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ABSTRACT
With the exponential growth of high-fidelity sensor and sim-
ulated data, the scientific community is increasingly reliant
on ultrascale HPC resources to handle their data analysis
requirements. However, to utilize such extreme comput-
ing power effectively, the I/O components must be designed
in a balanced fashion, as any architectural bottleneck will
quickly render the platform intolerably inefficient. To un-
derstand I/O performance of data-intensive applications in
realistic computational settings, we develop a lightweight,
portable benchmark called MADbench2, which is derived
directly from a large-scale Cosmic Microwave Background
(CMB) data analysis package. Our study represents one
of the most comprehensive I/O analyses of modern paral-
lel filesystems, examining a broad range of system archi-
tectures and configurations, including Lustre on the Cray
XT3 and Intel Itanium2 cluster; GPFS on IBM Power5 and
AMD Opteron platforms; two BlueGene/L installations uti-
lizing GPFS and PVFS2 filesystems; and CXFS on the SGI
Altix3700. We present extensive synchronous I/O perfor-
mance data comparing a number of key parameters includ-
ing concurrency, POSIX- versus MPI-IO, and unique- versus
shared-file accesses, using both the default environment as
well as highly-tuned I/O parameters. Finally, we explore the
potential of asynchronous I/O and quantify the volume of
computation required to hide a given volume of I/O. Over-
all our study quantifies the vast differences in performance
and functionality of parallel filesystems across state-of-the-
art platforms, while providing system designers and compu-
tational scientists a lightweight tool for conducting further
analyses.

1. INTRODUCTION
As the field of scientific computing matures, the demands

for computational resources are growing at a rapid rate. It is
estimated that by the end of this decade, numerous mission-
critical applications will have computational requirements
that are at least two orders of magnitude larger than current
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levels [10, 20]. To address these ambitious goals, the high-
performance computing (HPC) community is racing towards
making petascale computing a reality. However, to utilize
such extreme computing power effectively, all system com-
ponents must be designed in a balanced fashion to effectively
match the resource requirements of the underlying applica-
tion, as any architectural bottleneck will quickly render the
platform intolerably inefficient. In this work, we address the
I/O component of the system architecture — a feature that
is becoming progressively more important for many scientific
domains that analyze the exponentially growing volume of
high-fidelity sensor and simulated data.

In this paper, we examine I/O performance behavior across
several leading supercomputing systems and a comprehen-
sive set of parallel filesystems, using a lightweight, portable
benchmark called MADbench2. Unlike most of the I/O
microbenchmarks currently available [11–13, 15, 17], MAD-
bench2 is a unique in that it is derived directly from an
important scientific application, specifically in the field of
Cosmic Microwave Background data analysis. Using an ap-
plication-derived approach allows us to study the architec-
tural system performance under realistic I/O demands and
communication patterns. Additionally, any optimization in-
sight gained from these studies, can be fed back both directly
into the original application, and indirectly into applications
with similar I/O requirements. Finally, the tunable nature
of the benchmark allows us to explore I/O behavior across
the parameter space defined by future architectures, data
sets and applications.

The remainder of the this paper is organized as follows.
Section 2 motivates and describes the details of the MAD-
bench2 code. Next, Section 3 outlines the experimental
testbed, as well as the extensive set of studied HPC plat-
forms and underlying parallel filesystems, including: Lus-
tre on the Cray XT3 and Intel Itanium2 cluster; GPFS on
IBM Power5 and AMD Opteron platforms; two BlueGene/L
installations utilizing GPFS and PVFS2 filesystems; and
CXFS on the SGI Altix3700. We then present detailed syn-
chronous I/O performance data in Section 4, comparing a
number of key parameters, including concurrency, POSIX-
versus MPI-IO, and unique versus shared file accesses. We
also evaluate optimized I/O performance by examining a va-
riety of filesystem-specific I/O optimizations. The potential
of asynchronous behavior is explored in Section 5, where we
examine the volume of computation that could be hidden be-
hind effective I/O asyncronicity using a novel system metric.
Finally, Section 6 presents the summary of our findings.

Overall our study quantifies the vast differences in perfor-



mance and functionality of parallel filesystems across state-
of-the-art platforms, while providing system designers and
computational scientists a lightweight tool for conducting
further analyses.

2. MADBENCH2
MADbench2 is the second generation of a HPC bench-

marking tool [3, 5] that is derived from the analysis of mas-
sive CMB datasets. The CMB is the earliest possible image
of the Universe, as it was only 400,000 years after the Big
Bang. Measuring the CMB has been one of the Holy Grails
of cosmology — with Nobel prizes in physics being awarded
both for the first detection of the CMB (1978: Penzias &
Wilson), and for the first detection of CMB fluctuations
(2006: Mather & Smoot). Extremely tiny variations in the
CMB temperature and polarization encode a wealth of in-
formation about the nature of the Universe, and a major
effort continues to determine precisely their statistical prop-
erties. The challenge here is twofold: first the anisotropies
are extraordinarily faint, at the milli- and micro-K level on a
3K background; and second we want to measure their power
on all angular scales, from the all-sky to the arcminute. To
obtain sufficient signal-to-noise at high enough resolution
we need to gather — and then analyze — extremely large
datasets. High performance computing has therefore be-
come a cornerstone of CMB research, both to make pixelized
maps of the microwave sky from experimental time-ordered
data, and to derive the angular power spectra of the CMB
from these maps.

2.1 Computational Structure
The Microwave Anisotropy Dataset Computational Anal-

ysis Package (MADCAP) has been developed specifically to
tackle the CMB data analysis challenge on the largest HPC
systems [2]. The most computationally challenging element
of this package, used to derive spectra from sky maps, has
also been re-cast as a benchmarking tool; all the redundant
scientific detail has been removed, but the full computa-
tional complexity — in calculation, communication, and I/O
– has been retained. In this form, MADbench2 boils down
to four steps:

• Recursively build a sequence of Legendre polynomial
based CMB signal pixel-pixel correlation component
matrices, writing each to disk (loop over {calculate,
write});
• Form and invert the full CMB signal+noise correlation

matrix (calculate/communicate);

• In turn, read each CMB signal correlation component
matrix from disk, multiply it by the inverse CMB data
correlation matrix (using PDGEMM), and write the
resulting matrix to disk (loop over {read, calculate/com-
municate, write});
• In turn, read each pair of these result matrices from

disk and calculate the trace of their product (loop over
{read, calculate/communicate}).

Due to the large memory requirements of the computa-
tional domain in real calculations, all the required matrices
generally do not fit in memory simultaneously. Thus, an out-
of-core algorithm is used, which requires enough memory to
store just five matrices at any one time, with the individ-
ual component matrices being written to disk when they
are first calculated, and re-read whenever they are required.

Since the heart of the calculation is dense linear algebra, all
the matrices are stored in the ScaLAPACK [19] block-cyclic
distribution, and each processor simultaneously writes/reads
its share of each matrix in a single binary dump/suck.

