
Chapter 1

Performance Evaluation
and Modeling of
Ultra-Scale Systems

Leonid Oliker, Rupak Biswas,

Rob Van der Wijngaart, David Bailey, Allan Snavely

1.1 Introduction

The growing gap between sustained and peak performance for full-scale complex
scientific applications on conventional supercomputers is a major concern in high
performance computing (HPC). The problem is expected to be exacerbated by the
end of this decade, as mission-critical applications will have computational require-
ments that are at least two orders of magnitude larger than current levels. In order
to continuously increase raw computational power and at the same time substan-
tially reap its benefits, major strides are necessary in hardware architecture, soft-
ware infrastructure, and application development. The first step toward this goal
is the accurate assessment of existing and emerging HPC systems across a compre-
hensive set of scientific algorithms. In addition, high-fidelity performance modeling
is required to understand and predict the complex interactions among hardware,
software, and applications, and thereby influence future design trade-offs. This sur-
vey article discusses recent performance evaluations of state-of-the-art ultra-scale
systems for a diverse set of scientific applications, including scalable compact syn-
thetic benchmarks and architectural probes. In addition, performance models and
program characterizations from key scientific areas are described.

1.2 Modern High-Performance Ultra-Scale Systems

We begin by briefly describing the salient features of the leading HPC parallel
architectures that are examined in this chapter.

1



2 Chapter 1. Performance Evaluation and Modeling of Ultra-Scale Systems

1.2.1 Seaborg (Power3)

The Power3 was first introduced in 1998 as part of IBM’s RS/6000 series. Each
375 MHz processor contains two floating-point units (FPUs) that can issue a multiply-
add (MADD) per cycle for a peak performance of 1.5 Gflop/s. The Power3 has a
pipeline of only three cycles, thus using the registers more efficiently and diminishing
the penalty for mispredicted branches. The out-of-order architecture uses prefetch-
ing to reduce pipeline stalls due to cache misses. The CPU has a 32KB instruction
cache, a 128KB 128-way set associative L1 data cache, and an 8MB four-way set
associative L2 cache with its own private bus. Each SMP node consists of 16 pro-
cessors connected to main memory via a crossbar. Multi-node configurations are
networked via the Colony switch using an omega-type topology. The Power3 exper-
iments reported here were conducted on Seaborg, the 380-node IBM pSeries system
running AIX 5.1 and operated by Lawrence Berkeley National Laboratory (LBNL).
Additional Power3 experiments were performed on Blue Horizon, a 144-node system
located at San Diego Supercomputer Center (SDSC).

1.2.2 Cheetah (Power4)

The pSeries 690 Power4 is the latest commercially-available generation of IBM’s
RS/6000 series. Each 32-way SMP consists of 16 Power4 chips (organized as 4
MCMs), where a chip contains two 1.3 GHz processor cores. Each core has two
FPUs capable of a fused MADD per cycle, for a peak performance of 5.2 Gflop/s.
The superscalar out-of-order architecture can exploit instruction level parallelism
through its eight execution units; however a relatively long pipeline (six cycles) is
necessitated by the high frequency design. Each processor contains its own private
L1 cache (64KB instruction and 32KB data) with prefetch hardware; however, both
cores share a 1.5MB unified L2 cache. The L3 is designed as a stand-alone 32MB
cache, or to be combined with other L3s on the same MCM to create a larger 128MB
interleaved cache. The Power4 experiments were performed on Cheetah, the 27-node
IBM pSeries 690 system running AIX 5.1 and operated by Oak Ridge National
Laboratory (ORNL). The system employs the Federation (HPS) interconnect, with
two adaptors per node.

1.2.3 Ram (Itanium2)

The SGI Altix is designed as a cache-coherent, shared-memory multiprocessor sys-
tem. The computational building block consists of four Intel Itanium2 processors,
local memory, and a two-controller ASIC called the SHUB. The 64-bit architecture
operates at 1.5 GHz and is capable of issuing two MADDs per cycle for a peak
performance of 6.0 Gflop/s. The memory hierarchy consists of 128 FP registers
and three on-chip data caches (32KB L1, 256KB L2, and 6MB L3). The Itanium2
cannot store FP data in L1, making register loads and spills a potential source
of bottlenecks; however, the relatively large register set helps mitigate this issue.
The superscalar processor performs a combination of in-order and out-of-order in-
struction execution referred to as Explicitly Parallel Instruction Computing (EPIC).



1.2. Modern High-Performance Ultra-Scale Systems 3

The Altix platform uses the NUMAlink3 interconnect, a high-performance custom
network in a fat-tree topology that enables the bisection bandwidth to scale lin-
early with the number of processors. It implements a cache-coherent, nonuniform
memory access (NUMA) protocol directly in hardware. A load/store cache miss
causes the data to be communicated via the SHUB at a cache-line granularity and
automatically replicated in the local cache. Additionally, one-sided programming
languages can be efficiently implemented by leveraging the NUMA layer. The Altix
experiments reported here were performed on Ram, the 256-processor system at
ORNL, running 64-bit Linux version 2.4.21 and operating as a single system image.
The next-generation Altix 3700 is the building block of the Columbia system, cur-
rently the world’s fourth-most powerful supercomputer [43] located at NASA Ames
Research Center (ARC).

1.2.4 Earth Simulator (SX-6+)

The vector processor of the Japanese Earth Simulator (JES) uses a dramatically
different architectural approach than conventional cache-based systems. Vectoriza-
tion exploits regularities in the computational structure of scientific applications
to expedite uniform operations on independent data sets. The 500 MHz JES pro-
cessor (an enhanced version of the NEC SX-6) contains an 8-way replicated vector
pipe capable of issuing a MADD each cycle, for a peak performance of 8.0 Gflop/s.
The processors contain 72 vector registers, each holding 256 64-bit words. For non-
vectorizable instructions, the JES has a 500 MHz scalar processor with a 64KB
instruction cache, a 64KB data cache, and 128 general-purpose registers. The four-
way superscalar unit has a peak of 1.0 Gflop/s (an eighth of the vector performance)
and supports branch prediction, data prefetching, and out-of-order execution.

Like traditional vector architectures, the JES vector unit is cache-less; mem-
ory latencies are masked by overlapping pipelined vector operations with memory
fetches. The main memory chip uses a specially developed high speed DRAM
called FPLRAM (Full Pipelined RAM) operating at 24ns bank cycle time. Each
SMP contains eight processors that share the node’s memory. The JES is one of
the world’s most powerful supercomputers [43], and consists of 640 SMP nodes con-
nected through a custom single-stage crossbar. This high-bandwidth interconnect
topology provides impressive communication characteristics, as all nodes are a sin-
gle hop from one another. The 5120-processor JES runs Super-UX, a 64-bit Unix
operating system based on System V-R3 with BSD4.2 communication features. As
remote JES access is not available, the reported experiments were performed during
the authors’ visit to the Earth Simulator Center located in Yokohama, Japan, in
December 2003.

