
Magnetohydrodynamic Turbulence Simulations on
the Earth Simulator Using the Lattice Boltzmann

Method

ABSTRACT
Highly optimized large-scale lattice Boltzmann
simulations of 3D magnetohydrodynamic turbulence are
performed on the Earth Simulator. We discuss code
optimization schemes for both single processor and
parallel performance, and present performance data at
various concurrencies and grid sizes. A production run
on a 14403 grid using 4800 processors achieved a total
aggregate performance of over 26 Tflop/s, making this
study one of the largest yet undertaken and allowing
access to an unprecedented level of detail. While a full
analysis will require much more work, representative
features of some 3D MHD turbulence are presented.

(c) 2005 Association for Computing Machinery. ACM
acknowledges that this contribution was authored or co-
authored by a contractor or affiliate of the U.S. Government. As
such, the Government retains a nonexclusive, royalty-free right
to publish or reproduce this article, or to allow others to do so,
for Government purposes only.
SC|05 November 12-18, 2005, Seattle, Washington, USA
(c) 2005 ACM 1-59593-061-2/05/0011…$5.00

1. INTRODUCTION
Magnetohydrodynamics (or MHD) describes self-
consistently the macroscopic behavior of an electrically
conducting fluid by combining the Navier-Stokes
equations with Maxwell’s equations. MHD turbulence
plays an important role in many branches of physics [1]:
from astrophysical phenomena in stars, accretion discs,
interstellar and intergalactic media to plasma instabilities
in magnetic fusion devices. It is well known that the
simulation of turbulent flows in complex geometries
places great strain on computational algorithms designed
for the direct solution of the MHD equations.
Sophisticated schemes must be developed to handle the
singular matrices that crop up in accurately resolving the
nonlinear convective derivatives, e.g., high order finite
elements or Newton-Krylov algorithms.

Lattice Boltzmann (LB) schemes are an
alternate approach that circumvent the resolution
problems with the macroscopic nonlinear convective
derivatives by embedding into a higher dimensional
(kinetic) phase space. While this appears to be an
inverse-Statistical mechanical approach, the resulting
kinetic equations can be discretized on a phase space
lattice that has a minimal number of (discrete) velocities
sufficient that the long-time, long-wavelength

Jonathan Carter
NERSC

Lawrence Berkeley
National Laboratory,

Berkeley, CA 94720 USA

jtcarter@lbl.gov

Min Soe
Department of

Mathematics and
Sciences

Rogers State University,
OK, 74017 USA

msoe@rsu.edu

Yoshinori Tsuda
Earth Simulator Center

Japan Agency for Marine-
Earth Science and

Technology, Yokohama 236-
0001, Japan

tsuda@es.jamstec.go.jp

George Vahala
Department of Physics
College of William &

Mary, Williamsburg, VA
23187, USA

vahala@niv.physics.
wm.edu

Linda Vahala
Department of Electrical

and Computer
Engineering

Old Dominion University,
Norfolk, VA 23529 USA

lvahala@odu.edu

Leonid Oliker
Computational Research

Division
Lawrence Berkeley
National Laboratory,

Berkeley, CA 94720 USA

loliker@lbl.gov

Angus Macnab
CSCAMM

University of Maryland, College
Park, MD 20742 USA

angus@cscamm.umd.edu

(Chapman-Enskog) limit reproduces the desired
macroscopic nonlinear equations. With simple linear
advective terms the difficult macroscopic non-local
nonlinearities are recovered by simple polynomial (local)
nonlinearities in the collision operator of the kinetic
equation.

For Navier-Stokes turbulence, one needs to
introduce only a scalar distribution whose discrete
moments yield the fluid density and mean velocity.
While this LB algorithm has been used extensively over
the past ten years for simulating Navier-Stokes flows [2],
its application to MHD has not been as vigorously
pursued─presumably because of the difficulty of
introducing the magnetic field at a kinetic level. The first
attempts introduced a complex double velocity lattice-
streaming algorithm on a scalar distribution function.
Recently for 2D MHD, Dellar [3] introduced a separate
vector distribution function for the magnetic field whose
zero (vector discrete) moment yielded the magnetic field.
These sets of coupled kinetic equations could then be
discretized on the standard lattices used in fluid
turbulence. Here we extend this algorithm to 3D MHD.

