
Journal of the Earth Simulator, Volume 3, April 2005, 00–00

1

Performance of Ultra-Scale Applications on

Leading Vector and Scalar HPC Platforms

Leonid Oliker1*, Andrew Canning1, Jonathan Carter1, John Shalf1, Horst Simon1,
Stephane Ethier2, David Parks3, Shigemune Kitawaki4, Yoshinori Tsuda4 and Tetsuya Sato4

1 CRD/NERSC, Lawrence Berkeley National Laboratory, CA, U.S.A.
2 Princeton Plasma Physics Laboratory, Princeton University, NJ, U.S.A.

3 NEC Solutions America, Advanced Technical Computing Center, TX, U.S.A.
4 The Earth Simulator Center, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

(Received January 31, 2005; Revised manuscript accepted June 16, 2005)

Abstract The last decade has witnessed a rapid proliferation of superscalar cache-based microprocessors to
build high-end capability and capacity computers primarily because of their generality, scalability, and cost
effectiveness. However, the constant degradation of superscalar sustained performance, has become a well-
known problem in the scientific computing community. This trend has been widely attributed to the use of
superscalar-based commodity components who’s architectural designs offer a balance between memory per-
formance, network capability, and execution rate that is poorly matched to the requirements of large-scale
numerical computations. The recent development of massively parallel vector systems offers the potential to
increase the performance gap for many important classes of algorithms. In this study we examine four diverse
scientific applications with the potential to run at ultrascale, from the areas of plasma physics, material sci-
ence, astrophysics, and magnetic fusion. We compare performance between the vector-based Earth Simulator
(ES) and Cray X1, with leading superscalar-based platforms: the IBM Power3/4 and the SGI Altix. Results
demonstrate that the ES vector systems achieve excellent performance on our application suite – the highest
of any architecture tested to date.

1. INTRODUCTION
The last decade has witnessed a rapid proliferation of

superscalar cache-based microprocessors to build high-
end capability and capacity computers primarily because
of their generality, scalability, and cost effectiveness.
This is primarily because their generality, scalability, and
cost effectiveness convinced computer vendors, buyers,
and users that vector architectures hold little promise for
future large-scale supercomputing systems. However, the
constant degradation of superscalar sustained perform-
ance, has become a well-known problem in the scientific
computing community. This trend has been widely attrib-
uted to the use of superscalar-based commodity compo-
nents who’s architectural designs offer a balance between
memory performance, network capability, and execution
rate that is poorly matched to the requirements of large-
scale numerical computations.

The increasing gap between processor and memory
speeds is a well-known problem in computer architecture,
with peak processor performance improving at a rate of

60% per year, while DRAM latencies and bandwidths
improve at only 7% and 20% respectively. To mask
memory latencies, current high-end computers now
demand up to 25 times the number of overlapped opera-
tions required of supercomputers 30 years ago.
Furthermore, techniques designed to hide memory laten-
cies, such as out-of-order superscalar instruction process-
ing, speculative execution, multithreading, and stream
prefetching engines, may actually increase the memory
bandwidth requirements. This so-called ‘memory wall’ is
one of the reasons many high performance applications
run well below the peak arithmetic performance of the
underlying machine. In particular, irregularly structured
and data-intensive codes exhibit poor temporal locality
and receive little benefit from the automatically managed
caches of conventional microarchitectures. In addition, a
significant fraction of scientific codes are characterized
by predictable data-parallelism that could be exploited at
compile time with properly structured program seman-
tics; superscalar processors can often exploit this paral-

* Corresponding author: Dr. Leonid Oliker, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 50B4230, Berkeley,
California 94720, U.S.A. E-mail: loliker@lbl.gov

Performance of Ultra-Scale Applications on Leading Vector and Scalar HPC Platforms

2 J. Earth Sim., Vol. 3, March 2005, 0–00

lelism, but their generality leads to high costs in chip area
and power, which in turn limit the degree of parallelism.