In order to keep the data dense (and therefore minimize
the communication overhead) even on large numbers of pro-
cessors, the implementation offers the option of gang-parallel-
ism. In gang-parallelism the first two steps are performed on
matrices distributed across all processors; however, for the
last two steps, the matrices are remapped to disjoint subsets
of processors (gangs) and the independent matrix multipli-
cations or trace calculations are performed simultaneously.
An analysis of this approach at varying concurrencies and
architectural platforms, which highlights the complex inter-
play between the communication and calculation capabilities
of HPC systems, is discussed in previous studies [3, 5].

2.2 Parameterized Environment
In this work, we present MADbench2, an updated version

of the benchmark that has been extended in a number of
ways to broaden its ability to investigate I/O performance
both within and across HPC systems. MADbench2 can be
compiled and run in I/O-mode — the mode used through-
out here — in which all computations are replaced with
busy-work whose scaling with data size can be tuned by the
user. This tuning takes the form of an exponent α such
that, for N bytes of data read or written, the code performs
Nα floating-point operations. where all computations are
replaced with busy-work. This allows MADbench2 to in-
vestigate I/O performance on experimental systems where
the usual linear algebra libraries are not yet installed, and
to run very large I/O performance tests without having to
wait for redundant linear-algebra calculations. In addition,
with asynchronous I/O, the busy-work exponent can be var-
ied to measure how the I/O time changes with the scaling of
the calculation behind which it is being backgrounded. In
either mode, MADbench2 measures the time spent in cal-
culation/communication and I/O by each processor for each
step, and reports their average and extrema; in I/O mode
the time spent in the busy-work function is measured and re-
ported separately. Note that as yet the busy-work function
includes no inter-processor communication.

MADbench2 accepts environment variables that define the
overall I/O approach:

• IOMETHOD - either POSIX or MPI-IO data trans-
fers,

• IOMODE - either synchronous or asynchronous I/O,

• FILETYPE - either unique or shared files (i.e. one file
per processor versus one file for all processors), and

• BWEXP - the busy-work exponent α.

and command-line arguments that set the scale, gang-parallel-
ism, and system-specific tuning:

• the number of pixels NPIX,

• the number of bins NBIN,

• the number of gangs, set to 1 throughout here,

• the ScaLAPACK block size, irrelevant here since we
run in I/O-mode,

• the file blocksize FBLOCKSIZE, with all I/O calls start-
ing an integer number of these blocks into a file,

• the read/write-modulators RMOD/WMOD, limiting the num-
ber of processes that read/write simultaneously.



of any particular analysis run. The first two arguments set
the problem size, resulting in a calculation with NBIN com-
ponent matrices, each of NPIX2 doubles. The last three ar-
guments are system-specific and are set by experiment to
optimize each system’s performance. This means that in
code steps 1, 3 & 4 each processor will issue a sequence
of NBIN read and/or write calls, each of O(8 NPIX2/#CPU)
bytes, and each fixed to start an exact multiple of FBLOCK-
SIZE bytes into the file. At the top level each of these I/O
calls is issued by every processor at the same time, although
only 1 in RMOD/WMOD low level read/write calls are actually
executed simultaneously1.

Note that although MADbench2 is originally derived from
a specific cosmology application, its three patterns of I/O
and work — looping over work/write (step 1), read/work/write
(step 3), and read/work (step 4) — are completely generic.
Since the performance of each pattern is monitored indepen-
dently the results obtained here will have applicability to a
very wide range of I/O-intensive applications. This is par-
ticularly true for data analysis applications, which cannot
simply reduce their I/O load in the way that many simula-
tion codes can by, for example, checkpointing less frequently
or saving fewer intermediate states. MADbench2 also re-
stricts its attention to I/O strategies that can be expected
to be effective on the very largest systems, so each processor
performs its own I/O (possibly staggered, if this improves
performance) rather than having a subset of the processors
read and scatter, or gather and write, data.

MADbench2 enables comparison between concurrent writes
to shared files to the default approach of using one file per
processor or per node. Using fewer files will greatly simplify
the data analysis and archival storage. Ultimately, it would
be conceptually easier to use the same logical data organiza-
tion within the data file, regardless of how many processors
were involved in writing the file. The majority of users con-
tinue to embrace the approach that each process uses its
own file to store the results of its local computations. An
immediate disadvantage of this approach is that after pro-
gram failure or interruption, a restart must use the same
number of processes. Another problem with one-file-per-
processor is that continued scaling can ultimately be lim-
ited by metadata server performance, which is notoriously
slow. A more serious problem is that this approach does not
scale, and leads to a data management nightmare. Tens or
hundreds of thousands of files will be generated on petascale
platforms. A practical example [1] is that a recent run on
BG/L using 32K nodes for a FLASH code generated over
74 million files. Managing and maintaining these files itself
will become a grand challenging problem regardless of the
performance. Using a single or fewer shared files to reduce
the total number of files is preferred on large-scale parallel
systems.

2.3 Related Work
There are a number of synthetic benchmarks investigated

for studying I/O performance on HPC systems. Popular
desktop system I/O benchmarks such as IOZone [13] and
FileBench [15], are generally not relevant to HPC applica-
tions as they either do not have parallel implementations
or exercise I/O patterns that are uncommon in scientific
applications. The SPIObench [23] and PIORAW [16] are

1For all the systems studied here, optimal performance was
seen for RMOD = WMOD = 1, or free-for-all I/O.

parallel benchmarks that read and write to separate files
in parallel fashion, but offer no way to assess performance
for concurrent accesses to a single file. The Effective I/O
Benchmark [17] reports a I/O performance number by run-
ning a set of predefined configurations for a short period of
time. It is thus difficult to relate its performance back to
applications or compare results with other available bench-
marks. The FLASH-IO [8] benchmark, studied extensively
in a paper on paralleNetCDF [6], is probably closest in spirit
to MADbench2 in that it was extracted directly from a
production application — the FLASH code used for sim-
ulating SN1a supernovae. However, it focuses exclusively
on write performance, which is only half of what we re-
quire to understand performance for data analysis applica-
tions. The LLNL IOR [12] benchmark is a fully synthetic
benchmark that exercises both concurrent read/write oper-
ations and read/write operations to separate files (one-file-
per-processor). IOR is highly parameterized, allowing it to
mimic a wide variety of I/O patterns. However, it is difficult
to relate the data collected from IOR back to the original
application requirements. Some preliminary work has been
done to relate IOR performance to MADbench2 [22]. A re-
cent comparison of I/O benchmarks can be found in a study
by Saini, et al. [18].

3. EXPERIMENTAL TESTBED
Our work uses MADbench2 to compare read and write

performance with (i) unique and shared files, (ii) POSIX-
and MPI-IO APIs, and (iii) synchronous and asynchronous
MPI-IO, both within individual systems at varying con-
currencies (16, 64 & 256 CPUs) and across seven leading
HPC systems. These platforms include six architectural
paradigms — Cray XT3, IA64 Quadrics cluster, Power5 SP,
Opteron Infiniband cluster, BlueGene/L (BG/L), and SGI
Altix — and four state-of-the-art parallel filesystems — Lus-
tre [4], GPFS [21], PVFS2 [14], and CXFS [7].

