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ABSTRACT
The last decade has witnessed a rapid proliferation of superscalar
cache-based microprocessors to build high-end computing (HEC)
platforms, primarily because of their generality, scalability, and
cost effectiveness. However, the growing gap between sustained
and peak performance for full-scale scientific applications on con-
ventional supercomputers has become a major concern in high per-
formance computing, requiring significantly larger systems and ap-
plication scalability than implied by peak performance in order to
achieve desired performance. The latest generation of custom-built
parallel vector systems have the potential to address this issue for
numerical algorithms with sufficient regularity in their computa-
tional structure. In this work we explore applications drawn from
four areas: atmospheric modeling (CAM), magnetic fusion (GTC),
plasma physics (LBMHD3D), and material science (PARATEC).
We compare performance of the vector-based Cray X1, Earth Sim-
ulator, and newly-released NEC SX-8 and Cray X1E, with perfor-
mance of three leading commodity-based superscalar platforms uti-
lizing the IBM Power3, Intel Itanium2, and AMD Opteron proces-
sors. Our work makes several significant contributions: the first
reported vector performance results for CAM simulations utilizing
a finite-volume dynamical core on a high-resolution atmospheric
grid; a new data-decomposition scheme for GTC that (for the first
time) enables a breakthrough of the Teraflop barrier; the introduc-
tion of a new three-dimensional Lattice Boltzmann magneto-hy-
drodynamic implementation used to study the onset evolution of
plasma turbulence that achieves over 26Tflop/s on 4800 ES pro-
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cessors; and the largest PARATEC cell size atomistic simulation
to date. Overall, results show that the vector architectures attain
unprecedented aggregate performance across our application suite,
demonstrating the tremendous potential of modern parallel vector
systems.

1. INTRODUCTION
Due to their cost effectiveness, an ever-growing fraction of to-

day’s supercomputers employ commodity superscalar processors,
arranged as systems of interconnected SMP nodes. However, the
constant degradation of superscalar sustained performance has be-
come a well-known problem in the scientific computing commu-
nity [1]. This trend has been widely attributed to the use of super-
scalar-based commodity components whose architectural designs
offer a balance between memory performance, network capabil-
ity, and execution rate that is poorly matched to the requirements
of large-scale numerical computations. The latest generation of
custom-built parallel vector systems may address these challenges
for numerical algorithms amenable to vectorization.

Vector architectures exploit regularities in computational struc-
tures, issuing uniform operations on independent data elements,
thus allowing memory latencies to be masked by overlapping pipe-
lined vector operations with memory fetches. Vector instructions
specify a large number of identical operations that may execute in
parallel, thereby reducing control complexity and efficiently con-
trolling a large amount of computational resources. However, as
described by Amdahl’s Law, the time taken by the portions of the
code that are non-vectorizable can dominate the execution time,
significantly reducing the achieved computational rate.

In order to quantify what modern vector capabilities imply for
the scientific communities that rely on modeling and simulation,
it is critical to evaluate vector systems in the context of demand-
ing computational algorithms. This study examines the behavior
of four diverse scientific applications with the potential to run at
ultra-scale, in the areas of atmospheric modeling (CAM), plasma
physics (GTC), magnetic fusion (LBMHD3D), and material sci-
ence (PARATEC). We compare the performance of leading com-



CPU/ Clock Peak Stream BW Peak StreamMPI Lat MPI BW NetworkPlatform Network
Node (MHz) (GF/s) (GB/s/CPU)(Bytes/Flop) (µsec) (GB/s/CPU) Topology

Power3 SP Switch2 16 375 0.7 0.4 0.26 16.3 0.13 Fat-tree
Itanium2 Quadrics 4 1400 5.6 1.1 0.19 3.0 0.25 Fat-tree
Opteron InfiniBand 2 2200 4.4 2.3 0.51 6.0 0.59 Fat-tree

X1 Custom 4 800 12.8 14.9 1.16 7.1 6.3 4D-Hypercube
X1E Custom 4 1130 18.0 9.7 0.54 5.0 2.9 4D-Hypercube
ES Custom (IN) 8 1000 8.0 26.3 3.29 5.6 1.5 Crossbar

SX-8 IXS 8 2000 16.0 41.0 2.56 5.0 2.0 Crossbar

Table 1: Architectural highlights of the Power3, Itanium2, Opteron, X1, X1E, ES, and SX-8 platforms.

modity-based superscalar platforms utilizing the IBM Power3, In-
tel Itanium2, and AMD Opteron processors, with modern paral-
lel vector systems: the Cray X1, Earth Simulator (ES), and the
NEC SX-8. Additionally, we examine performance of CAM on
the recently-released Cray X1E. Our research team was the first in-
ternational group to conduct a performance evaluation study at the
Earth Simulator Center; remote ES access is not available.

Our work builds on our previous efforts [16, 17] and makes
several significant contributions: the first reported vector perfor-
mance results for CAM simulations utilizing a finite-volume dy-
namical core on a high-resolution atmospheric grid; a new data-
decomposition scheme for GTC that (for the first time) enables
a breakthrough of the Teraflop barrier; the introduction of a new
three-dimensional Lattice Boltzmann magneto-hydrodynamic im-
plementation used to study the onset evolution of plasma turbu-
lence that achieves over 26Tflop/s on 4800 ES processors; and the
largest PARATEC cell size atomistic simulation to date. Overall,
results show that the vector architectures attain unprecedented ag-
gregate performance across our application suite, demonstrating
the tremendous potential of modern parallel vector systems.

2. HEC PLATFORMS AND
EVALUATED APPLICATIONS

In this section we briefly describe the computing platforms and
scientific applications examined in our study. Table 1 presents an
overview of the salient features for the six parallel HEC architec-
tures, including:

• STREAM benchmark results [6] (Stream BW), shows the
measured EP-STREAM [3] triad results when all proces-
sors within a node simultaneously compete for main memory
bandwidth. This represents a more accurate measure of (unit-
stride) memory performance than theoretical peak memory
behavior.

• The ratio of STREAM bandwidth versus the peak computa-
tional rate (Peak Stream).

• Measured internode MPI latency [4, 22].

• Measured bidirectional MPI bandwidth per processor pair
when each processor in one node simultaneously exchanges
data with a distinct processor in another node∗.

Table 1 shows that the vector systems have significantly higher
peak computational rates, memory performance, and MPI band-
width rates than the superscalar platforms. Observe that the ES and

∗Because on the X1E pairs of nodes share network ports, the
X1E result is the performance when all processors in one pair of
nodes exchange data with processors in another node pair.

SX-8 machines have significantly higher ratios of memory band-
width to computational rate than the other architectures in our study.
To be fair, bandwidth from main memory is not the sole determiner
of achieved percentage of peak. The superscalar systems, and the
X1(E), also have memory caches that provide lower latency and
higher bandwidth than main memory, potentially mitigating the
performance impact of the relatively high cost of main memory
access.

In the past, the tight integration of high bandwidth memory and
network interconnects to the processors enabled vector systems to
effectively feed the arithmetic units and achieve a higher percent-
age of peak computation rate than nonvector architectures for many
codes. This paper focuses on determining the degree to which
modern vector systems retain this capability with respect to leading
computational methods. While system cost is arguably at least as
an important a metric, we are unable to provide such data, as sys-
tem installation cost is often proprietary and vendor pricing varies
dramatically for a given time frame and individual customer.

