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Abstract

The last decade has witnessed a rapid proliferation of superscalar cache-based microprocessors to build high-end
computing (HEC) platforms, primarily because of their generality, scalability, and cost effectiveness. However, the
growing gap between sustained and peak performance for full-scale scientific applications on conventional super-
computers has become a major concern in high performance computing, requiring significantly larger systems and
application scalability than implied by peak performance in order to achieve desired performance. The latest gener-
ation of custom-built parallel vector systems have the potential to address this issue for numerical algorithms with
sufficient regularity in their computational structure. In this work we explore applications drawn from four areas:
magnetic fusion (GTC), plasma physics (LBMHD3D), astrophysics (Cactus), and material science (PARATEC). We
compare performance of the vector-based Cray X1, X1E, Earth Simulator, NEC SX-8, with performance of three
leading commodity-based superscalar platforms utilizing the IBM Power3, Intel Itanium2, and AMD Opteron pro-
cessors. Our work makes several significant contributions: a new data-decomposition scheme for GTC that (for the
first time) enables a breakthrough of the Teraflop barrier; the introduction of a new three-dimensional Lattice Boltz-
mann magneto-hydrodynamic implementation used to study the onset evolution of plasma turbulence that achieves
over 26Tflop/s on 4800 ES processors; the highest per processor performance (by far) achieved by the full-production
version of the Cactus ADM-BSSN; and the largest PARATEC cell size atomistic simulation to date. Overall, results
show that the vector architectures attain unprecedented aggregate performance across our application suite, demon-
strating the tremendous potential of modern parallel vector systems.

1 Introduction

Due to their cost effectiveness, an ever-growing fraction of today’s supercomputers employ commodity superscalar
processors, arranged as systems of interconnected SMP nodes. However, the constant degradation of superscalar sus-
tained performance has become a well-known problem in the scientific computing community [26]. This trend has
been widely attributed to the use of superscalar-based commodity components whose architectural designs offer a bal-
ance between memory performance, network capability, and execution rate that is poorly matched to the requirements
of large-scale numerical computations. The latest generation of custom-built parallel vector systems may address these
challenges for numerical algorithms amenable to vectorization.

Vector architectures exploit regularities in computational structures, issuing uniform operations on independent
data elements, thus allowing memory latencies to be masked by overlapping pipelined vector operations with memory
fetches. Vector instructions specify a large number of identical operations that may execute in parallel, thereby reduc-
ing control complexity and efficiently controlling a large amount of computational resources. However, as described
by Amdahl’s Law, the time taken by the portions of the code that are non-vectorizable can dominate the execution
time, significantly reducing the achieved computational rate.

In order to quantify what modern vector capabilities imply for the scientific communities that rely on modeling and
simulation, it is critical to evaluate vector systems in the context of demanding computational algorithms. A number
of related investigations [1, 7, 18, 23, 24, 25, 30] compare scalar and vector system performance in the context of
microbenchmarks, numerical kernels, and full scale applications. Our study augments these efforts and examines the
behavior of four diverse scientific applications with the potential to run at ultra-scale, in the areas of magnetic fusion
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(GTC), plasma physics (LBMHD3D), astrophysics (CACTUS) and material science (PARATEC). We compare the
performance of leading commodity-based superscalar platforms utilizing the IBM Power3, Intel Itanium2, and AMD
Opteron processors, with modern parallel vector systems: the Cray X1, Cray X1E, Earth Simulator (ES), and the NEC
SX-8. Our research team was the first international group to conduct a performance evaluation study at the Earth
Simulator Center; remote ES access is not available.

Our work builds on our previous efforts [19, 20, 21] and makes several significant contributions: a new data-
decomposition scheme for GTC that (for the first time) enables a breakthrough of the Teraflop barrier; the introduction
of a new three-dimensional Lattice Boltzmann magneto-hydrodynamic implementation used to study the onset evolu-
tion of plasma turbulence that achieves over 26Tflop/s on 4800 ES processors; the highest per processor performance
(by far) achieved by the full-production version of the Cactus ADM-BSSN; and the largest PARATEC cell size atom-
istic simulation to date. Overall, results show that the vector architectures attain unprecedented aggregate performance
across our application suite, demonstrating the tremendous potential of modern parallel vector systems.

2 HEC Platforms and Evaluated Applications

Name/ CPU/ Clock Peak Stream BW Peak StreamMPI Lat MPI BW Network
Location

Platform Network
Node (MHz) (GF/s) (GB/s/CPU)(Bytes/Flop) (µsec) (GB/s/CPU) Topology

Seaborg Power3 SP Switch2 16 375 0.7 0.4 0.26 16.3 0.13 Fat-tree
Thunder Itanium2 Quadrics 4 1400 5.6 1.1 0.19 3.0 0.25 Fat-tree
JacquardOpteron InfiniBand 2 2200 4.4 2.3 0.51 6.0 0.59 Fat-tree
Phoenix X1 Custom 4 800 12.8 14.9 1.16 7.1 6.3 4D-Hcube
Phoenix X1E Custom 4 1130 18.0 9.7 0.54 5.0 2.9 4D-Hcube

ESC ES Custom (IN) 8 1000 8.0 26.3 3.29 5.6 1.5 Crossbar
HLRS SX-8 IXS 8 2000 16.0 41.0 2.56 5.0 2.0 Crossbar

Table 1: Architectural highlights of the Power3, Itanium2, Opteron, X1, X1E, ES, and SX-8 platforms. The peak
performance of the vector platforms does not include the scalar units or the divide/sqrt units of the ES/SX8

In this section we briefly describe the computing platforms and scientific applications examined in our study.
Table 2 presents an overview of the salient features for the six parallel HEC architectures, including:

• STREAM [13] benchmark results (Stream BW), shows the measured (optimized) EP-STREAM [16] triad results
when all processors within a node simultaneously compete for main memory bandwidth. This represents a more
accurate measure of (unit-stride) memory performance than theoretical peak memory behavior.

• The ratio of STREAM bandwidth versus the peak computational rate (Peak Stream).

• Measured internode MPI latency for 8-byte message [9, 29].

• Measured bidirectional MPI bandwidth per processor pair when each processor in one node simultaneously
exchanges data with a distinct processor in another node∗.

