to 13 an anisotropic situation (	x =10	y). One sees that boxwise aggregation is not recommended
in this case.

4.5. Sharpness of the estimate

The numerical results in Table I indicate that the bound (20) on �D can be asymptotically sharp
for N large enough. Moreover, as shown in Theorem 3.1, if only one Jacobi smoothing iteration
is performed, we further have �(ETG)=1−��−1

D . Hence, a sharp estimate of �D further leads
to a sharp estimate of the two-grid convergence rate. The reader can wonder why and when this
happens. This is what we investigate in the present subsection, starting with the first question for
the particular case of boxwise aggregates.

Consider that the setting of the above example holds and assumes that both the global ordering of
unknowns and of aggregates, and the local one, restricted to a particular aggregate, is lexicographic.
Without loss of generality, we assume in addition that 	x�	y . First, we recall that D(k)−1A(k)p(k)=
�1(D(k)−1A(k))p(k), and, hence, the vector vb = (1, 1, −1, −1)T∈R(A(k)) that can be checked
to satisfy D(k)−1A(k)vb =�2(D(k)−1A(k))vb reaches, according to Theorem 3.4, the supremum in
definition (18) of �(k)D . Therefore, setting

ṽ= (1vb
T,2vb

T, . . . ,nc
vb

T)T

we locally reproduce the maximizing vectors for every aggregate. Moreover, setting 1=2=
·· ·=N/2=−N/2+1=·· ·=−N =N+1=·· ·=1 we further make ṽ take the same value at every
two connected nodes that belong to different aggregates. Hence, since Ar have the form (13)
with diagonal blocks being diagonal matrices, there holds (Ar )ij((̃v)i − (̃v) j )=0 for all i and j .
Therefore, setting �i =

∑n
j=1(Ar )ij, and since �i>0 only for the unknowns near the boundary,

there holds

ṽTAr ṽ = −
n∑

i, j=1

1

2
(Ar )ij((̃v)i − (̃v) j )

2+
n∑

i=1
�i (̃v)2i (37)

=
n∑

i=1
�i (̃v)2i

= 2N (	x +	y)

= 2N−1(	x +	y)	
−1
d ṽTDṽ. (38)
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On the other hand, note that p(k)TD(k)vb =0 implies �D ṽ=0, and, hence,

�D � ṽTD(I −�D )̃v
ṽTAb̃v+ ṽTAr ṽ

= ṽTDṽ
ṽTAb̃v+ ṽTAr ṽ

= ṽTDṽ

�(k)D
−1̃vTDṽ+ ṽTAr ṽ

= �(k)D

1+�(k)D
ṽT Ar ṽ
ṽTDṽ

. (39)

It then follows from (38) that �D →�(k)D for N →∞.
The following theorem is useful in extending this analysis to a more general framework.

Theorem 4.1
Let A= Ab + Ar , P , D, �D , �(k)D and �(k), k =0, . . . ,nc, be defined as in Theorem 3.2. Assume

�(k)D finite for k =0, . . . ,nc and let, for n(0)>0 and n(k)>1, k =1, . . . ,nc,

ṽ0∈ argmax
v(0)∈Rn(0)\{0}

(
v(0)TD(0)v(0)

v(0)TA(0)v(0)

)
,

ṽk ∈ argmax
v(k)∈R(A(k))\{0}

(
v(k)TD(k)(I −�(k)D )v(k)

v(k)TA(k)v(k)

)
(40)

with ṽ(k)=1 otherwise. Let k , k =0, . . . ,nc, be real parameters, and set

ṽ= (0�
−1
0 ṽ0T,1�

−1
1 ṽT1 , . . . ,nc

�−1
nc

ṽnc
T)T, (41)

where �k = (̃vTk A(k )̃vk)1/2 if n(k)>1 and �k =1 otherwise. Assume either that

ṽTAr ṽ�ε̃vTAb̃v (42)

or that n(0)=0, that A(k) is singular for k =1, . . . ,nc and that

(c+ ṽ)TAr (c+ ṽ)�ε

(
max

k=1,. . .,nc

�(k)D

)−1

ṽTDṽ (43)

for some vector c= (�1p(1)T, . . . ,�nc p(nc)T)T.
Then

�D� 1

1+ε

∑nc
k=0 2k�

(k)
D∑nc

k=0 2k
. (44)
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Proof
We first prove the lower bound (44) based on the assumption (42). Starting with the equality (23)
in the proof of Theorem 3.2 and setting v(k)=k�

−1
k ṽk together with v= ṽ, we have

�D �
∑

k=1,. . .,nc
v(k)TD(k)(I −�(k)D )v(k)+v(0)TD(0)v(0)∑

k=0,. . .,nc
v(k)TA(k)v(k)+vTAr v

(45)

� 1

1+ε

∑
k=1,. . .,nc

2k�
−2
k ṽTk D(k)(I −�(k)D )̃vk +20�

−2
0 ṽ0TD(0)̃v0∑

k=0,. . .,nc
2k�

−2
k ṽTk A(k )̃vk

= 1

1+ε

∑
k=0,. . .,nc

2k�
(k)
D∑

k=0,. . .,nc
2k

,

where the last equality follows from �−2
k ṽk

TD(k)(I −�(k)D )̃vk =�(k)D .
Now, we prove the lower bound (44) based on the assumptions related to (43). We may then

assume that

(c+ ṽ)TAr (c+ ṽ)�ε̃vTAb̃v (46)

holds, this inequality being proved later. Since �(k)D is finite, Theorem 3.2 implies N(A(k)
r )⊂

span{p(k)}, k =1, . . . ,nc. From the singularity of A(k), k =1, . . . ,nc, we further conclude that
N(A(k)

r )=span{p(k)} and, hence,
(�kp(k)+ ṽk)

TA(k)(�kp(k)+ ṽk)= ṽTk A(k )̃vk . (47)

Moreover, using definition (19) of �(k)D , we also have

(�kp(k)+ ṽk)
TD(k)(I −�(k)D )(�kp(k)+ ṽk)= ṽTk D(k)(I −�(k)D )̃vk . (48)

Therefore, injecting v=c+ ṽ and v(k)=�kp(k)+k�
−1
k ṽk into (45) and using (47) and (48), the

proof is finished as in the previous case.
We are thus left with the proof of (46). From Theorem 3.4 we conclude that D(k)−1A(k )̃vk =

�2(D(k)−1A(k))̃vk and p̃(k)T D(k )̃vk =0. Therefore,

ṽTk D(k)(I −�(k)D )̃vk = ṽTk D(k )̃vk,

which implies ṽTk D(k )̃vk =�k
D ṽk

TA(k )̃vk . Hence,

ṽTDṽ�
(

max
k=1,. . .,nc

�(k)D

)
ṽTAb̃v,

which, together with (43) implies (46). �

Now, we return to the previous example and prove the asymptotical sharpness for linewise
aggregates of size m�4. As in the boxwise case, the vector (40) is the second eigenvector of
	−1

d A(k) given by

vb =

⎧⎪⎪⎨⎪⎪⎩
(1,

√
2−1,1−

√
2,−1)T if m =4,

(1,0,−1)T if m =3,

(1,−1)T if m =2.
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Hence, choosing

ṽ= (1vTb ,2vTb , . . . ,nc
vTb )

T

with 1=−2=3=·· ·=N/m =−N/m+1=N/m+2=·· ·=1, we further make ṽ take the same
value at every two connected nodes that belong to different aggregates. Next, using again (37)
with first term in the right hand side vanishing, we have

ṽAr ṽ = 2Nm−1	y‖vb‖2+	x N (‖(vb)1‖2+‖(vb)m‖2)
� 2N (	x +	y)‖vb‖2

= 2N−1(	x +	y)	
−1
d �(k)D ṽTAb̃v, (49)

and, hence, (44) holds with ε= N−1(	x +	y)	
−1
d �(k)D . The asymptotical sharpness follows then

from Theorem 4.1.
Considering a general situation, we note that a lower bound close to the upper bound (20) can

be proved via (44) if there exists a vector ṽ of the form (41), such that

(a)
∑nc

k=0 2k�
(k)
D∑nc

k=0 2k
is close to maxk=1,. . .,nc

�(k)D ;

(b) ε, defined via (42) or (43), is small compared to 1.