Three superscalar commodity-based platforms are examined in
our study. The IBM Power3 experiments reported were conducted
on the 380-node IBM pSeries system, Seaborg, running AIX 5.2
(Xlf compiler 8.1.1) and located at Lawrence Berkeley National
Laboratory (LBNL). Each SMP node is a Nighthawk II node con-
sisting of sixteen 375 MHz Power3-II processors (1.5 Gflop/s peak)
connected to main memory via a crossbar; SMPs are intercon-
nected via the SP Switch2 switch using an omega-type topology.
The AMD Opteron system, Jacquard, is also located at LBNL.
Jacquard contains 320 dual nodes and runs Linux 2.6.5 (PathScale
2.0 compiler). Each node contains two 2.2 GHz Opteron processors
(4.4 Gflop/s peak), interconnected via InfiniBand fabric in a fat-tree
configuration. Finally, the Intel Itanium2 experiments were per-
formed on the Thunder system located at Lawrence Livermore Na-
tional Laboratory (LLNL). Thunder consists of 1024 nodes, each
containing four 1.4 GHz Itanium2 processors (5.6 Gflop/s peak)
and running Linux Chaos 2.0 (Fortran version ifort 8.1). The sys-
tem is interconnected using Quadrics Elan4 in a fat-tree configura-
tion.

We also examine four state-of-the-art parallel vector systems.
The Cray X1 [9] utilizes a computational core, called the single-
streaming processor (SSP), which contains two 32-stage vector pipes
running at 800 MHz. Each SSP contains 32 vector registers holding
64 double-precision words, and operates at 3.2 Gflop/s peak for 64-
bit data. The SSP also contains a two-way out-of-order superscalar
processor running at 400 MHz with two 16KB caches (instruction
and data). Four SSPs can be combined into a logical computa-
tional unit called the multi-streaming processor (MSP) with a peak
of 12.8 Gflop/s — the X1 system can operate in either SSP or MSP
modes and we present performance results using both approaches.
The four SSPs share a 2-way set associative 2MB data Ecache, a



Name Lines Discipline Methods Structure

FVCAM 200,000+ Climate Modeling Finite Volume, Navier-Stokes,FFT Grid
LBMHD3D 1,500 Plasma Physics Magneto-Hydrodynamics, Lattice Boltzmann Lattice/Grid
PARATEC 50,000 Material Science Density Functional Theory, Kohn Sham, FFT Fourier/Grid

GTC 5,000 Magnetic Fusion Particle in Cell, gyrophase-averaged Vlasov-PoissonParticle/Grid

Table 2: Overview of scientific applications examined in our study.

unique feature for vector architectures that allows extremely high
bandwidth (25–51 GB/s) for computations with temporal data lo-
cality. The X1 node consists of four MSPs sharing a flat memory.
The X1 interconnect is hierarchical, with subsets of 8 SMP nodes
connected via a crossbar. For up to 512 MSPs, these subsets are
connected in a 4D-Hypercube topology. For more than 512 MSPs,
the interconnect is a 2D torus. All reported X1 experiments were
performed on a 512-MSP system (several of which were reserved
for system services) running UNICOS/mp 2.5.33 (5.3 program-
ming environment) and operated by Oak Ridge National Labora-
tory. Note that this system is no longer available. It was upgraded
to an X1E in July 2005.

We also examine performance of the CAM atmospheric mod-
eling application on the newly-released X1E. The basic building
block of both the Cray X1 and X1E systems is the compute mod-
ule, containing four multi-chip modules (MCM), memory, routing
logic, and external connectors. In the X1, each MCM contains a
single MSP and a module contains a single SMP node with four
MSPs. In the X1E, two MSPs are implemented in a single MCM,
for a total of eight MSPs per module. The eight MSPs on an X1E
module are organized as two SMP nodes of four MSPs each. These
nodes each use half the module’s memory and share the network
ports. This doubling of the processing density leads to reduced
manufacturing costs, but also doubles the number of MSPs con-
tending for both memory and interconnect bandwidth. The clock
frequency in the X1E is 41% higher than in the X1, which fur-
ther increases demands on network and main memory bandwidth.
However, this issue is partially mitigated by cache performance that
scales bandwidth with processor speed, and by a corrected mem-
ory performance problem that had limited memory bandwidth on
the X1. All reported X1E experiments were performed on a 768-
MSP system running UNICOS/mp 3.0.23 (5.4.0.3 programming
environment) and operated by Oak Ridge National Laboratory.

The ES processor is the predecessor of the NEC SX-6, con-
taining 4 vector pipes with a peak performance of 8.0 Gflop/s per
CPU [10]. The system contains 640 ES nodes connected through a
custom single-stage IN crossbar. This high-bandwidth interconnect
topology provides impressive communication characteristics, as all
nodes are a single hop from one another. However, building such
a network incurs a high cost since the number of cables grows as a
square of the node count – in fact, the ES interconnect system uti-
lizes approximately 1500 miles of cable. The 5120-processor ES
runs Super-UX, a 64-bit Unix operating system based on System V-
R3 with BSD4.2 communication features. As remote ES access is
not available, the reported experiments were performed during the
authors’ visit to the Earth Simulator Center located in Kanazawa-
ku, Yokohama, Japan, in late 2004.

Finally, we examine the newly-released NEC SX-8. The SX-8
architecture operates at 2 GHz, and contains four replicated vector
pipes for a peak performance of 16 Gflop/s per processor. The SX-8
architecture has several enhancements compared with the ES/SX-
6 predecessor, including dedicated vector hardware for divide and
square root, as well as and in-memory caching for reducing bank

conflict overheads. However, the SX-8 in our study uses commod-
ity DDR2-SDRAM; thus, we expect higher memory overhead for
irregular accesses when compared with the specialized high-speed
FPLRAM (Full Pipelined RAM) of the ES. Both the ES and SX-8
processors contain 72 vector registers each holding 256 doubles,
and utilize scalar units operating at one-eighth the peak of their
vector counterparts. All reported SX-8 results were run on the 36
node (72 are now currently available) system located at High Per-
formance Computer Center (HLRS) in Stuttgart, Germany. This
HLRS SX-8 is interconnected with the NEC Custom IXS network
and runs Super-UX (Fortran Version 2.0 Rev.313).

2.1 Scientific Applications
Four applications from diverse areas in scientific computing were

chosen to compare the performance of the vector-based X1, X1E,
ES, and SX-8 with the superscalar-based Power3, Itanium2, and
Opteron systems. The applications are: CAM, the Community At-
mosphere Model with the finite-volume solver option for the dy-
namics; GTC, a magnetic fusion application that uses the particle-
in-cell approach to solve non-linear gyrophase-averaged Vlasov-
Poisson equations; LBMHD3D, a plasma physics application that
uses the Lattice-Boltzmann method to study magneto-hydrodynam-
ics; and PARATEC, a first principles materials science code that
solves the Kohn-Sham equations of density functional theory to ob-
tain electronic wavefunctions. An overview of the applications is
presented in Table 2.