Table 2 shows that the vector systems have significantly higher peak computational rates, memory performance, and
MPI bandwidth rates than the superscalar platforms. Observe that the ES and SX-8 machines have significantly higher
ratios of memory bandwidth to computational rate than the other architectures in our study. To be fair, bandwidth from
main memory is not the sole determiner of achieved percentage of peak. The superscalar systems, and the X1(E), also
have memory caches that provide lower latency and higher bandwidth than main memory, potentially mitigating the
performance impact of the relatively high cost of main memory access.

In the past, the tight integration of high bandwidth memory and network interconnects to the processors enabled
vector systems to effectively feed the arithmetic units and achieve a higher percentage of peak computation rate
than nonvector architectures for many codes. This paper focuses on determining the degree to which modern vector

∗Because on the X1E pairs of nodes share network ports, the X1E result is the performance when all processors in one pair of nodes exchange
data with processors in another node pair.
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systems retain this capability with respect to leading computational methods. While system cost is arguably at least
as an important metric, we are unable to provide such data, as system installation cost is often proprietary and vendor
pricing varies dramatically for a given time frame and individual customer.

Three superscalar commodity-based platforms are examined in our study. The IBM Power3 experiments reported
were conducted on the 380-node IBM pSeries system, Seaborg, running AIX 5.2 (Xlf compiler 8.1.1) and located at
Lawrence Berkeley National Laboratory (LBNL). Each SMP node is a Nighthawk II node consisting of sixteen 375
MHz Power3-II processors (1.5 Gflop/s peak) connected to main memory via a crossbar; SMPs are interconnected via
the SP Switch2 switch using an omega-type topology. The AMD Opteron system, Jacquard, is also located at LBNL.
Jacquard contains 320 dual nodes and runs Linux 2.6.5 (PathScale 2.0 compiler). Each node contains two 2.2 GHz
Opteron processors (4.4 Gflop/s peak), interconnected via InfiniBand fabric in a fat-tree configuration. Finally, the Intel
Itanium2 experiments were performed on the Thunder system located at Lawrence Livermore National Laboratory
(LLNL). Thunder consists of 1024 nodes, each containing four 1.4 GHz Itanium2 processors (5.6 Gflop/s peak) and
running Linux Chaos 2.0 (Fortran version ifort 8.1). The system is interconnected using Quadrics Elan4 in a fat-tree
configuration.

We also examine four state-of-the-art parallel vector systems. The Cray X1 [8] utilizes a computational core, called
the single-streaming processor (SSP), which contains two 32-stage vector pipes running at 800 MHz. Each SSP con-
tains 32 vector registers holding 64 double-precision words, and operates at 3.2 Gflop/s peak for 64-bit data. The SSP
also contains a two-way out-of-order superscalar processor running at 400 MHz with two 16KB caches (instruction
and data). Four SSPs can be combined into a logical computational unit called the multi-streaming processor (MSP)
with a peak of 12.8 Gflop/s — our work presents results in MSP mode, as this is the most common paradigm for X1
computation. The four SSPs share a 2-way set associative 2MB data Ecache, a unique feature for vector architectures
that allows extremely high bandwidth (25–51 GB/s) for computations with temporal data locality. The X1 node con-
sists of four MSPs sharing a flat memory. The X1 interconnect is hierarchical, with subsets of 8 SMP nodes connected
via a crossbar. For up to 512 MSPs, these subsets are connected in a 4D-Hypercube topology. For more than 512
MSPs, the interconnect is a 2D torus. All reported X1 experiments were performed on a 512-MSP system (several of
which were reserved for system services) running UNICOS/mp 2.5.33 (5.3 programming environment) and operated
by Oak Ridge National Laboratory. Note that this system is no longer available as it was upgraded to an X1E in July
2005.

We also examine performance of the recently-released X1E. The basic building block of both the Cray X1 and
X1E systems is the compute module, containing four multi-chip modules (MCM), memory, routing logic, and external
connectors. In the X1, each MCM contains a single MSP and a module contains a single SMP node with four MSPs.
In the X1E, two MSPs are implemented in a single MCM, for a total of eight MSPs per module. The eight MSPs on an
X1E module are organized as two SMP nodes of four MSPs each. These nodes each use half the module’s memory and
share the network ports. This doubling of the processing density leads to reduced manufacturing costs, but also doubles
the number of MSPs contending for both memory and interconnect bandwidth. The clock frequency in the X1E is
41% higher than in the X1, which further increases demands on network and main memory bandwidth. However,
this issue is partially mitigated by cache performance that scales bandwidth with processor speed, and by a corrected
memory performance problem that had limited memory bandwidth on the X1. The reported X1E experiments were
performed on a 768-MSP system running UNICOS/mp 3.0.23 (5.4.0.3 programming environment) and operated by
Oak Ridge National Laboratory. All reported X1 and X1E results are in MSP mode.

The ES processor is the predecessor of the NEC SX-6, containing 4 vector pipes with a peak performance of
8.0 Gflop/s per CPU [12]. The system contains 640 ES nodes connected through a custom single-stage IN crossbar.
This high-bandwidth interconnect topology provides impressive communication characteristics, as all nodes are a
single hop from one another. However, building such a network incurs a high cost since the number of cables grows as
a square of the node count – in fact, the ES interconnect system utilizes approximately 1500 miles of cable. The 5120-
processor ES runs Super-UX, a 64-bit Unix operating system based on System V-R3 with BSD4.2 communication
features. As remote ES access is not available, the reported experiments were performed during the authors’ visit to
the Earth Simulator Center located in Kanazawa-ku, Yokohama, Japan, in late 2004.

Finally, we examine the recently-released NEC SX-8. The SX-8 architecture operates at 2 GHz, and contains
four replicated vector pipes for a peak performance of 16 Gflop/s per processor. The SX-8 architecture has several
enhancements compared with the ES/SX-6 predecessor, including dedicated vector hardware for divide and square
root, as well as and in-memory caching for reducing bank conflict overheads. However, the SX-8 in our study uses
commodity DDR2-SDRAM; thus, we expect higher memory overhead for irregular accesses when compared with
the specialized high-speed FPLRAM (Full Pipelined RAM) of the ES. Both the ES and SX-8 processors contain 72
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vector registers each holding 256 doubles, and utilize scalar units operating at one-eighth the peak of their vector
counterparts. All reported SX-8 results were run on the 36 node (72 are now currently available) system located at
High Performance Computer Center (HLRS) in Stuttgart, Germany. This HLRS SX-8 is interconnected with the NEC
Custom IXS network and runs Super-UX (Fortran Version 2.0 Rev.313).