Superscalar architectures are unable to efficiently
exploit the large number of floating-point units that be
can fabricated on a chip, due to the small granularity of
their instructions and the correspondingly complex con-
trol structure necessary to support it. Vector technology,
on the other hand, provides an efficient approach for con-
trolling a large amount of computational resources pro-
vided sufficient regularity in the computational structure
can be discovered. Vectors exploit these regularities in
the computational structure to expedite uniform opera-
tions on independent data elements. Vector instructions
specify a large number of identical operations that may
execute in parallel, thus reducing control complexity and
efficiently controlling a large amount of computational
resources. However, when such operational parallelism
cannot be found, the efficiency of the vector architecture
can suffer from the properties of Amdahl’s Law where
the time taken by the portions of the code that are non-
vectorizable easily dominate the execution time.

Recently, two innovative parallel-vector architectures
have become available to the supercomputing communi-
ty: the Japanese Earth Simulator (ES) and the Cray X1. In
order to quantify what these modern vector capabilities
entail for the scientists that rely on modeling and simula-
tion, it is critical to evaluate this architectural approach in
the context of demanding computational algorithms. A
number of previous studies [6, 9, 16, 20, 19] have exam-
ined parallel vector performance for scientific codes;
however, few direct comparisons of large-scale applica-
tions are currently available. In this work, we compare
the vector-based ES and X1 architectures with three state-
of-the-art superscalar systems: the IBM Power3, Power4,
and the SGI Altix. Our research team was the first inter-
national group to conduct a performance evaluation study
at the Earth Simulator Center [18]; remote ES access in
not available. We examine four diverse scientific applica-
tions with potential to operate at ultrascale, from plasma
physics (LBMHD), material science (PARATEC), astro-
physics (Cactus), and magnetic fusion (GTC). Results
demonstrate that the vector systems achieve excellent
performance on our application suite – the highest of any
platform tested to date. However, the low ratio between
scalar and vector performance make the evaluated vector
systems particularly sensitive to unvectorized code seg-
ments – pointing out an additional dimension for ‘archi-
tectural balance’ where vector systems are concerned.
Additionally, vectorization of a particle-in-cell code high-
lights the potential difficulty of expressing irregularly
structured algorithms as data-parallel programs. Overall,
the ES sustains a significantly higher fraction of peak

than the X1, and often outperforms it in absolute terms.
Results also indicate that the Altix system is a promising
computational platform.

2. TARGET HPC PLATFORMS AND
APPLICATIONS

Table 1 presents a summary of the architectural charac-
teristics of the five supercomputers examined in our
study. Observe that the vector systems are designed with
higher absolute performance and better architectural bal-
ance than the superscalar platforms. The ES and X1 have
high memory bandwidth relative to peak CPU
(bytes/flop), allowing them to continuously feed the arith-
metic units with operands more effectively than the
superscalar architectures examined in our study.
Additionally, the custom vector interconnects show supe-
rior characteristics in terms of measured latency [3, 22],
point-to-point messaging (bandwidth per CPU), and all-
to-all communication (bisection bandwidth) – in both raw
performance (GB/s) and as a ratio of peak processing
speed (bytes/flop). Overall the ES appears the most bal-
anced system in our study, while the Altix shows the best
architectural characteristics among the superscalar plat-
forms.

2.1 Power3
The Power3 experiments reported here were conducted

on the 380-node IBM pSeries system running AIX 5.1
and located at Lawrence Berkeley National Laboratory.
Each 375 MHz processor contains two floating-point
units (FPUs) that can issue a fused multiply-add (MADD)
per cycle for a peak performance of 1.5 Gflop/s. The
Power3 has a pipeline of only three cycles, thus using the
registers more efficiently and diminishing the penalty for
mispredicted branches. The out-of-order architecture uses
prefetching to reduce pipeline stalls due to cache misses.
The CPU has a 32 KB instruction cache, a 128 KB 128-
way set associative L1 data cache, and an 8 MB four-way
set associative L2 cache with its own private bus. Each
SMP node consists of 16 processors connected to main
memory via a crossbar. Multi-node configurations are
networked via the Colony switch using an omega-type
topology.