BG/L Mem Disk
CPU

CPU
NPIX NBIN

(GB) (GB)
— 16 12,500 8 6 9
16 64 25,000 8 23 37
64 256 50,000 8 93 149
256 —2 100,000 8 373 596

Table 1: Configurations and the associated memory
and disk requirements for I/O-mode MADbench2
experiments. Due to its memory constraints BG/L
uses four times the number of CPUs for a given
problem size.

In order to minimize the communication overhead of pdgemm
calls, at each concurrency we choose NPIX to fill the available
memory. This also minimizes the opportunities for system
level buffering to hide I/O costs. Many systems can scav-
enge otherwise empty memory to buffer their I/O, resulting
in much higher data-rates that often exceed the system’s
theoretical peak performance. However, this is an unrealis-
tic expectation for most real applications, since memory is
too valuable a commodity to leave empty like this.
2We were unable to conduct 1024-way BG/L experiments
as the ANL runs would have required multiple days of exe-
cution, exceeding the maximum allowed by the queue sched-
ulers.



(a) (b)

Figure 1: The general architecture of cluster filesystem we have studied, including Lustre, PVFS2, and GPFS,
follow the abstract pattern shown in (a); the CXFS configuration is more similar to a SAN, shown in (b).

Setting aside about one quarter of the available memory
for other requirements, we choose NPIX such that 5×NPIX2×
8 ∼ 3/4 × M × P for P processors each having M bytes of
memory. As shown in Table 1, this approach implies weak
scaling with the number of pixels doubling (and the size of
the matrices quadrupling) between the chosen concurrencies,
while the size of the data read/written in each I/O call from
each processor is constant (78 MB/CPU/call for the BG/Ls,
312 MB/CPU/call otherwise) across all concurrencies.

The systems considered here typically have 2 GB/CPU, of
which our chosen problem sizes filled 73%. The BG/L sys-
tems have only 0.5 GB/CPU so the processor counts were
quadrupled for a given problem size, again filling 73% of
the available memory; this allows us to use the same runs
to compare performance at both a fixed concurrency and a
fixed problem size. The Power5 SP system has 4 GB/CPU;
in order to support the same set of concurrencies and prob-
lem sizes we therefore had to relax the dense data require-
ment, and ran each of the standard problem sizes on the
smallest standard concurrency that would support it. Since
this only filled 36% of the available memory we also ran tests
with dense data (using 35K, 70K and 140K pixels on 16, 64
and 256 CPUs respectively, filling 71% of the available mem-
ory in each case) to ensure that this system’s performance
was not being exaggerated by buffering, and found that the
sparse and dense data results at a given concurrency never
differed by more than 20%.

3.1 Overview of Parallel Filesystems
In this section, we briefly outline the I/O configuration

of each evaluated supercomputing systems, a summary of
architecture and filesystem features are shown in Table 2
and Figure 1.

The demands of coordinating parallel access to filesystems
from massively parallel clusters has led to a more complex
system architecture than the traditional client-server model
of NFS. A number of HPC-oriented Storage Area Networks
(SAN), including GPFS, Lustre, CXFS, and PVFS2 address
some of the extreme requirements of modern HPC applica-
tions using a hierarchical multi-component architecture. Al-
though the nomenclature for the components of these clus-
ter filesystems differs, the elements of each architecture are
quite similar. In general, the requests for I/O from the com-
pute nodes of the cluster system are aggregated by a smaller
set of nodes that act as dedicated I/O servers.

In terms of filesystem metadata (i.e. file and directory
creation, destruction, open/close, status and permissions),
Lustre and GPFS operations are segregated from the bulk
I/O requests and handled by nodes that are assigned as ded-
icated metadata servers (MDS). The MDS process file op-

erations such as open/close, which can be distinct from the
I/O servers that handle the bulk read/write requests. In
the case of PVFS2, the metadata can be either segregated
(just as with GPFS or Lustre) or distributed across the I/O
nodes, with no such segregation of servers.

The bulk I/O servers are referred to as Object Storage
Servers (OSS) in Lustre nomenclature whereas they are Net-
work Shared Disk (NSD) in GPFS nomenclature for net-
work shared disk and Virtual Shared Disk (VSD) for the
storage server model of operation, and ”data servers” in
PVFS nomenclature. The back-end storage devices for Lus-
tre are referred to as Object Storage Targets (OSTs) whereas
PVFS2 and GPFS rely on either locally attached storage or
a SAN for the back-end storage devices.

The front-end of the I/O servers (both bulk I/O and meta-
data) are usually connected to the compute nodes via the
same interconnection fabric that is used for message passing
between the compute nodes. One exception to this is the
BG/L system, which has a dedicated Tree/Collective net-
work links to connect the compute nodes to I/O nodes within
their partition. The BG/L I/O nodes act as the storage
clients and connect to the I/O servers via a GigE network.
Another exception is CXFS where the storage is directly
attached to the nodes using the Fiberchannel (FC) SAN
fabric and coordinated using a dedicated metadata server
that is attached via Ethernet. The back-end of the I/O
servers connect to the disk subsystem via a different fabric
— often FC, Ethernet or Infiniband, but occasionally lo-
cally attached storage such as SATA or SCSI disks that are
contained within the I/O server.

3.2 Jaguar: Lustre on Cray XT3
Jaguar, a 5,200 node Cray XT3 supercomputer, is located

at Oak Ridge National Laboratory (ORNL) and uses the
Lustre parallel filesystem. Each XT3 node contains a dual-
core 2.6 GHz AMD Opteron processor, tightly-integrated to
the XT3 interconnect via a Cray SeaStar-1 ASIC through
a 6.4 GB/s bidirectional HyperTransport interface. All the
SeaStar routing chips are interconnected in a 3D torus topol-
ogy, where each node has a direct link its six nearest neigh-
bors. The XT3 uses two different operating systems: Cata-
mount 1.4.22 on compute processing elements (PEs) and
Linux 2.6.5 on service PEs.

