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ABSTRACT 
Highly optimized large-scale lattice Boltzmann 
simulations of 3D magnetohydrodynamic turbulence are 
performed on the Earth Simulator.  We discuss code 
optimization schemes for both single processor and 
parallel performance, and present performance data at 
various concurrencies and grid sizes.  A production run 
on a 14403 grid using 4800 processors achieved a total 
aggregate performance of over 26 Tflop/s, making this 
study one of the largest yet undertaken and allowing 
access to an unprecedented level of detail. While a full 
analysis will require much more work, representative 
features of some 3D MHD turbulence are presented. 
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1. INTRODUCTION 
Magnetohydrodynamics (or MHD) describes self-
consistently the macroscopic behavior of an electrically 
conducting fluid by combining the Navier-Stokes 
equations with Maxwell’s equations.  MHD turbulence 
plays an important role in many branches of physics [1]:  
from astrophysical phenomena in stars, accretion discs, 
interstellar and intergalactic media to plasma instabilities 
in magnetic fusion devices. It is well known that the 
simulation of turbulent flows in complex geometries 
places great strain on computational algorithms designed 
for the direct solution of the MHD equations. 
Sophisticated schemes must be developed to handle the 
singular matrices that crop up in accurately resolving the 
nonlinear convective derivatives, e.g., high order finite 
elements or Newton-Krylov algorithms. 

Lattice Boltzmann (LB) schemes are an 
alternate approach that circumvent the resolution 
problems with the macroscopic nonlinear convective 
derivatives by embedding into a higher dimensional 
(kinetic) phase space. While this appears to be an 
inverse-Statistical mechanical approach, the resulting 
kinetic equations can be discretized on a phase space 
lattice that has a minimal number of (discrete) velocities 
sufficient that the long-time, long-wavelength 
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(Chapman-Enskog) limit reproduces the desired 
macroscopic nonlinear equations. With simple linear 
advective terms the difficult macroscopic non-local 
nonlinearities are recovered by simple polynomial (local) 
nonlinearities in the collision operator of the kinetic 
equation. 

For Navier-Stokes turbulence, one needs to 
introduce only a scalar distribution whose discrete 
moments yield the fluid density and mean velocity. 
While this LB algorithm has been used extensively over 
the past ten years for simulating Navier-Stokes flows [2], 
its application to MHD has not been as vigorously 
pursued─presumably because of the difficulty of 
introducing the magnetic field at a kinetic level. The first 
attempts introduced a complex double velocity lattice-
streaming algorithm on a scalar distribution function. 
Recently for 2D MHD, Dellar [3] introduced a separate 
vector distribution function for the magnetic field whose 
zero (vector discrete) moment yielded the magnetic field. 
These sets of coupled kinetic equations could then be 
discretized on the standard lattices used in fluid 
turbulence. Here we extend this algorithm to 3D MHD. 

In earlier work [4], we noted that the Earth 
Simulator showed very impressive performance for a 
variety of scientific applications, including a two-
dimensional LB application. The very high memory 
bandwidth coupled with the large amount of data 
parallelism present in the LB scheme made this 
architecture an obvious choice for some of the largest LB 
MHD simulations attempted so far. 

 
2. Resistive Magnetohydrodynamic 
Turbulence 
Here we consider the compressible resistive MHD 
equations for the density ρ, velocity u and magnetic field 
B 

ρ
∂u
∂t

+ u.∇u⎛
⎝⎜

⎞
⎠⎟

 = − ∇p + ∇ × B( )× B + μ∇2u  

    ∂B
∂t

 = ∇ × u × B( ) + η∇2B                  (1) (1) 

    ∂ρ
∂t

 +  ∇. ρ  u( ) =  0  

Closure is achieved by an isothermal equation of state: 
p = ρ  cs

2  with constant sound speed cs and ∇. B = 0 . 
The disparate length and time scales that appear in 

the solutions of resistive MHD require careful numerical 
treatment. A semi-implicit time scheme with high-order 
finite element spatial discretization will result in the 
inversion of ill-conditioned matrices which appear as a 
manifestation of the underlying numerical instabilities 
inherent in the explicit numerical scheme. The ill-

conditioned matrices are handled in Jacobi-free Newton 
Krylov techniques by suitably chosen pre-conditioners. 
While the implicit time step interval can be on the order 
of 200 times greater than that permitted by Courant-
Friedrichs-Levy (CFL) constraints on standard explicit 
codes, the overall speed-up of the implicit codes is only a 
factor of 10-30 faster due to all the extra computational 
effort.  