1.2.5 Phoenix (X1)

The Cray X1 combines traditional vector strengths with the generality and scal-
ability features of modern superscalar cache-based parallel systems. The compu-
tational core, called the single-streaming processor (SSP), contains two 32-stage
vector pipes running at 800 MHz. Each SSP contains 32 vector registers holding



4 Chapter 1. Performance Evaluation and Modeling of Ultra-Scale Systems

64 double-precision words, and operates at 3.2 Gflop/s peak for 64-bit data. The
SSP also contains a two-way out-of-order superscalar processor running at 400 MHz
with two 16KB instruction and data caches. Like the SX-6, the scalar unit operates
at 1/8-th the vector performance, making a high vector operation ratio critical for
effectively utilizing the underlying hardware.

The multi-streaming processor (MSP) combines four SSPs into one logical
computational unit. The four SSPs share a 2-way set associative 2MB data Ecache,
a unique feature that allows extremely high bandwidth (25–51 GB/s) for computa-
tions with temporal data locality. MSP parallelism is achieved by distributing loop
iterations across each of the four SSPs. An X1 node consists of four MSPs sharing a
flat memory, and large system configurations are networked through a modified 2D
torus interconnect. The torus topology allows scalability to large processor counts
with relatively few links compared with fat-tree or crossbar interconnects; how-
ever, this topological configuration suffers from limited bisection bandwidth. The
X1 has hardware supported globally addressable memory which allows for efficient
implementations of one-sided communication libraries (SHMEM, MPI-2) and im-
plicit parallel programming languages (UPC, CAF). All reported X1 results were
obtained on Phoenix, the 256-MSP system running UNICOS/mp 2.4 and operated
by ORNL.

1.3 Architecture Evaluation using Full Applications

This section presents synopses of six full-scale scientific applications that have been
recently used in evaluating these ultra-scale HPC systems.

1.3.1 Materials Science

PARATEC (PARAllel Total Energy Code [35]) is a materials science code that
performs ab-initio quantum-mechanical total energy calculations using pseudopo-
tentials and a plane wave basis set. Forces can be easily calculated and used to relax
the atoms into their equilibrium positions. PARATEC uses an all-band conjugate
gradient (CG) approach to solve the Kohn-Sham equations of Density Functional
Theory (DFT) and obtain the ground-state electron wavefunctions. DFT is the
most commonly used technique in materials science to calculate the structural and
electronic properties of materials, with a quantum mechanical treatment of the elec-
trons. Codes based on DFT are widely used to study various material properties
for nanostructures, complex surfaces, and doped semiconductors, and are one of the
largest consumers of supercomputing cycles.

In solving the Kohn-Sham equations using a plane wave basis, part of the
calculation is carried out in real space and the remainder in Fourier space using
specialized parallel 3D FFTs to transform the wavefunctions. The code spends
most of its time in vendor-supplied BLAS3 (∼30%) and 1D FFTs (∼30%) on which
the 3D FFTs libraries are built. Because these routines allow high cache reuse
and efficient vector utilization, PARATEC generally obtains a high percentage of
peak performance across a spectrum of computing platforms. The code exploits
fine-grained parallelism by dividing the plane wave (Fourier) components for each



1.3. Architecture Evaluation using Full Applications 5

electron among the different processors [15]. PARATEC is written in F90 and
MPI, and is designed primarily for massively parallel computing platforms, but
can also run on serial machines. The main limitation to scaling PARATEC to
large processor counts is the distributed grid transformation during the parallel 3D
FFTs that requires global interprocessor communication when mapping the electron
wavefunctions from Fourier space (where it is represented by a sphere) to a 3D grid
in real space. Thus, architectures with a poor balance between their bisection
bandwidth and computational rate will suffer performance degradation at higher
concurrencies due to global communication requirements.

Experimental data were gathered for a 432 Silicon-atom bulk system and a
standard LDA run of PARATEC with a 25 Ry cut-off using norm-conserving pseu-
dopotentials [31, 32]. Results showed that PARATEC achieves impressive per-
formance on the JES, sustaining 4.7 Gflop/s per processor (58% of peak) on 128
processors. This compares with per processor performance of 0.7 Gflop/s (49%),
1.5 Gflop/s (29%), 3.2 Gflop/s (54%), and 1.9 Gflop/s (15%) on Seaborg, Cheetah,
Ram, and Phoenix, respectively (Ram results are for 64 processors). The JES out-
performed all other platforms primarily due to a superior architectural balance of
bisection bandwidth relative to computation rate — a critical component for achiev-
ing high scalability during the global grid transformation of the wavefunctions.

1.3.2 Astrophysics

One of the most challenging problems in astrophysics is the numerical solution of
Einstein’s equations following from the Theory of General Relativity (GR): a set of
coupled nonlinear hyperbolic and elliptic equations containing thousands of terms
when fully expanded. The Cactus Computational ToolKit [1, 7] is designed to
evolve these equations stably in 3D on supercomputers to simulate astrophysical
phenomena with high gravitational fluxes, such as the collision of two black holes
and the gravitational waves radiating from that event. While Cactus is a modular
framework supporting a wide variety of multi-physics applications [14], our study
focussed exclusively on the GR solver, which implements the ADM-BSSN method [1]
for stable evolutions of black holes.

The Cactus GR components solve Einstein’s equations as an initial value prob-
lem that evolves partial differential equations (PDEs) on a regular grid using finite
differences. The core of the GR solver uses the ADM formalism, which decomposes
the solution into 3D spatial hypersurfaces that represent different slices of space
along the time dimension. In this representation, the equations are written as four
constraint equations and 12 evolution equations. Additional stability is provided by
the BSSN modifications to the standard ADM method [1]. The evolution equations
can be solved using a number of different numerical approaches, including stag-
gered leapfrog, McCormack, Lax-Wendroff, and iterative Crank-Nicholson schemes.
A lapse function describes the time slicing between hypersurfaces for each step in
the evolution while a shift vector is used to move the coordinate system at each
step to avoid being drawn into a singularity. The four constraint equations are used
to select different lapse functions and the related shift vectors.

For parallel computation, the global 3D grid is block domain decomposed so



6 Chapter 1. Performance Evaluation and Modeling of Ultra-Scale Systems

that each processor has its own section. The standard MPI driver for Cactus solves
the PDEs on a local region and then updates the values at the ghost zones by ex-
changing data on the faces of its topological neighbors. On superscalar systems,
the computations are blocked in order to improve cache locality. Blocking is ac-
complished through the use of temporary slice buffers , which improve cache reuse
while modestly increasing the computational overhead. These blocking optimiza-
tions were disabled on vector architectures since they reduced the vector length and
inhibited performance.

The production version of the Cactus ADM-BSSN application was run using a
grid of size 250×64×64 [32]. The problem was scaled with the number of processors
to keep the computational load uniform. Cactus problems are typically scaled in
this manner because their science requires the highest-possible resolutions. Results
showed that the JES reached an impressive 2.7 Tflop/s (34% of peak) for the largest
problem size using 1024 processors. This represents the highest per processor per-
formance (by far) achieved by the production version of Cactus ADM-BSSN on any
system to date. Comparing results at 64 processors, Seaborg and Ram are 33x and
6.4x slower, achieving only 6% and 7% of peak, respectively. The relatively low
scalar performance on the microprocessor-based systems is partially due to regis-
ter spilling, which is caused by the large number of variables in the main loop of
the BSSN calculation. Phoenix is about 3.8 times slower than the JES, sustaining
0.7 Gflop/s per processor (6% of peak). The architectural imbalance between vector
and scalar performance was particularly acute on the X1, which suffered a much
greater impact from unvectorized code in Cactus than the JES.