These codes represent candidate ultra-scale applications that have
the potential to fully utilize leadership-class computing systems.
Performance results, presented in Gflop/s per processor (denoted
as Gflop/P) and percentage of peak, are used to compare the time
to solution of our evaluated computing systems. This value is com-
puted by dividing a valid baseline flop-count by the measured wall-
clock time of each platform — thus the ratio between the computa-
tional rates is the same as the ratio of runtimes across the evaluated
systems.

3. FVCAM: ATMOSPHERIC GENERAL
CIRCULATION MODELING

The Community Atmosphere Model (CAM) is the atmospheric
component of the flagship Community Climate System Model (CC-
SM3.0). Developed at the National Center for Atmospheric Re-
search (NCAR), the CCSM3.0 is used to study climate change.
The CAM application is an atmospheric general circulation model
(AGCM) and can be run either coupled within CCSM3.0 or in a
stand-alone mode driven by prescribed ocean temperatures and sea
ice coverages [7]. AGCMs are key tools for weather prediction
and climate research. They also require large computing resources:
even the largest current supercomputers cannot keep pace with the
desired increases in the resolution and simulation times of these
models.

AGCMs generally consist of two distinct sections, the “dynami-
cal core” and the “physics package”. The dynamical core approxi-
mates a solution to the Navier-Stokes equations suitably expressed



Figure 1: A simulated Category IV hurricane about to reach
the coast of Texas. This storm was produced solely through
the chaos of the atmospheric model forced only with surface
boundary condition. It is one of many such events, without
memory of the initial conditions, produced by FVCAM at res-
olutions of 0.5◦ degrees or higher.

to describe the dynamics of the atmosphere. The physics package
calculates source terms to these equations of motion that represent
unresolved or external physical phenomena. These include turbu-
lence, radiative transfer, boundary layer effects, clouds, etc. The
physics package will not be discussed further here. The dynami-
cal core of CAM provides two very different options for solving
the equations of motion. The first option, known as the Eulerian
spectral transform method, exploits spherical harmonics to map a
solution onto the sphere [19]. The second option is based on a fi-
nite volume methodology, uses a regular latitude-longitude mesh,
and conserves mass [12]. In this paper we refer to CAM with the
finite volume option as FVCAM. An example result of an FVCAM
simulation is shown in Figure 1.

3.1 Parallelization and Vectorization
of the Finite-Volume Dycore

The experiments conducted in this work measure the performance
of both the original (unvectorized) CAM3.1 version on the super-
scalar architectures and the vector optimized version on the ES and
X1/X1E systems. Five routines were restructured for the vector
systems, representing approximately 1000 lines. Four other rou-
tines contain a few vector-specific code modifications, totaling 100
additional alternative lines of code. These line counts do not in-
clude the 95 Cray compiler directives and the 60 NEC compiler
directives also inserted as part of the vector performance optimiza-
tion. The vector code alternatives are enabled/disabled at compile
time usingcpp ifdef logic. However, use of the vectorized cod-
ing on non-vector machines appears to degrade performance only
minimally (less than approximately 10%), most likely due to poorer
cache utilization.

The solution procedure using the finite-volume dynamical core
consists of two phases. First, the main dynamical equations are
time-integrated within the control volumes bounded by Lagrangian
material surfaces. Second, the Lagrangian surfaces are re-mapped
to physical space based on vertical transport [15]. The underlying
finite volume grid is logically rectangular in (longitude, latitude,
level), where “level” refers to the vertical coordinate. In the dy-
namics phase, the equations at each vertical level are weakly cou-
pled through the geopotential equation. A two-dimensional domain

decomposition in (latitude, level) is employed throughout most of
the dynamics phase. (The singularity in the horizontal coordinate
system at the pole makes a longitudinal decomposition unattrac-
tive.) However, dependencies in the remapping phase are primarily
in the vertical dimension and are computed most efficiently using
a (longitude, latitude) domain decomposition. The two domain de-
compositions are connected by transposes [15].

The dynamics phase is structured as a collection of nested sub-
routines within an outer loop over vertical level. Inner loops are
generally with respect to longitude. Prior to vectorization, the lati-
tude loops were at the highest level within this collection of subrou-
tines with latitude indices passed throughout the subroutine chain.
One of the main changes in support of vectorization was to move
the latitude loops to the lowest level, to provide greatest opportu-
nity for parallelism.

The finite-volume scheme is fundamentally one-sided (upwind)
and higher order, causing a significant number of nested logical
branches throughout. These branches are so pervasive that there
is no practical way to eliminate them from the loops to be vector-
ized. However, the code has been modified to perform the logical
tests with respect to latitude in advance, thereby enabling the par-
titioning of the loops over latitude via the use of indirect indexing.
One area where vectorization proved to be problematic is the im-
plementation of the polar filters. These are Fast Fourier Transforms
(FFTs) along complete longitude lines performed at the upper (and
lower) latitudes. Vectorization is attained across FFTs (with respect
to latitude) as opposed to within the FFT, since the number of FFTs
that can be performed in parallel is critical to vector performance.
Overall, throughput increases with the number of processors, gen-
erating ever finer domain decompositions. However, finer domain
decompositions also imply decreasing numbers of latitude lines as-
signed to each subdomain, thereby restricting performance of the
vectorized FFT. No workaround for this issue is apparent.

3.2 Domain Decomposition and
Communication Structure

In this paper, we examine performance results obtained from FV-
CAM in a 0.5◦x0.625◦ horizontal mesh configuration, using the
CAM3.1 [2] code version. Sometimes labeled as theD grid, this
corresponds to 576 longitudinal grid points and 361 latitudinal grid
points. The default number of vertical levels in FVCAM is 26. Per-
formance data were collected on the ES, Power3, Itanium2, and
X1. Additionally, ours is the first work to present performance data
for FVCAM on the Cray X1E. Results on the Opteron and SX-8
are currently unavailable.

FVCAM is a mixed-mode parallel code, using both the Mes-
sage Passing Interface (MPI) and OpenMP protocols. For a given
processor count, we can specify, at runtime, the number of MPI
processes and OpenMP threads per process. For a given processor
count we can also specify whether to use a 1D latitude-only do-
main decomposition or the 2D domain decomposition implementa-
tion outlined previously and, for the 2D decomposition, the number
of MPI processes to assign to the decomposition of each coordinate
direction. In the 2D case, the number of MPI tasks assigned to the
vertical dimension (referred to asPz) is either 4 or 7, as these have
been found empirically to be reasonable choices across all of the
target platforms. For these experiments, the number of processes
assigned to decompose the vertical dimension were also assigned
to decompose the longitude dimension during the remapping phase,
leaving the number of processes assigned to decompose the latitude
dimension unchanged. This simplification minimizes the transpo-
sition cost.