2.2 Power4
The Power4 experiments in this paper were performed

on the 27-node IBM pSeries 690 system running AIX 5.2
and operated by Oak Ridge National Laboratory (ORNL).
Each 32-way SMP consists of 16 Power4 chips (organ-
ized as 4 MCMs), where a chip contains two 1.3 GHz
processor cores. Each core has two FPUs capable of a
fused MADD per cycle, for a peak performance of 5.2

L. Oliker et al.

3J. Earth Sim., Vol. 3, March 2005, 0–0

Gflop/s. The superscalar out-of-order architecture can
exploit instruction level parallelism through its eight exe-
cution units; however a relatively long pipeline (six
cycles) if necessitated by the high frequency design. Each
processor contains its own private L1 cache (64 KB
instruction and 32 KB data) with prefetch hardware; how-
ever, both cores share a 1.5 MB unified L2 cache. The L3
is designed as a stand-alone 32 MB cache, or to be com-
bined with other L3s on the same MCM to create a larger
128 MB interleaved cache. The benchmarks presented in
this paper were run on a system employing the recently-
released Federation (HPS) interconnect, with two switch
adaptors per node. None of the benchmarks used large
(16MB) pages, as the ORNL system was not configured
for such jobs.

2.3 Altix 3000
The SGI Altix is a unique architecture, designed as a

cache-coherent, shared-memory multiprocessor system.
The computational building blocks of the Altix consists
of four Intel Itanium2 processors, local memory, and a
two controller ASICs called the SHUB. The 64-bit
Itanium2 architecture operates at 1.5 GHz and is capable
of issuing two MADDs per cycle for a peak performance
of 6 Gflop/s. The memory hierarchy consists of 128 float-
ing-point (FP) registers and three on-chip data caches
with 32 K of L1, 256 K of L2, and 6 MB of L3. Note that
the Itanium2 cannot store FP data in L1 cache (only in
L2), making register loads and spills a potential source of
bottlenecks; however, the relatively large FP register set
helps mitigate this issue. The superscalar Itanium2
processor performs a combination of in-order and out-of-
order instruction execution referred to as Explicitly
Parallel Instruction Computing (EPIC). Instructions are
organized into VLIW bundles, where all instructions
within a bundle can be executed in parallel. However, the
bundles themselves must be processed in order.

The Altix interconnect uses the NUMAlink3, a high-
performance custom network in a fat-tree topology. This
configuration enables the bisection bandwidth to scale

linearly with the number of processors. In additional to
the traditional distributed-memory programming para-
digm, the Altix systems implements a cache-coherent,
nonuniform memory access (NUMA) protocol directly in
hardware. This allows a programming model where
remote data are accessed just like locally allocated data,
using loads and stores. A load/store cache miss causes the
data to be communicated in hardware (via the SHUB) at a
cache-line granularity and automatically replicated in the
local cache, however locality of data in main memory is
determined at page granularity. Additionally, one-sided
programming languages can be efficiently implemented
by leveraging the NUMA layer. The Altix experiments
reported in this paper were performed on the 256-proces-
sor system (several reserved for system services) at
ORNL, running 64-bit Linux version 2.4.21 and operat-
ing as a single system image.

2.4 Earth Simulator
The vector processor of the ES uses a dramatically dif-

ferent architectural approach than conventional cache-
based systems. Vectorization exploits regularities in the
computational structure of scientific applications to expe-
dite uniform operations on independent data sets. The 500
MHz ES processor contains an 8-way replicated vector
pipe capable of issuing a MADD each cycle, for a peak
performance of 8.0 Gflop/s per CPU. The processors con-
tain 72 vector registers, each holding 256 64-bit words
(vector length = 256). For non-vectorizable instructions,
the ES contains a 500 MHz scalar processor with a 64 KB
instruction cache, a 64 KB data cache, and 128 general-
purpose registers. The 4-way superscalar unit has a peak
of 1.0 Gflop/s (1/8 of the vector performance) and sup-
ports branch prediction, data prefetching, and out-of-
order execution.

Like traditional vector architectures, the ES vector unit
is cacheless; memory latencies are masked by overlap-
ping pipelined vector operations with memory fetches.
The main memory chip for the ES uses a specially devel-
oped high speed DRAM called FPLRAM (Full Pipelined

Table 1 Architectural highlights of the Power3, Power4, Altix, ES, and X1 platforms.