Jaguar uses 48 I/O OSS servers, and one MDS, connected
via the custom SeaStar-1 network in a toroidal configuration
to the compute nodes. The OSSs are connected to a total of
96 OSTs that use Data Direct Networks (DDN) 8500 RAID
controllers as backend block devices for the OSTs. There
are 96 OSTs, 8 per DDN couplet, and nine approximately
2.5 GB/s (3 GB/s peak) DDN8500 couplets — providing a



Parallel Interconnect Max Measured I/O Max Total
Name

File
Proc

Compute to Node BW Node Servers/ Disk Disk
Machine

System
Arch

I/O nodes to I/O BW Client BW (TB)
Jaguar Lustre Opteron SeaStar-1 6.4 1.2 1:105 22.5 100

Thunder Lustre Itanium2 Quadrics 0.9 0.4 1:64 6.4 185
Bassi GPFS Power5 Federation 8.0 6.1 1:16 6.4 100

Jacquard GPFS Opteron InfiniBand 2.0 1.2 1:22 6.4 30
SDSC BG/L GPFS BG/L GigE 0.2 0.18 1:8 8 220
ANL BG/L PVFS2 BG/L GigE 0.2 0.18 1:32 1.3 7
Columbia CXFS Itanium2 FC4 1.6 —4 —4 1.65 600

Table 2: Highlights of architectures and file systems for examined platforms. All bandwidths (BW) are in
GB/s. The “Measured Node BW” uses MPI benchmarks to exercise the fabric between nodes.

theoretical 22.5 GB/s aggregate peak I/O rate. The maxi-
mum sustained performance, as measured by ORNL’s sys-
tem acceptance tests, was 75%-80% of this theoretical peak
for compute clients at the Lustre FS level3.

3.3 Thunder: Lustre on IA64/Quadrics
The Thunder system, located at Lawrence Livermore Na-

tional Laboratory (LLNL), consists of 1024 nodes, and also
uses the Lustre parallel filesystem. The Thunder nodes each
contain four 1.4 GHz Itanium2 processors running Linux
Chaos 2.0, and are interconnected using Quadrics Elan4
in a fat-tree configuration. Thunder’s 16 I/O OSS servers
(or GateWay (GW) nodes) are connected to the compute
nodes via the Quadrics interconnection fabric and deliver
∼400MB/s of bandwidth each, for a total of 6.4 GB/s peak
aggregate bandwidth. Two metadata servers (MDS) are also
connected to the Quadrics fabric, where the second server
is used for redundancy rather than to improve performance.
Each of the 16 OSS’s are connected via 4 bonded GigE in-
terfaces to a common GigE switch that in turn connects to
a total of 32 OSTs, delivering an aggregate peak theoretical
performance of 6.4 GB/s.

3.4 Bassi: GPFS on Power5/Federation
The 122-node Power5-based Bassi system is located at

Lawrence Berkeley National Laboratory (LBNL) and em-
ploys GPFS as the global filesystem. Each node consists of
8-way 1.9 GHz Power5 processors, interconnected via the
IBM HPS Federation switch at 4 GB/s peak (per node)
bandwidth. The experiments conducted for our study were
run under AIX 5.3 with GPFS v2.3.0.18.

Bassi has 6 VSD servers, each providing sixteen 2 Gb/s
FC links. The disk subsystem consists of 24 IBM DS4300
storage systems, each with forty-two 146 GB drives config-
ured as 8 RAID-5 (4data+1parity) arrays, with 2 hot spares
per DS4300. For fault tolerance, the DS4300 has dual con-
trollers; each controller has dual FC ports. Bassi’s maximum
theoretical I/O bandwidth is 6.4 GB/s while the measured
aggregate disk throughput of our evaluated configuration is
4.4 GB/s read and 4.1 GB/s write using the NERSC PIO-
RAW benchmark.6

3.5 Jacquard: GPFS on Opteron/Infiniband
3Personal communication Jaguar system administrator.
4Inapplicable to Columbia’s SAN implementation.
5Although 3.0+ GB/s are available across the system, only
1.6 is available to each 512-way SMP.
6See https://www.nersc.gov/nusers/resources/bassi/
perf.php\#bmresults.

The Jacquard system is also located at LBNL and con-
tains 320 dual-socket (single-core) Opteron nodes running
Linux 2.6.5 (PathScale 2.0 compiler). Each node contains
two 2.2 GHz Opteron processors interconnected via Infini-
Band (IB) fabric in a 2-layer fat-tree configuration, where IB
4x and 12x are used for the leaves and spines (respectively)
of the switch. Jacquard uses a GPFS-based parallel filesys-
tem that employs 16 (out of a total of 20) I/O servers for
scratch connected to the compute nodes via the IB fabric.
Each I/O node has one dual-port 2 Gb/s QLogic FC card,
which can deliver 400 MB/s, hooked to a S2A8500 DDN con-
troller. The DDNs serving scratch (the filesystem examined
in our study) has a theoretical peak aggregate performance
of 12 GB/s, while the compute nodes have a theoretical peak
bandwidth of 6.4 GB/s. However, peak bandwidth is limited
since the IP over IB implementation sustains only ∼200-270
MB/s, thereby limiting the aggregate peak to ∼4.5 GB/s.
The maximum measured aggregate I/O bandwidth available
on Jacquard is 4.2 GB/s throughput (reads and writes) us-
ing NERSC’s PIORAW benchmark.

3.6 SDSC BG/L: GPFS on BlueGene/L
The BG/L at the San Diego Supercomputing Center con-

sists of 1024-nodes each containing two 700MHz PowerPC
440 processors, on-chip memory controller and communica-
tion logic, and 512MB of memory. The BG/L nodes are
connected via three independent networks: the IBM Blue-
Gene Torus, the Global Tree, and the Global Interrupt. I/O
aggregation on the BG/L platform is accomplished using the
Tree network, which also services collective operations.

BG/L systems dedicate a subset nodes to forward I/O
requests (and other system calls) trapped by the compute
node kernel (CNK) on the compute nodes in the system and
forward those requests via a Gigabit Ethernet to the data
servers. These I/O nodes are only visible to the compute
nodes within their partition. Whereas the compute nodes
on BG/L generally run the IBM CNK microkernel, the I/O
nodes run a full fledged Linux kernel. Any system calls ex-
ecuted on the compute nodes are trapped on the compute
nodes by CNK and then forwarded to the appropriate I/O
node to be re-executed as a real system call with the ap-
propriate user ID. The I/O nodes can act as clients for a
number of different cluster filesystem implementations in-
cluding GPFS, NFS, Lustre, and PVFS. The ratio of I/O
nodes to compute nodes is a system-dependent parameter.

The SDSC platform employees GPFS and uses the most
aggressive I/O system configuration possible for a BG/L,
offering a 1:8 ratio of I/O servers to compute nodes. The



I/O servers forward request via Gigabit Ethernet to a second
tier of IA64-based NSD servers that connect to the back-end
storage fabric. There are two filesystems visible from the
compute nodes, both of which are evaluated in our study.
The older scratch filesystem uses 12 NSD and 2 MDS servers,
while the newer higher performance WAN filesystem uses 58
NSD and 6 MDS servers.

3.7 ANL BG/L: PVFS2 on BlueGene/L
Like the SDSC system, the ANL BG/L system contains

1024 compute nodes, however the ANL system uses the
PVFS2 filesystem and employs only 32 I/O nodes (a ra-
tio of 1:32 I/O nodes per compute node). The I/O nodes
act as storage ”clients” for the PVFS2 filesystem. The I/O
nodes connect via a GigE switch to 16 dual-processor Xeon-
based ”storage” nodes. The storage nodes serve up 6.7 TB of
locally attached disk that is are configured as a RAID5 us-
ing ServeRAID6i+ integral disk controllers. Assuming 900
MB/s for each storage controller network link, the PFVS2
filesystem can provide a peak aggregate I/O bandwidth of
1.3 GB/s read or write.