The choices of hybrid (MPI/OpenMP) parallelism and domain



(a) (b)

Figure 2: Volume of point to point communication between MPI processes of FVCAM runningD mesh using 256 processors (64
MPI processes), with (a) 1D decomposition and (b) 2D with 4 vertical levels.

decomposition approaches affects performance and scalability. Ad-
ditional compile- or runtime performance tuning options in FV-
CAM include a cache or vector-blocking factor for data structures
in the physics package, computational load balancing in the physics
package, and MPI two-sided and MPI, SHMEM, and Co-Array
Fortran one-sided implementations of interprocessor communica-
tion [15, 18, 25]. Note that the alternative implementations devel-
oped for the vector systems also represent a compile-time tuning
option. These many options were examined empirically and set in-
dependently for each of the target platforms when collecting the
cited performance data. For example, while load balancing im-
proves performance within the physics package, it comes at the
cost of additional MPI communication overhead. Only on the Cray
X1 and X1E did load balancing improve performance. Similarly,
only on the Power3 and ES did OpenMP enhance performance of
the current version of FVCAM. (The other evaluated systems ei-
ther did not support OpenMP or did not benefit from it.) For both
of these systems it was found that four OpenMP threads was the op-
timal choice; this is despite the fact that the ES and the Power3 sys-
tem have eight and sixteen processors per node (respectively). For
comparison purposes we proscribed a number of processor counts
and 2D domain decompositions to be tested on all systems, but the
optimal choices here are primarily algorithmic and do not vary sig-
nificantly between platforms.

The effect of OpenMP on FVCAM performance deserves further
discussion. First, the number of MPI tasks is limited by the number
of latitude lines. The model does not allow less than three latitude
lines per subdomain because of tautologies in the latitudinal sub-
domain communication required for the difference equations. Thus
exploiting OpenMP parallelism increases the maximum number of
processors that can be used over a pure MPI implementation. Sec-
ond, communication between subdomains depends on the surface
to volume ratio, and can thus become the dominant factor when
the three latitude per subdomain limit is approached. For a given
number of processors and a fixedPz, utilizing OpenMP threads
both reduces the number of MPI tasks and increases the number
of latitudes per subdomain, thereby reducing the communication
overhead compared with a pure MPI model.

Figure 2 shows the volume of communication between all pairs

of communicating processes within the dynamical core for both a
1D and a 2D (4 vertical level) domain decomposition each using
256 processors (divided between 64 MPI processes and 4 OpenMP
threads), as captured by the IPM profiling tool [20]. The communi-
cation pattern of the 1D domain decomposition is a straightforward
nearest neighbor pattern. This is expected as each subdomain en-
compasses all longitudinal points and borders only two other sub-
domains, one to the north and one to the south. On the other hand,
the point-to-point communication pattern of the 2D decomposition
is decidedly nonlocal. The bulk of the volume of communication is
still nearest neighbor but differs somewhat in detail.

For the 1D decomposition (Figure 2a), the two diagonals are con-
tinuous and represent processors which together contain all of the
horizontal points. In the 2D case (Figure 2b), the diagonals are seg-
mented into four parts, where each part corresponds to a subdomain
in the vertical decomposition. In this case, each of these segments
then represent processors which together contain all of the hori-
zontal points but over only a range of vertical levels. Note that the
intercepts with the boundaries of the plot also correspond with the
gaps in the diagonal segments. Hence, the number of continuous
diagonal segments (of paired processors) is equal to the vertical dis-
cretizationPz. There are alsoPz − 1 lines of communicating pro-
cessors parallel to and on either side of the two diagonals. These
then represent communications in the vertical direction which are
of a considerably lesser volume. Finally, there is a tilted grid of four
by four lines connecting these boundary intercepts. These lines rep-
resent the communication associated with transposition. Note the
differences in scale of the color bar in these two plots. This indi-
cates that total volume of communication in the 2D decomposition
is significantly reduced compared with the 1D approach, due to an
improved surface to volume ratio.

3.3 Experimental Results
Table 3 shows a performance comparison of the per processor

computational rate and percent of theoretical performance for the
Power3, Itanium2, X1, X1E, and ES. As mentioned previously, at-
tempts were made to optimize the performance of each machine
by utilizing a variety of compile and runtime configuration options.
OpenMP was utilized only on the Power3 and ES, as the other plat-



Power3 Itanium2 X1 (MSP) X1E (MSP) ESDecomp P
Gflop/P %Pk Gflop/P %Pk Gflop/P %Pk Gflop/P %Pk Gflop/P %Pk

32 0.12 8.3 0.40 7.2 1.72 13.5 1.88 10.4 1.33 16.6
64 0.12 8.2 — — — — 1.67 9.3 1.12 14.01D

128 0.11 7.6 — — — — — — 0.81 10.1
256 0.10 6.7 — — — — — — 0.54 6.7
128 0.11 7.6 0.33 5.8 1.34 10.5 1.48 8.2 1.01 12.7

2D 256 0.09 6.3 0.30 5.3 1.05 8.2 1.19 6.6 0.83 10.4
4Vert 376 — — 0.27 4.7 — — 0.99 5.5 — —

512 0.09 5.9 — — — — — — 0.57 7.0
336 0.09 5.7 0.29 5.2 0.96 7.5 1.09 6.1 0.79 9.8
644 — — 0.23 4.1 — — 0.71 4.0 — —2D
672 0.07 4.9 — — — — 0.70 3.8 0.56 7.07 Vert
896 0.06 4.3 — — — — — — 0.44 5.5

1680 0.05 3.7 — — — — — — — —

Table 3: Performance of FVCAM using various domain decompositions for theD grid on the Power3, Itanium2, X1, X1E, and ES

forms did not benefit. For these experiments, initialization was not
timed and simulation output was minimized and delayed until the
end of the run. Performance timings were collected for 1, 2, 3,
and/or 30 simulation days. The average time per simulation day
was calculated directly from the 30 simulation day runs. If 30 sim-
ulation day runs were too expensive, time per simulation day was
approximated by differencing the times required for the 1, 2, and
3 simulation day runs, thus eliminating both start-up costs and the
remaining output costs. As initialization and I/O costs are not re-
ported, the numbers in the table refer to only that portion of the
code spent advancing the physics and dynamics timesteps. (While
the I/O costs of FVCAM can be substantial if output is required
on a subdaily interval, results for typical long climate simulation
are output only every 30 simulated days, in which case I/O is not
usually a significant cost.)

Figure 3: Percentage of theoretical peak of FVCAM using var-
ious domain decompositions for theD grid on the Power3, Ita-
nium2, X1, X1E, and ES. (The Itanium2 P=672 data is based
on P=644 performance.)

Figure 3 shows a comparison of the percent of theoretical peak
processor performance obtained on each machine using selected
domain decompositions: P=32 (1D), P=256 (2D 4-levels), P=336

Figure 4: Simulated days per wall-clock day of FVCAM using
various domain decompositions for theD grid on the Power3,
Itanium2, X1, X1E, and ES

(2D 7-levels), and P=672 (2D 7-levels). (Note that the Thunder re-
sults shown for P=672 are actually for 644 processors.) Observe
that the ES consistently achieves the highest percentage of peak,
generally followed by the X1, X1E, Power3, and Itanium2. For all
machines, the percent of peak performance decreases as the num-
ber of processors increases, due in part to increased communica-
tion costs and load imbalances. The vector platforms also suffer
from a reduction in vector lengths at increasing concurrencies for
this fixed size problem. Note that the X1E processor increases FV-
CAM performance by about 14% compared to the X1, even though
its peak speed is 41% higher. This is partially due to increased
contention for memory and interconnect resources, as well as a rel-
ative increase in processor speed without a commensurate increase
in main memory performance.