1.3.3 Cosmology

The Microwave Anisotropy Dataset Computational Analysis Package (MADCAP) [4]
implements the current optimal general algorithm for extracting the most useful
cosmological information from total-power observations of the Cosmic Microwave
Background (CMB). The CMB is a snapshot of the Universe when it first became
electrically neutral some 400,000 years after the Big Bang. The tiny anisotropies in
the temperature and polarization of the CMB radiation are sensitive probes of early
Universe cosmology, and measuring their detailed statistical properties has been a
high priority in the field for over 30 years. MADCAP was designed to calculate the
maximum likelihood two-point angular correlation function (or power spectrum)
of the CMB given a noisy, pixelized sky map and its associated pixel-pixel noise
correlation matrix.

MADCAP recasts the extraction of a CMB power spectrum from a sky map
into a problem in dense linear algebra, and exploits the ScaLAPACK library for
its efficient parallel solution. Operations include explicit matrix inversion, as well
as matrix-vector and matrix-matrix multiplication. Since most of the MADCAP
routines utilize ScaLAPACK, code migration is relatively simple. Performance for
both scalar and vector systems depends heavily on an efficient implementation of
the vendor-supplied linear algebra libraries. However, explicit vectorization was
required for the hand-coded calculation of the value of Legendre polynomials (up
to some preset degree) for the angular separation between all pixel pairs.



1.3. Architecture Evaluation using Full Applications 7

To maximize its ability to handle large datasets, MADCAP generally works
with many more matrices than can fit in main memory. The out-of-core disk-based
storage for the other matrices in the calculation is the only practical choice, but
comes at the cost of heavy I/O. All matrices are block-cyclic distributed across the
processors; when a matrix is stored to disk due to memory limitations, MADCAP
generates one file per processor over which the matrix is distributed. This results
in matrix I/O operations that are independent, however the simultaneity of mul-
tiprocessor disk accesses can create contention within the I/O infrastructure, thus
degrading overall performance.

Experimental data reported here were collected by MAXIMA [19] (Millimeter
Anisotropy eXperiment Imaging Array): a balloon-borne millimeter-wave telescope
designed to measure the angular power spectrum of fluctuations in the CMB over a
wide range of angular scales. Simulation results using 64 processors on a dataset of
14996 pixels and 1200 multipoles showed that Phoenix achieved the best runtime
at 2.0 Gflop/s per processor — 1.1x, 2.8x, and 4.4x faster than the JES, Cheetah,
and Seaborg [8, 31]. However, Seaborg sustained the highest percentage of peak
(36%) followed by the JES (23%), Phoenix (16%), and Cheetah (15%). Note that
all evaluated architectural platforms sustained a relatively low fraction of peak, con-
sidering MADCAP’s extensive use of computationally intensive dense linear algebra
functions. In-depth analysis using a lightweight version of MADCAP highlights the
complex interplay between the architectural paradigms, interconnect technology,
and vendor-supplied numerical libraries, while isolating I/O filesystems as the key
bottleneck across all platforms [5].

1.3.4 Fluid Dynamics

In the area of computational fluid dynamics (CFD), we selected the NASA Navier-
Stokes production application called OVERFLOW-D [45]. The code uses the over-
set grid methodology to perform high-fidelity viscous simulations around realis-
tic aerospace configurations. It is popular within the aerodynamics community
due to its ability to handle complex designs with multiple geometric components.
OVERFLOW-D, an extension of OVERFLOW [6], is explicitly designed to sim-
plify the modeling of problems when components are in relative motion. The main
computational logic at the top level of the sequential code consists of a time-loop
and a nested grid-loop. Within the grid-loop, solutions to the flow equations are
obtained on the individual grids with imposed boundary conditions. Overlapping
boundary points or inter-grid data are updated from the previous time step using
a Chimera interpolation procedure. Upon completion of the grid-loop, the solution
is automatically advanced to the next time step by the time-loop. The code uses
finite differences in space, with a variety of implicit/explicit time stepping.

The MPI version of OVERFLOW-D (in F90) takes advantage of the overset
grid system, which offers a natural coarse-grain parallelism. A grouping algorithm
clusters individual grids into sets, each of which is then assigned to an MPI process.
The grid-loop in the parallel implementation is subdivided into two procedures: a
group-loop over sets, and a grid-loop over the grids within each set. Since each
MPI process is assigned to only one set, the group-loop is executed in parallel, with



8 Chapter 1. Performance Evaluation and Modeling of Ultra-Scale Systems

each set performing its own sequential grid-loop. The inter-grid boundary updates
within each set are performed as in the serial case. Inter-set boundary exchanges
are achieved via MPI asynchronous communication calls. The same basic program
structure is used on all target architectures except for a few minor changes in some
subroutines to meet specific compiler requirements. Details about performance
enhancement strategies for OVERFLOW-D can be found in [10].

Our experiments involve a simulation of vortex dynamics in the complex wake
flow region around hovering rotors. The grid system consisted of 41 blocks and
almost 8 million grid points [31, 33]. Results on an SX-6 platform (but not the
JES) easily outperformed the superscalar machines as well as Phoenix; in fact, the
runtime for eight SX-6 processors was less than 60% of the 32-processor Cheetah
runtime. However, due to small vector lengths and limited vector operation ratio,
the code achieved only about 1.1 Gflop/s per processor on the SX-6. Nevertheless,
the SX-6 consistently achieved a high percentage of peak (14%), followed by Seaborg
(8%) and Cheetah (7%), while Phoenix showed the lowest sustained performance
(3.5%). Scalability on Seaborg exceeded all others, with computational efficiency
decreasing for a larger number of MPI tasks primarily due to load imbalance. A
hybrid MPI+OpenMP implementation [9] showed similar performance as a pure
MPI approach on all systems except for Seaborg where the multilevel results were
significantly better. Note that adding more OpenMP threads beyond an optimal
number, depending on the number of MPI processes, does not improve performance.
The primary advantage of the hybrid paradigm for overset grid problems is that
it extends their applicability to large SMP clusters. A detailed performance char-
acterization of the Columbia supercluster using OVERFLOW-D and other NASA
applications is reported in [3].

1.3.5 Magnetic Fusion

The Gyrokinetic Toroidal Code (GTC) is a 3D particle-in-cell (PIC) application
developed at the Princeton Plasma Physics Laboratory to study turbulent transport
in magnetic confinement fusion [23, 24]. Turbulence is believed to be the main
mechanism by which energy and particles are transported away from the hot plasma
core in fusion experiments with magnetic toroidal devices. GTC solves the non-
linear gyrophase-averaged Vlasov-Poisson equations [22] for a system of charged
particles in a self-consistent, self-generated electrostatic field. The geometry is that
of a torus with an externally imposed equilibrium magnetic field, characteristic of
toroidal fusion devices. By using the PIC method, the non-linear PDE describing
the motion of the particles in the system becomes a simple set of ordinary differential
equations (ODEs) that can be easily solved in the Lagrangian coordinates. The self-
consistent electrostatic field driving this motion could conceptually be calculated
directly from the distance between each pair of particles using an O(N 2) calculation,
but the PIC approach reduces it to O(N) by using a grid where each particle
deposits its charge to a limited number of neighboring points according to its range
of influence. The electrostatic potential is then solved everywhere on the grid using
the Poisson equation, and forces are gathered back to each particle. The most
computationally intensive parts of GTC are the charge deposition and gather-push



1.3. Architecture Evaluation using Full Applications 9

steps that involve large loops over the particles, which can reach several million per
domain partition.