CPU/
Node

Clock
(MHz)

Peak
(GF/s)

Memory BW
(GB/s)

Peak
(Bytes/flop)

MPI Latency
 (sec)

Network BW
(GB/s/CPU)

Bisection BW
(Bytes/s/flop)

Network
Topology

Platform

Power3
Power4
Altix
ES
X1

16
32
2
8
4

375
1300
1500
500
800

1.5
5.2
6.0
8.0

12.8

0.7
2.3
6.4

32.0
34.1

16.3
7.0
2.8
5.6
7.3

0.47
0.44
1.1
4.0
2.7

0.13
0.25
0.40
1.5
6.3

0.087
0.025
0.067
0.19
0.088

Fat-tree
Fat-tree
Fat-tree
Crossbar
2D-torus*

* X1 bisection bandwidth is based on a 2048 MSP configuration

Performance of Ultra-Scale Applications on Leading Vector and Scalar HPC Platforms

4 J. Earth Sim., Vol. 3, March 2005, 0–00

RAM) operating at 24ns bank cycle time. Each SMP con-
tains eight processors that share the node’s memory. The
Earth Simulator is the world’s most powerful supercom-
puter [5], containing 640 ES nodes connected through a
custom single-stage crossbar. This high-bandwidth inter-
connect topology provides impressive communication
characteristics, as all nodes are a single hop from one
another. However, building such a network incurs a high
cost since the number of cables grows as a square of the
node count – in fact, the ES system utilizes approximate-
ly 1500 miles of cable. The 5120-processor ES runs
Super-UX, a 64-bit Unix operating system based on
System V-R3 with BSD4.2 communication features. As
remote ES access is not available, the reported experi-
ments were performed during the authors’ visit to the
Earth Simulator Center located in Kanazawa-ku,
Yokohama, Japan in December 2003.

2.5 X1
The recently-released X1 is designed to combine tradi-

tional vector strengths with the generality and scalability
features of modern superscalar cache-based parallel sys-
tems. The computational core, called the single-streaming
processor (SSP), contains two 32-stage vector pipes run-
ning at 800 MHz. Each SSP contains 32 vector registers
holding 64 double-precision words (vector length = 64),
and operates at 3.2 Gflop/s peak for 64-bit data. The SSP
also contains a two-way out-of-order superscalar proces-
sor running at 400 MHz with two 16 KB caches (instruc-
tion and data). The multi-streaming processor (MSP)
combines four SSPs into one logical computational unit.
The four SSPs share a 2-way set associative 2 MB data
Ecache, a unique feature for vector architectures that
allows extremely high bandwidth (25 – 51 GB/s) for com-
putations with temporal data locality. MSP parallelism is
achieved by distributing loop iterations across each of the
four SSPs. The compiler must therefore generate both
vectorizing and multistreaming instructions to effectively
utilize the X1. The scalar unit operates at 1/8th the peak
of SSP vector performance, but offers effectively 1/32
MSP performance if a loop can neither be multistreamed
nor vectorized. Consequently, a high vector operation
ratio is especially critical for effectively utilizing the
underlying hardware.

The X1 node consists of four MSPs sharing a flat
memory, and large system configuration are networked
through a modified 2D torus interconnect. The torus
topology allows scalability to large processor counts with
relatively few links compared with fat-tree or crossbar
interconnects; however, this topological configuration
suffers from limited bisection bandwidth. Finally, the X1
has hardware supported globally addressable memory

which allows for efficient implementations of one-sided
communication libraries (MPI-2, SHMEM) and implicit
parallel programming languages (UPC, CAF). All report-
ed X1 experiments reported were performed on the 512-
MSP system (several reserved for system services) run-
ning UNICOS/mp 2.4 and operated by ORNL.