The two BG/L’s represent the most similar pair of sys-
tems in this study, allowing the closest direct comparison be-
tween filesystem instantiations. However, there are a num-
ber of key implementation details that differ across these two
systems, particularly the filesystem implementations (GPFS
and PVFS2 respectively) and the varying ratios of I/O server
nodes to compute nodes (1:8 and 1:32 respectively). These
factors need to be taken into consideration in the compara-
tive analysis of their performance results.

3.8 Columbia: CXFS on SGI Altix3700
Columbia is a 10,240-processor supercomputer which is lo-

cated at NASA Ames Research Center and employed CXFS.
The Columbia platform is a supercluster comprised of 20
SGI Altix3700 nodes, each containing 512 1.5 GHz Intel Ita-
nium processors and running Linux 2.6.5. The processors
are interconnected via NUMAlink3, a custom network in a
fat-tree topology that enables the bisection bandwidth to
scale linearly with the number of processors.

CXFS is SGI’s parallel SAN solution that allows the clients
to connect directly to the FC storage devices without an
intervening storage server. However the metadata servers
(MDS) are connected to the clients via GigE to each of the
clients in the SAN. The SAN disk subsystem is an SGI In-
finite Storage 6700 disk array that offers a peak aggregate
read/write performance of 3 GB/s. Columbia is organized
as three logical domains, and our experiments only use the
”science domain” which connects one front-end node, 8 com-
pute nodes and 3 MDS to the disk subsystem via a pair
of 64-port FC4 (4 Gb/s FC) switches. Each of the eight
compute nodes speak to the disk subsystem via 4 bonded
FC4 ports. The disk subsystem itself is connected to the
FC4 switches via eight FC connections, but since our com-
pute jobs could not be scheduled across multiple Altix3700
nodes, we could use a maximum of four FC4 channels for a
theoretical maximum of 1.6 GB/s per compute node.

4. SYNCHRONOUS I/O BEHAVIOR
This section presents performance on our evaluated test

suite using the synchronous I/O configuration, where com-
putation and communication is not explicitly overlapped.
We conduct four experiments for each of the configurations

shown in Table 1: POSIX I/O with unique files, POSIX I/O
with a shared file, MPI-IO with unique files, and MPI-IO
with a shared file.

Early in the experience with cluster filesystems such as
NFS we found that POSIX I/O to a single shared file would
result in undefined behavior or extraordinarily poor perfor-
mance, thereby requiring MPI-IO to ensure correctness. Re-
sults show that our set of evaluated filesystems now ensure
correct behavior for concurrent writes. Collective MPI-IO
should, in theory, enable additional opportunities to coordi-
nate I/O requests so that they are presented to the disk sub-
system in optimal order. However, in practice we saw trivial
differentiation between POSIX and MPI-IO performance for
MADbench2’s contiguous file access patterns, which do not
benefit from the advanced features of MPI-IO. Indeed, due
to similarity between POSIX and MPI-IO performance, we
omit any further discussion between these two APIs and
present the better of the two measured runtimes.

Figures 2 and 3 present summaries of synchronous MAD-
bench2 results on the seven evaluated architectural plat-
forms, using the default environment parameters, with per-
formance compared via fixed concurrencies and fixed total
I/O throughput (respectively). While a breakdown of each
individual system is shown in Figure 4. Detailed perfor-
mance analysis as well as optimized execution results are
presented in the subsequent subsections.

4.1 Jaguar Performance
Figure 4(a-b) presents the synchronous performance on

the Jaguar system. For unique file reading and writing,
Jaguar shows a significantly higher aggregate I/O rate com-
pared with all other evaluated architectures, as can clearly
be seen in Figure 2(a-b). As with most cluster filesystems,
Jaguar cannot reach peak performance at low concurrencies
because the I/O rate is limited by the effective intercon-
nect throughput of the client nodes. For instance, the ef-
fective unidirectional messaging throughput (the ”injection
bandwidth” as opposed to SeaStar’s max throughput tran-
sit bandwidth) of each Jaguar node is 1.1 GB/s. Thus 8
nodes (16 processors) only aggregates 8.8 GB/s of band-
width; however, as can be seen in Figure 4(a), increasing
concurrency to 64 nodes causes the Jaguar I/O system to
rapidly approach saturation bandwidth of its disk subsys-
tem for reading and writing unique files. At 256 processors,
the Jaguar disk subsystem is nearly at its theoretical peak
bandwidth for writes to unique files. Observe that reading
is consistently slower than writing for all studied concurren-
cies. We attribute this to I/O buffering effects. The I/O
servers are able to hide some of the latency of committing
data to disk when performing writes; however, reads cannot
be buffered unless there is a temporal recurrence in the us-
age of disk blocks — thereby subjecting the I/O request to
the full end-to-end latency of the disk subsystem.

In comparison to accessing unique files (one file per proces-
sor), Jaguar’s performance when reading/writing to single
shared files is uniformly flat and performs poorly at all con-
currencies when run using the default environment settings,
as can be seen in Figure 4(a). Thus, its default shared per-
formance is relatively poor compared with Bassi, Jacquard,
and the SDSC BG/L, as shown in Figure 2(c-d). The lim-
ited shared performance arises because all I/O traffic is re-
stricted to just 8 of the 96 available OSTs in default mode.
This policy ensures isolation of I/O traffic to provide more
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Figure 2: Synchronous MADbench2 aggregate throughput results for fixed concurrencies using the default
environment parameters, showing unique file (a) read and (b) write performance, and shared file (c) read
and (d) write performance. Note that the Jaguar unique file performance greatly exceeds the limits of the
ordinate axes.

consistent performance to each job in a mixed/mode batch
environment with many competing processes, but restricts
the ability of any single job to take advantage of the full I/O
throughput of the disk subsystem. Using the lstripe com-
mand, we were able to assign 96 OSTs to each data file, with
results show in Figure 4(b). This optimized striping config-
uration is not the default setting because it (i) exposes the
job to increased risk of failure, as the loss of any single OST
will cause the job to fail, (ii) exposes the job to more in-
terference from other I/O intensive applications, and (iii)
reduces the performance of the one-file-per-processor con-
figuration. However, for parallel I/O into a single file, the
striping approach results in dramatic improvements for both
the read and write performance. Unfortunately the striping
optimization causes unique-file I/O to drop in performance
relative to the default configuration, due to increased inter-
ference of disk operations across the OSTs.