Although the PIC approach drastically reduces the computational require-
ments, the grid-based charge deposition phase is a source of performance degra-
dation for both superscalar and vector architectures. Randomly localized particles
deposit their charge on the grid, thereby causing poor cache reuse on superscalar
machines. The effect of this deposition step is more pronounced on vector systems
since two or more particle may contribute to the charge at the same grid point,
creating a potential memory-dependency conflict. Several methods have been de-
veloped to address this issue; GTC uses the work-vector algorithm [29], where a
temporary copy of the grid array is given an extra dimension corresponding to the
vector length. Each vector operation acts on a given data set in the register, then
writes to a different memory address, avoiding memory dependencies entirely. After
the main loop, the results accumulated in the work-vector array are gathered to the
final grid array. The only drawback is the increased memory footprint, which can
be two to eight times higher than the nonvectorized code version.

Experiments were performed using a high resolution domain of 100 particles
per cell (2 million grid points, 200 million particles), allowing for significant im-
provements in the overall statistics of the simulation [32, 33]. The JES achieved
1.6 Gflop/s per processor or 20% of peak on 64 processors — the highest GTC
performance on any tested architecture. Phoenix showed similar performance in
absolute terms (1.4 Gflop/s per processor), but a lower fraction of peak at only
11%. Comparing performance with the superscalar architectures, the JES is about
12x, 5.4x, and 5x faster than Seaborg (9% of peak), Cheetah (5%), and Ram (5%),
respectively. The vector systems therefore have the potential for significantly higher
resolution calculations that would otherwise be prohibitively expensive in terms of
time-to-solution on conventional microprocessors.

1.3.6 Geophysics

The goal of the GeoFEM framework [16] is to model and simulate solid Earth phe-
nomena, such as the long term prediction of the plate near the Japanese islands and
core/mantle dynamics over the entire globe. GeoFEM is being specifically devel-
oped to achieve high performance on the JES. The finite element method (FEM)
used here is an approximation based on contiguous interactions, which can be re-
duced to solving large-systems of linear equations defined over the unstructured
meshes that model the underlying physical objects. Since direct methods are gen-
erally disadvantageous for solving these types of systems due to the large volume of
computation involved, an iterative method such as CG is employed to address the
overall degrees of freedom (DOF). To obtain a stable solution using this numerical
approach requires intelligent domain partitioning as well as preconditioning for the
iterative solver. The localized ILU(0) used in GeoFEM is a pseudo-preconditioner,
requiring only local operations within each given domain partition, thus making it
well suited for parallel systems since no interprocessor communication is required.

In order to achieve both high parallel efficiency and vector performance for
the GeoFEM iterative solvers, an intelligent reordering scheme must be utilized



10 Chapter 1. Performance Evaluation and Modeling of Ultra-Scale Systems

to mitigate the irregular nature of the underlying unstructured mesh. A Reverse
Cuthill-Mckee (RCM) ordering is utilized to improve data locality and reduce global
communication. RCM is a level set reordering method used to reduce the profile of
the underlying matrix, which improves the convergence of the ILU preconditioner
but may result in a load imbalanced computation. To create a more balanced work-
load, the Cyclic Multicolor (CM) technique, used to graph color adjacent nodes,
is then combined with RCM to both balance the workload and provide fast con-
vergence for the Krylov iterative solvers. For complicated geometries, traditional
multicoloring is usually used instead of CM-RCM [27].

However, the well-known compressed row storage (CRS) representation of the
underlying matrix results in short vector lengths, thus inhibiting vector perfor-
mance. To address this deficiency, the descending-order jagged diagonal storage
(DJDS) scheme is used to permute the matrix rows so that reasonably long inner-
most loop lengths are achieved. To effectively balance the computation load of each
processor within an SMP using this approach, the DJDS array is reordered again
in a cyclic fashion (PDJDS). On superscalar systems, the parallel descending-order
compressed row storage (PDCRS) ordering is used. This approach is almost iden-
tical to PDJDS except that the matrices are stored in CRS format after reordering
the rows by decreasing numbers of non-zeros. This strategy results in shorter vec-
tor lengths, and is generally better suited for commodity superscalar systems with
limited memory bandwidth designs.

Extensive experiments were conducted for a 3D linear elastic problem with
more than 2.2×109 DOF, and solved by a 3×3 block incomplete Cholesky (IC) pre-
conditioned CG with additive Schwarz domain decomposition [28]. Results showed
that the PDJDS/CM-RCM reordering achieved 2.7 GFlop/s per processor (33.7% of
peak) on the JES using 1408 processors, while only 0.5% of peak was attained using
the naive CRS approach without reordering. On Seaborg, PDCRS/CM-RCM or-
dering attained the highest performance; however, results were significantly poorer
than the JES: only 0.11 GFlop/s per processor (7.2% of peak) was sustained on
1024 processors.

1.4 Algorithmic and Architectural Benchmarks

The purpose of any HPC system is to run full-scale applications, and performance
on such applications is the final arbiter of the utility of the system. However, the
complexity of using scientific applications to identify the causes of performance
bottlenecks on modern architectures has raised the importance of developing bet-
ter benchmarking methods to improve program characterization and performance
prediction, while identifying hardware and application features that work well or
poorly together. In this section, we describe both algorithmic and architectural
benchmarks that strive to satisfy these objectives.

1.4.1 Scalable Compact Application Benchmarks

Scalable Compact Application (SCA) benchmarks are derivatives that capture ma-
jor characteristics of the full applications, but avoid many of their idiosyncrasies by



1.4. Algorithmic and Architectural Benchmarks 11

leaving out unnecessary details. They work with synthetic data sets that can be
generated with prescribed statistical properties, so that the application signature
does not change qualitatively with problem size. Moreover, any fixed-size applica-
tion will ultimately lose its value as systems become more powerful. Input data for
SCA benchmarks can be generated on the fly and do not have to be maintained
and distributed. Considering the capability of current and future HPC systems, and
taking into account that useful applications typically consume (and produce) data
commensurate with the amount of computation that they do, being able to generate
synthetic data greatly saves on the volume that has to be maintained, stored, and
distributed. Effective SCAs have a built-in verification test that has been validated
on multiple machines and configurations, so that the user knows instantly whether
a run was successful or not. They are portable and designed to be built and run
easily on any modern platform with standard tools (e.g., MPI or OpenMP), which
reduces the cost and effort on the part of vendors to produce performance numbers.
SCAs also represent a single path through an application, eliminating any special-
purpose code not executed. This makes them easier to understand and characterize,
unlike full applications whose performance signature often depends vitally on in-
put parameters, rendering their actual name almost meaningless when interpreting
measurement results. Finally, SCAs are non-proprietary and open source, so that
thorough analysis by research groups can be conducted. This makes them valuable
for users outside the organization that provided the initial full-scale application
from which the SCA was derived.