2.1 Scientific Applications

Name Lines Discipline Methods Structure

GTC 5,000 Magnetic Fusion Particle in Cell, gyrophase-averaged Vlasov-PoissonParticle/Grid
LBMHD3D 1,500 Plasma Physics Magneto-Hydrodynamics, Lattice Boltzmann Lattice/Grid
CACTUS 84,000 Astrophysics Einstein Theory of GR, ADM-BSSN, Method of Lines Grid
PARATEC 50,000 Material Science Density Functional Theory, Kohn Sham, FFT Fourier/Grid

Table 2: Overview of scientific applications examined in our study.

Four applications from diverse areas in scientific computing were chosen to compare the performance of the vector-
based X1, X1E, ES, and SX-8 with the superscalar-based Power3, Itanium2, and Opteron systems. We examine:
GTC, a magnetic fusion application that uses the particle-in-cell approach to solve non-linear gyrophase-averaged
Vlasov-Poisson equations; LBMHD3D, a plasma physics application that uses the Lattice-Boltzmann method to study
magneto-hydrodynamics; Cactus, an astrophysics code that evolves Einsteins equations from the Theory of General
Relativity using the Arnowitt-Deser-Misner method; and PARATEC, a first principles materials science code that
solves the Kohn-Sham equations of density functional theory to obtain electronic wavefunctions. An overview of the
applications is presented in Table 2.1.

These codes represent candidate ultra-scale applications that have the potential to fully utilize leadership-class
computing systems. Note that this set of applications have been designed and highly-optimized on superscalar
platforms — thus, we only examine and describe newly devised optimizations for the vector platforms. For GTC,
LBMHD3D, and Cactus we examine a weak-scaling configuration where the problem size grows with increasing con-
currency; a fixed problem size (strong scaling) is investigated for PARATEC. Performance results, presented in Gflop/s
per processor (denoted as Gflop/P) and percentage of peak, are used to compare the time to solution of our evaluated
computing systems. This value is computed by dividing a valid baseline flop-count by the measured wall-clock time
of each platform — thus the ratio between the computational rates is the same as the ratio of runtimes across the
evaluated systems.

3 GTC: Turbulent Transport in Magnetic Fusion

GTC is a 3D particle-in-cell code used for studying turbulent transport in magnetic fusion plasmas [10, 15]. The
simulation geometry is that of a torus (see Figure 1), which is the natural configuration of all tokamak fusion devices.
As the charged particles forming the plasma move within the externally-imposed magnetic field, they collectively
create their own self-consistent electrostatic (and electromagnetic) field that quickly becomes turbulent under driving
temperature and density gradients. Particles and waves interact self-consistently with each other, exchanging energy
that grows or damps their motion and amplitude respectively. The particle-in-cell (PIC) method describes this complex
phenomenon by solving the 5D gyrophase-averaged kinetic equation coupled to the Poisson equation.

In the PIC approach, the particles interact with each other via a spatial grid on which the charges are deposited, and
the field is then solved using the Poisson equation. By doing this, the number of operations scales asN instead ofN2,
as would be the case for direct binary interactions. Although this methodology drastically reduces the computational
requirements, the grid-based charge deposition phase is a source of performance degradation for both superscalar and
vector architectures. Randomly localized particles deposit their charge on the grid, thereby causing poor cache reuse
on superscalar machines. The effect of this charge scattering step is more pronounced on vector system, since two or
more particles may contribute to the charge at the same grid point – creating a potential memory-dependency conflict.
In the classic PIC method a point particle is followed directly and its charge is distributed to its nearest neighboring
grid points. However, in the GTC gyrokinetic PIC approach, the fast circular motion of the charged particle around
the magnetic field lines is averaged out and replaced by a charged ring. The 4-point average method [14] consists of
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(a) (b) (c)

Figure 1: Advanced volume visualization of the electrostatic potential field created by the plasma particles in a GTC
simulation, showing (a) the whole volume and (b) a cross-section through a poloidal plane where the elongated eddies
of the turbulence can be seen∗. (c) shows the charge deposition approach in GTC’s 4-point averaging scheme.

picking four points on that charged ring, each one having a fraction of the total charge, and distributing that charge to
the nearest grid points (see Figure 1c). In this way, the full influence of the fast, circular trajectory is preserved without
having to resolve it. However, this methodology inhibits vectorization since multiple particles may concurrently
attempt to deposit their charge onto the same grid point.

The memory-dependency conflicts during the charge deposition phase can be avoided by using the work-vector
method [19], where each element (particle) in a vector register writes to a private copy of the grid. The work-vector
approach requires as many copies of the grid as the number of elements in the vector register (256 for the ES and
X1 in MSP mode). Although this technique allows full vectorization of the scatter loop on the vector systems, it
consequently increases the memory footprint 2–8X compared with the same calculation on a superscalar machine.
This increase in memory is the main reason why GTC’s mixed-mode parallelism (MPI/OpenMP) cannot be used on
the vector platforms. The shared-memory loop-level parallelism also requires private copies of the grid for each thread
in order to avoid memory contentions, thus severely limiting the problem sizes that can be simulated. Furthermore,
the loop-level parallelization reduces the size of the vector loops, which in turn decreases the overall performance.

3.1 Particle Distribution Parallelization

Seaborg Thunder Jacquard Phoenix Phoenix ESC HLRS
Part/ Power3 Itanium2 Opteron X1 (MSP) X1E (MSP) ES SX-8

P
Cell Gflop/P %PkGflop/P %PkGflop/P %PkGflop/P %PkGflop/P %PkGflop/P %PkGflop/P %Pk

64 100 0.14 9 0.39 7 0.59 13 1.29 10 1.67 9 1.60 20 2.39 15
128 200 0.14 9 0.39 7 0.59 13 1.22 10 1.67 9 1.56 20 2.28 14
256 400 0.14 9 0.38 7 0.57 13 1.17 9 1.64 9 1.55 19 2.32 15
512 800 0.14 9 0.38 7 0.51 12 — — 1.57 9 1.53 19 — —

1024 1600 0.14 9 0.37 7 — — — — 1.50 8 1.88 24 — —
2048 3200 0.13 8 0.37 7 — — — — — — 1.82 23 — —
4096 6400 — — — — — — — — — — 1.76 22 — —

Table 3: GTC performance on each of the studied architectures using a fixed number of particles per processor.

