
Revolutionary Technologies for Acceleration of Emerging Petascale Applications
Guest Editors’ Introduction

Rupak Biswas, Leonid Oliker, Jeffrey Vetter

As we enter the era of billion transistor chips, computer architects face significant
challenges in effectively harnessing the large amount of computational potential available
in modern CMOS technology. Chip designers have been moving away from maximizing
single-thread performance via exponential scaling of clock frequencies toward chip
multiprocessors (CMPs) in order to better manage trade-offs among performance, energy
efficiency, and reliability. Because this design approach is relatively immature, the
community is exploring a vast diversity of CMP architectures. System designers and
application programmers are confronted with a myriad of architectural features, including
multicore, simultaneous multithreading, core heterogeneity, and unconventional memory
hierarchies, often combined in novel arrangements. Given the current flux in CMP
design, it is unclear which architectural philosophy is best suited for a given class of
algorithms. Likewise, this architectural diversity leads to uncertainty on how to re-
configure existing algorithms and tune them to take the maximum advantage of existing
and emerging platforms. Understanding the most efficient design and utilization of these
increasingly parallel multicore systems is one of the most challenging questions faced by
the computing industry in several decades.

Today's CMP designs can be separated into several architectural categories. The most
straightforward approach for CMP design integrates numerous copies of existing
superscalar processors on to a single chip, and is exemplified by platforms such as the
Intel Xeon and AMD Opteron. Utilizing monolithic processor technology as building
blocks maximizes serial thread performance and leverages the architectural optimization
techniques of the past twenty years. However, the vendors of these commodity processors
conceived of their design in an era in which Moore's Law scaling allowed continuous
improvement in logic density, which was typically accompanied by increases in clock
frequencies. Chip architects leveraged this continuous improvement to increase the
complexity of their designs in order to improve sequential processing performance. Due
to practical constraints on power and thermal design, however, the sequential
performance of the last several generations of high-end processors has improved very
little due to the plateau of clock frequencies. Moreover, commodity processors remain
grossly inefficient for many scientific codes, achieving only a small fraction of the
system’s advertised peak performance.

The move to CMP designs and away from increasing sequential performance has also
triggered investigations of programming environments. For nearly two decades, users
could write applications that benefited directly from increasing clock speeds, oftentimes
without modifications to their source code. The CMP architectural revolution is forcing
users to refactor and optimize their applications to exploit these new architectures by
exposing parallelism at multiple levels (e.g., instructions, threads, thread groups). For
example, applications targeting graphics or Cell processors must rewrite their main
kernels in NVIDIA’s Compute Unified Device Architecture (CUDA) or Cell’s

programming environment, respectively. Making this task more difficult is the lack of
standards across CMP designs, forcing users to invest considerable time and skill in
rewriting their applications. Recent standardization efforts for Open Compute Language
(OpenCL) appear as a promising step in order to reduce the labor of using and evaluating
these new devices.

In this special issue, we examine two unconventional designs of CMP architectures with
the potential to revolutionize high-end computing: the Sony Toshiba IBM (STI) Cell and
the recent NVIDIA GPGPUs (general-purpose graphics processing units). These
platforms have the promise of effectively leveraging the continued advances in silicon
technology to achieve significant improvements in performance- and power-efficiency
compared with conventional superscalar-based CMPs. Clearly, these benefits are
appealing to the computational science community whether the CMPs are used as
standalone computational devices or accelerator offload engines.

The heterogeneous STI Cell processor is the heart of the Sony PlayStation 3 (PS3) video
game console, whose aggressive design is intended to meet the demanding computational
requirements of video games. Cell adopts a heterogeneous approach to multicore, with
one conventional processor core to handle OS and control functions, combined with up to
eight simpler cores for the computationally intensive work. These simple cores differ
considerably from conventional core architectures due to their use of a disjoint software-
controlled local memory instead of the conventional hardware-managed cache hierarchy.
This approach allows more efficient use of available memory bandwidth than is possible
with standard prefetch schemes on conventional cache hierarchies, but also makes the
programming model more complex. Combined, the heterogeneous cores of the Cell
processor allow the potential of high performance for appropriately multithreaded
applications as well as the ability to efficiently execute unmodified single-threaded codes.

The NVIDIA GPGPU is a homogeneous multicore architecture comprised of many
simple in-order cores and is designed primarily for high-performance 3D graphics
rendering. Currently, it is available only as discrete graphics units on PCI-Express cards.
Its recent inclusion of double precision datapaths makes it a particularly interesting target
for high performance scientific applications. This architectural approach clearly focuses
on multithreaded throughput instead of singe thread performance, and thus requires
application design to focus on maximizing thread-level parallelism. Like the Cell
processor, the NVIDIA GPGPU utilizes local-store technology, requiring application
reengineering; however, the newly developed C-like CUDA programming language
interface promises a significantly simpler and much more general-purpose programming
paradigm than on previous GPGPU platforms.

The first paper in this special issue by Bader, Agarwal, and Kang investigates the
performance of two different discrete transform kernels on the Cell architecture. Their
innovative Fast Fourier Transform algorithm for 16K complex input samples achieves a
single-precision performance of 18.6 Gflop/s, outperforming the Intel Xeon (Woodcrest)
chip. The Discrete Wavelet Transform implementation utilizes a novel data
decomposition strategy to improve direct memory access and enhance scalability for both

lossless and lossy transforms, running significantly faster than on the AMD Opteron
(Barcelona). The authors highlight the superiority of Cell over general-purpose multicore
processors for bandwidth-intensive applications.

The paper by Kurzak, Alvaro, and Dongarra describes the canonical implementation of
single-precision matrix multiplication micro-kernels on the short-vector synergistic
processing element (SPE) of the Cell processor. A sustained performance of 99.8% of
peak is reported for matrices of size 64 x 64 elements while using less than 6 KB of
memory for the code and supporting data structures. However, this was achieved by
manually optimizing the code. The challenge is to achieve similar results via auto-
vectorization combined with heuristic techniques for more substantial application codes.

Meredith, Alvarez, Maier, Schulthess, and Vetter conduct a case study of a quantum
Monte Carlo application of critical importance to the Department of Energy on NVIDIA
G80, and report on its accuracy and performance for the entire application across a
cluster of GPUs. These issues are important because GPUs were originally developed for
real-time rendering where accuracy is a secondary concern relative to throughput. Results
indicate good performance and excellent accuracy, including for double-precision
calculations on a pre-production sample of the GT200. However, a more detailed
investigation with a variety of codes is necessary to establish the viability of GPUs for
large-scale scientific applications.

The paper by Hardy, Stone, and Schulten report on the use of a GT200 GPU and the
CUDA programming toolkit to accelerate the multilevel summation process for
computing electrostatic potentials for a system of interacting atoms. These calculations
constitute a key component in biomolecular modeling applications. Results indicate a 26x
speedup on a single GPU when computing the electrostatic potential for a system
containing more than 1.5 million atoms. The ability to create potential maps of such
systems in a few seconds enables interactive analysis previously unavailable. The
challenge however is to run efficient calculations on systems larger than 100 million
atoms on multi-GPU platforms.

The final paper in this special issue is authored by Williams, Oliker, Vuduc, Shalf,
Yelick, and Demmel. They examine the performance of a sparse matrix-vector
multiplication kernel on several multicore architectures including those from AMD, Intel,
and Sun, and compare it against that on the Cell. Effective optimization strategies
designed explicitly for multicores demonstrate significant performance improvements on
these platforms, but architectural differences determine the optimal implementation. The
authors conclude by providing valuable insights into the hardware design trade-offs for
memory-bound scientific applications.