Microbenchmarks are codes whose performance is dominated by a single ar-
chitectural feature, such as network bandwidth, memory latency, I/O speed, clock
rate, etc. They are very useful to determine a principal machine characteristic, but
application performance is typically influenced by multiple non-linearly interacting
factors, making it difficult to distinguish between the different effects. For exam-
ple, it is not useful to transfer data at a high rate if the data does not embody
the requested information, which takes computational effort to generate or acquire.
SCAs typically feature just a few performance influence factors, making them more
realistic than microbenchmarks, but much easier to implement and analyze than
full-fledged applications.

NAS Parallel Benchmarks

The NAS Parallel Benchmarks (NPB) [2, 30] were designed to provide a level playing
field for HPC machines of various architectural specifications. This is reflected in the
fact that they were first released as paper-and-pencil specifications. As standards
for programming parallel computers matured, portable source code implementa-
tions were provided, first using MPI, and later in Java, OpenMP, and HPF. The
NPB application benchmarks Lower-Upper (LU) symmetric Gauss Siedel, Scalar
Pentadiagonal (SP), and Block Tridiagonal (BT), and to some extent fast Fourier
Transform (FT) and Multi-Grid (MG), are SCAs that have been used extensively
by vendors, compiler writers, procurement teams, and tool developers. They were
especially useful at a time when unrealistic claims were being made about the com-
putational power of emerging parallel computers and new microprocessor designs



12 Chapter 1. Performance Evaluation and Modeling of Ultra-Scale Systems

with ever-increasing clock speeds.
As parallel computing entered the mainstream, and more and more legacy ap-

plications were converted to run on parallel machines, new performance bottlenecks
showed up that were not properly tested by the NPB. Most importantly, the NPB
did not test the I/O subsystem; the effects of irregular and continually changing
memory accesses; and the capability to solve hierarchical problems with multiple
levels of exploitable parallelism. Recent additions to the NPB have addressed all
these issues, and also led to larger problem classes that keep track of the growing
memory size and computing power of high-end machines.

Parallel high-performance I/O is now being tested by a variation of BT, which,
like SP and LU, generates a time-dependent series of solutions to a CFD problem.
Real applications usually checkpoint the solution every few time steps to recover
from possible system errors or to save data for offline visualization; thus, BT was
modified to write its solution to files at relatively high frequency. The reference
implementation provided by NASA ARC uses either native Fortran I/O, or parallel
I/O based on MPI, to write the highly fragmented data from multiple processors
to the single checkpoint file.

A completely new benchmark, called Unstructured Adaptive (UA) mesh re-
finement [13], was developed to measure the effects of temporally and spatially
irregular memory accesses. This code solves a stylized convective/diffusive heat
transfer problem with a heat source whose location changes in time. The origi-
nal NPB SCAs feature simple memory access patterns using small, fixed numbers
of strides. In contrast, UA uses an unstructured Cartesian mesh whose topology
changes periodically to track the moving source, inserting and removing refined
mesh cells where needed, and therefore causing irregular and unpredictable mem-
ory access patterns. It utilizes a nonconforming spectral finite element method of
moderately high order (five), resulting in a large volume of computational work per
element relative to the amount of data shared between elements. Consequently, an
efficient parallel implementation of UA requires good balancing of the computa-
tional load, but does not depend too heavily on the minimization of interprocessor
communication. Contrasting the performance of OpenMP versions of MG and UA,
the first featuring a small number of fixed—mostly unit—memory access strides,
and the latter exhibiting many irregularly strided accesses, results show that UA ex-
periences significantly larger increases in parallel efficiency as the number of threads
grows [12].

The NPB Multi-Zone (NPB-MZ) version [44] was created to represent over-
set grid applications (e.g., OVERFLOW) with multilevel parallelism. It consists
of three families of problems, each corresponding to one of the original NPB prob-
lems LU, SP, and BT. NPB-MZ solves an SCA on a collection of loosely coupled
discretization meshes, called zones . The zones are arranged as a 2D, partially over-
lapping, tiling of 3D space. The solution within each zone is updated separately
from all the others, thus offering easily exploited coarse-grain parallelism. However,
at the end of each time step, neighboring zones exchange boundary values in the
overlap regions. Fine-grain parallelism can be exploited at the loop nest level within
individual zones.

The three MZ families are distinguished primarily by the way they tile space.



1.4. Algorithmic and Architectural Benchmarks 13

LU-MZ uses a 4×4 grid of equal-sized zones for all problem sizes, thus limiting
the amount of coarse-grain parallelism to 16. SP-MZ also use a 2D grid of equal-
sized zones, but the number of zones goes up with problem size, thus providing
increasing amounts of coarse-grain parallelism. BT-MZ has the same number and
layout of zones as SP-MZ, but they differ in size, with a fixed ratio of largest over
smallest zone size of 20 (for all problem sizes). Coarse-level parallelism is now
not so easily exploited while simultaneously balancing the load. Current parallel
implementations of NPB-MZ use OpenMP for fine-grain parallelism and message
passing (MPI or MLP [42]) for the coarse grain [21]. Experiments on an IBM
Power3, SGI Origin 3800, and HP/Compaq SC45 show that the best performance
on a fixed number of processors for NPB-MZ is always obtained by minimizing
the number of threads per process. That is, if the load can be balanced with a
single thread per process, it invariably yields the best performance. For SP-MZ
this is usually not a problem, but is not always feasible for BT-MZ (with the same
number of zones), due to the disparity in the sizes of the zones. A three-level hybrid
implementation of NPB-MZ is currently being developed and will be tested on
the Columbia system at NASA ARC to characterize and understand OVERFLOW
performance on such platforms.

1.4.2 Architectural Probes

Synthetic benchmarks like the NPB [2, 30] and Standard Performance Evaluation
Corporation (SPEC) [39] emphasize the proper representation of real applications,
but are usually too large to run on simulated architectures and too complex to
identify specific architectural bottlenecks. At the other extreme, microbenchmarks
such as Stream [25], Livermore loops [26], Hint [18], and Linpack [11] are easy to
optimize but measure the performance of only a specific architectural feature. They
present a narrow view of a broad, multidimensional parameter space of machine
characteristics.

We therefore differentiate an architectural probe from a microbenchmark on
the basis that the latter typically returns a single-valued result in order to rank
processor performance consecutively — a few reference points in a multidimensional
space. A probe, by contrast, is used to explore a continuous, multidimensional
parameter space. The probe’s parameterization enables the researcher to uncover
peaks and valleys in a continuum of performance characteristics, and explore the
ambiguities of computer architectural comparisons that cannot be captured by a
single-valued ranking.

Sqmat

Sqmat [17] is an architectural probe that complements the capabilities of tradi-
tional kernel benchmarks as tools that enhance the understanding of performance
behavior of scientific codes. It maintains the simplicity of a microbenchmark while
offering four distinct parameters to capture different types of application workloads:
working-set size, computational intensity, indirection, and irregularity.