GTC was originally optimized for superscalar SMP-based architectures by utilizing two levels of parallelism: a
one-dimensional MPI-based domain decomposition in the toroidal direction, and a loop-level work splitting method
implemented with OpenMP. However, as mentioned in Section 3, the mixed-mode GTC implementation is poorly

∗Images provided by Prof. Kwan-Liu Ma of UC Davis, as part of the DOE SciDAC GPS project.
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suited for vector platforms due to memory constraints and the fact that vectorization and thread-based loop-level
parallelism compete directly with each other. As a result, previous vector experiments [19] were limited to 64-way
parallelism — the optimal number of domains in the 1D toroidal decomposition. Note that the number of domains
(64) is not limited by the scaling of the algorithm but rather by the physical properties of the system, which features
a quasi two-dimensional electrostatic potential when put on a coordinate system that follows the magnetic field lines.
GTC uses such a coordinate system, and increasing the number of grid points in the toroidal direction does not change
the results of the simulation.

To increase GTC’s concurrency in pure MPI mode, a third level of parallelism was recently introduced. Since
the computational work directly involving the particles accounts for almost 85% of the total, the updated algorithm
splits the particles between several processors within each domain of the 1D spatial decomposition. Each processor
then works on a subgroup of particles that span the whole volume of a given domain. This allows us to divide the
particle-related work between several processors and, if needed, to considerably increase the number of particles in
the simulation. The updated approach maintains a good load balance due to the uniformity of the particle distribution.

There are several important reasons why we can benefit from experiments that simulate larger numbers of particles.
For a given fusion device size, the grid resolution in the different directions is well-defined and is determined by the
shortest relevant electrostatic (and electromagnetic) waves in the gyrokinetic system. The way to increase resolution in
the simulation is by adding more particles in order to uniformly raise the population density in phase space or put more
emphasis near the resonances. Also, the particles in the gyrokinetic system are not subject to the Courant condition
limitations [14]. They can therefore assume a high velocity without having to reduce the time step. Simulations with
multiple species are essential to study the transport of the different products created by the fusion reaction in burning
plasma experiments. These multi-species calculations require a very large number of particles and will benefit from
the new parallel algorithm.

3.2 Experimental Results

For this performance study, we keep the grid size constant but increase the total number of particles so as to maintain
the same number of particles per processor, where each processor follows about 3.2 million particles. Table 3 shows
the performance results for the six architectures in our study. The first striking difference from the previous GTC
vector study [19], is the considerable increase in concurrency. The new particle distribution algorithm allowed GTC
to efficiently utilize 4,096 MPI processes (compared with only 64 using the previous approach), although this is not
the limit of its scalability as recent Blue Gene/L benchmarks have shown excellent scaling past the 30,000-processor
mark. With this new algorithm in place, GTC fulfilled the very strict scaling requirements of the ES and achieved
an unprecedented 7.2 Tflop/s on 4,096 processors. Additionally, the Earth Simulator sustains a significantly higher
percentage of peak (24%) compared with other platforms. In terms of absolute performance, the SX-8 attains the
fastest time to solution, achieving 2.39 Gflop/s per processor. However, this is only about 50% higher than the per-
formance of the ES processor, even though the SX-8 peak is twice that of the ES. We believe that this is due to the
memory access speed, to which GTC’s gather/scatter operations are quite sensitive. Although the SX-8 has twice the
raw computational power, the speed for random memory accesses has not been scaled accordingly. Faster FPLRAM
memory is available for the SX-8 and would certainly increase GTC performance; however this memory technology
is more expensive and less dense then the commodity DDR2-SDRAM used in the evaluated SX-8 platform.

Further vector optimizations were explored when GTC was ported to the Cray X1 at ORNL and later to its upgrade,
the Cray X1E. The ES optimizations did not perform as well on the X1/X1E due to a much slower scalar processor
and the large impact of having sections of the codes that neither multistreamed nor vectorized. Such sections run at
least 32 times slower than fully multistreamed and vectorized sections on the X1/X1E. Therefore new optimizations
were employed on the X1E platform, including the vectorization of a few smaller loops in the code, and reordering the
array dimensions for several GTC grid arrays. This latter change improved the performance of the code by 20% on
the X1E but resulted in only a marginal 3% speedup on the ES. This discrepancy is most likely attributed to the faster
memory system of the ES. Recall that the X1E architecture increases memory contention by doubling the number of
MSPs per MCM, and increases processor speed (compared with the X1), without a commensurate increase in memory
performance. Nonetheless, the new vector and multistream optimizations allow GTC to run equivalently (in absolute
terms) on the X1E MSP and ES processors; however, the ES efficiency is significantly higher (23% vs. 9%). It is
worth mentioning that some of these latest vector optimizations have not been tested on the X1 due to its upgrade to
X1E.

Of the superscalar systems tested, the AMD Opteron with InfiniBand cluster (Jacquard) gives impressive results.
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GTC achieved slightly over 13% of peak on this computer and was 50% faster than on the Itanium2 Quadrics cluster
(Thunder). The InfiniBand interconnect seems to scale very well up to the largest number of available processors (512),
although at the highest concurrency we do see signs of performance tapering. On the other hand, the Quadrics-Elan4
interconnect of Thunder scales extremely well all the way up to the 2,048-processor case.

Finally, note that the new particle distribution algorithm added several reduction operations to the code. These
Allreducecommunication calls involve only the sub-groups of processors between which the particles are distributed
within a spatial domain. As the number of processors involved in this distribution increases, the overhead due to these
reduction operations increases as well. Nonetheless, all of the studied interconnects showed good scaling behavior,
including the (relatively old) SP Switch2 switch of the Seaborg (Power3) system.

4 LBMHD3D: Lattice Boltzmann Magneto-Hydrodynamics

Lattice Boltzmann methods (LBM) have proved a good alternative to conventional numerical approaches for simulat-
ing fluid flows and modeling physics in fluids [28]. The basic idea of the LBM is to develop a simplified kinetic model
that incorporates the essential physics, and reproduces correct macroscopic averaged properties. Recently, several
groups have applied the LBM to the problem of magneto-hydrodynamics (MHD) [6, 17] with promising results. As a
further development of previous 2D codes, LBMHD3D simulates the behavior of a three-dimensional conducting fluid
evolving from simple initial conditions through the onset of turbulence. Figure 2 shows a slice through the xy-plane
of an example simulation. Here, the vorticity profile has considerably distorted after several hundred time steps as
computed by LBMHD. The 3D spatial grid is coupled to a 3DQ27 streaming lattice and block distributed over a 3D
Cartesian processor grid. Each grid point is associated with a set of mesoscopic variables whose values are stored in
vectors of length proportional to the number of streaming directions — in this case 27 (26 plus the null vector).