Now, the condition (a) can be satisfied by using large values of 2k where �(k)D is large. When

all �(k)D are the same, we trivially have∑nc
k=0 2k�

(k)
D∑nc

k=0 2k
= max

k=1,. . .,nc

�(k)D

independently of the choice of k . As illustrated in Section 5, the use of 2k with variable magnitude

allows to prove the asymptotical sharpness in the case where the �(k)D s are not all the same.
Condition (b) is more difficult to check. One may start from relation (37) and look for a vector

ṽ of the form (41) such that (Ar )ij((̃v)i − (̃v) j )=0 for all i and j . If such a vector exists, the
first term in (37) is zero. Then, let �h ={1, . . . ,n} be the set of all unknowns and set ��h =
{i |�i =

∑n
j=1(Ar )ij �=0}. If as in the previous example �i is positive only for unknowns near the

boundary, then ��h is a set of ‘boundary’ unknowns. Assuming �i and (̃v)i , i =1, . . . ,nc reasonably
bounded, we have

ṽTAr ṽ=
n∑

i=0
�i (̃v)2i =O(|��h |),

whereas, assuming 2k , k =1, . . . ,nc, bounded below,

ṽTAb̃v=
nc∑

k=0
2k�

−2
k ṽTk A(k )̃vk =

nc∑
k=0

2k =O(|�h |),

In a discretized PDE context, the ratio |��h |/|�h | usually becomes arbitrary small as the mesh is
refined.

Furthermore, the lower bound (44) can be obtained using only a (given) set of aggregates
(numbered from 1 to n̄c for convenience), setting

ṽ= (1�
−1
1 ṽT1 , . . . ,n̄c

�−1
n̄c

ṽTn̄c
,0T, . . . ,0T)T. (50)
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Then, (37) becomes

ṽAr ṽ=− ∑
i, j∈�̄h

1

2
(Ar )ij((̃v)i − (̃v) j )

2+ ∑
i∈�̄h

�̄i (̃v)2i ,

where �̄h is the set of unknowns belonging to the first n̄c aggregates and �̄i =
∑

j∈�̄h
(Ar )ij. Again,

setting ��̄h ={i |�̄i �=0} and repeating the steps described above, one obtains

�D� 1

1+ ε̄

∑n̄c
k=1 2k�

(k)
D∑n̄c

k=1 2k

with ε̄=O(|��̄h |/|�̄h |). In practice, it means that the upper bound (20) can also be asymptotically
sharp when the �(k)D s are not all equal, providing that the aggregates for which �(k)D is maximal
cover a significant part of the domain.

As an example, consider a scalar PDE discretized on a grid from which we can extract a
�̄h = N̄ × N̄ square of nodes with every node corresponding to the same stencil of the form (30).
Then, assuming that the whole square is covered with box aggregates as in the Figure 1(a), the
relations (32), (39) and (38) can be used (with N̄ instead of N ) to show that

�D� 1

1+ ε̄
�̄D (51)

with �̄D = 2	x +2	y+�D
2min(	x ,	y )+�d

and ε̄=2N̄−1(	x +	y)	
−1
d �̄D .

5. DISCRETE PDEs WITH DISCONTINUOUS COEFFICIENTS

5.1. Analysis

We consider the PDE (36) with piecewise constant isotropic coefficients (	x (x, y)=	y(x, y)) and
�=0, and assume Dirichlet boundary conditions. As in the previous section, we consider the
five-point finite difference approximation with uniform mesh size h in both the directions (mesh
box integration scheme [25]), and assume that the boundary �� of �⊂R2 is the union of segments
parallel to the x or y axis and connecting the grid nodes. We aim at assessing boxwise aggregation
as illustrated in Figure 1(a), which was shown relevant for isotropic coefficients in the previous
section.

Here, we assume that the possible discontinuities match the grid lines. Hence, � is a union of
non-overlapping subdomains �i in which the coefficients are constant, and the boundary ��i of
each �i is formed by segments aligned with grid lines and having grid nodes as end points. To
exclude some uncommon situations, we assume that every two such end points are separated by a
distance not less than 2h and that each box aggregate contains at least one point which is interior
to one of the subdomains. In practice, this assumption is automatically met if the mesh size is
small enough; in fact, it has to be not larger than h0/2, where h0 is the size of the coarsest mesh
that still correctly reproduce the geometry of the problem.

The most general situation corresponding to this setting is then schematized in Figure 2(a), where
the central aggregate has one node interior to �1 and the opposite node at the intersection of four
subdomains: �1, �2, �3 and �4. With the splitting satisfying (15), the corresponding aggregate’s
matrices A(k) and D(k) are given below by (52) and (53), respectively, with 	i , i =1, . . . ,4, being
the PDE coefficient in the subdomain �i . Because of the assumption (15) and of Theorem 3.4,
aggregate’s quality �(k)D is the inverse of the second smallest eigenvalue of D(k)−1A(k). The following
theorem is helpful when assessing this latter. In order to alleviate the presentation, we give its
proof in the Appendix.
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Figure 2. (a) general box aggregate situation with respect to discontinuities and (b) discontinuity nodes
aggregated with nodes in white subdomain.