The Sqmat algorithm squares a set of matrices a given number of times. First,



14 Chapter 1. Performance Evaluation and Modeling of Ultra-Scale Systems

the values of one matrix are loaded from memory into registers; if the matrix size
exceeds the register capacity, register spilling will occur — thus controlling the
working set size. Accessing the matrices from memory can be done either directly or
indirectly. In the direct case, matrices are stored contiguously in memory using row-
major ordering. For the indirect case, a parameter controls the degree of irregularity:
a fixed number of entries are stored contiguously, followed by a jump to a random
position in memory. This parameter therefore captures both indirection and the
degree of data access irregularity. Finally, each matrix is squared a certain number of
times thereby controlling the computational intensity — the ratio between memory
transfers and arithmetic operations.

A number of important analyses can be conducted by varying these simple
parameters. For example, a component of the architectural balance can be exam-
ined by measuring how much computation is required to hide the highest degree
of irregularity (accessing each matrix entry at a random position) such that the
achieved performance is only 50% lower than unit-stride data accesses. Results on
the Itanium2 and Power4 microprocessors reveal significantly different architectural
designs. The Itanium2 can hide the irregularity with a computational intensity of
9.3, showing that it is somewhat tolerant of random accesses. The Power4, however,
requires a computational intensity of 74.7 for the same experiments, demonstrating
that it is poorly suited for sparse matrix computations. These types of analyses
help isolate architecture performance bottlenecks, helping both applications pro-
grammers and system designers.

Apex-MAP

The Application Performance Characterization project (Apex) [40] is another effort
to develop tunable synthetic benchmarks. The preliminary focus of this effort is
to define performance characterizations of application data access patterns and to
create a corresponding memory access probe benchmark, called Apex-MAP. Apex-
MAP differs from Sqmat in that its execution profile can be tuned by a set of
parameters to match the signature of a chosen scientific application, allowing it to
be used as a proxy for the performance behavior of the underlying codes.

Apex-MAP assumes that the data access pattern for most codes can be de-
scribed as several concurrent streams of addresses, which in turn can be character-
ized by a single set of performance parameters, including regularity, data-set size,
spatial locality, and temporal locality. Regularity refers to the data access patterns,
where the two extreme cases being random and strided accesses. The data-set size is
the total volume of memory accessed, an increasingly important factor as the com-
plexity of memory hierarchies continues to grow in modern system architectures.
The spatial locality parameter controls the number of contiguous memory locations
accessed in succession. Finally, temporal locality refers to the average re-use of data
items, and is defined independently of hardware concepts such as cache size through
the use of a cumulative temporal distribution function.

Preliminary testing examined the validity and accuracy of the Apex-MAP ap-
proach on leading microarchitectures including the Power3, Power4, and X1, using
five scientific kernels (radix sorting, FFT, matrix multiplication, n-body simulation,



1.5. Performance Modeling 15

and conjugate gradient). Results showed that application performance can be cap-
tured to within 25% across the suite of codes for a variety of memory sizes, using
a few simple parameters with up to two simulated memory streams. This work
has recently been extended to include interprocessor communication to capture the
behavior of parallel systems [41].

1.5 Performance Modeling

The goal of performance modeling is to gain understanding of a computer system’s
performance on various applications, by means of measurement and analysis, and
then to encapsulate these characteristics in a compact formula. The resulting model
can be used to obtain better insight into the performance phenomena involved and
to project performance to other system/application combinations. This section
focuses on the modeling of large-scale scientific computations within the Perfor-
mance Evaluation Research Center (PERC) [36], a research collaboration funded
through the DOE’s Scientific Discovery through Advanced Computation (SciDAC)
program [37]. A number of important performance modeling activities are also
being conducted by other groups, particularly the efforts at Los Alamos National
Laboratory (LANL) [20].

Performance models can be used to improve architecture design, inform pro-
curement activities, and guide application tuning. Unfortunately, the process of
producing performance models has historically been rather expensive, requiring
large amounts of computer time and highly expert human effort. This has severely
limited the number of HPC applications that can be modeled and studied. It has
been observed that, due to the difficulty of developing performance models for new
applications as well as the increasing complexity of new systems, our supercomput-
ers have become better at predicting and explaining natural phenomena (such as
weather) than at predicting and explaining the performance of themselves.

1.5.1 Applications of Performance Modeling

The most common application for a performance model is to enable a scientist to
estimate the runtime of a job when the input sets or architectural parameters are
varied. Additionally, one can estimate the largest system size that can be used
to run a given problem before the parallel efficiency drops to unacceptable levels.
Performance models are also employed by computer vendors in the design of future
systems. Typically, engineers construct a performance model for one or two key
applications, and then compare future technology options based on the computed
projections. Once better performance modeling techniques are developed, it may
be possible to target many more applications and technology options in the design
process. As an example of such “what-if” investigations, application parameters can
be used to predict how performance rates would change with a larger or more highly
associative cache. In a similar way, the performance impact of various network
designs can also be explored.

System and application tuning can also greatly benefit from the use of per-
formance models. For example, if a memory model is combined with application



16 Chapter 1. Performance Evaluation and Modeling of Ultra-Scale Systems

parameters, one can predict how cache hit-rates would change if a different cache-
blocking factor were used in the application. Once the optimal cache blocking has
been identified, the code can be permanently modified. Simple performance models
can even be directly incorporated into an application code, permitting on-the-fly
selection of different program options. Finally, the simplification of system procure-
ment procedures may be the most compelling application of performance modeling.
Once a reasonably easy-to-use performance modeling facility is available, it may be
possible to greatly reduce, if not eliminate, the benchmark tests that are specified in
a procurement, replacing them with a measurement of certain performance model
parameters for the target systems and applications. These parameters can then be
used by the computer center staff to project performance rates for numerous system
options, thus saving considerable resources during the system acquisition process.

1.5.2 PERC Methodology

The PERC framework [36] is based upon application signatures , machine profiles ,
and convolutions . An application signature is a detailed but compact representa-
tion of the fundamental operations performed by an application, independent of the
target system. A machine profile is a representation of the capability of a system
to carry out fundamental operations, independent of the particular application. A
convolution is a means to rapidly combine application signatures with machine pro-
files in order to predict performance. Overall, the PERC methodology consists of
(i) accurately summarizing the requirements of applications (in ways that are not
too expensive in terms of time/space requirements); (ii) automatically obtaining
the application signature; (iii) generalizing the signatures to represent how the ap-
plication would stress arbitrary (including future) machines; and (iv) extrapolating
the signatures to larger problem sizes than what can be actually run at the present
time.

PERC has developed a general approach to analyzing applications in order
to obtain their signature, which has resulted in considerable space reduction and a
measure of machine independence. First, a given application is statically analyzed,
then instrumented and traced on an existing set of architectural platforms. Next,
the operations performed by the application are summarized on-the-fly during ex-
ecution. These operations are then indexed to the source code structures that gen-
erated them. Finally, a merge is performed on the summaries of each machine [38].
From this data, one can obtain information on memory access patterns (viz., the
stride and range of memory accesses generated by individual memory operations)
and communications patterns (viz., size and type of communication performed).