Figure 4 shows a direct comparison of timing results performed
on all the machines for the three different domain decompositions
considered (one dimensional and two dimensional with either 4 or 7
vertical subdomains) for each of the machines. The figure of merit
most relevant to the climate modeler, namely how long it takes to



complete a given simulation, is shown in Figure 4 (in units of sim-
ulated days per wall-clock day). As production climate change in-
tegrations are typically in the range of 100 to 1000 simulated years,
achieving a factor of 1000 times or more is necessary for the sim-
ulation to be tractable. Each of the machines has been run close
to but not exceeding saturation, i.e. where this performance curve
turns over due to MPI communication costs and/or vector length
issues. The speedup over real time of over 4200 on 672 proces-
sors of the Cray X1E is the highest performance ever achieved for
FVCAM at this resolution.

4. GTC: TURBULENT TRANSPORT
IN MAGNETIC FUSION

GTC is a 3D particle-in-cell code used for studying turbulent
transport in magnetic fusion plasmas [13]. The simulation geom-
etry is that of a torus (see Figure 5), which is the natural config-
uration of all tokamak fusion devices. As the charged particles
forming the plasma move within the externally-imposed magnetic
field, they collectively create their own self-consistent electrostatic
(and electromagnetic) field that quickly becomes turbulent under
driving temperature and density gradients. Waves and particles
interact self-consistently with each other, exchanging energy that
grows or damps their motion or amplitude. The particle-in-cell
(PIC) method describes this complex phenomenon by solving the
5D gyro-averaged kinetic equation coupled to the Poisson equation.

(a) (b)

Figure 5: Advanced volume visualization of the electrostatic
potential field created by the plasma particles in a GTC sim-
ulation. Figure (a) shows the whole volume, and (b) a cross-
section through a poloidal plane where the elongated eddies of
the turbulence can be seen.∗

In the PIC approach, the particles interact with each other via
a spatial grid on which the charges are deposited, and the field is
then solved using the Poisson equation. By doing this, the number
of operations scales asN instead ofN2, as would be the case for
direct binary interactions. Although this methodology drastically
reduces the computational requirements, the grid-based charge de-
position phase is a source of performance degradation for both su-
perscalar and vector architectures. Randomly localized particles
deposit their charge on the grid, thereby causing poor cache reuse
on superscalar machines. The effect of this deposition step is more
pronounced on vector system, since two or more particles may con-
tribute to the charge at the same grid point — creating a potential
memory-dependency conflict.

The memory-dependency conflicts during the charge deposition
phase can be avoided by using the work-vector method [16], where

∗Images provided by Prof. Kwan-Liu Ma of UC Davis, as part
of the DOE SciDAC GPS project.

each element (particle) in a vector register writes to a private copy
of the grid. The work-vector approach requires as many copies of
the grid as the number of elements in the vector register (256 for the
ES and X1 in MSP mode). Although this technique allows full vec-
torization of the scatter loop on the vector systems, it consequently
increases the memory footprint 2–8X compared with the same cal-
culation on a superscalar machine. This increase in memory is the
main reason why GTC’s mixed-mode parallelism (MPI/OpenMP)
cannot be used on the vector platforms. The shared-memory loop-
level parallelism also requires private copies of the grid for each
thread in order to avoid memory contentions, thus severely limiting
the problem sizes that can be simulated. Furthermore, the loop-
level parallelization reduces the size of the vector loops, which in
turn decreases the overall performance.

4.1 Particle Decomposition Parallelization
GTC was originally optimized for superscalar SMP-based archi-

tectures by utilizing two levels of parallelism: a one-dimensional
MPI-based domain decomposition in the toroidal direction, and a
loop-level work splitting method implemented with OpenMP. How-
ever, as mentioned in Section 4, the mixed-mode GTC implemen-
tation is poorly suited for vector platforms due to memory con-
straints and the fact that vectorization and thread-based loop-level
parallelism compete directly with each other. As a result, previous
vector experiments [16] were limited to 64-way parallelism — the
optimal number of domains in the 1D toroidal decomposition. Note
that the number of domains (64) is not limited by the scaling of the
algorithm but rather by the physical properties of the system, which
features a quasi two-dimensional electrostatic potential when put
on a coordinate system that follows the magnetic field lines. GTC
uses such a coordinate system, and increasing the number of grid
points in the toroidal direction does not change the results of the
simulation.

To increase GTC’s concurrency in pure MPI mode, a third level
of parallelism was recently introduced. Since the computational
work directly involving the particles accounts for almost 85% of
the overhead, the updated algorithm splits the particles between
several processors within each domain of the 1D spatial decompo-
sition. Each processor then works on a subgroup of particles that
span the whole volume of a given domain. This allows us to divide
the particle-related work between several processor and, if needed,
to considerably increase the number of particles in the simulation.
The update approach maintains a good load balance due to the uni-
formity of the particle distribution.

There are several important reasons why we can benefit from ex-
periments that simulate larger numbers of particles. For a given
fusion device size, the grid resolution in the different directions is
well-defined and is determined by the shortest relevant electrostatic
(and electromagnetic) waves in the gyrokinetic system. The way to
increase resolution in the simulation is by adding more particles in
order to uniformly raise the population density in phase space or
put more emphasis near the resonances. Also, the particles in the
gyrokinetic system are not subject to the Courant condition limi-
tations [11]. They can therefore assume a high velocity without
having to reduce the time step. Simulations with multiple species
are essential to study the transport of the different products created
by the fusion reaction in burning plasma experiments. These multi-
species calculations require a very large number of particles and
will benefit from the added decomposition.

4.2 Experimental Results
For this performance study, we keep the grid size constant but

increase the total number of particles so as to maintain the same



Part/ Power3 Itanium2 Opteron X1 (MSP) X1 (4-SSP) ES SX-8P
Cell Gflop/P %PkGflop/P %PkGflop/P %PkGflop/P %PkGflop/P %PkGflop/P %PkGflop/P %Pk

64 100 0.14 9.3 0.39 6.9 0.59 13.3 1.29 10.1 1.12 8.6 1.60 20.0 2.39 14.9
128 200 0.14 9.3 0.39 6.9 0.59 13.3 1.22 9.6 1.00 7.7 1.56 19.5 2.28 14.2
256 400 0.14 9.3 0.38 6.9 0.57 13.1 1.17 9.1 0.92 7.4 1.55 19.4 2.32 14.5
512 800 0.14 9.4 0.38 6.8 0.51 11.6 — — — — 1.53 19.1 — —

1024 1600 0.14 8.7 0.37 6.7 — — — — — — 1.88 23.5 — —
2048 3200 0.13 8.4 0.37 6.7 — — — — — — 1.82 22.7 — —

Table 4: GTC performance on each of the studied architectures using a fixed number of particles per processor. SSP results are
shown as the aggregate performance of 4 SSPs to allow a direct comparison with MSP performance.

number of particles per processor, where each processor follows
about 3.2 million particles. Table 4 shows the performance results
for the six architectures in our study. The first striking difference
from the previous GTC vector study [16], is the considerable in-
crease in concurrency. The new particle decomposition algorithm
allowed GTC to efficiently utilize 2,048 MPI processes (compared
with only 64 using the previous approach), although this is not the
limit of its scalability. With this new algorithm in place, GTC ful-
filled the very strict scaling requirements of the ES and achieved
an unprecedented 3.7 Tflop/s on 2,048 processors. Additionally,
the Earth Simulator sustains a significantly higher percentage of
peak (24%) compared with other platforms. In terms of absolute
performance, the SX-8 attains the fastest time to solution, achiev-
ing 2.39 Gflop/s per processor. However, this is only about 50%
higher than the performance of the ES processor, even though the
SX-8 peak is twice that of the ES. We believe that this is due to the
memory access speed, to which GTC’s gather/scatter operations are
quite sensitive. Although the SX-8 has twice the raw computational
power, the speed for random memory accesses has not been scaled
accordingly. Faster FPLRAM memory is available for the SX-8 and
would certainly increase GTC performance; however this memory
technology is more expensive and less dense then the commodity
DDR2-SDRAM used in the evaluated SX-8 platform.