4.2 Thunder Performance
In general, the behavior of Thunder’s Lustre I/O system

for the synchronous tests is remarkably similar to that of
Lustre on Jaguar despite considerable differences in machine
architecture. As seen in Figure 2 Thunder achieves the sec-
ond highest aggregate performance after Jaguar for unique
file accesses (at higher concurrencies). This is not surpris-
ing since Thunder’s peak I/O performance is only one-fifth

that of Jaguar’s. Figure 4(c) shows that, like Jaguar, Thun-
der write performance is better than the read throughput
since memory buffering is more beneficial for writes than
for reads. Additionally, performance in shared-file mode is
dramatically worse than using unique files (one-file per pro-
cess). Unlike Jaguar, however, results do not show substan-
tial performance benefits from striping using the lstripe

command. In theory, a well tuned striping should bring
the shared file performance to parity with the default en-
vironmental settings. The LLNL system administrators be-
lieve that the differences between Lustre performance on
Jaguar and Thunder is largely due to the much older soft-
ware and hardware implementation deployed on Thunder.
Future work will examine Thunder performance under the
upgraded software environment.

4.3 Bassi Performance
As seen in Figure 4(d), unlike the Lustre-based systems,

Bassi’s GPFS filesystem offers shared-file performance that
is nearly an exact match of the unique-file behavior at each
concurrency using the system’s default configuration. As
a result, Bassi attains the highest performance of our test
suite for shared-file accesses (see Figure 2), with no special
optimization or tuning. The I/O system performance ramps
up to saturation rapidly, which is expected given the high
bandwidth interconnect that links Bassi’s compute nodes to
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Figure 3: Comparison of performance for fixed total I/O throughput, using (a) 40GB for 25K NPIX and (b)
160GB for 50K NPIX. Note that, for a fixed number of pixels, the BG/L systems use four times as many
processor as the other evaluated platforms due to memory constraints.

the I/O nodes. With 6 I/O nodes, we would expect that
any job concurrency higher than 48 processors would result
in I/O performance that is close to saturation. The syn-
chronous I/O performance bears out that assumption given
the fall-off in write performance for job concurrencies be-
yond 64 processors (8 nodes). The read performance trails
the write performance for job sizes below 256 processors, and
then exceeds the write performance for higher concurrencies.
There is no obvious explanation for this behavior, but IBM
engineers have indicated that the GPFS disk subsystem is
capable of recognizing data access patterns for reads and
prefetching accordingly. However, IBM offers no direct way
of determining whether the pattern matching or prefetching
has been invoked.

4.4 Jacquard Performance
The Jacquard platform provides an opportunity to com-

pare and contrast GPFS performance on a system that is a
different hardware architecture and OS than the AIX/PowerPC
systems for which GPFS was originally developed. Fig-
ure 4(e) shows that GPFS on Linux offers similar perfor-
mance characteristics to the AIX implementation on Bassi.
The performance of reading and writing to a shared file
matches that of writing one file per processor without re-
quiring any specific performance tuning or use of special
environment variables. Unlike Bassi, Jacquard performance
continues to scale up even at a concurrency of 256 proces-
sors, indicating that the underlying disk storage system or
I/O servers (GPFS NSDs) — which have a theoretical peak
bandwidth of 4.5 GB/s — have probably not been saturated.
However, as seen in Figure 2, Bassi generally outperforms
Jacquard due to its superior node to I/O bandwidth (see
Table 2).

4.5 BG/L GPFS
The BG/L platform at SDSC offers yet another system

architecture and OS combination for examining GPFS per-
formance while presenting an interesting comparison to the
ANL BG/L configuration. When comparing absolute per-
formance across architectures, it should be noted the BG/L
(single rack) platforms are the two smallest systems in our
study (in terms of peak Gflop/s rate). As seen in Figure 2,

despite its low performance for small numbers of processors,
at high concurrencies the SDSC BG/L (WAN filesystem)
is quite competitive with the larger systems in this study.
Additionally, if we compare data with respect to a fixed
I/O throughput — as shown in Figure 3 (where BG/L uses
four times as many processors) — results show that for 50K
pixels, the SDSC BG/L WAN system achieves a significant
performance improvement relative to the other platforms,
attaining or surpassing Jacquard’s throughput. This affect
was much less dramatic for the 25K pixel experiment.

Figure 4(f) compares the two filesystems at SDSC, show-
ing that the WAN configuration (right) achieves significantly
higher performance than the local filesystem (left). The
WAN filesystem has many more spindles attached (hence
the disk subsystem has much higher available bandwidth)
and in addition, it has many more NSDs attached than
the local scratch. Consequently, the local filesystem reaches
bandwidth saturation at a much lower concurrency than the
WAN. Indeed, as seen in Figure 4(g), the 256-way WAN
experiment has clearly not saturated the underlying filesys-
tem throughput. Consistent with the other GPFS-based
systems in our study, the SDSC I/O rate for concurrent
reads/writes into a single shared file match the performance
of reads/writes to unique files, using the default configura-
tion with no tuning required.

4.6 BG/L PVFS2
Figure 4(h) presents the performance of the PFVS2 disk

subsystem on the ANL BG/L platform, which shows rela-
tively low I/O throughput across the various configurations.
When comparing the scaling behavior between the SDSC
and ANL BG/L systems (Figure 2), we observe that (using
default tuning parameters) the PVFS2 filesystem sees good
scalability for both the unique and shared file write perfor-
mance on up to 64 processors; however, beyond that concur-
rency the file read performance goes down significantly. The
much smaller number of I/O server nodes may have difficulty
fielding the large number of simultaneous read requests.

ANL provided us with a number of tunable parameters to
improve the I/O performance on the PVFS2 filesystem, in-
cluding the strip size (equivalent to the ”chunk size” in a
RAID environment) and num files which controls how new



Jaguar 
Synchronous IO

0

2000

4000

6000

8000

10000

12000

14000

16000

0 64 128 192 256

Concurrency

A
g

g
re

g
a
te

 M
B

/
s

Read/Unique
Read/Shared
Write/Unique
Write/Shared

(a)

Jaguar stripe=96
 Synchronous IO

0

2000

4000

6000

8000

10000

12000

14000

16000

0 64 128 192 256

Concurrency

A
g

g
re

g
a
te

 M
B

/
s

Read/Unique
Read/Shared
Write/Unique
Write/Shared

(b)

Thunder
 Synchronous IO

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 64 128 192 256

Concurrency

A
g

g
re

g
a
te

 M
B

/
s

Read/Unique

Read/Shared
Write/Unique

Write/Shared

(c)

Bassi
Synchronous IO

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 64 128 192 256

Concurrency

A
g

g
re

g
a
te

 M
B

/
s

Read/Unique
Read/Shared
Write/Unique
Write/Shared

(d)

Jacquard
 Synchronous IO

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 64 128 192 256

Concurrency

A
g

g
re

g
a
te

 M
B

/
s

Read/Unique
Read/Shared
Write/Unique
Write/Shared

(e)

SDSC BG/L
 Synchronous IO

0

500

1000

1500

2000

2500

3000

0 64 128 192 256

Concurrency

A
g

g
re

g
a
te

 M
B

/
s

Read/Unique

Read/Shared

Write/Unique

Write/Shared

(f)

