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As we enter the era of billion transistor chips, computer architects face significant 
challenges in effectively harnessing the large amount of computational potential available 
in modern CMOS technology. Chip designers have been moving away from maximizing 
single-thread performance via exponential scaling of clock frequencies toward chip 
multiprocessors (CMPs) in order to better manage trade-offs among performance, energy 
efficiency, and reliability.  Because this design approach is relatively immature, the 
community is exploring a vast diversity of CMP architectures. System designers and 
application programmers are confronted with a myriad of architectural features, including 
multicore, simultaneous multithreading, core heterogeneity, and unconventional memory 
hierarchies, often combined in novel arrangements. Given the current flux in CMP 
design, it is unclear which architectural philosophy is best suited for a given class of 
algorithms. Likewise, this architectural diversity leads to uncertainty on how to re-
configure existing algorithms and tune them to take the maximum advantage of existing 
and emerging platforms. Understanding the most efficient design and utilization of these 
increasingly parallel multicore systems is one of the most challenging questions faced by 
the computing industry in several decades. 
 
Today's CMP designs can be separated into several architectural categories. The most 
straightforward approach for CMP design integrates numerous copies of existing 
superscalar processors on to a single chip, and is exemplified by platforms such as the 
Intel Xeon and AMD Opteron. Utilizing monolithic processor technology as building 
blocks maximizes serial thread performance and leverages the architectural optimization 
techniques of the past twenty years. However, the vendors of these commodity processors 
conceived of their design in an era in which Moore's Law scaling allowed continuous 
improvement in logic density, which was typically accompanied by increases in clock 
frequencies. Chip architects leveraged this continuous improvement to increase the 
complexity of their designs in order to improve sequential processing performance. Due 
to practical constraints on power and thermal design, however, the sequential 
performance of the last several generations of high-end processors has improved very 
little due to the plateau of clock frequencies. Moreover, commodity processors remain 
grossly inefficient for many scientific codes, achieving only a small fraction of the 
system’s advertised peak performance. 
 
The move to CMP designs and away from increasing sequential performance has also 
triggered investigations of programming environments. For nearly two decades, users 
could write applications that benefited directly from increasing clock speeds, oftentimes 
without modifications to their source code. The CMP architectural revolution is forcing 
users to refactor and optimize their applications to exploit these new architectures by 
exposing parallelism at multiple levels (e.g., instructions, threads, thread groups). For 
example, applications targeting graphics or Cell processors must rewrite their main 
kernels in NVIDIA’s Compute Unified Device Architecture (CUDA) or Cell’s 



programming environment, respectively. Making this task more difficult is the lack of 
standards across CMP designs, forcing users to invest considerable time and skill in 
rewriting their applications. Recent standardization efforts for Open Compute Language 
(OpenCL) appear as a promising step in order to reduce the labor of using and evaluating 
these new devices. 
 
In this special issue, we examine two unconventional designs of CMP architectures with 
the potential to revolutionize high-end computing: the Sony Toshiba IBM (STI) Cell and 
the recent NVIDIA GPGPUs (general-purpose graphics processing units).  These 
platforms have the promise of effectively leveraging the continued advances in silicon 
technology to achieve significant improvements in performance- and power-efficiency 
compared with conventional superscalar-based CMPs. Clearly, these benefits are 
appealing to the computational science community whether the CMPs are used as 
standalone computational devices or accelerator offload engines. 
 
The heterogeneous STI Cell processor is the heart of the Sony PlayStation 3 (PS3) video 
game console, whose aggressive design is intended to meet the demanding computational 
requirements of video games. Cell adopts a heterogeneous approach to multicore, with 
one conventional processor core to handle OS and control functions, combined with up to 
eight simpler cores for the computationally intensive work.  These simple cores differ 
considerably from conventional core architectures due to their use of a disjoint software-
controlled local memory instead of the conventional hardware-managed cache hierarchy. 
This approach allows more efficient use of available memory bandwidth than is possible 
with standard prefetch schemes on conventional cache hierarchies, but also makes the 
programming model more complex.  Combined, the heterogeneous cores of the Cell 
processor allow the potential of high performance for appropriately multithreaded 
applications as well as the ability to efficiently execute unmodified single-threaded codes. 
 