In earlier work [4], we noted that the Earth
Simulator showed very impressive performance for a
variety of scientific applications, including a two-
dimensional LB application. The very high memory
bandwidth coupled with the large amount of data
parallelism present in the LB scheme made this
architecture an obvious choice for some of the largest LB
MHD simulations attempted so far.

2. Resistive Magnetohydrodynamic
Turbulence
Here we consider the compressible resistive MHD
equations for the density ρ, velocity u and magnetic field
B

ρ
∂u
∂t

+ u.∇u⎛
⎝⎜

⎞
⎠⎟

 = − ∇p + ∇ × B()× B + μ∇2u

 ∂B
∂t

 = ∇ × u × B() + η∇2B (1) (1)

 ∂ρ
∂t

 + ∇. ρ u() = 0

Closure is achieved by an isothermal equation of state:
p = ρ cs

2 with constant sound speed cs and ∇. B = 0 .
The disparate length and time scales that appear in

the solutions of resistive MHD require careful numerical
treatment. A semi-implicit time scheme with high-order
finite element spatial discretization will result in the
inversion of ill-conditioned matrices which appear as a
manifestation of the underlying numerical instabilities
inherent in the explicit numerical scheme. The ill-

conditioned matrices are handled in Jacobi-free Newton
Krylov techniques by suitably chosen pre-conditioners.
While the implicit time step interval can be on the order
of 200 times greater than that permitted by Courant-
Friedrichs-Levy (CFL) constraints on standard explicit
codes, the overall speed-up of the implicit codes is only a
factor of 10-30 faster due to all the extra computational
effort.

Here we present an alternative explicit scheme[3, 5]
to direct MHD solvers, which bypasses the difficult
resolution of the nonlinear convective derivatives by
embedding the problem into a higher dimensional kinetic
phase space. In this lattice Boltzmann method (LBM),
we discretize a set of coupled linear scalar-vector
Bhatnagar-Gross-Krook (BGK)[6] kinetic equations

∂f x,ξ, t()

∂t
 + ξg∇f x,ξ, t() = −

1
τ u

f x,ξ, t()− f eq x,ξ, t()⎡⎣ ⎤⎦

∂g x,ξ,t()

∂t
 + ξg∇g x,ξ, t() = −

1
τm

g x,ξ, t()− geq x,ξ, t()⎡⎣ ⎤⎦

(2)

where one connects back to the macroscopic variables by
the appropriate moments:
 ρ x,t() = dξ f x,ξ, t()∫

 ρ u x,t() = dξ f x,ξ,t() ξ∫ (3)

 B x,t() = dξ g x,ξ,t()∫

τu and τm are the relaxation rates at which collisions drive
the distribution functions to their equilibrium states: f →
f eq and g → geq. The nonlinear convective derivatives in
MHD are now replaced by linear kinetic advective terms
in the LBM. On discretizing the kinetic equations, one
chooses the velocity lattice geometries and the
polynomial representation of f eq(u,B) and geq(u,B) so
that in the Chapman-Enskog (long wavelength, long
time) limit one recovers the original nonlinear resistive
MHD equations (1).

For 3D resistive MHD, an appropriate phase
velocity lattice has 27 velocities: ξ → cα, α = 1,…,27,
where the speeds on a unit cube are √2 [velocities of the
form (±1,±1,0), α = 1,…,12], 1 [velocities of the form
(±1,0,0), α = 13,…,18], √3 [velocities of the form
(±1,±1,±1), α = 19,…,26] as well as one rest particle α =
27. The lattice symmetries are such that the resulting
discretized kinetic equations (∆x = 1 = ∆t)

fα x + cα , t +1() = fα x,t() −
1
τ u

fα x, t() − fα
eq x, t()⎡⎣ ⎤⎦ , α = 1...... 27

 (4)

gα x + cα , t + 1() = gα x, t() −
1
τm

gα x, t() − gα
eq x, t()⎡⎣ ⎤⎦ , α = 13, ... , 27

are fully explicit, second order in space and time. The
asymmetry in the choice of the (scalar) velocity and
(vector) magnetic distributions arises from the different
symmetry properties of the second moment tensors
arising in Eq. (2):