Theorem 5.1
Let

Ad = 1

2

⎛⎜⎜⎜⎜⎝
4	1 −2	1 −2	1

−2	1 3	1+	2 −	1−	2

−2	1 3	1+	3 −	1−	3

−	1−	2 −	1−	3 2	1+	2+	3

⎞⎟⎟⎟⎟⎠ (52)

and

Dd =diag(4	12(	1+	2)2(	1+	3)(	1+	2+	3+	4)), (53)

where 	1>0 and 	2, 	3, 	4>0. Ad is positive semi-definite, and let �2(D
−1
d Ad ) be the smallest

non-zero eigenvalue of D−1
d Ad .

Then

�2(D
−1
d Ad )�

5−√
17

8
(54)

and, if 	1=	2 and 	3=	4, there holds

�2(D
−1
d Ad )=min

(
1

2
,
3	1+	3
4(	1+	3)

)
. (55)

Moreover, if 	1�	2, 	3, 	4, one has

�2(D
−1
d Ad )�� (56)

with �=�2(D
−1
d Ad )(≈0.449) being evaluated for 	1=	2=	4=1 and 	3=0.

Furthermore,

�2(D
−1
d Ad )� 1

2 if

⎧⎪⎪⎨⎪⎪⎩
	1�	2=	3=	4,

or 	1=	2�	3=	4,

or 	1=	2=	3�	4.

(57)

Proof
See Appendix A.

This theorem enables us to draw the following conclusions:

• The approach is robust in all cases, since, by (54), �(k)D is always bounded above independently
of the relationship between the coefficients 	i .
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• Nevertheless, from a practical viewpoint, (54) allows a significant decrease of aggregate’s
quality compared with the constant coefficient case. However, according to (56), which implies
�(k)D �2.23 (compared with 2 in constant coefficient case), a major deterioration is avoided
when 	1�	2, 	3, 	4. The latter condition is satisfied if nodes belonging to several subdomains
�i are always aggregated only with nodes that belong to �i with largest PDE coefficient 	i .
Roughly speaking, the rule may be summarized as ‘aggregate discontinuity nodes with those
of the strong coefficient region’.

• In many practical cases, no more than two subdomains are involved at a time for a single
aggregate, and either 	1=	2=	3, or 	1=	2 and 	3=	4, or 	2=	3=	4 hold, as illustrated
on Figure 2(b). Then, if the rule above is applied; that is, if 	1 is in addition the largest
coefficient, (57) applies and shows that there is no deterioration at all compared with the
constant coefficient case.

5.2. Numerical example

Consider the PDE (36) on a square domain �= [0,1]×[0,1] with �=0,

	x (x, y)=	y(x, y)=
{
1 if x�1/2,

d(>1) if x>1/2

and with Dirichlet boundary conditions. Consider the linear system (1) resulting from its five-point
finite difference discretization (mesh box integration scheme [25]) on the regular grid of mesh
size h = N−1. Since the discontinuity needs to be aligned with grid lines, N has to be even. For
simplicity of presentation, we further assume that it is a multiple of 4. The number of unknowns
being (N −1)×(N −1) (there is no unknown for Dirichlet nodes), the grid cannot be covered with
box aggregates only and the coarsening is completed by pair and singleton aggregates. Then, the
domain may be covered with box aggregates starting from the left bottom corner (as on Figure 3(a))
or from the right bottom corner (as on Figure 3(b)). The splitting (15) is used for interior aggregates
and zero sum is imposed for the rows of A(i) on the boundary.

Note that the quality of aggregates outside discontinuity is at most 2, as can be concluded
in the isotropic case (	x =	y) from (32) (for box aggregates) or from (34) with m =2 (for pair
aggregates). The bound is therefore determined by the quality of aggregates containing nodes on
the discontinuity, which are given for d =10 in Table II. Observe that for the second strategy the
convergence estimate is exactly the same as in the constant coefficient case. For box aggregate,
this follows from the analysis in the previous subsection: the aggregates then obeys the ‘strong
coefficient’ rule stated above. Regarding the first aggregation strategy, note that for box aggregates
one has

�(k)D =�2(D
(k)−1A(k))−1= 4(1+d)

3+d
(58)

Figure 3. Two potential aggregation strategies for the numerical example.

Copyright � 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2011; 18:539–564
DOI: 10.1002/nla



558 A. NAPOV AND Y. NOTAY

Table II. The value of �D and of its upper bound (20) for different
aggregation strategies and for d =10.