The NVIDIA GPGPU is a homogeneous multicore architecture comprised of many 
simple in-order cores and is designed primarily for high-performance 3D graphics 
rendering. Currently, it is available only as discrete graphics units on PCI-Express cards.  
Its recent inclusion of double precision datapaths makes it a particularly interesting target 
for high performance scientific applications. This architectural approach clearly focuses 
on multithreaded throughput instead of singe thread performance, and thus requires 
application design to focus on maximizing thread-level parallelism. Like the Cell 
processor, the NVIDIA GPGPU utilizes local-store technology, requiring application 
reengineering; however, the newly developed C-like CUDA programming language 
interface promises a significantly simpler and much more general-purpose programming 
paradigm than on previous GPGPU platforms. 
 
The first paper in this special issue by Bader, Agarwal, and Kang investigates the 
performance of two different discrete transform kernels on the Cell architecture. Their 
innovative Fast Fourier Transform algorithm for 16K complex input samples achieves a 
single-precision performance of 18.6 Gflop/s, outperforming the Intel Xeon (Woodcrest) 
chip. The Discrete Wavelet Transform implementation utilizes a novel data 
decomposition strategy to improve direct memory access and enhance scalability for both 



lossless and lossy transforms, running significantly faster than on the AMD Opteron 
(Barcelona). The authors highlight the superiority of Cell over general-purpose multicore 
processors for bandwidth-intensive applications. 
 
The paper by Kurzak, Alvaro, and Dongarra describes the canonical implementation of 
single-precision matrix multiplication micro-kernels on the short-vector synergistic 
processing element (SPE) of the Cell processor. A sustained performance of 99.8% of 
peak is reported for matrices of size 64 x 64 elements while using less than 6 KB of 
memory for the code and supporting data structures. However, this was achieved by 
manually optimizing the code. The challenge is to achieve similar results via auto-
vectorization combined with heuristic techniques for more substantial application codes. 
 
Meredith, Alvarez, Maier, Schulthess, and Vetter conduct a case study of a quantum 
Monte Carlo application of critical importance to the Department of Energy on NVIDIA 
G80, and report on its accuracy and performance for the entire application across a 
cluster of GPUs. These issues are important because GPUs were originally developed for 
real-time rendering where accuracy is a secondary concern relative to throughput. Results 
indicate good performance and excellent accuracy, including for double-precision 
calculations on a pre-production sample of the GT200. However, a more detailed 
investigation with a variety of codes is necessary to establish the viability of GPUs for 
large-scale scientific applications. 
 
The paper by Hardy, Stone, and Schulten report on the use of a GT200 GPU and the 
CUDA programming toolkit to accelerate the multilevel summation process for 
computing electrostatic potentials for a system of interacting atoms. These calculations 
constitute a key component in biomolecular modeling applications. Results indicate a 26x 
speedup on a single GPU when computing the electrostatic potential for a system 
containing more than 1.5 million atoms. The ability to create potential maps of such 
systems in a few seconds enables interactive analysis previously unavailable. The 
challenge however is to run efficient calculations on systems larger than 100 million 
atoms on multi-GPU platforms. 
 
The final paper in this special issue is authored by Williams, Oliker, Vuduc, Shalf, 
Yelick, and Demmel. They examine the performance of a sparse matrix-vector 
multiplication kernel on several multicore architectures including those from AMD, Intel, 
and Sun, and compare it against that on the Cell. Effective optimization strategies 
designed explicitly for multicores demonstrate significant performance improvements on 
these platforms, but architectural differences determine the optimal implementation. The 
authors conclude by providing valuable insights into the hardware design trade-offs for 
memory-bound scientific applications. 
 