Πij = ρcs
2 +

B2

2
⎛
⎝⎜

⎞
⎠⎟
δ ij + ρuiu j − Bi Bj = Π ji = fαcα icα j

α =1

27

∑

Λij = Biu j − Bjui = − Λ ji = cα i gα j
α =13

27

∑ (5)

Moreover, because closure for the gα -equation is

attained at the 1st moment (while that for fα -equation is
attained at the 2nd moment), the number of phase space
velocities to recover information on the magnetic field is
reduced from 27 to 15. The nonlocal nonlinearities in the
resistive MHD are recovered from the linear LBM
through the quadratic local field nonlinearities in the
relaxation distribution functions:

fα
eq = fα

eq u ⋅ cα , B ⋅ cα , u2 , B2(),
gα

eq = gα
eq B, B ⋅ cα , u ⋅ cα() (6)

and the transport coefficients are related to relaxation
rates

μ =
1
3

τ u −
1
2

⎛
⎝⎜

⎞
⎠⎟

, η =
1
3

τm −
1
2

⎛
⎝⎜

⎞
⎠⎟

 (7)

Thus, in a minimal dimensional discrete phase
space the evolution of the distribution functions in LBM
are obtained from: (a) BGK collisional relaxation, which
uses only local information at each spatial node, and (b)
Lagrangian streaming of this information from one
spatial node to neighboring nodes. This makes LBM
ideal for large-scale vector parallel machines like the
Earth Simulator.

As can be expected from explicit algorithms, but
with kinetic CFL=1, LBM is prone to numerical
nonlinear instabilities as one pushes to even higher
Reynolds numbers. These numerical instabilities arise
since there are no constraints imposed to enforce the
distribution functions to remain non-negative. Such
entropic LBM algorithms, which do persevere the non-
negativity of the distribution functions---even in the limit
of arbitrary small transport coefficients---now do exist
for Navier-Stokes turbulence [7], and there is active
research in developing such entropic LBM algorithms
for MHD.

Finally, we should comment on the important
constraint ∇ ⋅B = 0 [8]. While LBM does not enforce
this constraint explicitly, numerous tests have indicated
that the algorithm somehow keeps ∇⋅B within
acceptable bounds without the need for divergence
cleaning.

3. The Earth Simulator
The Earth Simulator (ES) hardly needs an introduction.
Since it debuted in the spring of 2002 it has attracted
worldwide attention─it occupied the number 1 spot on

the Top 500[9] list for a record two and a half years
before moving down the list in November 2004.

The ES uses a dramatically different architectural
approach than conventional cache-based systems that
comprise the rest of the top 10 spots in the Top 500 list.
Powerful vector processors are connected via a fast
single stage switch.

 The 1000 MHz ES processor contains an 4-way
replicated vector pipe capable of issuing a multiply-add
each cycle, for a peak performance of 8.0 Gflop/s per
CPU. The processors contain 72 vector registers, each
holding 256 64-bit words (vector length = 256). For
non-vectorizable instructions, the ES contains a 500
MHz scalar processor with a 64 KB instruction cache, a
64 KB data cache, and 128 general-purpose registers.
The 4-way superscalar unit has a peak of 1.0 Gflop/s and
supports branch prediction, data prefetching, and out-of-
order execution.

Like traditional vector architectures, the ES vector
unit is cacheless. Memory latencies are masked by
overlapping pipelined vector operations with memory
operations. The main memory chip for the ES uses a
specially developed high speed DRAM called FPLRAM
(Full Pipelined RAM) operating at 24 ns bank cycle
time. Each SMP contains eight processors that share the
nodes memory with a bidirectional bandwidth of 32
GB/s.