Of the superscalar systems tested, the AMD Opteron with Infini-
Band cluster (Jacquard) gives impressive results. GTC achieved a
little over 13% of peak on this computer and was 50% faster than on
the Itanium2 Quadrics cluster (Thunder). The InfiniBand intercon-
nect seems to scale very well up to the largest number of available
processors (512), although at the highest concurrency we do see
signs of performance tapering. On the other hand, the Quadrics-
Elan4 interconnect of Thunder scales extremely well all the way
up to the 2,048-processor case.

Observe that the X1(MSP) runs only two times faster than the
Opteron for the same number of processors, reaching only 10% of
peak, while the X1(SSP) achieves even slightly lower performance
than the MSP version. A preliminary performance analysis indi-
cates that a loop that represents over 20% of the runtime with the
current version of the code and benchmark problem, required very
little time in earlier X1 runs with the previous version of GTC and
a benchmark problem with many fewer particles per cell. Future
work will investigate the optimization of this loop nest, as it creates
a performance bottleneck on the X1 when using large numbers of
particles per cell.

Finally, note that the new particle decomposition added several
reduction communications to the code. TheseAllreducecalls in-
volve only the sub-groups of processors between which the parti-
cles are split within a spatial domain. As the number of processors
involved in this decomposition increases, the overhead due to these
reduction operations increases as well. Nonetheless, all of the stud-

ied interconnects showed good scale behavior, including the (rela-
tively old) SP Switch2 switch of the IBM Power3 (Seaborg).

5. LBMHD3D: LATTICE BOLTZMANN
MAGNETO-HYDRODYNAMICS

Lattice Boltzmann methods (LBM) have proved a good alter-
native to conventional numerical approaches for simulating fluid
flows and modeling physics in fluids [21]. The basic idea of the
LBM is to develop a simplified kinetic model that incorporates
the essential physics, and reproduces correct macroscopic aver-
aged properties. Recently, several groups have applied the LBM
to the problem of magneto-hydrodynamics (MHD) [8, 14] with
promising results. As a further development of previous 2D codes,
LBMHD3D simulates the behavior of a three-dimensional conduct-
ing fluid evolving from simple initial conditions through the onset
of turbulence. Figure 6 shows a slice through the xy-plane of an ex-
ample simulation. Here, the vorticity profile has considerably dis-
torted after several hundred time steps as computed by LBMHD.
The 3D spatial grid is coupled to a 3DQ27 streaming lattice and
block distributed over a 3D Cartesian processor grid. Each grid
point is associated with a set of mesoscopic variables whose val-
ues are stored in vectors of length proportional to the number of
streaming directions — in this case 27 (26 plus the null vector).

Figure 6: Contour plot of xy-plane showing the evolution of
vorticity from well-defined tube-like structures into turbulent
structures.

The simulation proceeds by a sequence of collision and stream
steps. A collision step involves data local only to that spatial point,
allowing concurrent, dependence-free point updates; the mesoscop-
ic variables at each point are updated through a complex algebraic
expression originally derived from appropriate conservation laws.
A stream step evolves the mesoscopic variables along the stream-
ing lattice, necessitating communication between processors for
grid points at the boundaries of the blocks. A key optimization
described by Wellein and co-workers [24] was implemented, sav-
ing on the work required by the stream step. They noticed that the



Grid Power3 Itanium2 Opteron X1 (MSP) X1 (SSP) ES SX-8P
Size Gflop/P %PkGflop/P %PkGflop/P %PkGflop/P %PkGflop/P %PkGflop/P %PkGflop/P %Pk

16 2563 0.14 9.3 0.26 4.6 0.70 15.9 5.19 40.5 — — 5.50 68.7 7.89 49.3
64 2563 0.15 9.7 0.35 6.3 0.68 15.4 5.24 40.9 — — 5.25 65.6 8.10 50.6

256 5123 0.14 9.1 0.32 5.8 0.60 13.6 5.26 41.1 1.34 42.0 5.45 68.2 9.52 59.5
512 5123 0.14 9.4 0.35 6.3 0.59 13.3 — — 1.34 41.8 5.21 65.1 — —

1024 10243 — — — — — — — — 1.30 40.7 5.44 68.0 — —
2048 10243 — — — — — — — — — — 5.41 67.6 — —

Table 5: LBMHD3D performance on each of the studied architectures for a range of concurrencies and grid sizes. The vector
architectures very clearly outperform the scalar systems by a significant factor.

two phases of the simulation could be combined, so that either the
newly calculated particle distribution function could be scattered to
the correct neighbor as soon as it was calculated, or equivalently,
data could be gathered from adjacent cells to calculate the updated
value for the current cell. Using this strategy, only the points on
cell boundaries require copying.

5.1 Vectorization Details
The basic computational structure consists of three nested loops

over spatial grid points (each typically run 100-1000 loop itera-
tions) with inner loops over velocity streaming vectors and mag-
netic field streaming vectors (typically 10-30 loop iterations), per-
forming various algebraic expressions. For the ES, the innermost
loops were unrolled via compiler directives and the (now) inner-
most grid point loop was vectorized. This proved a very effec-
tive strategy and this was also followed on the X1. In the case
of the X1, however, there is a richer set of directives to control
both vectorization and multi-streaming, to provide both hints and
specifications to the compiler. Finding the right mix of directives
required more experimentation than in the case of the ES. No ad-
ditional vectorization effort was required due to the data-parallel
nature of LBMHD. For the superscalar architectures, we utilized a
data layout that has been shown previously to be optimal on cache-
based machines [24], but did not explicitly tune for the cache size
on any machine. Interprocessor communication was implemented
by first copying the non-contiguous mesoscopic variables data into
temporary buffers, thereby reducing the required number of com-
munications, and then calling point-to-point MPI communication
routines.