(a) (b)

Figure 2: Contour plot of xy-plane showing the evolution of vorticity from well-defined tube-like structures into
turbulent structures.

The simulation proceeds by a sequence of collision and stream steps. A collision step involves data local only
to that spatial point, allowing concurrent, dependence-free point updates; the mesoscopic variables at each point are
updated through a complex algebraic expression originally derived from appropriate conservation laws. A stream step
evolves the mesoscopic variables along the streaming lattice, necessitating communication between processors for grid
points at the boundaries of the blocks. A key optimization described by Wellein and co-workers [32] was implemented,
saving on the work required by the stream step. They noticed that the two phases of the simulation could be combined,
so that either the newly calculated particle distribution function could be scattered to the correct neighbor as soon as
it was calculated, or equivalently, data could be gathered from adjacent cells to calculate the updated value for the
current cell. Using this strategy, only the points on cell boundaries require copying.
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4.1 Vectorization Details

The basic computational structure consists of three nested loops over spatial grid points (each typically run 100-1000
loop iterations) with inner loops over velocity streaming vectors and magnetic field streaming vectors (typically 10-
30 loop iterations), performing various algebraic expressions. For the ES, the innermost loops were unrolled via
compiler directives and the (now) innermost grid point loop was vectorized. This proved a very effective strategy and
this was also followed on the X1. In the case of the X1, however, there is a richer set of directives to control both
vectorization and multi-streaming, to provide both hints and specifications to the compiler. Finding the right mix of
directives required more experimentation than in the case of the ES. No additional vectorization effort was required
due to the data-parallel nature of LBMHD. For the superscalar architectures, we utilized a data layout that has been
shown previously to be optimal on cache-based machines [32], but did not explicitly tune for the cache size on any
machine. Interprocessor communication was implemented by first copying the non-contiguous mesoscopic variables
data into temporary buffers, thereby reducing the required number of communications, and then calling point-to-point
MPI communication routines.

4.2 Experimental Results

Seaborg Thunder Jacquard Phoenix Phoenix ESC HLRS
Grid Power3 Itanium2 Opteron X1 (MSP) X1E (MSP) ES SX-8

P
Size Gflop/P %PkGflop/P %PkGflop/P %PkGflop/P %PkGflop/P %PkGflop/P %PkGflop/P %Pk

16 2563 0.14 9 0.26 5 0.70 16 5.19 41 6.19 34 5.50 69 7.89 49
64 2563 0.15 10 0.35 6 0.68 15 5.24 41 5.73 32 5.25 66 8.10 51

256 5123 0.14 9 0.32 6 0.60 14 5.26 41 5.65 31 5.45 68 9.52 60
512 5123 0.14 9 0.35 6 0.59 13 — — 5.47 30 5.21 65 — —

1024 10243 — — — — — — — — — — 5.44 68 — —

Table 4: LBMHD3D performance on each of the studied architectures for a range of concurrencies and grid sizes. The
vector architectures very clearly outperform the scalar systems by a significant factor.

Table 4 presents LBMHD performance across the six architectures evaluated in our study. Observe that the vector
architectures clearly outperform the scalar systems by a significant factor. In absolute terms, the SX-8 is the leader by
a wide margin, achieving the highest per processor performance to date for LBMHD3D. The ES, however, sustains the
highest fraction of peak across all architectures — an amazing 68% even at the highest 1024-processors concurren-
cies. Further experiments on the ES on 4800 processors attained an unprecedented aggregate performance of over 26
Tflop/s. Examining the X1 behavior, we see that absolute performance is similar to the ES. The high performance of
the X1 is gratifying since we noted several outputed warnings concerning vector register spilling during the optimiza-
tion of the collision routine. Because the X1 has fewer vector registers than the ES/SX-8 (32 vs 72), vectorizing these
complex loops will exhaust the hardware limits and force spilling to memory. That we see no performance penalty is
probably due to the spilled registers being effectively cached.

For the X1E the same strategy is followed with one addition: two arrays are marked as being unsuitable for caching
by inserting compiler directives in the code. The logic behind this approach is to save cache space for data that can
effectively be reused‡. This increased performance by roughly 10%. Even with this optimization, percentage of peak
lags behind all the other vector architectures.

Turning to the superscalar architectures, the Opteron-based Jacquard cluster outperforms the Itanium2-based Thun-
der by almost a factor of 2X. One source of this disparity is that the Opteron achieves a STREAMS [13] bandwidth of
more than twice that of the Itanium2 (see Table 2). Another possible source of this degradation are the relatively high
cost of inner-loop register spills on the Itanium2, since the floating point values cannot be stored in the first level of
cache. Given the age and specifications, Seaborg (Power3) does quite reasonably, obtaining a higher percent of peak
than Thunder, but falling behind Jacquard.

‡Patrick Worley, personal communication
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5 CACTUS: General Relativity Astrophysics

One of the most challenging problems in astrophysics is the numerical solution of Einstein’s equations following
from the Theory of General Relativity (GR): a set of coupled nonlinear hyperbolic and elliptic equations containing
thousands of terms when fully expanded. The Cactus Computational ToolKit [2, 4] is designed to evolve Einstein’s
equations stably in 3D on supercomputers to simulate astrophysical phenomena with high gravitational fluxes – such
as the collision of two black holes and the gravitational waves radiating from that event. While Cactus is a mod-
ular framework supporting a wide variety of multi-physics applications [11], this study focuses exclusively on the
GR solver, which implements the Arnowitt-Deser-Misner (ADM) Baumgarte-Shapiro-Shibata-Nakamura (BSSN) [2]
method for stable evolutions of black holes. Figure 3 presents a visualization of one of the first simulations of the
grazing collision of two black holes computed by the Cactus code. The merging black holes are enveloped by their
“apparent horizon”, which is colorized by its Gaussian curvature. The concentric surfaces that surround the black
holes are equipotential surfaces of the gravitational flux of the outgoing gravity wave generated by the collision.

Figure 3: Visualization of grazing collision of two black holes as computed by Cactus∗.