The ES contains 640 nodes connected through a
custom single-stage crossbar. This high-bandwidth
interconnect topology provides impressive
communication characteristics, as all nodes are a single
hop from one another. The peak performance of the
interconnect is 12.3 GB/s (11.8 GB/s measured with
MPI) in each direction. The latency of most internode
MPI functions is approximately 6μs [10].

The 5120-processor ES runs Super-UX, a 64-bit
Unix operating system based on System V-R3 with
BSD4.2 communication features. As remote ES access is
not available, the results reported here were performed
during the authors' visit to the Earth Simulator Center
located in Kanazawa-ku, Yokohama, Japan in October
2004, and later by one of us (YT) with local access.

4. Computational Implementation
While LBM methods lend themselves to easy
implementation of difficult boundary geometries, e.g., by
the use of bounce-back to simulate no slip wall
conditions, here we report on 3D MHD simulations
under periodic boundary conditions, with the spatial grid
and phase space velocity lattice overlaying each other.
Thus, the time-advanced streamed distribution functions
lie directly on the spatial lattice nodes and no
interpolation is needed. Of course, interpolation would
be needed if non-uniform spatial grids had been
introduced. The structure of the program is
straightforward, two multi-dimensional arrays hold the
particle distribution function, f, and magnetic field
distribution function, g, for each of the rectilinear mesh
of grid points. We use the 3DQ27 model which, as
previously noted, uses 27 discrete velocities for f, and 15
(corresponding to the last 15 vectors of f) for g. The

arrays are further doubled in size to accommodate the
values for the current and next time step in the
simulation. Approximately 1 KB of storage is required
per grid point, leading to quite large memory
requirements for relatively small grids.

 After initialization, the simulation proceeds
conceptually via two phases, each repeated for every
time step. In the first phase, collision, the macroscopic
quantities, density, momentum density, and magnetic
field are constructed from the moment expressions
detailed above, the equilibrium values f eq and geq
calculated, and updated values of f and g are calculated
from (4). In the second phase, stream, the updated values
are streamed to the appropriate neighboring cell
according to the value of cα. The first step is
computationally intensive, but requires only data local to
the grid point. The second step is a set of shift
operations, moving data from grid point to grid point
according to the lattice vector.

 Wellein and co-workers have discussed optimal
layouts for the particle distribution function functions in
the case of LB fluid dynamics [11]. For most
architectures they found the “propagation optimized
layout” to be optimal, where the first dimensions are the
Cartesian coordinates, followed by an index representing
the streaming vector, i.e. f(x,y,z,27). We have
followed this choice, and simply extended it for the
magnetic field distribution function,
g(x,y,z,13:27,3). Fortran array syntax is assumed
with x varying fastest when stepping contiguously
through memory. The simplest implementation is
outlined in the code fragments shown in Figures 1 and 2.

For the parallel implementation each array is
partitioned onto a 3-dimensional Cartesian processor
grid, and MPI is used for communication. As in most
simulations of this nature, ghost cells are used to hold
copies of the planes of data from neighboring processors.
For ghost cell updates during the stream phase, we use
the shift algorithm [12]. In this method we make use of
the fact that after the first exchange is completed in one
direction, we have partially populated ghost cells. The

Figure 2 Outline of initial stream routine

next exchange includes this data, further populating the
ghost cells. A diagram showing the 2D case is shown in
Figure 3.

This procedure has the advantage of reducing the
number of neighbors included in message-passing from
26 to 6, a beneficial optimization considering the MPI
latency of the ES is reasonably high compared with the
bandwidth. Because different lattice vectors contribute to
different spatial directions, the data to be exchanged are
not contiguous. For example, 12 of the 26 lattice vectors
have a component in the +x direction, and must be sent
in this direction, but are not contiguous in the arrays f or
g. The data is packed into a single buffer, resulting in 6
message exchanges per time step. The initial
implementation made use of mpi_isend/mpi_irecv
pairs.