Strategy (a) Strategy (b)

N max
k=0,. . .,nc

�(k)D �D max
k=0,. . .,nc

�(k)D �D

32 3.385 3.181 2 1.993
64 3.385 3.286 2 1.998
128 3.385 3.336 2 2.000
256 3.385 3.361 2 2.000

using (55) with 	1=	2=1 and 	3=	4=d . This is also true in the pairwise case, since then

A(k)=
(

1 −1

−1 1

)
, D(k)=

(
4

2(d +1)

)
.

Note that (58) implies �(k)D =3.38 for d =10 and �(k)D →4 for d →∞.

5.3. Sharpness of the estimate

Table II indicates that, once again, the upper bound (20) is seemingly asymptotically exact. In fact,
the reason developed at the end of Section 4 shows that, asymptotically, �D cannot be smaller
than 2 for an isotropic (	x =	y) PDE (36) with �=0 and a regular covering by box aggregates
in at least one subdomain in which the PDE coefficients are constant. Hence, our analysis is
accurate when discontinuity nodes are aggregated with nodes in the strong coefficient region, since
then �(k)D �2.23. If, in addition, �(k)D �2, like in the numerical example above, then the bound is
asymptotically sharp.

It is more challenging to show the sharpness when �(k)D is significantly larger than 2 for some
aggregates along discontinuity, essentially because the proportion of such aggregates is O(h) or
less. Nevertheless, it is interesting to confirm that, as seen in Table II, such a limited amount of low
quality aggregates is sufficient to affect the global convergence, and hence that the rule ‘aggregate
discontinuity nodes with those of the strong coefficient region’ has some practical relevance.

In this view, we prove the sharpness of our estimate for the above numerical example with the
first aggregation strategy (depicted in Figure 3(a)), which does not follow the ‘strong coefficient’
rule. Note that, using the same trick as explained at the end of Section 4, a similar lower bound
on �D can be obtained in more complicated examples whose domain would contain a rectangular
region with two subdomains separated by a line in the middle and covered similarly with box
aggregates.

To apply Theorem 4.1, we need to construct two vectors ṽ and c̃ such that∑nc
k=0 2k�

(k)
D∑nc

k=0 2k
→ max

k=1,. . .,nc

�(k)D for N →∞, (59)

whereas ε, defined by (43), goes to 0 as N becomes large. In the example under investigation,
there are some pair and singleton aggregates (see Figure 3), but we limit the support of both
vectors to the n̄c = (2�+1)×(2�+1) box aggregates, where �= N/4−1. We identify each such
aggregate k with a couple (i (k)x , i (k)y ) of indices, 1�i (k)x , i (k)y �2�+1, such that (i (k)x +1, i (k)y ), (i (k)x −1,

i (k)y ), (i (k)x , i (k)y +1) and (i (k)x , i (k)y −1) are, respectively, its right, left, top and bottom neighboring
aggregates. Note that the center of the domain is a node belonging to aggregate (�+1,�+1) and
that discontinuity aggregates satisfy i (k)x =�+1.

Since p(k)=1n(k) , the vector ṽk from Theorem 4.1 is given by the eigenvector of D(k)−1A(k),
associated with the second smallest eigenvalue �2(D(k)−1A(k)); that is, by vd = (�,1,�,1)T for
discontinuity aggregate, with �=−(d +1)/2, and by vo = (−1,1,−1,1)T for the ordinary ones.
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The corresponding local energy (semi-) norms are given by �2d =vTd A(k)vd = (3+d)2/2 for discon-
tinuity aggregates, by �2o =vTo A(k)vo =8 for the aggregates on the left of the discontinuity line and
by d�2o for those on the right of it.

Then, the vector ṽ is defined by (̃v(1)T, ṽ(2)T, . . . , ṽ(n̄c)T)T with

ṽ(k)=�−1(�−|�+1−i (k)y |)×

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

�

2
�−1vo if 1�i (k)x <�+1,

vd if i (k)x =�+1,

1

2
�−1vo if �+1<i (k)x �2�+1,

0 otherwise

(60)

and the vector c̃ corresponds to (̃c(1)T, c̃(2)T, . . . , c̃(n̄c)T)T with

c̃(k)=
(
�−|�+1−i (k)x |+ 1

2

)
(�−|�+1−i (k)y |)�−2×

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�14 if 1�i (k)x <�+1,

0 if i (k)x =�+1,

14 if �+1<i (k)x �2�+1,

0 otherwise.