5.2 Experimental Results
Table 5 presents LBMHD performance across the six architec-

tures evaluated in our study. Observe that the vector architectures
clearly outperform the scalar systems by a significant factor. In ab-
solute terms, the SX-8 is the leader by a wide margin, achieving the
highest per processor performance to date for LBMHD3D. The ES,
however, sustains the highest fraction of peak across all architec-
tures — an amazing 68% even at the highest 2048-processors con-
currencies. Further experiments on the ES on 4800 processors at-
tained an unprecedented aggregate performance of over 26 Tflop/s.
Examining the X1 behavior, we see that in MSP mode absolute
performance is similar to the ES, while X1(SSP) and X1(MSP)
achieve similar percentages of peak. The high performance of the
X1 is gratifying since we noted several outputed warnings concern-
ing vector register spilling during the optimization of the collision
routine. Because the X1 has fewer vector registers than the ES/SX-
8 (32 vs 72), vectorizing these complex loops will exhaust the hard-
ware limits and force spilling to memory. That we see no perfor-
mance penalty is probably due to the spilled registers being effec-

tively cached. We tried one additional experiment to compare the
performance of an equivalent amount of computational resources,
64 X1 MSPs versus 256 SSPs, over the same grid size of 2563. Re-
sults show that the LBMHD simulation is greatly benefiting from
the MSP paradigm, as it outperforms the SSP approach by over
50%.

Turning to the superscalar architectures, the Opteron cluster out-
performs the Itanium2 system by almost a factor of 2X. One source
of this disparity is that the Opteron achieves a STREAMS [6] band-
width of more than twice that of the Itanium2 (see Table 1). An-
other possible source of this degradation are the relatively high cost
of inner-loop register spills on the Itanium2, since the floating point
values cannot be stored in the first level of cache. Given the age and
specifications, the Power3 does quite reasonably, obtaining a higher
percent of peak that the Itanium2, but falling behind the Opteron.

6. PARATEC: FIRST PRINCIPLES
MATERIALS SCIENCE

PARATEC (PARAllel Total Energy Code [5]) performs ab-initio
quantum-mechanical total energy calculations using pseudopoten-
tials and a plane wave basis set. The pseudopotentials are of the
standard norm-conserving variety. Forces can be easily calculated
and used to relax the atoms into their equilibrium positions. PARA-
TEC uses an all-band conjugate gradient (CG) approach to solve
the Kohn-Sham equations of Density Functional Theory (DFT) and
obtain the ground-state electron wavefunctions. DFT is the most
commonly used technique in materials science, having a quantum
mechanical treatment of the electrons, to calculate the structural
and electronic properties of materials. Codes based on DFT are
widely used to study properties such as strength, cohesion, growth,
magnetic, optical, and transport for materials like nanostructures,
complex surfaces, and doped semiconductors.

PARATEC is written in F90 and MPI and is designed primarily
for massively parallel computing platforms, but can also run on
serial machines. The code has run on many computer architectures
and uses preprocessing to include machine specific routines such
as the FFT calls. Much of the computation time (typically 60%)
involves FFTs and BLAS3 routines, which run at a high percentage
of peak on most platforms.

In solving the Kohn-Sham equations using a plane wave basis,
part of the calculation is carried out in real space and the remainder
in Fourier space using parallel 3D FFTs to transform the wavefunc-
tions between the two spaces. The global data transposes within
these FFT operations account for the bulk of PARATEC’s commu-
nication overhead, and can quickly become the bottleneck at high
concurrencies. We use our own handwritten 3D FFTs rather than
library routines as the data layout in Fourier space is a sphere of
points, rather than a standard square grid. The sphere is load bal-



Power3 Itanium2 Opteron X1 (MSP) X1 (4-SSP) ES SX-8P
Gflop/P %Pk Gflop/P %Pk Gflop/P %Pk Gflop/P %Pk Gflop/P %Pk Gflop/P %Pk Gflop/P %Pk

64 0.94 62.9 — — — — 4.25 33.2 4.32 33.8 — — 7.91 49.4
128 0.93 62.2 2.84 50.7 — — 3.19 24.9 3.72 28.9 5.12 64.0 7.53 47.1
256 0.85 56.7 2.63 47.0 1.98 45.0 3.05 23.8 — — 4.97 62.1 6.81 42.6
512 0.73 48.8 2.44 43.6 0.95 21.6 — — — — 4.36 54.5 — —

1024 0.60 39.8 1.77 31.6 — — — — — — 3.64 45.5 — —
2048 — — — — — — — — — — 2.67 33.4 — —

Table 6: PARATEC results using 488 atom CdSe quantum dot on the evaluated platforms.SSP results are shown as the aggregate
performance of 4 SSPs to allow a direct comparison with MSP performance.

anced by distributing the different length columns from the sphere
to different processors such that each processor holds a similar
number of points in Fourier space. Effective load balancing is im-
portant, as much of the compute intensive part of the calculation is
carried out in Fourier space.

Figure 7: Conduction band minimum electron state for a CdSe
quantum dot of the type used in the PARATEC experiments
[23].

6.1 Experimental Results
Table 6 presents performance data for 3 CG steps of a 488 atom

CdSe (Cadmium Selenide) quantum dot and a standard Local Den-
sity Approximation (LDA) run of PARATEC with a 35 Ry cut-
off using norm-conserving pseudopotentials. A typical calculation
would require at least 60 CG iterations to converge the charge den-
sity for a CdSe dot. CdSe quantum dots are luminescent in the opti-
cal range at different frequencies depending on their size and can be
used as electronic dye tags by attaching them to organic molecules.
They represent a nanosystem with important technological appli-
cations. Understanding their properties and synthesis through first
principles simulations represents a challenge for large-scale paral-
lel computing, both in terms of computer resources and of code
development. This 488 atom system is, to the best of our knowl-
edge, the largest physical system (number of real space grid points)
ever run with this code. Previous vector results for PARATEC [16]
examined smaller physical systems at lower concurrencies. Fig-
ure 7 shows an example of the computed conduction band mini-
mum electron state for a CdSe quantum dot.

PARATEC runs at a high percentage of peak on both superscalar

and vector-based architectures due to the heavy use of the compu-
tationally intensive FFTs and BLAS3 routines, which allow high
cache reuse and efficient vector utilization. The main limitation to
scaling PARATEC to large numbers of processors is the distributed
transformations during the parallel 3D FFTs which require global
interprocessor communications. Even though the 3D FFT was writ-
ten to minimize global communications, architectures with a poor
balance between their bisection bandwidth and computational rate
will suffer performance degradation at higher concurrencies. Ta-
ble 6 shows that PARATEC achieves unprecedented performance
on the ES system, sustaining 5.5 Tflop/s for 2048 processors. The
declining performance at higher concurrencies is caused by the in-
creased communication overhead of the 3D FFTs, as well as re-
duced vector efficiency due to the decreasing vector length of this
fixed-size problem. On the SX-8 the code runs at a lower percent-
age of peak than on the ES, due most likely to the slower memory
on the SX8; however, the SX8 does achieve the highest per proces-
sor performance of any machine tested to date.

Observe that absolute X1 performance is lower than the ES, even
though it has a higher peak speed. One reason for this is that the
relative difference between vector and nonvector performance is
higher on the X1 than on the ES. In consequence, on the X1 the
code spends a much smaller percentage of the total time in highly
optimized 3D FFTs and BLAS3 libraries than on any of the other
machines. The other code segments are handwritten F90 routines
and have a lower vector operation ratio currently, resulting in rel-
atively poorer X1 performance. Running PARATEC in SSP mode
on the X1 was found to give some improvements in performance
over MSP mode. For example using the 128 MSP in SSP mode
(i.e. 512 SSPs) resulted in a performance increase of 16%. This
is partly because in a serialized segment of a multistreamed code,
only one of the four SSP scalar processors within an MSP can do
useful work; however running the same code in SSP mode allows
all four scalar units to participate in the computation.