Initial experiments using 4 processors on the ES
showed very poor single processor performance, about
330 Mflop/s. Using the ftrace tool showed that while
the vector operation ratio (VOR) was reasonably high at
89%, the average vector length (AVL) was very short at
around 10. Inspection of the compiler listing showed that

function collision
dimension f(0:nx+1,0:ny+1,0:nz+1,27),

g(0:nx+1,0:ny+1,0:nz+1,13:27,3)
dimension feq(0:nx+1,0:ny+1,0:nz+1,27),

geq(0:nx+1,0:ny+1,0:nz+1,13:27,3)

do x=1,nx: do y=1,ny: do z=1,nz
 do i=1,27
! compute density, momentum density
 density+=f(x,y,z,i)
 …
 end do
 do i=13,27
! compute magnetic field
 b(1)+=g(x,y,z,i,1)
 …
 end do

 do i=1,27
! compute feq
 feq(x,y,z,i)=…
 …
 end do
 do i=13,27
! compute geq
 geq(x,y,z,i,1)=…
 …
 end do
end do: endo do: end do

function stream
dimension f(0:nx+1,0:ny+1,0:nz+1,27),

g(0:nx+1,0:ny+1,0:nz+1,13:27,3)
dimension feq(0:nx+1,0:ny+1,0:nz+1,27),

geq(0:nx+1,0:ny+1,0:nz+1,13:27,3)

! update all ghost cells, only 1 strip
! is shown
do dir={1,2,9,11,13,14,16,18,24}
 feq(nx,:,:,dir) sent via MPI calls
 feq(0,:,:,dir) recv via MPI calls
end do
do dir={13,14,16,18,24}
 geq(nx,:,:,dir,:) sent via MPI calls
 geq(0,:,:,dir,:) recv via MPI calls
end do
…

do x=1,nx: do y=1,ny: do z=1,nz
! stream feq and geq values to appropriate
! neighboring cells
 f(x,y,z,1)=feq(x+1,y,z,1)
 f(x,y,z,2)=feq(x,y+1,z,2)
…
 g(x,y,z,1,:)=geq(x+1,y,z,1,:)
 g(x,y,z,2,:)=geq(x,y+1,z,2,:)

end do: endo do: end do

Figure 1 Outline of initial collision routine

the innermost loops (see Figure 1) had been vectorized,
corroborating the ftrace output. To improve
performance, the innermost loops were unrolled using
compiler directives and the innermost grid point loop
(over coordinate z) vectorized giving a much-improved
result of 3.97 Gflop/s with an AVL of over 255 and VOR
of over 99%. We should note that the choice of mapping
lattice to processor grid sets the dimensions of nx, ny,
and nz. This in turn affects the overall vector length in
the collision routine. In all our experiments the
decomposition was chosen to preserve a vector length of
at least 256. The decompositions used are shown in
Table 1.

A second key optimization, described by several

groups[13, 11], was then implemented. They noticed that
the two phases of the LB simulation could be combined,
so that either the newly calculated particle distribution
function could be scattered to the correct neighbor as
soon as it was calculated, or equivalently, data could be
gathered from adjacent cells to calculate the updated
value for the current cell.

The memory access pattern for the collision phase
becomes much more complex, but the amount of data
transferred each time step is reduced dramatically. Figure
4 attempts to sketch how we implemented the gather
version of this algorithm. The stream function
corresponding to this new collision contains only the
code to exchange ghost cell values via MPI.

We benchmarked the effect of this algorithm
change on a small 2563 grid simulation running on 16
processors. The effect was to boost the per processor
performance by 13% to 4.8 Gflop/s, and produce a
decrease in time to solution of 12%.