Here we present an alternative explicit scheme[3, 5] 
to direct MHD solvers, which bypasses the difficult 
resolution of the nonlinear convective derivatives by 
embedding the problem into a higher dimensional kinetic 
phase space. In this lattice Boltzmann method (LBM), 
we discretize a set of coupled linear scalar-vector 
Bhatnagar-Gross-Krook (BGK)[6] kinetic equations  

 
∂f x,ξ, t( )

∂t
 + ξg∇f x,ξ, t( ) = −

1
τ u

f x,ξ, t( )− f eq x,ξ, t( )⎡⎣ ⎤⎦

 
∂g x,ξ,t( )

∂t
 + ξg∇g x,ξ, t( ) = −

1
τm

g x,ξ, t( )− geq x,ξ, t( )⎡⎣ ⎤⎦

 
(2) 

 
where one connects back to the macroscopic variables by 
the appropriate moments: 
 ρ x,t( ) = dξ  f x,ξ, t( )∫        

 ρ u x,t( ) = dξ  f x,ξ,t( ) ξ∫          (3) 

  B x,t( ) = dξ  g x,ξ,t( )∫   

τu and τm are the relaxation rates at which collisions drive 
the distribution functions to their equilibrium states: f → 
f eq and g → geq. The nonlinear convective derivatives in 
MHD are now replaced by linear kinetic advective terms 
in the LBM. On discretizing the kinetic equations, one 
chooses the velocity lattice geometries and the 
polynomial representation of f eq(u,B) and geq(u,B) so 
that in the Chapman-Enskog (long wavelength, long 
time) limit one recovers the original nonlinear resistive 
MHD equations (1).   

For 3D resistive MHD, an appropriate phase 
velocity lattice has 27 velocities: ξ → cα, α = 1,…,27, 
where the speeds on a unit cube are √2 [velocities of the 
form (±1,±1,0), α = 1,…,12], 1 [velocities of the form 
(±1,0,0), α = 13,…,18], √3 [velocities of the form 
(±1,±1,±1), α = 19,…,26] as well as one rest particle α = 
27.  The lattice symmetries are such that the resulting 
discretized kinetic equations (∆x = 1 = ∆t)  

        

 

fα x + cα , t +1( ) =  fα x,t( ) −  
1
τ u

fα x, t( ) −  fα
eq x, t( )⎡⎣ ⎤⎦  ,   α = 1...... 27

       (4)

gα x + cα , t + 1( ) =  gα x, t( ) −  
1
τm

gα x, t( ) −  gα
eq x, t( )⎡⎣ ⎤⎦   ,   α = 13, ... , 27

                    



 
are fully explicit, second order in space and time. The 
asymmetry in the choice of the (scalar) velocity and 
(vector) magnetic distributions arises from the different 
symmetry properties of the second moment tensors 
arising in Eq. (2): 

Πij  =  ρcs
2 +

B2

2
⎛
⎝⎜

⎞
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δ ij  + ρuiu j  − Bi Bj  = Π ji  =  fαcα icα j

α =1

27

∑

Λij = Biu j  − Bjui  = − Λ ji  = cα i  gα j
α =13

27

∑      (5) 

Moreover, because closure for the gα -equation is 

attained at the 1st moment (while that for fα -equation is 
attained at the 2nd moment), the number of phase space 
velocities to recover information on the magnetic field is 
reduced from 27 to 15. The nonlocal nonlinearities in the 
resistive MHD are recovered from the linear LBM 
through the quadratic local field nonlinearities in the 
relaxation distribution functions:  

fα
eq = fα

eq u ⋅ cα , B ⋅ cα , u2 , B2( ),     
gα

eq = gα
eq B, B ⋅ cα , u ⋅ cα( )  (6) 

 
and the transport coefficients are related to relaxation 
rates 

μ =
1
3
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1
2

⎛
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1
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1
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⎛
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 (7) 

Thus, in a minimal dimensional discrete phase 
space the evolution of the distribution functions in LBM 
are obtained from: (a) BGK collisional relaxation, which 
uses only local information at each spatial node, and (b) 
Lagrangian streaming of this information from one 
spatial node to neighboring nodes. This makes LBM 
ideal for large-scale vector parallel machines like the 
Earth Simulator. 