SDSC BG/L WAN
Synchronous IO

0

500

1000

1500

2000

2500

3000

0 64 128 192 256

Concurrency

A
g

g
re

g
a
te

 M
B

/
s

Read/Unique

Read/Shared

Write/Unique

Write/Shared

(g)

ANL BG/L 
Synchronous IO

0

100

200

300

400

500

600

700

800

0 64 128 192 256

Concurrency

A
g

g
re

g
a
te

 M
B

/
s

Read/Unique
Read/Shared
Write/Unique
Write/Shared

(h)

Columbia
 Synchronous IO

0

200

400

600

800

1000

1200

1400

1600

0 64 128 192 256

Concurrency

A
g

g
re

g
a
te

 M
B

/
s

Read/Unique

Read/Shared
Write/Unique

Write/Shared

(i)

Columbia Direct
 Synchronous IO

0

200

400

600

800

1000

1200

1400

1600

0 64 128 192 256
Concurrency

A
g

g
re

g
a
te

 M
B

/
s

Read/Unique

Read/Shared
Write/Unique

Write/Shared

(j)

Figure 4: MADbench2 performance on each individual platforms showing (a) Jaguar default environment
(b) Jaguar optimized striping configuration (c) Thunder default environment (d) Bassi default environment
(e) Jacquard default environment (f) SDSC BG/L local scratch (g) SDSC BG/L WAN filesystem (h) ANL
BG/L default environment (i) Columbia default environment (j) Columbia using directIO interface.

files are distributed across the multiple I/O servers. The
latter parameter is analogous to the Lustre lstripe tunable
parameter which also controls how files are striped across
the Lustre I/O servers (OSTs). After performing a search
across the strip size and num files parameter space and
attempting experiments with smaller memory footprints we
were unable to derive a significant performance benefit for
MADbench2 on this platform. This also holds true when
comparing data in terms of fixed total I/O throughput as
shown in Figure 3. Future work will continue exploring pos-
sible optimization approaches.

One key difference between SDSC and ANL BG/L sys-
tems is the compute–I/O node ratio (8:1 and 32:1 for the
SDSC and ANL systems respectively). Although the pri-
mary aim of this work is to compare filesystems as they are
currently deployed, it is interesting to consider how perfor-
mance would differ between the two BG/L systems if this
ratio was the same on both platforms. To normalize this
comparison, we ran experiments using 4x the required pro-
cesses on the ANL system and mapped them in such a way
that that the effective compute–I/O node ratio became 8:1
(three of the four allocated processes remain idle during com-
putation). In the 8:1 ANL experiment — which offers a 4x

increase in the default compute–I/O node ratio — the av-
erage performance of the ANL system throughput improved
2.6x. These results indicate that the smaller number of I/O
nodes are indeed an important bottleneck for I/O system
performance. Nonetheless, the 8:1 ANL configuration was
still 4.7x slower on average than the default 8:1 SDSC WAN,
confirming that ratio of I/O nodes is only one of the many
factors that affects I/O throughput.

4.7 Columbia
Figure 4(i) shows the baseline performance of the Columbia

CXFS filesystem. Observe that, except for the read-unique
case, most of the I/O operations reach their peak perfor-
mance at the lowest concurrency, and performance falls off
from there. This is largely due to the fact that the I/O in-
terfaces for the 256 processor Altix nodes are shared across
the entire node, thus increased concurrency does not expose
the application to additional physical data channels to the
disk subsystem. Therefore, Columbia tends to reach peak
performance at comparatively low concurrency compared to
the other systems in our study. As processor count increases,
there is increased lock overhead to coordinate the access to
the Unix block buffer cache, more contention for the physi-



cal interfaces to the I/O subsystem, and potentially reduced
coherence of requests presented to the disk subsystem. Over-
all, default Columbia I/O performance is relatively poor as
seen in Figure 2.

One source of potential overhead and variability in CXFS
disk performance comes from the need to copy data through
an intermediate memory buffer: the Unix block buffer cache.
The optimized graph in Figure 4(j) shows performance that
can be achieved using the directIO interface. DirectIO by-
passes the block-buffer cache and presents read and write
requests directly to the disk subsystem from user memory.
In doing so, it eliminates the overhead of multiple memory
copies and mutex lock overhead associated with coordinating
parallel access to the block-buffer cache. However, this ap-
proach also prevents the I/O subsystem from using the block
buffer cache to accelerate temporal recurrences in the data
access patterns that might be cache-resident. Additionally,
directIO makes the I/O more complicated since it requires
each disk transaction be block-aligned on disk, has restric-
tions on memory alignment, and forces the programmer to
think in terms of disk-block-sized I/O operations rather than
the arbitrary read/write operation sizes afforded by the more
familiar POSIX I/O interfaces.

Results show that using directIO causes raw performance
to improve dramatically, given the reduced overhead of the
I/O requests. However, the performance peaks at the lowest
processor count, indicating that the I/O subsystem (FC4)
can be saturated at low concurrencies. This can actually
be a beneficial feature since codes do not have to rely on
high concurrencies to access the disk I/O subsystem fully.
However, Columbia’s peak performance as a function of the
compute rate is much lower than desirable at the higher
concurrencies.

5. ASYNCHRONOUS PERFORMANCE
Almost all of the systems investigated in our study show

non-linear scaling in their synchronous I/O performance, in-
dicating that some component(s) of their I/O subsystems are
already beginning to saturate at only 256 processors. This
is clearly a concern for ultrascale I/O-intensive applications,
which will require scaling into tens or even hundreds of thou-
sands of processors to attain petascale performance. More-
over, one of the strongest candidates for near-term petascale,
the BG/L system, shows rather poor I/O performance under
both GPFS and PVFS2 even at relatively low concurrencies
— and cannot even run the largest data volume used in our
experiments in an allowable wallclock time.

One possible way to ameliorate this potential bottleneck
is to hide I/O cost behind simultaneous calculations by us-
ing asynchronous I/O facilities. Since it is often the case
that I/O transfers could be overlapped with computational
activity, this methodology is widely applicable to a wide
range of applications. MADbench2 was therefore designed
with the option of performing the simulation in an asyn-
chronous fashion, using portable MPI-2 [9] semantics. The
MPI-2 standard includes non-blocking I/O operations (the
I/O calls return immediately) whose particular implemen-
tation may provide fully asynchronous I/O (the I/O per-
formed in the background while other useful work is being
done). Unfortunately only two of the seven systems under
investigation — Bassi and Columbia — have MPI-2 imple-
mentations that actually support fully asynchronous I/O.
On all the other systems MADbench2 successfully ran in

asynchronous mode but showed no evidence of effectively
backgrounded I/O.