Turning to parallel performance, we examined the
behavior of 256 and 512 processor simulations for an
intermediate 5123 grid. A speedup of 1.978 was obtained
on doubling the processor count, with the larger run
achieving 5.2 Gflop/s per processor. Two experiments to
improve MPI performance were conducted, to see if the

already outstanding scaling could be improved. The first
was to replace the mpi_isend/ mpi_irecv/
mpi_wait calls with simple mpi_sendrecv calls.
This was motivated by the fact that little computational
work (just a small amount of copying to the send buffers)
could be overlapped with communication, and that the
mpi_wait calls would likely be associated with some

Figure 4 Optimized LB MHD code

additional overhead. The performance of the
mpi_sendrecv implementation was close enough to
that of the original implementation to be within the
variability we had seen during several runs,
approximately 4%. The second experiment concerns the
use of global memory. The NEC MPI implementation
reserves an area of memory on each node through which
all messages are staged. User defined storage may be
allocated in this area either by compiler directives, or by
allocating memory via mpi_alloc_mem. The code
was slightly modified to use the latter approach, and
timings were obtained for the 256 and 512 processor
runs. Again, the performance fell into the range of times
we had observed for the initial version. With hindsight,
the reason is quite clear. For messages of this size
(roughly 1-2 MB, so latency dominates), compared with
the cost of an MPI message, moving data within memory

function collision
dimension f(0:nx+1,0:ny+1,0:nz+1,27),
g(0:nx+1,0:ny+1,0:nz+1,13:27,3)
dimension feq(0:nx+1,0:ny+1,0:nz+1,27),
geq(0:nx+1,0:ny+1,0:nz+1,13:27,3)
dimension ft(27), gt(27,3)

do x=1,nx: do y=1,ny: do z=1,nz
! collect feq and geq values from
! appropriate neighboring cells

ft(1)=f(x+1,y,z,1)
ft(2)=f(x,y+1,z,2)
…
gt(1,:)=g(x+1,y,z,1,:)
gt(2,:)=g(x,y+1,z,2,:)
…
do i=1,27
! compute density, momentum density
 density+=ft(i)
…
end do
do i=13,27
! compute magnetic field
 b(1)+=gt(i,1)
…
end do

do i=1,27
! compute feq
 feq(x,y,z,i)=
…
end do
do i=13,27
! compute geq
 geq(x,y,z,i,1)=
…
end do
end do: endo do: end do

Figure 3 a) ghost cells (green) populated by first
exchange b) this data then used to populate ‘corner’
ghost cells when exchanged in other direction

is extremely fast on the ES. That is, each message is sped
up by only a small amount. In addition, looking from the
single node performance point of view, for the 512
processor case, assuming we save one memory copy on
the send and one on the receive, we eliminate only about
8 GW of copying. This is less than 0.5% of the total
vector elements processed during all operations.

Turning to our first production grid of 10243 we
carried out simulations at 1024, 2048, and 4096
processors. Table 1 shows performance data for these
and the previous two benchmarking runs described
above.

Table 1 Performance Data for LBMHD obtained via ftrace

For each grid size, with increasing concurrency, the
performance per processor drops off slightly. This is
mainly the effect of communication overhead increasing,
due to both the cost of communication and the increasing
ratio of communication to computation. Both of these
effects can be seen in the column listing the percentage
of time spent in MPI communication. The VOR and
AVL values show that the performance of the
computational kernel is hardly affected by the scaling up
of the problem. The previously discussed experiments
were performed with all I/O turned off. Our application
can use either MPI I/O or I/O to separate files to record
snapshots for visualization, or for saving the final state.
Even though the ES can support MPI I/O, because each

node has a separate filesystem and MPI I/O is
implemented through a software layer on top of this, the
separate file I/O strategy proved the most efficient.
Saving the full magnetic field and velocity data at 4096
processors took less than an additional 1% wall clock
time for a simulation of 5000 iterations (1.5 seconds out
of 315). Finally, for one special run using a 14403 grid
and 4800 processors we ran the simulation at length to
probe the onset evolution of turbulence at high
resolution. This calculation ran for almost 2 hours at an
average performance of 5.47 Gflop/s per processor
giving a total aggregate performance of 26.25 Tflop/s.
The ftrace output is shown is Figure 5.

Figure 5 ftrace output from a 4800 processor 14403 grid point simulation

Proc. Grid Decomp
px/py/pz

% MPI
comm.