As can be expected from explicit algorithms, but 
with kinetic CFL=1, LBM is prone to numerical 
nonlinear instabilities as one pushes to even higher 
Reynolds numbers. These numerical instabilities arise 
since there are no constraints imposed to enforce the 
distribution functions to remain non-negative. Such 
entropic LBM algorithms, which do persevere the non-
negativity of the distribution functions---even in the limit 
of arbitrary small transport coefficients---now do exist 
for Navier-Stokes turbulence [7], and there is active 
research in developing such entropic LBM algorithms 
for MHD.   

Finally, we should comment on the important 
constraint ∇ ⋅B = 0  [8]. While LBM does not enforce 
this constraint explicitly, numerous tests have indicated 
that the algorithm somehow keeps ∇⋅B  within 
acceptable bounds without the need for divergence 
cleaning. 

 
3. The Earth Simulator 
The Earth Simulator (ES) hardly needs an introduction. 
Since it debuted in the spring of 2002 it has attracted 
worldwide attention─it occupied the number 1 spot on 

the Top 500[9] list for a record two and a half years 
before moving down the list in November 2004. 

The ES uses a dramatically different architectural 
approach than conventional cache-based systems that 
comprise the rest of the top 10 spots in the Top 500 list. 
Powerful vector processors are connected via a fast 
single stage switch.  

 The 1000 MHz ES processor contains an 4-way 
replicated vector pipe capable of issuing a multiply-add 
each cycle, for a peak performance of 8.0 Gflop/s per 
CPU. The processors contain 72 vector registers, each 
holding 256 64-bit words (vector length = 256).  For 
non-vectorizable instructions, the ES contains a 500 
MHz scalar processor with a 64 KB instruction cache, a 
64 KB data cache, and 128 general-purpose registers. 
The 4-way superscalar unit has a peak of 1.0 Gflop/s and 
supports branch prediction, data prefetching, and out-of-
order execution.  

Like traditional vector architectures, the ES vector 
unit is cacheless. Memory latencies are masked by 
overlapping pipelined vector operations with memory 
operations. The main memory chip for the ES uses a 
specially developed high speed DRAM called FPLRAM 
(Full Pipelined RAM) operating at 24 ns bank cycle 
time. Each SMP contains eight processors that share the 
nodes memory with a bidirectional bandwidth of 32 
GB/s.  

The ES contains 640 nodes connected through a 
custom single-stage crossbar. This high-bandwidth 
interconnect topology provides impressive 
communication characteristics, as all nodes are a single 
hop from one another. The peak performance of the 
interconnect is 12.3 GB/s (11.8 GB/s measured with 
MPI) in each direction. The latency of most internode 
MPI functions is approximately 6μs [10]. 

The 5120-processor ES runs Super-UX, a 64-bit 
Unix operating system based on System V-R3 with 
BSD4.2 communication features. As remote ES access is 
not available, the results reported here were performed 
during the authors' visit to the Earth Simulator Center 
located in Kanazawa-ku, Yokohama, Japan in October 
2004, and later by one of us (YT) with local access. 

 
4. Computational Implementation 
While LBM methods lend themselves to easy 
implementation of difficult boundary geometries, e.g., by 
the use of bounce-back to simulate no slip wall 
conditions, here we report on 3D MHD simulations 
under periodic boundary conditions, with the spatial grid 
and phase space velocity lattice overlaying each other. 
Thus, the time-advanced streamed distribution functions 
lie directly on the spatial lattice nodes and no 
interpolation is needed. Of course, interpolation would 
be needed if non-uniform spatial grids had been 
introduced. The structure of the program is 
straightforward, two multi-dimensional arrays hold the 
particle distribution function, f, and magnetic field 
distribution function, g, for each of the rectilinear mesh 
of grid points. We use the 3DQ27 model which, as 
previously noted, uses 27 discrete velocities for f, and 15 
(corresponding to the last 15 vectors of f) for g. The 



arrays are further doubled in size to accommodate the 
values for the current and next time step in the 
simulation. Approximately 1 KB of storage is required 
per grid point, leading to quite large memory 
requirements for relatively small grids. 