2.6 Scientific Applications
Four scientific applications were chosen to measure

and compare the performance of the vector-based ES and
X1 with the superscalarbased Power3, Power4, and Altix
systems. The application are: LBMHD, a plasma physics
application that uses the Lattice-Boltzmann method to
study magneto-hydrodynamics; PARATEC, a first princi-
ples materials science code that solves the Kohn-Sham
equations of density functional theory to obtain electronic
wavefunctions; Cactus, an astrophysics code that evolves
Einstein’s equations from the Theory of General
Relativity using the Arnowitt-Deser-Misner method; and
GTC, a magnetic fusion application that uses the parti-
clein-cell approach to solve non-linear gyrophase-aver-
aged Vlasov-Poisson equations.

These codes represent candidate ultrascale applications
that have the potential to fully utilize a leadership-class
system of Earth Simulator scale and beyond. Performance
results, presented in Gflop/s per processor (denoted as
Gflops/P) and percentage of peak, are used to compare
the relative time to solution of the computing platforms in
our study. When different algorithmic approaches are
used for the vector and scalar implementations, this value
is computed by dividing a valid baseline flop-count by
the measured wall-clock time of each architecture. To
characterize the level of vectorization, we also examine
vector operation ratio (VOR) and average vector length
(AVL) for the ES and X1 where possible. The VOR
measures the ratio between the number of vector opera-
tions and the total overall operations (vector plus scalar);
while the AVL represents the average number of opera-
tions performed per issued vector instruction. An effec-
tively vectorized code will achieve both high VOR (opti-
mal is 100%) and AVL (256 and 64 is optimal for ES and
X1 respectively). Hardware counter data were obtained
with hpmcount on the Power systems, pfmon on the
Altix, ftrace on the ES, and pat on the X1.

3. PLASMA PHYSICS
Lattice Boltzmann methods (LBM) have proved a good

alternative to conventional numerical approaches for sim-
ulating fluid flows and modeling physics in fluids [21].
The basic idea of the LBM is to develop a simplified
kinetic model that incorporates the essential physics, and
reproduces correct macroscopic averaged properties.

L. Oliker et al.

5J. Earth Sim., Vol. 3, March 2005, 0–0

Recently, several groups have applied the LBM to the
problem of magneto-hydrodynamics (MHD) [8, 14] with
promising results. LBMHD [15] simulates the behavior
of a two-dimensional conducting fluid evolving from
simple initial conditions and decaying to form current
sheets.

The 2D spatial grid is coupled to an octagonal stream-
ing lattice and block distributed over a 2D processor grid.
Each grid point is associated with a set of mesoscopic
variables, whose values are stored in vectors proportional
to the number of streaming directions – in this case nine
(eight plus the null vector). The simulation proceeds by a
sequence of collision and stream steps. A collision step
involves data local only to that spatial point, allowing
concurrent, dependence-free point updates; the meso-
scopic variables at each point are updated through a com-
plex algebraic expression originally derived from appro-
priate conservation laws. A stream step evolves the meso-
scopic variables along the streaming lattice, necessitating
communication between processors for grid points at the
boundaries of the blocks. Additionally, an interpolation
step is required between the spatial and stream lattices
since they do not match.

Varying schemes were used in order to optimize the
collision routine on each of the architectures. The basic
computational structure consists of two nested loops over
spatial grid points (typically 100 – 1000 iterations) with
inner loops over velocity streaming vectors and magnetic
field streaming vectors (typically 10 – 30 iterations), per-
forming various algebraic expressions. For the Power3/4
and Altix systems, the inner grid point loop was blocked
to increase cache reuse – leading to a modest improve-
ment in performance for the largest grids and smallest
concurrencies. For the ES, the inner grid point loop was
taken inside the streaming loops and vectorized. The tem-
porary arrays introduced were padded to reduce memory
bank conflicts. We note that the ES compiler was unable
to perform this transformation based on the original code.
In the case of the X1, the compiler did an excellent job,
multi-streaming the outer grid point loop and vectorizing
(via strip mining) the inner grid point loop without any
user code restructuring. No additional vectorization effort
was required due to the data-parallel nature of LBMHD.