From (60) we conclude that

2k =�−2(�−|�+1−i (k)y |)2×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

�2

4
�−2�2o if 1�i (k)x <�+1,

�2d if i (k)x =�+1,

1

4
�−2 d�2o if �+1<i (k)x �2�+1,

0 otherwise,

(61)

and, setting

s(�)=
2�−1∑
i=1

(�−|�−i |)2=
�∑

i=1
(i2+(i −1)2)=�(�+1)(2�+1)/3−�2

there holds ∑
k:i (k)x =�+1

2k = �2d
∑

1<i (k)y <2�+1

�−2(�−|�+1−i (k)y |)2=�2d�−2s(�),

∑
k:i (k)x �=�+1

2k = �2o
d +�2

4

∑
1<i(k)y <2�+1

1�i(k)x <�+1

�−4(�−|�+1−i (k)y |)2=�2o
d +�2

4
�−3s(�).

Hence,
∑

k 2k�
(k)
D = (1+O(�−1))

∑
k:i (k)x =�+1 2k�

(k)
D , entailing (59) since �(k)D is maximal for

i (k)x =�+1.
On the other hand, observe that c̃+ ṽ takes the same value at any two connected nodes belonging

to aggregates (i (k)x , i (k)y ) and (i (k)x +1, i (k)y ). Moreover, c̃+ ṽ vanishes on the boundary of the region
delimited by box aggregates. Hence, the only contribution to (̃c+ ṽ)TAr (̃c+ ṽ) as expressed by
(37) comes from connections between (i (k)x , i (k)y ) and (i (k)x , i (k)y +1). In this latter case, let j1 and

j2 be two connected nodes belonging to aggregates (i (k)x , i (k)y ) and (i (k)x , i (k)y +1), respectively, with
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i (k)y �2�. For every box aggregate k, let k+ (resp. k−) be the set of two nodes belonging to this
aggregate with larger (resp. smaller) abscise. One then has

|(̃c+ ṽ) j1 − (̃c+ ṽ) j2 |=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

��−2(�−|�+1−i (k)x |) if 1�i (k)x <�+1and j1∈k−,

��−2(�−|�+1−i (k)x |+1) if 1�i (k)x <�+1and j1∈k+,

��−1 if i (k)x =�+1and j1∈k−,

�−1 if i (k)x =�+1and j1∈k+,

�−2(�−|�+1−i (k)x |+1) if �+1<i (k)x �2�+1and j1∈k−,

�−2(�−|�+1−i (k)x |) if �+1<i (k)x �2�+1and j1∈k+.

Therefore, using (37) with, this time, the first term being non-zero and the second one vanishing
because of the limited scope of c̃+ ṽ, we have

(̃c+ ṽ)TAr (̃c+ ṽ)=
(

�2+ 1+d

2

) ∑
i(k)x =�+1

1�i(k)y �2�

�−2

+(�2+d)
∑

1�i(k)x <�+1

1�i(k)y �2�

�−4((�−|�+1−i (k)x |+1)2+(�−|�+1−i (k)x |)2)

= (2�2+1+d)�−1+2(�2+d)�−3 ∑
1�i (k)x <�+1

(i (k)x
2+(i (k)x −1)2)

= (2�2+1+d)�−1+2(�2+d)�−3s(�),

whereas

ṽTDṽ = vTd vd (2d +2)
∑

1<i(k)y <2�+1

i(k)x =�+1

�−2(�−|�+1−i (k)y |)2+vTo vo(d +�2)
∑

1<i(k)y <2�+1

1�i(k)x <�+1

�−4(�−|�+1−i (k)y |)2

= 4((�2+1)(d +1)+(d +�2)�−1)�−2s(�).

Hence, ṽTDṽ=O(�) whereas (̃c+ ṽ)TArest (̃c+ ṽ)=O(1), showing with (54) that (43) holds with
ε=O(�−1), and therefore, together with (59), proving the asymptotical sharpness of the estimate.

6. CONCLUSION

We have developed an analysis of aggregation-based two-grid method for SPD linear systems.
When the system matrix is diagonally dominant, an upper bound on the convergence factor can
be obtained in a purely algebraic way, assessing locally and independently the quality of each
aggregate by solving an eigenvalue problem of the size of the aggregate. Our analysis also shows
that nodes for which the corresponding row is strongly dominated by its diagonal element can be
safely kept outside the coarsening process (see Proposition 3.3).