     After initialization, the simulation proceeds 
conceptually via two phases, each repeated for every 
time step. In the first phase, collision, the macroscopic 
quantities, density, momentum density, and magnetic 
field are constructed from the moment expressions 
detailed above, the equilibrium values f eq and geq 
calculated, and updated values of f and g are calculated 
from (4). In the second phase, stream, the updated values 
are streamed to the appropriate neighboring cell 
according to the value of cα. The first step is 
computationally intensive, but requires only data local to 
the grid point. The second step is a set of shift 
operations, moving data from grid point to grid point 
according to the lattice vector. 

     Wellein and co-workers have discussed optimal 
layouts for the particle distribution function functions in 
the case of LB fluid dynamics [11]. For most 
architectures they found the “propagation optimized 
layout” to be optimal, where the first dimensions are the 
Cartesian coordinates, followed by an index representing 
the streaming vector, i.e. f(x,y,z,27). We have 
followed this choice, and simply extended it for the 
magnetic field distribution function, 
g(x,y,z,13:27,3). Fortran array syntax is assumed 
with x varying fastest when stepping contiguously 
through memory. The simplest implementation is 
outlined in the code fragments shown in Figures 1 and 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

For the parallel implementation each array is 
partitioned onto a 3-dimensional Cartesian processor 
grid, and MPI is used for communication. As in most 
simulations of this nature, ghost cells are used to hold 
copies of the planes of data from neighboring processors. 
For ghost cell updates during the stream phase, we use 
the shift algorithm [12]. In this method we make use of 
the fact that after the first exchange is completed in one 
direction, we have partially populated ghost cells. The  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 Outline of initial stream routine 
 
next exchange includes this data, further populating the 
ghost cells. A diagram showing the 2D case is shown in 
Figure 3. 

This procedure has the advantage of reducing the 
number of neighbors included in message-passing from 
26 to 6, a beneficial optimization considering the MPI 
latency of the ES is reasonably high compared with the 
bandwidth. Because different lattice vectors contribute to 
different spatial directions, the data to be exchanged are 
not contiguous. For example, 12 of the 26 lattice vectors 
have a component in the +x direction, and must be sent 
in this direction, but are not contiguous in the arrays f or 
g. The data is packed into a single buffer, resulting in 6 
message exchanges per time step. The initial 
implementation made use of mpi_isend/mpi_irecv 
pairs. 

Initial experiments using 4 processors on the ES 
showed very poor single processor performance, about 
330 Mflop/s. Using the ftrace tool showed that while 
the vector operation ratio (VOR) was reasonably high at 
89%, the average vector length (AVL) was very short at 
around 10. Inspection of the compiler listing showed that 

function collision 
dimension f(0:nx+1,0:ny+1,0:nz+1,27),      

g(0:nx+1,0:ny+1,0:nz+1,13:27,3) 
dimension feq(0:nx+1,0:ny+1,0:nz+1,27), 

geq(0:nx+1,0:ny+1,0:nz+1,13:27,3) 
 
do x=1,nx: do y=1,ny: do z=1,nz 
 do i=1,27 
! compute density, momentum density 
   density+=f(x,y,z,i) 
   … 
 end do 
 do i=13,27 
! compute magnetic field 
   b(1)+=g(x,y,z,i,1) 
   … 
 end do 
 
 do i=1,27 
! compute feq 
   feq(x,y,z,i)=… 
   … 
 end do 
 do i=13,27 
! compute geq 
   geq(x,y,z,i,1)=… 
   … 
 end do 
end do: endo do: end do 

function stream 
dimension f(0:nx+1,0:ny+1,0:nz+1,27), 

g(0:nx+1,0:ny+1,0:nz+1,13:27,3) 
dimension feq(0:nx+1,0:ny+1,0:nz+1,27), 

geq(0:nx+1,0:ny+1,0:nz+1,13:27,3) 
 