Interprocessor communication was implemented using
the MPI library, by copying the non-contiguous meso-
scopic variables data into temporary buffers, thereby
reducing the required number of send/receive messages.
Additionally, a Co-array Fortran (CAF) [2] version was
implemented for the X1 architecture. CAF is a onesided
parallel programming language implemented via an
extended Fortran 90 syntax. Unlike explicit message
passing in MPI, CAF programs can directly access non-

local data through co-array references. This allows a
potential reduction in interprocessor overhead for archi-
tectures supporting one-sided communication, as well as
opportunities for compiler-based optimizing transforma-
tions. For example, the X1’s measured latency decreased
from 7.3 sec using MPI to 3.9 sec using CAF seman-
tics [3]. In the CAF implementation of LBMHD, the spa-
tial grid is declared as a co-array and boundary exchanges
are performed using co-array subscript notation.

3.1 LBMHD Results
Table 2 presents LBMHD performance on the five

studied architecture for grid sizes of 40962 and 81922.
Note that to maximize performance the processor count is
restricted to squared integers. The vector architectures
show impressive results, achieving a speedup of approxi-
mately 44x, 16x, and 7x compared with the Power3,
Power4, and Altix respectively (for 64 processors). The
AVL and VOR are near maximum for both vector sys-
tems, indicating that this application is extremely well-
suited for vector platforms. In fact the 3.3 Tflop/s attained
on 1024 processor of the ES represents the highest per-
formance of LBMHD on any measured architecture to
date. The X1 gives comparable raw performance to the
ES for most of our experiments; however for 256 proces-
sors on the large (81922) grid configuration, the ES ran
about 1.5X faster due to the decreased scalability of the
X1. Additionally, the ES consistently sustains a signifi-
cantly higher fraction of peak, due in part to its superior
CPU-memory balance. The X1 CAF implementation
shows about a 10% overall improvement over the MPI
version for the large test case, however MPI slightly out-
performed CAF for the smaller grid size (P = 64). For
LBMHD, CAF reduced the memory traffic by a factor of
3X by eliminating user- and system-level message copies
(latter used by MPI); these gains were somewhat offset
by CAF’s use of more numerous and smaller sized mes-
sages. This issue will be the focus of future investigation.

The low performance of the superscalar systems is
mostly due to limited memory bandwidth. LBMHD has a
low computational intensity – about 1.5 FP operations per
data word of access – making it extremely difficult for
the memory subsystem to keep up with the arithmetic
units. Vector systems are able to address this discrepancy
through a superior memory system and support for deeply
pipelined memory fetches. Additionally, the 40962 and
81922 grids require 7.5 GB and 30 GB of memory respec-
tively, causing the subdomain’s memory footprint to
exceed the cache size even at high concurrencies.
Nonetheless, the Altix outperforms the Power3 and
Power4 in terms of Gflop/s and fraction of peak due to its
higher memory bandwidth and superior network charac-

Performance of Ultra-Scale Applications on Leading Vector and Scalar HPC Platforms

6 J. Earth Sim., Vol. 3, March 2005, 0–00

teristics. Observe that superscalar performance relative to
concurrency shows more complex behavior than on the
vector systems. Since the cache-blocking algorithm for
the collision step is not perfect, certain data distributions
are superior to others – accounting for increased perform-
ance at intermediate concurrencies. At larger concurren-
cies, the cost of communication begins to dominate, thus
reducing performance as in the case of the vector sys-
tems.

3.2 3D LBMHD Experiments
On our second visit to the ES Center in October 2004,

a 3D version of LBMHD was ported and run at large
scale. This application uses a more conventional 3D cubic
lattice for spatial and velocity resolution with 27 stream-
ing vectors. Performance of the 3D code on the ES was
predicted to be better than the 2D model for two reasons:
improvement in the surface to volume ratio, resulting in a
lower overall fraction of communication overhead;
increase in the vectorizable work due to more computa-
tionally intensive collision operator. Starting from a basic
superscalar version of the code, we made several signifi-
cant efficiency improvements. Initially performance was
low on the ES, achieving only 300 Mflops/P. As with the
2D version the innermost loops were short, iterating over
streaming vectors. These loops were completely unrolled
using compiler directives. After this optimization, the
performance improved to around 4 Gflops/P. Moving to a
larger grid, the MPI performance was improved by aggre-
gating messages leading to about 4.8 Gflops/P per proces-
sor. Finally, the algorithm was reworked slightly to com-
bine of the collision and streaming steps. This brought
performance up to around 5.2 Gflops/P. Using a 10243

grid, we achieved an impressive 5.6, 11.1, and 22.2
Tflops/P on 1024, 2048, and 4096 processors of the ES.
Even on the largest runs, communication time was less
than 10% of the total overhead. For these experiments,
the AVL and VOR were almost ideal, achieving over 254
and 99.5% respectively. Future work will focus on a com-
prehensive evaluation of the 3D LBMHD.