We have applied our bound to scalar elliptic PDE problems in two dimensions, showing that
aggregation-based two-grid methods are robust if

• in the presence of anisotropy, one uses linewise aggregates aligned with the direction of strong
coupling;

• in the presence of discontinuities, one avoids mixing inside an aggregate nodes belonging to
a strong coefficient region or its boundary with nodes interior to a weak coefficient region.
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Furthermore, we have shown that the bound is asymptotically sharp when a significant part of the
domain is regularly covered by box or line aggregates of the same shape.

Note that we have conducted the analysis in two dimensions for the sake of simplicity. The same
type of analysis can be developed for three dimensional problems, leading to similar conclusions.

Our results may also have an impact on practical aggregation schemes. Because of the above
mentioned sharpness, it is indeed sensible to expect that aggregation methods can be improved by
improving aggregates’ quality. And because aggregates’ quality is cheap to assess, this parameter
can effectively be taken into account in the design of aggregation algorithms. For instance, one may
a posteriori check aggregates’ quality and break low quality aggregates into smaller pieces. It is
also possible, in a greedy-like approach, to decide wether a node (or a group of nodes) should be
added to an aggregate according its impact on the aggregate’s quality and/or select the neighboring
(sets of) nodes that are the most favorable in this respect. These practical aspects are subject to
further research.
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APPENDIX A

Proof of Theorem 5.1

We first prove (54). Since the diagonal entries of Dd are non-decreasing functions of 	4 and Ad
does not depend on this latter, �2(D

−1
d Ad ) does not increase with increasing 	4. Hence, setting

Cd = lim	4→∞ D−1
d Ad , we have

�2(D
−1
d Ad )� lim

	4→∞�2(D
−1
d Ad )=�2(Cd ), (A1)

where

Cd =
(

D−1
r Ar ∗
0T 0

)
with

Ar = 1

2

⎛⎜⎝
4	1 −2	1 −2	1

−2	1 3	1+	2

−2	1 3	1+	3

⎞⎟⎠ and Dr =2

⎛⎜⎝
2	1

	1+	2

	1+	3

⎞⎟⎠ .

Hence, �2(Cd ) is the smallest eigenvalue of D−1
r Ar . Now, assume without loss of generality that

	3�	2 (one may see that they play a symmetric role in the definition of Ad and Dd ). Then, setting

Ãr = 1

2

⎛⎜⎝
4	1 −2	1 −2	1

−2	1 3	1+	2

−2	1 3	1+	2

⎞⎟⎠ and D̃r =2

⎛⎜⎝
2	1

	1+	2

	1+	2

⎞⎟⎠
we have,

�min(D
−1
r Ar )= min

v∈R3\{0}
vTAr v
vTDr v

= min
v∈R3\{0}

vT Ãr v+ 1
2 (	3−	2)(v)23

vT D̃r v+2(	3−	2)(v)23

�min(�min

(
D̃−1

r Ãr ), 14

)
. (A2)
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One may check that the set of eigenvalues of D̃−1
r Ãr is⎧⎨⎩ 3	1+	2

4(	1+	2)
,
3

8
+
2	1±

√
17	21+14	1	2+	22
8(	1+	2)

⎫⎬⎭
(e.g. by assessing the determinant of Ãr − �̃D̃r for all �̃ belonging to the set§ ). Since 2	1−√
17	21+14	1	2+	22�(2−√

17)(	1+	2) holds for 	1, 	2>0, the inequality (54) follows.

On the other hand, if 	1=	2 and 	3=	4, the set of eigenvalues of D−1
d Ad is given by{

0,
1

2
,
3	1+	3
4(	1+	3)

,
1

2
+ 3	1+	3
4(	1+	3)

}
,

which leads to (55).
To prove (56) we note that, as previously observed, �2(D

−1
d Ad ) does not increase with increasing

	4. Since 	1 is the largest coefficient by assumption, setting 	4=	1 gives a worst case estimate.
Next, we assume without loss of generality that 	2�	3 (again, they play a symmetric role). Let
then Ã0,0, Ã1,0 and Ã1,1 be the matrices defined via (52) with 	1=	4=1 and the couple (	2,	3)
given by, respectively, (0,0), (1,0) and (1,1); that is

Ã0,0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 −1

−1
3

2
−1

2

−1
3

2
−1

2

−1

2
−1

2
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Ã1,0=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 −1

−1 2 −1

−1
3

2
−1

2

−1 −1

2

3

2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

Ã1,1 =

⎛⎜⎜⎜⎜⎝
2 −1 −1

−1 2 −1

−1 2 −1

−1 −1 2

⎞⎟⎟⎟⎟⎠ .