The Cactus General Relativity components solve Einstein’s equations as an initial value problem that evolves
partial differential equations on a regular grid using the method of finite differences. The core of the General Relativity
solver uses the ADM formalism, also known also as the 3+1 form. For the purpose of solving Einstein’s equations, the
ADM solver decomposes the solution into 3D spatial hypersurfaces that represent different slices of space along the
time dimension. In this formalism, the equations are written as four constraint equations and 12 evolution equations.
Additional stability is provided by the BSSN modifications to the standard ADM method [2]. A “lapse” function
describes the time slicing between hypersurfaces for each step in the evolution. A “shift metric” is used to move the
coordinate system at each step to avoid being drawn into a singularity. The four constraint equations are used to select
different lapse functions and the related shift vectors. For parallel computation, the grid is block domain decomposed
so that each processor has a section of the global grid. The standard MPI driver for Cactus solves the PDE on a local
grid section and then updates the values at the ghost zones by exchanging data on the faces of its topological neighbors
in the domain decomposition.

5.1 Vectorization Details

For the superscalar systems, the computations on the 3D grid are blocked in order to improve cache locality. Blocking
is accomplished through the use of temporary ‘slice buffers’, which improve cache reuse while modestly increasing
the computational overhead. On vector architectures these blocking optimizations were disabled, since they reduced
the vector length and inhibited performance. The ES compiler misidentified some of the temporary variables in the
most compute-intensive loop of the ADM-BSSN algorithm as having inter-loop dependencies. When attempts to force
the loop to vectorize failed, a temporary array was created to break the phantom dependency.

Another performance bottleneck that arose on the vector systems was the cost of calculating radiation boundary
conditions. The cost of boundary condition enforcement is inconsequential on the microprocessor based systems,
however they unexpectedly accounted for up to 20% of the ES runtime and over 30% of the X1 overhead. The

∗Visualization by Werner Benger (AEI/ZIB) using Amira [3]
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boundary conditions were vectorized using very lightweight modifications such as inline expansion of subroutine
calls and replication of loops to hoist conditional statements outside of the loop. Although the boundaries were
vectorized via these transformations, the effective vector length remained infinitesimally small. Obtaining longer
vector lengths would have required more drastic modifications that were deemed impractical due the amount of the
Cactus code that would be affected by the changes. This modification was very effective on the X1 because the loops
could be multistreamed. Multistreaming enabled an easy 3x performance improvement in the boundary calculations
that reduced their runtime contribution from the most expensive part of the calculation to just under 9% of the overall
wallclock time. These same modifications produced no net benefit for the ES or SX-8, however, because the extremely
short vector lengths.

5.2 Experimental Results

The full-fledged production version of the Cactus ADM-BSSN application was run on each of the architectures with
results for two grid sizes shown in Table 5. The problem size was scaled with the number of processors to keep the
computational load the same (weak scaling). Cactus problems are typically scaled in this manner because their science
requires the highest-possible resolutions.

Seaborg Thunder Jacquard Phoenix ESC HLRS
Grid Power3 Itanium2 Opteron X1 (MSP) ES SX-8

P
Size Gflop/P %Pk Gflop/P %Pk Gflop/P %Pk Gflop/P %Pk Gflop/P %Pk Gflop/P %Pk

16 803 0.31 21 0.60 11 0.98 22 0.54 4 1.47 18 1.86 12
64 803 0.22 14 0.58 10 0.81 18 0.43 3 1.36 17 1.81 11

256 803 0.22 14 0.58 10 0.76 17 0.41 3 1.35 17 1.75 11
1024 803 0.22 14 — — — — — — 1.34 17 — —

16 250x642 0.10 6 0.58 10 0.82 19 0.81 6 2.83 35 4.27 27
64 250x642 0.08 6 0.58 10 0.92 21 0.72 6 2.70 34 4.04 25

256 250x642 0.07 5 0.57 10 0.68 16 0.68 5 2.70 34 3.87 24
1024 250x642 0.06 4 — — — — — — 2.70 34 — —

Table 5: Cactus weak-scaling performance using per-processor grid sizes of 80x80x80 and 250x64x64.

For the vector systems, Cactus achieves almost perfect vector operation ratio (over 99%) while the vector length
is dependent on the x-dimension size of the local computational domain. Consequently, the larger problem size
(250x64x64) executed with far higher efficiency on both vector machines than the smaller test case (vector length =
248 vs. 92), achieving 34% of peak on the ES. The oddly shaped domains for the larger test case were required because
the ES does not have enough memory per node to support a2503 domain. This rectangular grid configuration had no
adverse effect on scaling efficiency despite the worse surface-to-volume ratio. Additional performance gains could be
realized if the compiler was able to fuse the X and Y loop nests to form larger effective vector lengths. Also, note that
for the Cactus simulations, bank conflict overheads are negligible for the chosen (not power of two) grid sizes.

Recall that the boundary condition enforcement was not vectorized on the ES and accounts for up to 20% of the
execution time, compared with less than 5% on the superscalar systems. This demonstrates a different dimension
of architectural balance that is specific to vector architectures: seemingly minor code portions that fail to vectorize
can quickly dominate the overall execution time. The architectural imbalance between vector and scalar performance
was particularly acute on the X1, which suffered a much greater impact from unvectorized code than the ES. On the
SX-8, the boundary conditions occupy approximately the same percentage of the execution time as it did on the ES,
which is consistent with the fact that the performance improvements in the SX-8 scalar execution unit have scaled
proportionally with the vector performance improvements. The decreased execution efficiency is primarily reflected
in lower efficiency in the vector execution. (X1E results are not available, as the code generated by the new compilers
on the X1E exhibit runtime errors that are still being investigated by Cray engineers.)

The microprocessor based systems offered lower peak performance and generally lower efficiency than the NEC
vector systems. Jacquard, however, offered impressive efficiency as well as peak performance in comparison to
Seaborg and Thunder. Unlike Seaborg, Jacquard maintains its performance even for the larger problem size. The
relatively low scalar performance on the microprocessor-based systems is partially due to register spilling, which is
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caused by the large number of variables in the main loop of the BSSN calculation. However, the much lower memory
latency of the Opteron and higher effective memory bandwidth relative to its peak performance allow it to maintain
higher efficiency than most of the other processors.

6 PARATEC: First Principles Materials Science

PARATEC (PARAllel Total Energy Code [22]) performs ab-initio quantum-mechanical total energy calculations using
pseudopotentials and a plane wave basis set. The pseudopotentials are of the standard norm-conserving variety. Forces
can be easily calculated and used to relax the atoms into their equilibrium positions. PARATEC uses an all-band
conjugate gradient (CG) approach to solve the Kohn-Sham equations of Density Functional Theory (DFT) and obtain
the ground-state electron wavefunctions. DFT is the most commonly used technique in materials science, having a
quantum mechanical treatment of the electrons, to calculate the structural and electronic properties of materials. Codes
based on DFT are widely used to study properties such as strength, cohesion, growth, magnetic, optical, and transport
for materials like nanostructures, complex surfaces, and doped semiconductors.