The second component of this performance modeling approach is to represent
the resource capabilities of current and proposed machines, with emphasis on mem-
ory and communications capabilities, in an application-independent form suitable
for parameterized modeling. In particular, machine profiles are gathered, which
are high-level representations of the rates at which a system can carry out basic
operations such as memory loads/stores and message passing. This includes the ca-
pabilities of memory units at each level of the memory hierarchy and the ability of
machines to overlap memory accesses with other kinds of operations (e.g., floating-



1.5. Performance Modeling 17

point or communication). The machine profiles are then extended to account for
reduction in capability due to sharing (e.g., to express how much the memory sub-
system’s or communication fabric’s capability is diminished by sharing these with
competing processors). Finally, the behavior of larger system can be extrapolated
from validated machine profiles of similar but smaller platforms.

To enable time tractable statistical simulation, the PERC framework utilizes
the convolution method, allowing quick mappings of application signatures to ma-
chine profiles. This approach closely approximates cycle-accurate predictions in a
much shorter time frame by accounting for fewer details. The convolution allows
relatively rapid development of performance models (full application models cur-
rently take one or two months) and results in performance predictions which can
be quickly evaluated once the models are constructed (few minutes per prediction).

1.5.3 Performance Sensitivity Studies

Reporting the accuracy of performance models in terms of model-predicted time
versus observed time is mostly just a validation step for obtaining confidence in the
model. A more interesting and useful exercise is to explain and quantify performance
differences, while allowing architectural parameter studies. Given a model that
can predict application performance based on properties of the code and machine,
precise modeling experiments can be performed. For example, an in-depth study
was performed [38] using the Parallel Ocean Program (POP) [34], a well-known
climate application, on the Blue Horizon system. POP has been ported to a wide
variety of computers for eddy-resolving simulations of the world oceans and for
climate simulations as the ocean component of coupled climate models.

First, the effect of reducing the bandwidth from 350MB/s to 269MB/s was
examined (equivalent to switching the network from Colony to a single-rail of a
Quadrics switch), but resulted in no observable performance difference. The next
experiment reduced the latency from 20ms (Colony) to 5ms (Quadrics), and demon-
strated a performance improvement of 1.3x — evidence that the barotropic calcula-
tions in POP (for the tested problem size) are latency sensitive. Finally, the system
was modeled using the default Colony switch, but with an improved processor de-
sign based on the Alpha ES45 (1GHz versus 375MHz) and a more powerful memory
subsystem capable of loading stride-1 data from L2 cache at twice the rate of the
Power3. Results showed a performance improvement of 1.4x, due mainly to the
faster memory subsystem. The principal observation from the above exercise is that
the PERC model can quantify the performance impact of each machine hardware
component. Similar experiments were conducted for varying sizes of POP problems,
with results showing that POP simulations at larger processor counts become more
network latency sensitive while remaining mostly bandwidth insensitive.

These types of experiments demonstrate that performance models enable “what-
if” analyses of the implications of improving the target machine in various dimen-
sions. Such studies are obviously useful to system designers, helping them optimize
system architectures for the highest sustained performance on a target set of applica-
tions. These methods are also potentially useful in helping computing centers select
the best system in an acquisition. Additionally, this approach can be used by appli-



18 Chapter 1. Performance Evaluation and Modeling of Ultra-Scale Systems

cation scientists to improve the performance of their codes by better understanding
which tuning measures yield the most improvement in sustained performance.

With further improvements in this methodology, we can envision a future
where these techniques are embedded in application codes, or even in systems soft-
ware, thus enabling self-tuning applications for user codes. For example, we can
conceive of an application that performs the first of many iterations using numer-
ous cache blocking parameters, a separate combination on each processor, and then
uses a simple performance model to select the most favorable value. This combina-
tion would then be used for all remaining iterations, thus enabling automatic and
portable system optimization.

1.6 Summary

To substantially increase the raw computational power of ultra-scale high perfor-
mance computing (HPC) systems and then reap its benefits, significant progress is
necessary in hardware architecture, software infrastructure, and application devel-
opment. This chapter provided a broad performance assessment of leading HPC
systems using a diverse set of scientific applications, including scalable compact
synthetic benchmarks and architectural probes. Performance models and program
characterizations of large-scale scientific computations were also discussed.

Acknowledgements

The authors sincerely thank their collaborators Julian Borrill, Andrew Canning,
Johnathan Carter, M. Jahed Djomehri, Stephane Ethier, John Shalf, and David
Skinner for their many contributions to the work presented here in this report.
They also gratefully acknowledge Kengo Nakajima for reviewing the material on
geophysics. L. Oliker and D. Bailey are supported by OASCR in the U.S. DOE
Office of Science under contract DE-AC03-76SF00098.



Bibliography

[1] M. Alcubierre, G. Allen, B. Bruegmann, E. Seidel, and W.-M. Suen. Towards
an understanding of the stability properties of the 3+1 evolution equations in
General Relativity. Physics Review D, 62:124011, Dec. 2000.

[2] D.H. Bailey et al. The NAS Parallel Benchmarks. Technical Report RNR-94-
007, NASA Ames Research Center, 1994.

[3] R. Biswas, M.J. Djomehri, R. Hood, H. Jin, C. Kiris, and S. Saini. An
application-based performance characterization of the Columbia supercluster.
In Proc. SC2005, Seattle, WA, Nov. 2005.

[4] J. Borrill. MADCAP: The Microwave Anisotropy Dataset Computational Anal-
ysis Package. In Proc. 5th European SGI/Cray MPP Workshop, Bologna, Italy,
Sep. 1999. Article astro-ph/9911389.

[5] J. Borrill, J. Carter, L. Oliker, D. Skinner, and R. Biswas. Integrated per-
formance monitoring of a cosmology application on leading HEC platforms.
In Proc. 34th International Conference on Parallel Processing, pages 119–128,
Oslo, Norway, Jun. 2005.

[6] P.G. Buning, D.C. Jespersen, T.H. Pulliam, W.M. Chan, J.P. Slotnick, S.E.
Krist, and K.J. Renze. OVERFLOW User’s Manual version 1.8g. Technical
report, NASA Langley Research Center, 1999.

[7] Cactus Code Server. http://www.cactuscode.org.

[8] J. Carter, J. Borrill, and L. Oliker. Performance characteristics of a cosmology
package on leading HPC architectures. In Proc. 11th International Conference
on High Performance Computing, Bangalore, India, Dec. 2004.

[9] M.J. Djomehri and R. Biswas. Performance analysis of a hybrid overset multi-
block application on multiple architectures. In Proc. 10th International Con-
ference on High Performance Computing, pages 383–392, Hyderabad, India,
Dec. 2003.

[10] M.J. Djomehri and R. Biswas. Performance enhancement strategies for multi-
block overset grid CFD applications. Parallel Computing, 29(11-12):1791–1810,
Nov.-Dec. 2003.

19



20 Bibliography

[11] J. Dongarra. Performance of various computers using standard linear equations
software. Technical Report CS-89-85, University of Tennessee, 1989.