! update all ghost cells, only 1 strip  
! is shown 
do dir={1,2,9,11,13,14,16,18,24} 
  feq(nx,:,:,dir) sent via MPI calls 
  feq(0,:,:,dir) recv via MPI calls 
end do 
do dir={13,14,16,18,24} 
  geq(nx,:,:,dir,:) sent via MPI calls 
  geq(0,:,:,dir,:) recv via MPI calls 
end do 
… 
 
do x=1,nx: do y=1,ny: do z=1,nz 
! stream feq and geq values to appropriate  
! neighboring cells 
  f(x,y,z,1)=feq(x+1,y,z,1) 
  f(x,y,z,2)=feq(x,y+1,z,2) 
… 
  g(x,y,z,1,:)=geq(x+1,y,z,1,:) 
  g(x,y,z,2,:)=geq(x,y+1,z,2,:) 
 
end do: endo do: end do 

Figure 1 Outline of initial collision routine 



the innermost loops (see Figure 1) had been vectorized, 
corroborating the ftrace output. To improve 
performance, the innermost loops were unrolled using 
compiler directives and the innermost grid point loop 
(over coordinate z) vectorized giving a much-improved 
result of 3.97 Gflop/s with an AVL of over 255 and VOR 
of over 99%. We should note that the choice of mapping 
lattice to processor grid sets the dimensions of nx, ny, 
and nz. This in turn affects the overall vector length in 
the collision routine. In all our experiments the 
decomposition was chosen to preserve a vector length of 
at least 256. The decompositions used are shown in 
Table 1. 

 

 
A second key optimization, described by several 

groups[13, 11], was then implemented. They noticed that 
the two phases of the LB simulation could be combined, 
so that either the newly calculated particle distribution 
function could be scattered to the correct neighbor as 
soon as it was calculated, or equivalently, data could be 
gathered from adjacent cells to calculate the updated 
value for the current cell.  

The memory access pattern for the collision phase 
becomes much more complex, but the amount of data 
transferred each time step is reduced dramatically. Figure 
4 attempts to sketch how we implemented the gather 
version of this algorithm. The stream function 
corresponding to this new collision contains only the 
code to exchange ghost cell values via MPI.  

We benchmarked the effect of this algorithm 
change on a small 2563 grid simulation running on 16 
processors. The effect was to boost the per processor 
performance by 13% to 4.8 Gflop/s, and produce a 
decrease in time to solution of 12%. 

Turning to parallel performance, we examined the 
behavior of 256 and 512 processor simulations for an 
intermediate 5123 grid. A speedup of 1.978 was obtained 
on doubling the processor count, with the larger run 
achieving 5.2 Gflop/s per processor. Two experiments to 
improve MPI performance were conducted, to see if the 

already outstanding scaling could be improved. The first 
was to replace the mpi_isend/ mpi_irecv/ 
mpi_wait calls with simple mpi_sendrecv calls. 
This was motivated by the fact that little computational 
work (just a small amount of copying to the send buffers) 
could be overlapped with communication, and that the 
mpi_wait calls would likely be associated with some 

 

 
Figure 4 Optimized LB MHD code 
 
additional overhead. The performance of the 
mpi_sendrecv implementation was close enough to 
that of the original implementation to be within the 
variability we had seen during several runs, 
approximately 4%. The second experiment concerns the 
use of global memory. The NEC MPI implementation 
reserves an area of memory on each node through which 
all messages are staged. User defined storage may be 
allocated in this area either by compiler directives, or by 
allocating memory via mpi_alloc_mem. The code 
was slightly modified to use the latter approach, and 
timings were obtained for the 256 and 512 processor 
runs. Again, the performance fell into the range of times 
we had observed for the initial version. With hindsight, 
the reason is quite clear. For messages of this size 
(roughly 1-2 MB, so latency dominates), compared with 
the cost of an MPI message, moving data within memory 

function collision 
dimension f(0:nx+1,0:ny+1,0:nz+1,27), 
g(0:nx+1,0:ny+1,0:nz+1,13:27,3) 
dimension feq(0:nx+1,0:ny+1,0:nz+1,27), 
geq(0:nx+1,0:ny+1,0:nz+1,13:27,3) 
dimension ft(27), gt(27,3) 

 
do x=1,nx: do y=1,ny: do z=1,nz 
! collect feq and geq values from  
! appropriate neighboring cells 

ft(1)=f(x+1,y,z,1) 
ft(2)=f(x,y+1,z,2) 
… 
gt(1,:)=g(x+1,y,z,1,:) 
gt(2,:)=g(x,y+1,z,2,:) 
… 
do i=1,27 
! compute density, momentum density 
  density+=ft(i) 
… 
end do 
do i=13,27 
! compute magnetic field 
  b(1)+=gt(i,1) 
… 
end do 
 
do i=1,27 
! compute feq 
  feq(x,y,z,i)= 
… 
end do 
do i=13,27 
! compute geq 
  geq(x,y,z,i,1)= 
… 
end do 
end do: endo do: end do 

Figure 3 a) ghost cells (green) populated by first 
exchange b) this data then used to populate ‘corner’ 
ghost cells when exchanged in other direction 



is extremely fast on the ES. That is, each message is sped 
up by only a small amount. In addition, looking from the 
single node performance point of view, for the 512 
processor case, assuming we save one memory copy on 
the send and one on the receive, we eliminate only about 
8 GW of copying. This is less than 0.5% of the total 
vector elements processed during all operations.  