4. MATERIAL SCIENCE
PARATEC (PARAllel Total Energy Code [4]) per-

forms ab-initio quantum-mechanical total energy calcula-
tions using pseudopotentials and a plane wave basis set.
The pseudopotentials are of the standard norm-conserv-
ing variety. Forces can be easily calculated and used to
relax the atoms into their equilibrium positions.
PARATEC uses an all-band conjugate gradient (CG)
approach to solve the Kohn-Sham equations of Density
Functional Theory (DFT) and obtain the ground-state
electron wavefunctions. DFT is the most commonly used
technique in materials science, having a quantum
mechanical treatment of the electrons, to calculate the
structural and electronic properties of materials. Codes
based on DFT are widely used to study properties such as
strength, cohesion, growth, magnetic, optical, and trans-
port for materials like nanostructures, complex surfaces,
and doped semiconductors. Due to its accurate predictive
power and computational efficiency, DFT based codes
have been one of the largest consumer of supercomputing
cycles in computer centers around the world.

In solving the Kohn-Sham equations using a plane
wave basis, part of the calculation is carried out in real
space and the remainder in Fourier space using special-
ized parallel 3D FFTs to transform the wavefunctions.
The code spends most of its time in vendorsupplied
BLAS3 (~30%) and 1D FFTs (~30%) on which the 3D
FFTs libraries are built. Because these routines allow
high cache reuse and efficient vector utilization,
PARATEC generally obtains high percentage of peak
performance across a spectrum of computing platforms.
The code exploits fine-grained parallelism by dividing the
plane wave (Fourier) components for each electron
among the different processors [4]. PARATEC is written
in F90 and MPI, and is designed primarily for massively
parallel computing platforms, but can also run on serial
machines. The main limitation to scaling PARATEC to
large processor counts is the distributed grid transforma-
tion during the parallel 3D FFTs that requires global
interprocessor communication when mapping the electron
wavefunctions from Fourier space (where it is represent-

Table 2 LBMHD per processor performance on 4096x4096 and 8192x8192 grids.

Power3 Power4 Altix ES X1 (MPI) X1 (CAF)
P

Grid
Size

4096
x

4096

8192
x

8192

16
64

256
64

256
1024

Gflops/P

0.107
0.142
0.136
0.105
0.115
0.108

%Pk

7%
9%
9%
7%
8%
7%

Gflops/P

0.279
0.296
0.281
0.270
0.278

—

%Pk

5%
6%
5%
5%
5%
—

Gflops/P

0.598
0.615

—
0.645

—
—

%Pk

10%
10%
—

11%
—
—

Gflops/P

4.62
4.29
3.21
4.64
4.26
3.30

%Pk

58%
54%
40%
58%
53%
41%

Gflops/P

4.32
4.35
—

4.48
2.70
—

%Pk

34%
34%
—

35%
21%
—

Gflops/P

4.55
4.26
—

4.70
2.91
—

%Pk

36%
33%
—

37%
23%
—

L. Oliker et al.

7J. Earth Sim., Vol. 3, March 2005, 0–0

ed by a sphere) to a 3D grid in real space. Thus, architec-
tures with a poor balance between their bisection band-
width and computational rate (see Table 1) will suffer
performance degradation at higher concurrencies due to
global communication requirements.