[12] H. Feng, R.F. Van der Wijngaart, and R. Biswas. Unstructured adaptive
meshes: Bad for your memory? Applied Numerical Mathematics, 52(2-3):153–
173, Feb. 2005.

[13] H. Feng, R.F. Van der Wijngaart, R. Biswas, and C. Mavriplis. Unstructured
Adaptive (UA) NAS Parallel Benchmark, version 1.0. Technical Report NAS-
04-006, NASA Ames Research Center, Jul. 2004.

[14] J.A. Font, M. Miller, W.-M. Suen, and M. Tobias. Three dimensional numerical
General Relativistic hydrodynamics: Formulations, methods, and code tests.
Physics Review D, 61:044011, Feb. 2000.

[15] G. Galli and A. Pasquarello. First-principles molecular dynamics. In Computer
Simulation in Chemical Physics, pages 261–313. Kluwer, 1993.

[16] GeoFEM Project. http://geofem.tokyo.rist.or.jp.

[17] G. Griem, L. Oliker, J. Shalf, and K. Yelick. Identifying performance bottle-
necks on modern microarchitectures using an adaptable probe. In Proc. 3rd
International Workshop on Performance Modeling, Evaluation, and Optimiza-
tion of Parallel and Distributed Systems, Santa Fe, NM, Apr. 2004.

[18] J.L. Gustafson and Q.O. Snell. HINT: A new way to measure computer per-
formance. In Proc. 28th Hawaii International Conference on System Sciences,
pages 392–401, Wailela, HI, Jan. 1995.

[19] S. Hanany et al. MAXIMA-1: A measurement of the Cosmic Microwave Back-
ground anisotropy on angular scales of 10′–5o. The Astrophysical Journal Let-
ters, 545(1):L5–L9, Dec. 2000.

[20] A. Hoisie, O. Lubeck, and H. Wasserman. Performance and scalability analysis
of teraflop-scale parallel architectures using multidimensional wavefront appli-
cations. International Journal of High Performance Computing Applications,
14(4):330–346, Dec. 2000.

[21] H. Jin and R.F. Van der Wijngaart. Performance characteristics of the multi-
zone NAS Parallel Benchmarks. In Proc. 18th International Parallel and Dis-
tributed Processing Symposium, Santa Fe, NM, Apr. 2004.

[22] W.W. Lee. Gyrokinetic particle simulation model. Journal of Computational
Physics, 72(1):243–269, Sep. 1987.

[23] Z. Lin, S. Ethier, T.S. Hahm, and W.M. Tang. Size scaling of turbulent trans-
port in magnetically confined plasmas. Physics Review Letters, 88(19):195004,
Apr. 2002.



Bibliography 21

[24] Z. Lin, T.S. Hahm, W.W. Lee, W.M. Tang, and R.B. White. Turbulent
transport reduction by zonal flows: Massively parallel simulations. Science,
281(5384):1835–1837, Sep. 1998.

[25] J. McCalpin. Memory bandwidth and machine balance in high performance
computers. IEEE TCCA Newsletter, Dec. 1995.

[26] F.H. McMahon. The Livermore Fortran Kernels test of the numerical perfor-
mance range. In J.L. Martin, editor, Performance Evaluation of Supercomput-
ers, pages 143–186. North Holland, 1988.

[27] K. Nakajima. Parallel iterative solvers of GeoFEM with selective blocking
preconditioning for nonlinear contact problems on the Earth Simulator. In
Proc. SC2003, Phoenix, AZ, Nov. 2003.

[28] K. Nakajima. Three-level hybrid vs. flat MPI on the Earth Simulator: Parallel
iterative solvers for finite-element method. In Proc. 6th IMACS International
Symposium on Iterative Methods in Scientific Computing, Denver, CO, Mar.
2003.

[29] A. Nishiguchi, S. Orii, and T. Yabe. Vector calculation of particle code. Journal
of Computational Physics, 61(3):519–522, Dec. 1985.

[30] NAS Parallel Benchmarks. http://www.nas.nasa.gov/Software/NPB.

[31] L. Oliker, R. Biswas, J. Borrill, A. Canning, J. Carter, M.J. Djomehri, H. Shan,
and D. Skinner. A performance evaluation of the Cray X1 for scientific appli-
cations. In Proc. 6th International Meeting on High Performance Computing
for Computational Science, pages 51–65, Valencia, Spain, Jun. 2004.

[32] L. Oliker, A. Canning, J. Carter, J. Shalf, and S. Ethier. Scientific computations
on modern parallel vector systems. In Proc. SC2004, Pittsburgh, PA, Nov.
2004.

[33] L. Oliker, A. Canning, J. Carter, J. Shalf, D. Skinner, S. Ethier, R. Biswas, M.J.
Djomehri, and R.F. Van der Wijngaart. Performance evaluation of the SX-6
vector architecture for scientific computations. Concurrency and Computation:
Practice and Experience, 17(1):69–93, Jan. 2005.

[34] The Parallel Ocean Program. http://climate.lanl.gov/Models/POP.

[35] PARAllel Total Energy Code. http://www.nersc.gov/projects/paratec.

[36] The Performance Evaluation Research Center. http://www.perc.nersc.gov.

[37] Scientific Discovery through Advanced Computing. http://www.science.

doe.gov/scidac.

[38] A. Snavely, X. Gao, C. Lee, N. Wolter, J. Labarta, J. Gimenez, and P. Jones.
Performance modeling of HPC applications. In Proc. Parallel Computing Con-
ference, Dresden, Germany, Sep. 2003.



22 Bibliography

[39] Standard Performance Evaluation Corporation. http://www.spec.org.

[40] E. Strohmaier and H. Shan. Architecture independent performance charac-
terization and benchmarking for scientific applications. In Proc. International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecom-
munication Systems, Volendam, Netherlands, Oct. 2004.

[41] E. Strohmaier and H. Shan. Apex-MAP: A global data access benchmark to
analyze HPC systems and parallel programming paradigms. In Proc. SC2005,
Seattle, WA, Nov. 2005.

[42] J.R. Taft. Achieving 60 GFLOP/s on the production CFD code OVERFLOW-
MLP. Parallel Computing, 27(4):521–536, Mar. 2001.

[43] Top500 Supercomputer Sites. http://www.top500.org.

[44] R.F. Van der Wijngaart and H. Jin. NAS Parallel Benchmarks, Multi-Zone
Versions. Technical Report NAS-03-010, NASA Ames Research Center, Jul.
2003.

[45] A.M. Wissink and R. Meakin. Computational fluid dynamics with adaptive
overset grids on parallel and distributed computer platforms. In Proc. In-
ternational Conference on Parallel and Distributed Processing Techniques and
Applications, pages 1628–1634, Las Vegas, NV, Jul. 1998.



Index

Altix, 2
Apex-MAP, 14
architectural probes, 13
astrophysics, 5

computational fluid dynamics, 7
cosmology, 6

Earth Simulator, 3

geophysics, 9

Itanium2, 2

magnetic fusion, 8
materials science, 4

NAS Parallel Benchmarks, 11

PERC, 16
performance

evaluation, 4, 10
modeling, 15
sensitivity, 17

Power3, 2
Power4, 2

Sqmat, 13

X1, 3

23