Avg. Msg. Size
(MB)

Perf./proc.
Gflop/s

VOR AVL

256 512 16/8/2 7.7 2.1 5.43 99.72 254.2
512 512 16/16/2 9.1 1.1 5.19 99.59 253.2
1024 1024 16/16/4 5.1 2.3 5.44 99.62 254.5
2048 1024 32/16/4 8.6 2.1 5.36 99.71 254.5
4096 1024 32/32/4 - 1.1 5.16 99.58 253.3

Global Data of 4800 processes:
=============================
 Min [U,R] Max [U,R] Average
Real Time (sec) : 7009.577 [0,1727] 7014.524 [0,3936] 7012.237
User Time (sec) : 6980.809 [0,47] 7008.636 [0,58] 7002.136
System Time (sec) : 0.108 [0,3174] 14.399 [0,2420] 2.096
Vector Time (sec) : 6750.045 [0,599] 6806.688 [0,1] 6779.005
Instruction Count : 442363454165 [0,47] 444864848376 [0,6] 444098440561
Vector Instruction Count : 275326393521 [0,47] 275730111623 [0,1] 275611247439
 Vector Element Count : 66001820265319 [0,900] 66135946388005 [0,4494] 66090298297808
 FLOP Count : 38290765605961 [0,2404] 38290765620970 [0,0] 38290765607203
MOPS : 9448.137 [0,539] 9487.749 [0,1253] 9462.661
MFLOPS : 5463.369 [0,58] 5485.147 [0,47] 5468.446
Average Vector Length : 239.640 [0,299] 239.873 [0,1734] 239.795
Vector Operation Ratio (%) : 99.745 [0,6] 99.748 [0,242] 99.746
Memory size used (MB) : 1391.518 [0,2404] 1395.830 [0,0] 1391.831

Overall Data:
==============
Real Time (sec) : 7014.524
User Time (sec) : 33610251.045
System Time (sec) : 10060.747
Vector Time (sec) : 32539225.401
GOPS (rel. to User Time) : 45420.738
GFLOPS (rel. to User Time) : 26248.517
Memory size used (GB) : 6524.206

5. Simulation Results
 2D LB simulations with scalar distributions for both
Navier-Stokes [14] and MHD [15] have been performed
and the results compare very well with the corresponding
results from conventional CFD spectral codes. The
Taylor-Green vortex flow has been extensively studied
[16] and is of continual interest computationally because
its flow pattern is simple:

ux x,0()=U0 sin kx()cos ky()cos kz(),
uy x,0()= 0 ,

uz x,0()= −U0 cos(kx)cos ky()sin kz()
yet it undergoes vortex stretching (in the y-drection) and
exhibits turbulent decay mechanisms which produce
small eddies. The interaction of the Taylor-Green vortex
with a magnetic field has been examined in the context
of dynamo theory [17]. Here, we choose a somewhat
novel initial condition: what is the effect of a Taylor-
Green initial magnetic field profile (with no magnetic
field component in the y-direction) constraining a criss-
cross pattern of Kelvin-Helmholtz unstable vorticity

layers at Reynolds numbers in the range of 100
[Reynolds number Re =U0 L / μ , and magnetic Reynolds
number R e m = U 0 L / η]. The vorticity layers are in the
xy-plane and the vorticity tubes are initially uniform in z.
After 10 K iterations, the 3D turbulence induces vortex
stretching in the z-direction as seen in the view of the
vorticity isosurfaces for magnitudes
≥ 0.4 ω max

shown in upper Figure 5 below. Cut-

away planes after 10 K iterations of vorticity,
corresponding to the isosurface, are shown in lower
Figure 5. At 40 K iterations, the vorticity isosurfaces
exhibit interesting structures throughout the volume as
the vorticity tubes deform, (with the cutaway xy-planes
also displayed) as shown in Figure 6. At 70 K iterations,
one sees some of the vortex tubes contort further as they
tend to radiate outwards in the xy-plane, as seen in the
vorticity isosurfaces and corresponding cutaway xy-
planes. This is shown in Figure 7.

 Figure 6 Vorticity plots after 10K iterations

6. Summary
We have presented data on the performance and initial
analysis of LB MHD simulations carried out at
unprecedented scale and resolution. The preliminary
results are very interesting and more time is needed to
analyze the results and novel turbulence features exposed
in our simulation. In addition, simulations need to be
performed at even higher Reynolds and magnetic
Reynolds numbers, with even greater resolution.