To quantify the balance between computational rate and
asynchronous I/O throughput, we developed the busy-work
exponent α; recall from Section 2 that α corresponds to
Nα flops for every N data. Thus, if the data being writ-
ten/read are considered to be matrices (as in the parent
MADCAP [2] application) then α=1.0 correspond to BLAS2
(matrix-vector), while α=1.5 corresponds to BLAS3 (matrix-
matrix); if the same data are considered to be vectors then
α=1.0 would correspond to BLAS1 (vector-vector). To eval-
uate a spectrum of potential numerical algorithms with dif-
fering computational intensities, we conduct 16- and 256-
way experiments (with unique files) varying the busy-work
exponent α from 1 to 1.5 on the two system with fully asyn-
chronous I/O facilities.

Given MADbench2’s pattern of loops over I/O and com-
putational overhead it is expected that, given sufficient fore-
ground work, the simulation should be able to background
all but the first data read or the last data write, reducing the
I/O cost by a factor of NBIN, which is equal to 8 for our ex-
perimental setup (see Section 3). In large-scale CMB experi-
ments, NBIN is dramatically larger, allowing the potential for
even more significant reductions in I/O overheads. Figure 5
presents the effective aggregate asynchronous I/O rate, as
function of α, and compares it with the projected maximum
performance based on the synchronous I/O throughput (for
the same architecture, concurrency and run parameters).

Results clearly demonstrate the enormous potential that
could be gained through an effective asynchronous I/O im-
plementation. With high α, Bassi asynchronous I/O through-
put (Figure 5(a-b)) outperforms the other systems investi-
gated in our study (for both read and write, at all concur-
rencies), even gaining an advantage over Jaguar’s impressive
synchronous I/O throughput by about 2x at 256 proces-
sors. Similarly, Columbia’s asynchronous I/O (Figure 5(c-
d)) improves on its synchronous performance by a significant
factor of 8x, achieving an effective aggregate 2 — 4 GB/s
for reading and writing across all concurrencies; however,
Columbia’s failure to scale I/O indicates that the filesys-
tem may become a bottleneck for large scale I/O-intensive
applications.

Broadly speaking, the asynchronous I/O performance be-
haves as expected; low α reproduces the synchronous be-
havior, while high α shows significant performance improve-
ments (typically) approaching the projected throughput. No-
tice that the critical value for the transition being somewhere
between 1.3 and 1.4, corresponding to an algorithmic scal-
ing > O(N2.6) for matrix computations. This implies that
(for matrices) only BLAS3 calculations will have sufficient
computational intensity to hide their I/O effectively. An
open question is how α might change with future petascale
architectures; if computational capacities grow faster than
I/O rates then we would expect the associated α to grow
accordingly. Given how close current system balance is to
the practical limit of BLAS3 complexity, this is an issue of
some concern.

6. SUMMARY AND CONCLUSIONS
In this paper, we examine the I/O components of several

state-of-the-art parallel architectures — an aspect that is be-
coming increasingly critical in many scientific domains due
to the exponential growth of sensor and simulated data vol-
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Figure 5: 16-way and 256-way asynchronous I/O performance as a function of the busy-work exponent, for
the two evaluated platforms supporting this functionality (a-b) Bassi and (c-d) Columbia. The busy-work
exponent (α) of 1.0 and 1.5 correspond to BLAS2 (matrix-vector) and BLAS3 (matrix-matrix) computational
intensities (respectively).

umes. Our study represents one of the most extensive I/O
analyses of modern parallel filesystems, examining a broad
range of system architectures and configurations. Note that
although cost is, of course, a critical factor in system acqui-
sition, our evaluation is purely performance based and does
not take global filesystem costs into consideration.

We introduce MADbench2, a second-generation parallel
I/O benchmark that is derived directly from a large-scale
CMB data analysis package. MADbench2 is lightweight and
portable, and has been generalized so that (in I/O mode) the
computation per I/O-datum can be set by hand, allowing
the code to mimic any degree of computational complexity.
This benchmark therefore enables a more concrete definition
of the appropriate balance between I/O throughput and de-
livered computational performance in future systems for I/O
intensive data analysis workloads.

In addition, MADbench2 allows us to explore multiple I/O
strategies and combinations thereof, including POSIX, MPI-
IO, shared-file, one-file-per-processor, and asynchronous I/O,
in order to find the approach that is best matched to the per-
formance characteristics of the underlying systems. Such
a software design-space exploration would not be possible
without use of a scientific-application derived benchmark.

Results show that, although concurrent accesses to shared
files in the past required MPI-IO for correctness on clusters,
the modern filesystems evaluated in this study are able to en-
sure correct operation even with concurrent access using the
POSIX APIs. Furthermore, we found that there was virtu-

ally no difference in performance between POSIX and MPI-
IO performance for the large contiguous I/O access patterns
of MADbench2.

Contrary to conventional wisdom, we have also found that
— with properly tuned modern parallel filesystems — you
can (and should) expect filesystem performance for concur-
rent accesses to a single shared file to match the perfor-
mance when writing into separate files! This can be seen
in the GPFS and PVFS2 filesystems, which provide nearly
identical performance between the shared and unique files
using default configurations. Results also show that, al-
though Lustre performance for shared files is inadequate us-
ing the default configuration, the performance difference can
be fixed trivially using the lstripe utility. CXFS provides
broadly comparable performance for concurrent single-file
writes, but not reads.

Additionally, our experiments show that the distributed-
memory systems required moderate numbers of nodes to ag-
gregate enough interconnect links to saturate the underlying
disk subsystem. Failure to achieve linear scaling in I/O per-
formance at concurrencies beyond the point of disk subsys-
tem saturation was not expected, nor was it observed. The
number of nodes required to achieve saturation varied de-
pending on the balance of interconnect performance to peak
I/O subsystem throughput. For example a Columbia node
required less than 16 processors to saturate the disks, while
the SDSC BG/L system did not reach saturation even at
the maximum tested concurrency of 256 processors.



Finally, we found that MADbench2 was able derive enor-
mous filesystem performance benefits from MPI-2’s asyn-
chronous MPI-IO. Unfortunately, only two of our seven eval-
uated systems, Bassi and Columbia, supported this function-
ality. Given enough calculation, asynchronous I/O was able
to improve the effective aggregate I/O performance signifi-
cantly by hiding the cost of all but the first read or last write
in a sequence. This allows systems with relatively low I/O
throughput to achieve competitive performance with high-
end I/O platforms that lack asynchronous capabilities.

To quantify the amount of comptation per I/O datum,
we introduced a busy-work parameter α, which enables us
to determine the minimum computational complexity that
is sufficient to hide the bulk of the I/O overhead on a given
system. Experimental results show that the computational
intensity required to hide I/O effectively is already close to
the practical limit of BLAS3 calculations — a concerning
issue that must be properly addressed when designing the
I/O balance of next-generation petascale systems.

Future work will continue investigating performance be-
havior on leading architectural platforms as well as exploring
potential I/O optimization strategies. Additionally, we plan
to include inter-processor communication in our analysis,
which will on one hand increase the time available to hide
the I/O overhead, while on the other possibly increase net-
work contention (if the I/O and communication subsystem
share common components). Finally, we plan to conduct
a statistical analysis of filesystem performance to quantify
I/O variability under differing conditions.
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