PARATEC is written in F90 and MPI and is designed primarily for massively parallel computing platforms, but
can also run on serial machines. The code has run on many computer architectures and uses preprocessing to include
machine specific routines such as the FFT calls. Much of the computation time (typically 60%) involves FFTs and
BLAS3 routines, which run at a high percentage of peak on most platforms.

(a) (b)

Figure 4: (a) Conduction band minimum electron state for a CdSe quantum dot of the type used in PARATEC experi-
ments [31]. (b) Volume of point to point communication of PARATEC using 256 processors.

6.1 Communication Structure

In solving the Kohn-Sham equations using a plane wave basis, part of the calculation is carried out in real space and
the remainder in Fourier space using parallel 3D FFTs to transform the wavefunctions between the two spaces. We
use our own handwritten 3D FFTs rather than library routines as the data layout in Fourier space is a sphere of points,
rather than a standard square grid. Much of the compute intensive part of the code is carried out in Fourier space so
it is very important to load balance that part of the calculation. The sphere geometry is load balanced by distributing
the different length columns from the sphere to different processors such that each processor holds a similar number
of points in Fourier space.

The bulk of PARATEC’s communication occurs within 3D FFTs, involving three sets of one dimensional FFTs
in thex,y,z direction and three sets of data transposes after each set of FFTs. The number of data transposes can be
reduced to two if the data order at the end of the FFT is not required in the same decomposition as the initial data
i.e. it is returned orderedz,y,x as is the case in the specialized 3D FFTs used in PARATEC. The two parallel data
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transposes then represent the data communication intensive parts of the code. The first transpose is non-local and
involves communication of messages of similar sizes between all the processors. The second transpose is performed
more locally to the processors by having, as closely as possible, complete planes of data on each processor. During this
transpose processors will only communicate with neighboring processors. A more detailed description of the 3D FFTs
can be found in [5]. Figure 4(b) shows the data communication pattern for PARATEC obtained using IPM [27]
profiling. The even background color represents the first all-to-all transpose and the color on the diagonal corresponds
to the local communications from the second transpose.

6.2 Experimental Results

Table 6 presents performance data for 3 CG steps of a 488 atom CdSe (Cadmium Selenide) quantum dot and a standard
Local Density Approximation (LDA) run of PARATEC with a 35 Ry cut-off using norm-conserving pseudopotentials.
A typical calculation would require at least 60 CG iterations to converge the charge density for a CdSe dot. CdSe
quantum dots are luminescent in the optical range at different frequencies depending on their size and can be used as
electronic dye tags by attaching them to organic molecules. They represent a nanosystem with important technological
applications. Understanding their properties and synthesis through first principles simulations represents a challenge
for large-scale parallel computing, both in terms of computer resources and of code development. This 488 atom
system is, to the best of our knowledge, the largest physical system (number of real space grid points) ever run with
this code. Previous vector results for PARATEC [19] examined smaller physical systems at lower concurrencies.
Figure 4(a) shows an example of the computed conduction band minimum electron state for a CdSe quantum dot.

Seaborg Thunder Jacquard Phoenix Phoenix ESC HLRS
P Power3 Itanium2 Opteron X1 (MSP) X1E (MSP) ES SX-8

Gflop/P %PkGflop/P %PkGflop/P %PkGflop/P %PkGflop/P %PkGflop/P %PkGflop/P %Pk

64 0.94 63 — — — — 4.25 33 4.88 27 — — 7.91 49
128 0.93 62 2.84 51 — — 3.19 25 3.80 21 5.12 64 7.53 47
256 0.85 57 2.63 47 1.98 45 3.05 24 3.24 18 4.97 62 6.81 43
512 0.73 49 2.44 44 0.95 22 — — 2.22 12 4.36 55 — —

1024 0.60 40 1.77 32 — — — — — — 3.64 46 — —
2048 — — — — — — — — — — 2.67 33 — —

Table 6: PARATEC results using 488 atom CdSe quantum dot on the evaluated platforms. X1E experiments were
conducted using X1-compiled binary.

PARATEC runs at a high percentage of peak on both superscalar and vector-based architectures due to the heavy
use of the computationally intensive FFTs and BLAS3 routines, which allow high cache reuse and efficient vector
utilization. The main limitation to scaling PARATEC to large numbers of processors is the distributed transformations
during the parallel 3D FFTs which require global interprocessor communications. Even though the 3D FFT was
written to minimize global communications, architectures with a poor balance between their bisection bandwidth
and computational rate will suffer performance degradation at higher concurrencies. Table 6 shows that PARATEC
achieves unprecedented performance on the ES system, sustaining 5.5 Tflop/s for 2048 processors. The declining
performance at higher concurrencies is caused by the increased communication overhead of the 3D FFTs, as well as
reduced vector efficiency due to the decreasing vector length of this fixed-size problem. On the SX-8 the code runs at
a lower percentage of peak than on the ES, due most likely to the slower memory on the SX8; however, the SX8 does
achieve the highest per processor performance of any machine tested to date.

Observe that absolute X1 performance is lower than the ES, even though it has a higher peak speed. One reason
for this is that the relative difference between vector and nonvector performance is higher on the X1 than on the ES.
In consequence, on the X1 the code spends a much smaller percentage of the total time in highly optimized 3D FFTs
and BLAS3 libraries than on any of the other machines. The other code segments are handwritten F90 routines and
have a lower vector operation ratio currently, resulting in relatively poorer X1 performance.

Results on the X1E were obtained by running the binary compiled on the X1, as running with an optimized X1E
generated binary (-O3) caused the code to freeze (Cray engineers are investigating the problem). The results on the
X1E are on average 14% faster than the X1, resulting in slightly lower percentage of peak. This decrease in efficiency
is probably due to the additional memory and interconnect contention on the X1E platform (see Table 2).
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PARATEC also runs efficiently on the scalar platforms, achieving over 60% of peak on the Power3 using 128
processors, with reasonable scaling continuing up to 1024 processors. This percentage of peak is significantly higher
than on any of the other applications studied in this paper, and is in large part due to the use of the optimized ESSL
libraries for the FFTs and dense linear algebra operations used in the code. The loss in scaling on Seaborg is primarily
due to the increased communication cost at high concurrencies. The Thunder and Jacquard systems show a similar
high percentage of peak at lower concurrencies, giving Thunder a higher absolute performance than the Jacquard
system. This is again due mainly to the use of optimized FFT and BLAS3 libraries, which are highly cache resident.
Thus PARATEC is less sensitive to memory access issues on the Itanium2 than the other codes tested in this paper.
Additionally, the Opteron’s performance can be limited for dense linear algebra computations due to its lack of floating-
point multiply add (FMA) hardware. The Quadrics-based Thunder platform also shows better scaling characteristics
at high concurrency than the InfiniBand-based Opteron system, for the global all-to-all communication patterns in
PARATEC’s 3D FFTs. Overall all the architectures studied here would obtain better scaling at higher concurrency by
running a larger physical system.