The simple LBMHD algorithm will now need
to be extended to incorporate constraints that enforce the
positive-definiteness of the distribution functions. In the
Navier-Stokes case, such an entropic algorithm requires

a slight augmentation to the collision operator
∂f x,ξ, t()

∂t
 + ξg∇f x,ξ, t() = − α x, t() β f x,ξ, t()− f eq x,ξ, t()⎡⎣ ⎤⎦

where β is a fixed (tunable) parameter while α x,t()
must be determined by a Newton-Raphson iterative
scheme such that the discrete H-function for the system
satisfies

H f[] = H f −α f − f eq()⎡⎣ ⎤⎦

at each grid point at each time step. It can be shown that
α = 2 in equilibrium. Our Navier-Stokes entropic
simulations have shown that typically one requires less
than 5 iterations to obtain convergence with errors of

Figure 7 Vorticity plots after 30K iterations

Figure 8 Vorticity plots after 70K iterations

order 10−10 . Since analytic expressions exist for both

the H-function and f eq , the Newton-Raphson iterations
require only local node information and should be easily
vectorized. By extending this entropic algorithm to
MHD, we would have an unconditionally stable tool to
examine MHD phenomena at arbitrary viscosity and
resistivity in arbitrary geometry (since boundary
conditions are readily handled by bounce-back rules [2]),
ideally suited for vectorization and parallelization. These
areas of research are currently under investigation.

7. Acknowledgements
The authors would like to thank S. Kitawaki for his help
and assistance during our visit, and Dr. T. Sato of the
Earth Simulator Center for granting us access to the ES.

JC and LO were supported by the Director, Office
of Science, Advanced Scientific Computing Research, of
the U.S. Department of Energy under Contract No.DE-
AC02-05CH11231. GV and LV were supported by
respective grants from DoE.

8. References
[1] D. Biskamp, Magnetohydrodynamic Turbulence,

Cambridge Univ. Press, 2003
[2] S. Succi, The Lattice Boltzmann Equation for Fluid

Dynamics and Beyond, Clarendon Press, Oxford
2001

[3] P. J. Dellar, J. Comput. Phys. 179, 95 (2002)

[4] L. Oliker, J. Carter, J. Shalf, D. Skinner, S. Ethier, R.

Biswas, J. Djomehri, and R. Van der Wijngaart,
Concurrency and Computation Journal: Practice and
Experience, 17, 69 (2005)

[5] A. Macnab, G. Vahala, L. Vahala and P. Pavlo, Proc.
29th EPS Conf. P-1.111 (2002)

[6] P.L. Bhatnagar, E.P. Gross, and M. Krook, Phys.
Rev. 94, 511 (1954)

[7] S. Ansumali, I. V. Karlin and H. C. Ottinger,
Europhys. Lett. 63, 798 (2003).

[8] G. Toth, J. Comput. Phys. 161, 605 (2000)
[9] Top 500 List: http://www.top500.org
[10] H. Uehara, M. Tamura, and M. Yokohawa, NEC

Res. & Develop., 44, 75 (2003)
[11] G. Wellein, T. Zeiser, S. Donath and G. Hager,

Computers and Fluids, Accepted for publication
[12] B. Palmer and J. Nieplocha, Proc. PDCS 2002, 192

(2002)
[13] B.H. Elton, SIAM J. Sci. Comp., 17(4), July 1996
[14] D. Martinez, W. Matthaeus, S. Chen and D.

Montgomery, Phys. of Fluids 6, 1285 (1994)
[15] D. Martinez, S. Chen, W. Matthaeus, Phys. of

Plasmas, 1, 1850 (1994)
[16] M. Brachet, D. I. Meiron, S. A. Orszag, B. G.

Nickel, R. Morf, and U. Frisch, J. Fluid Mech. 130,
411 (1983)

[17] A. Alexakis, P. D. Mininni and A. Poquet, Phys.
Rev. E, Accepted (2005)