PARATEC also runs efficiently on the scalar platforms, achiev-
ing over 60% of peak on the Power3 using 128 processors, with rea-
sonable scaling continuing up to 1024 processors. This percentage
of peak is significantly higher than on any of the other applications
studied in this paper, and is in large part due to the use of the opti-
mized ESSL libraries for the FFTs and dense linear algebra opera-
tions used in the code. The loss in scaling on the Power3 is primar-
ily due to the increased communication cost at high concurrencies.
The Itanium2 and Opteron systems show a similar high percentage
of peak at lower concurrencies, giving the Itanium2 a higher abso-
lute performance than the Opteron system. This is again due mainly
to the use of optimized FFT and BLAS3 libraries, which are highly
cache resident. Thus PARATEC is less sensitive to memory access
issues on the Itanium2 than the other codes tested in this paper. Ad-
ditionally, the Opteron’s performance can be limited for dense lin-



Figure 8: Overview of performance for the four studied applications on 256 processors, comparing (left) percentage of theoretical
peak and (right) absolute speed relative to ES.

ear algebra computations due to its the lack of floating-point mul-
tiply add (FMA) hardware. The Quadrics-based Itanium2 platform
also shows better scaling characteristics at high concurrency than
the InfiniBand-based Opteron system, for the global all-to-all com-
munication patterns in PARATEC’s 3D FFTs.

7. CONCLUSIONS
This study examines four diverse scientific applications on the

parallel vector architectures of the X1, X1E, ES and SX-8, and
three leading superscalar platforms utilizing Power3, Itanium2, and
Opteron processors. Overall results show that the vector platforms
achieve the highest aggregate performance on any tested architec-
ture to date across our full application suite, demonstrating the
tremendous potential of modern parallel vector systems. Our work
makes several significant contributions. We are the first to present
vector results for the Community Atmosphere Model using the finite-
volume solver in the dynamics phase of the calculation. Results
on a0.5◦x0.625◦ (D) mesh show that the X1E achieves unprece-
dented aggregate performance at the studied high-fidelity resolu-
tion. Additionally, we perform a detailed analysis of FVCAM’s
topological communication requirements using various domain de-
composition approaches. We also present a new decomposition-
based parallelization for the GTC magnetic fusion simulation. This
new approach allows scalability to 2048 processors on the ES (com-
pared to only 64 using the previous code version), opening the
door to a new set of high-phase space-resolution simulations that
to date have not been possible. Next we present, for the first time,
LBMHD3D: a 3D version of a Lattice Bolzmann magneto-hydro-
dynamics application used to study the onset evolution of plasma
turbulence. The ES shows unprecedented LBMHD3D performance,
achieving over 68% of peak for a total of 26Tflop/s on 4800 pro-
cessors. Finally, we investigate performance of the PARATEC ap-
plication, using the largest cell size atomistic simulation ever run
with this material science code. Results on 2048 processors of the
ES show the highest aggregate performance to date, allowing for
high-fidelity simulations that hitherto have not been possible with
PARATEC due to computational limitations.

Figure 8 presents a performance overview for the four studied
applications using 256 processors, comparing (left) percentage of
theoretical peak and (right) runtime relative to ES. Overall, the ES
achieves the highest percentage of peak across all of the archi-

tecture examined in our study. The newly-released SX-8 can not
match the efficiency of the ES, due in part, to the higher mem-
ory latency overhead for irregular data accesses. In addition, we
note that the ES and SX-8 consistently achieve a higher fraction
of peak than the X1, in most cases considerably higher. This is
due, in part, to superior scalar processor performance and memory
bandwidth. The SX-8 does achieve the highest per-processor per-
formance for LBMHD3D, GTC, and PARATEC, while the newly-
released X1E attains the highest per-processor performance for FV-
CAM (FVCAM results on the SX-8 are currently unavailable and
X1E data are available only for FVCAM currently.) Results also
show that for FVCAM, the X1E percentage of peak is somewhat
lower than the X1, due in part to the architectural balance of the
X1E, which utilizes twice as many MSPs per node and a higher
clock speed (compared with the X1), without a commensurate in-
crease in memory performance. Future work will focus extensively
on evaluating X1E behavior.

Our work also examines the tradeoffs between running in either
SSP or MSP modes on the X1. For a fixed size problem, one can
perform a performance comparison by either using one MSP or
four times as many SSPs. MSP mode has the advantage of in-
creasing the granularity of the subdomains, requiring one fourth
as many processes or threads, thus improving the surface to vol-
ume ratio and the corresponding communication overhead. On the
other hand, for applications with nontrivial portions of unvectorized
code, the SSP approach may be advantageous, since all four SSP
scalar processors can participate in the computation — compared
with MSP mode where only one of the four SSP scalar processors
can do useful work. Finally, SSP mode may also hold an advantage
for codes containing short vector lengths or loop bodies that prevent
multi-streaming. Results show that for LBMHD3D and GTC the
amount of work not effectively multi-streamed, but still amenable
to vectorization, appears very low. Correspondingly, both applica-
tions benefit from running in MSP mode. For PARATEC, however,
the amount of code that does not vectorize on the X1 is sufficiently
large that SSP mode confers a performance advantage.

Finally, a comparison of the modern superscalar platforms shows
that the Opteron dramatically outperforms the Itanium2 system for
GTC and LBMHD3D, with the situation reversed for PARATEC
(Opteron results are not available for FVCAM). The origin of this
difference is composed of multiple effects, including the CPU ar-



chitecture, the hierarchical memory behavior, and the network in-
terconnect. GTC and LBMHD3D have a relatively low computa-
tional intensity and high potential for register spilling (and irregular
data access for GTC), giving the Opteron an advantage due to its
on-chip memory controller and (unlike the Itanium2) the ability to
store floating point data in the L1 cache. The Opteron system also
benefits from its 2-way SMP node that has STREAM bandwidth
performance more than twice that of the Itanium2, which utilizes a
4-way SMP node configuration.

PARATEC, on the other hand, relies on global data transposi-
tions, giving the Quadrics-based Itanium2 system a performance
advantage over the InfiniBand-based Opteron for large concurrency
simulations. Additionally, since PARATEC relies heavily on dense
linear algebra computations, the Opteron performance may be lim-
ited (compared with the Itanium2 and Power3) due to its lack of
FMA support. To attain peak performance, the Opteron also re-
lies on SIMD-based SSE instructions, which require two symmetric
floating point operations to be executed on operands in neighboring
slots of its 128-bit registers — a constraint that cannot be satisfied
at all times. We also note that the (relatively old) IBM Power3 ar-
chitecture consistently achieves a higher fraction of peak than the
Itanium2 system and shows good scaling performance across our
entire application suite.

Future work will extend our study to include applications in the
areas of molecular dynamics, cosmology, and combustion. We are
particularly interested in investigating the vector performance of
adaptive mesh refinement (AMR) methods, as we believe they will
become a key component of future high-fidelity multi-scale physics
simulations across a broad spectrum of application domains.
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