7 Summary and Conclusions

Figure 5: Overview of performance for the four studied applications on 256 processors, comparing (left) absolute
speed and (right) percentage of theoretical peak.

This study examines four diverse scientific applications on the parallel vector architectures of the X1, X1E, ES
and SX-8, and three leading superscalar platforms utilizing Power3, Itanium2, and Opteron processors. Overall results
show that the vector platforms achieve the highest aggregate performance on any tested architecture to date across
our full application suite, demonstrating the tremendous potential of modern parallel vector systems. Our work makes
several important contributions. We present a new decomposition-based parallelization for the GTC magnetic fusion
simulation. This new approach allows scalability to 2048 processors on the ES (compared to only 64 using the previous
code version), opening the door to a new set of high-phase space-resolution simulations that to date have not been
possible. Next we introduce, for the first time, LBMHD3D: a 3D version of a Lattice Bolzmann magneto-hydrody-
namics application used to study the onset evolution of plasma turbulence. The ES shows unprecedented LBMHD3D
performance, achieving over 68% of peak for a total of 26Tflop/s on 4800 processors. We also demonstrate the highest
sustained and aggregate performance ever achieved on the Cactus astrophysics simulation of the General Relativity
calculation. Finally, we investigate performance of the PARATEC application, using the largest cell size atomistic
simulation ever run with this material science code. Results on 2048 processors of the ES show the highest aggregate
performance to date, allowing for high-fidelity simulations that hitherto have not been possible with PARATEC due to
computational limitations.

Figure 5 presents a performance overview for the four studied applications using 256 processors, comparing (left)
absolute speed† and (right) percentage of theoretical peak. Overall results show that the SX-8 impressively achieves the

†Recall that the ratio between the computational rates is the same as the ratio of runtimes across the evaluated systems.
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best per-processor performance — outperforming all other architectures in our study (and all architectures examined to
date). In terms of sustained efficiency, however, the ES consistently attains the highest percentage across all evaluated
platforms. The SX-8 cannot match the efficiency of the ES, due in part, to the higher memory latency overhead for
irregular data accesses. In addition, we note that the ES and SX-8 systems achieve a higher fraction of peak compared
than the X1/X1E for our examined codes, frequently by a significant margin. This is due, in part, to superior scalar
processor performance and superior memory behavior. However, in terms of absolute runtime, the X1(E) outperforms
the evaluated superscalar systems for most of the applications examined in our study. Results also show that, in many
cases, the X1E percentage of peak is somewhat lower than the X1, due to the architectural balance of the X1E, which
utilizes twice as many MSPs per node and a higher clock speed (compared with the X1), without a commensurate
increase in memory performance.

Finally, a comparison of the modern superscalar platforms shows that Jacquard dramatically outperforms the Thun-
der system for GTC, LBMHD3D, and Cactus with the situation reversed for PARATEC. The origin of this difference is
composed of multiple effects, including the CPU architecture, the hierarchical memory behavior, and the network in-
terconnect. GTC and LBMHD3D have a relatively low computational intensity and high potential for register spilling
(and irregular data access for GTC), giving the Opteron an advantage due to its on-chip memory controller and (unlike
the Itanium2) the ability to store floating point data in the L1 cache. The Opteron-based Jacquard system also benefits
from its 2-way SMP node that has STREAM bandwidth performance more than twice that of the Itanium2-based
Thunder, which utilizes a 4-way SMP node configuration.

PARATEC, on the other hand, relies on global data transpositions, giving the Quadrics-based Thunder system a
performance advantage over the InfiniBand-based Jacquard for large concurrency simulations. Additionally, since
PARATEC relies heavily on dense linear algebra computations, the Opteron performance may be limited (compared
with the Itanium2 and Power3) due to its lack of FMA support. To attain peak performance, the Opteron also relies on
SIMD-based SSE instructions, which require two symmetric floating point operations to be executed on operands in
neighboring slots of its 128-bit registers — a constraint that cannot be satisfied at all times. We also note that Seaborg’s
(relatively old) IBM Power3 architecture consistently achieves a higher fraction of peak than the Thunder system and
shows good scaling performance across our entire application suite.

Our overall analysis points to several architectural features that could benefit future system designers. First, as seen
by the relatively modest gains between the X1 and X1E processors, vector system architects must continue to increase
both scalar processor and memory performance proportionally with improvements to the vector units. Otherwise,
further improvements to the peak vector performance will likely deliver diminishing returns when averaged across the
requirements of the broader scientific workload. Results also show that superscalar designers must continue to focus
on effectively hiding main memory latency for applications with low computational intensity (such as CACTUS,
GTC, and LBMHD). Recent design trends of moving memory controllers on-broad the processor chip — as seen on
the Opteron — help address this deficiency, but significant challenges still remain. For example, the irregular access
patterns exhibited by the charge deposition phase of GTC make the cache hierarchy less effective for reducing the
average latency of memory accesses, however the potential for conflicts in the update phase in GTC presents a non-
optimal solution for the vector approach. Future architecture could mitigate some of these effects by supporting either
atomic memory updates or explicit software-controlled local store (scratchpad) memory. A transactional memory
approach, is one promising methodology that could potentially improve the efficiency of the charge deposition phase
of PIC codes without requiring extensive code re-implementation. Finally, in terms of interconnect design, PARATEC
results show that support for low-latency high-bisection bandwidth networks is essential for spectral and plane-wave
DFT codes that rely on global, multidimensional FFTs.

Future work will extend our study to include applications in the areas of molecular dynamics, cosmology, and
combustion. We are particularly interested in investigating the vector performance of adaptive mesh refinement (AMR)
methods, as we believe they will become a key component of future high-fidelity multi-scale physics simulations across
a broad spectrum of application domains.
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