Similarly, let D̃0,0, D̃1,0 and D̃1,1 be the matrices defined via (53) with 	1=	4=1 and (	2,	3)
being, respectively, (0,0), (1,0) and (1,1); that is, D̃0,0=diag(4 2 2 2), D̃1,0=diag(4 4 2 3) and
D̃1,1=diag(4 4 4 4). Then,

Ad = (	1−	2) Ã0,0+(	2−	3) Ã1,0+	3 Ã1,1,

Dd = (	1−	2)D̃0,0+(	2−	3)D̃1,0+	3 D̃1,1.

Next, using the min-max theorem (e.g. [26, Lemma 3.13]), we have

�2(D
−1
d Ad )= max

v∈R4\{0}
min
w⊥v

wTD−1/2
d Ad D−1/2

d w

wTw

= max
v∈R4\{0}

min
z⊥v

zTAdz
zTDdz

§All eigenvalues explicitly given in this proof have been checked with computer algebra.
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= max
v∈R4\{0}

min
z⊥v

(	1−	2)zT Ã0,0z+(	2−	3)zT Ã1,0z+	3zT Ã1,1z

(	1−	2)zT D̃0,0z+(	2−	3)zT D̃1,0+	3zT D̃1,1z

� max
v∈R4\{0}

min

(
min
z⊥v

zT Ã0,0z

zT D̃0,0z
, min

z⊥v

zT Ã1,0z

zT D̃1,0z
, min

z⊥v

zT Ã1,1z

zT D̃1,1z

)
.

Hence,

�2(D
−1
d Ad )�min

(
min

z⊥D̃1,014

zT Ã0,0z

zT D̃0,0z
, min

z⊥D̃1,014

zT Ã1,0z

zT D̃1,0z
, min

z⊥D̃1,014

zT Ã1,1z

zT D̃1,1z

)
, (A3)

where the second term in the minimum further becomes, since D̃1/2
1,0 14∈N(D̃−1/2

1,0 Ã1,0 D̃−1/2
1,0 ),

min
z⊥D̃1,014

zT Ã1,0z

zT D̃1,0z
=�2(D̃

−1
1,0 Ã1,0)=�.

Therefore, the proof of (56) is done if we show that the second term in (A3) is the smallest. For
this, we note that the vector z = (64 −34 33 −62)T is orthogonal to D̃1,014= (4 4 2 3)T and that
zT Ã1,0z=15861.5 with zT D̃1,0z=34718. Hence, the second term is smaller than 0.46. Furthermore,
the first term in (A3) is larger than 0.46, as can be concluded from positive definiteness of

Ã0,0+ D̃1,014(D̃1,014)T−0.46D̃0,0=

⎛⎜⎜⎜⎜⎝
16.16 15 7 12

15 16.58 8 11.5

7 8 4.58 5.5

12 11.5 5.5 9.08

⎞⎟⎟⎟⎟⎠ ,

which implies zT Ã0,0z−0.46zT D̃0,0z�0 for any z⊥ D̃1,014. Similarly, the third term in (A3) is
larger than 0.46 since

Ã1,1+ D̃1,014(D̃1,014)T−0.46D̃1,1=

⎛⎜⎜⎜⎜⎝
16.16 15 7 12

15 16.16 8 11

7 8 4.16 5

12 11 5 9.16

⎞⎟⎟⎟⎟⎠
is also positive definite. The positive definiteness can be proved, for instance, checking that the
determinants of upper left 1×1, 2×2, 3×3 and 4×4 blocks are positive.

Eventually, we prove (57). If 	1=	2 and 	3=	4, the inequality is already proved in (55). If
	2=	3=	4, taking D̃d =diag(4	1 2(	1+	2) 2(	1+	2) 2(	1+	2)) we have

�k(D
−1
d Ad )��k(D̃

−1
d Ad )∈

{
0,

1

2
,
3	1+	2
4(	1+	2)

,
1

2
+ 3	1+	2
4(	1+	2)

}
,

which leads to the same conclusions. If 	1=	2=	3, the set of eigenvalues of D−1
d Ad is given by⎧⎨⎩0,

1

2
,
1

2
+
4	1±

√
10	21+4	1	4+2	24
4(3	1+	4)

⎫⎬⎭
and, since 	1�	4 implies 10	21+4	1	4+2	24�16	21, the inequality (57) follows. �
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