Turning to our first production grid of 10243 we 
carried out simulations at 1024, 2048, and 4096 
processors. Table 1 shows performance data for these 
and the previous two benchmarking runs described 
above.

Table 1 Performance Data for LBMHD obtained via ftrace 
 
 
 
 
 
 
 
 
 
 
For each grid size, with increasing concurrency, the 
performance per processor drops off slightly. This is 
mainly the effect of communication overhead increasing, 
due to both the cost of communication and the increasing 
ratio of communication to computation. Both of these 
effects can be seen in the column listing the percentage 
of time spent in MPI communication. The VOR and 
AVL values show that the performance of the 
computational kernel is hardly affected by the scaling up 
of the problem. The previously discussed experiments 
were performed with all I/O turned off. Our application 
can use either MPI I/O or I/O to separate files to record 
snapshots for visualization, or for saving the final state. 
Even though the ES can support MPI I/O, because each 

node has a separate filesystem and MPI I/O is 
implemented through a software layer on top of this, the 
separate file I/O strategy proved the most efficient. 
Saving the full magnetic field and velocity data at 4096 
processors took less than an additional 1% wall clock 
time for a simulation of 5000 iterations (1.5 seconds out 
of 315). Finally, for one special run using a 14403 grid 
and 4800 processors we ran the simulation at length to 
probe the onset evolution of turbulence at high 
resolution. This calculation ran for almost 2 hours at an 
average performance of 5.47 Gflop/s per processor 
giving a total aggregate performance of 26.25 Tflop/s. 
The ftrace output is shown is Figure 5.

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 ftrace output from a 4800 processor 14403 grid point simulation 

Proc. Grid Decomp 
px/py/pz 

% MPI 
comm. 

Avg. Msg. Size 
(MB) 

Perf./proc. 
Gflop/s 

VOR AVL 

256 512 16/8/2 7.7 2.1 5.43 99.72 254.2 
512 512 16/16/2 9.1 1.1 5.19 99.59 253.2 
1024 1024 16/16/4 5.1 2.3 5.44 99.62 254.5 
2048 1024 32/16/4 8.6 2.1 5.36 99.71 254.5 
4096 1024 32/32/4 - 1.1 5.16 99.58 253.3 

Global Data of 4800 processes: 
============================= 
                                      Min [U,R]             Max [U,R]         Average  
Real   Time (sec)           :     7009.577 [0,1727]     7014.524 [0,3936]     7012.237 
User   Time (sec)           :     6980.809 [0,47]       7008.636 [0,58]       7002.136 
System Time (sec)           :        0.108 [0,3174]       14.399 [0,2420]        2.096 
Vector Time (sec)           :     6750.045 [0,599]      6806.688 [0,1]        6779.005 
Instruction Count           : 442363454165 [0,47]   444864848376 [0,6]    444098440561 
Vector Instruction Count    : 275326393521 [0,47]   275730111623 [0,1]    275611247439   
 Vector Element Count        : 66001820265319 [0,900]  66135946388005 [0,4494] 66090298297808 
 FLOP Count                  : 38290765605961 [0,2404] 38290765620970 [0,0]    38290765607203 
MOPS                        :     9448.137 [0,539]      9487.749 [0,1253]     9462.661 
MFLOPS                      :     5463.369 [0,58]       5485.147 [0,47]       5468.446 
Average Vector Length       :      239.640 [0,299]       239.873 [0,1734]      239.795 
Vector Operation Ratio (%)  :       99.745 [0,6]          99.748 [0,242]        99.746 
Memory size used (MB)       :     1391.518 [0,2404]     1395.830 [0,0]        1391.831 

 
 

Overall Data: 
============== 
Real   Time (sec)           :     7014.524 
User   Time (sec)           : 33610251.045 
System Time (sec)           :    10060.747 
Vector Time (sec)           : 32539225.401 
GOPS   (rel. to User Time)  :    45420.738 
GFLOPS (rel. to User Time)  :    26248.517 
Memory size used (GB)       :     6524.206 



5. Simulation Results 
     2D LB simulations with scalar distributions for both 
Navier-Stokes [14] and MHD [15] have been performed 
and the results compare very well with the corresponding 
results from conventional CFD spectral codes.  The 
Taylor-Green vortex flow has been extensively studied 
[16] and is of continual interest computationally because 
its flow pattern is simple:  

ux x,0( )=U0 sin kx( )cos ky( )cos kz( ), 
uy x,0( )= 0 ,  

uz x,0( )= −U0 cos(kx)cos ky( )sin kz( ) 
yet it undergoes vortex stretching (in the y-drection) and 
exhibits turbulent decay mechanisms which produce 
small eddies. The interaction of the Taylor-Green vortex 
with a magnetic field has been examined in the context 
of dynamo theory [17]. Here, we choose a somewhat 
novel initial condition: what is the effect of a Taylor-
Green initial magnetic field profile (with no magnetic 
field component in the y-direction) constraining a criss-
cross pattern of Kelvin-Helmholtz unstable vorticity 

layers at Reynolds numbers in the range of 100 
[Reynolds number Re =U0 L / μ , and magnetic Reynolds 
number R e m = U 0 L / η  ].  The vorticity layers are in the 
xy-plane and the vorticity tubes are initially uniform in z.  
After 10 K iterations, the 3D turbulence induces vortex 
stretching in the z-direction as seen in the view of the 
vorticity isosurfaces for magnitudes 
≥ 0.4 ω max

shown in upper Figure 5 below. Cut-

away planes after 10 K iterations of vorticity, 
corresponding to the isosurface, are shown in lower 
Figure 5. At 40 K iterations, the vorticity isosurfaces 
exhibit interesting structures throughout the volume as 
the vorticity tubes deform, (with the cutaway xy-planes 
also displayed) as shown in Figure 6. At 70 K iterations, 
one sees some of the vortex tubes contort further as they 
tend to radiate outwards in the xy-plane, as seen in the 
vorticity isosurfaces and corresponding cutaway xy-
planes. This is shown in Figure 7. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 6 Vorticity plots after 10K iterations 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
       
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6. Summary 
We have presented data on the performance and initial 
analysis of LB MHD simulations carried out at 
unprecedented scale and resolution. The preliminary 
results are very interesting and more time is needed to 
analyze the results and novel turbulence features exposed 
in our simulation. In addition, simulations need to be 
performed at even higher Reynolds and magnetic 
Reynolds numbers, with even greater resolution. 

The simple LBMHD algorithm will now need 
to be extended to incorporate constraints that enforce the 
positive-definiteness of the distribution functions. In the 
Navier-Stokes case, such an entropic algorithm requires 

a slight augmentation to the collision operator 
∂f x,ξ, t( )

∂t
 +  ξg∇f x,ξ, t( ) =  −  α x, t( ) β  f x,ξ, t( )− f eq x,ξ, t( )⎡⎣ ⎤⎦

where β  is a fixed (tunable) parameter while α x,t( )  
must be determined by a Newton-Raphson iterative 
scheme such that the discrete H-function for the system 
satisfies 

H f[ ] = H f −α f − f eq( )⎡⎣ ⎤⎦
 

at each grid point at each time step. It can be shown that 
α = 2  in equilibrium. Our Navier-Stokes entropic 
simulations have shown that typically one requires less 
than 5 iterations to obtain convergence with errors of 

Figure 7 Vorticity plots after 30K iterations 

Figure 8 Vorticity plots after 70K iterations 



order 10−10 . Since analytic expressions exist for both 

the H-function and f eq , the Newton-Raphson iterations 
require only local node information and should be easily 
vectorized.  By extending this entropic algorithm to 
MHD, we would have an unconditionally stable tool to 
examine MHD phenomena at arbitrary viscosity and 
resistivity in arbitrary geometry (since boundary 
conditions are readily handled by bounce-back rules [2]), 
ideally suited for vectorization and parallelization. These 
areas of research are currently under investigation. 
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