4.1 PARATEC Results
Table 3 presents performance data for 3 CG steps of a

432 and 686 Silicon atom bulk systems and a standard
LDA run of PARATEC with a 25 Ry cut-off using norm-
conserving pseudopotentials. A typical calculation would
require between 20 and 60 CG iterations to converge the
charge density. PARATEC runs at a high percentage of
peak on both superscalar and vector-based architectures
due to the heavy use of the computationally intensive
FFTs and BLAS3 routines, which allow high cache reuse
and efficient vector utilization. The main limitation to
scaling PARATEC to large numbers of processors is the
distributed grid transformation during the parallel 3D
FFTs which requires global interprocessor communica-
tions. It was therefore necessary to write specialized 3D
FFT to reduce these communication requirements. Since
our 3D FFT routine maps the wavefunction of the elec-
tron from Fourier space, where it is represented by a
sphere, to a 3D grid in real space – a significant reduction
in global communication can be achieved by only trans-
posing the non-zero grid elements. Nonetheless, architec-
tures with a poor balance between their bisection band-
width and computational rate (see Table 1) will suffer
performance degradation at higher concurrencies due to
global communication requirements.

Results in Table 3 show that PARATEC achieves
impressive performance on the ES, sustaining 2.6 Tflop/s
for 1024 processors for the larger system – the first time
that any architecture has attained over a Teraflop for this
code. The declining performance at higher processor
counts is caused by the increased communication over-
head of the 3D FFTs, as well as reduced vector efficiency
due to the decreasing vector length of this fixed-size
problem. Since only 3 CG steps were performed in our
benchmarking measurements, the set-up phase accounted

for a growing fraction of the overall time – preventing us
from accurately gathering the AVL and VOR values. The
set-up time was therefore subtracted out for the reported
Gflop/s measurements. This overhead becomes negligible
for actual physical simulations, which require as many as
60 CG steps. For example on the smaller 432 atom sys-
tem on 32 processors, the measured AVL for the total run
was 145 and 46 for the ES and X1 (respectively); the
AVL for only the CG steps (without set-up) would cer-
tainly be higher.

Observe that X1 performance is lower than the ES,
even though it has a higher peak speed. The code sections
of handwritten F90, which typically consume about 30%
of the run time, have a lower vector operation ratio than
the BLAS3 and FFT routines. These handwritten seg-
ments also run slower on the X1 than the ES, since
unvectorized code segments tend not to multistream
across the X1’s SSPs. In addition, the X1 interconnect
has a lower bisection bandwidth network than the ES (see
Table 1), increasing the overhead for the FFT’s global
transpositions at higher processor counts. Thus, even
though the code portions utilizing BLAS3 libraries run
faster on the X1, the ES achieves higher overall perform-
ance. In fact, due to the X1’s poor scalability above 128
processors, the ES shows more than a 3.5X runtime
advantage when using 256 processors on the larger 686
atom simulation. PARATEC runs efficiently on the
Power3, but sustained performance (percent of peak) on
the Power4 is lower due, in part, to network contention
for memory bandwidth [20]. The loss in scaling on the
Power3 is primarily caused by the increased communica-
tion cost as concurrency grows to 512 processors. The
Power4 system has a much lower bisectionbandwidth to
processor speed ratio than the Power3 resulting in poorer
scaling to large numbers of processors. The Altix per-
forms well on this code (second only to the ES). This is
due to the Itanium2’s high memory bandwidth, combined
with interconnect network with reasonably-high band-
width, and extremely low latency (see Table 1). However,
higher scalability Altix measurements are not available.

Table 3 PARATEC per processor performance on a 432 and 686 atom Silicon Bulk system.

432 Atom 686 Atom
Power3 Power4 Altix ES X1 ES X1

P

32
64

128
256
512

1024

Gflops/P

0.950
0.848
0.739
0.572
0.413

—

%Pk

63%
57%
49%
38%
28%
—

%Pk

39%
33%
29%
21%
—
—

Gflops/P

3.71%
3.24%

—
—
—
—

%Pk

62%
54%
—
—
—
—

Gflops/P

4.76
4.67
4.74
4.17
3.39
2.08

%Pk

60%
58%
59%
52%
42%
26%

Gflops/P

3.04
2.59
1.91
—
—
—

%Pk

24%
20%
15%
—
—
—

Gflops/P

2.02
1.73
1.50
1.08
—
—

Gflops/P

—
5.25
4.95
4.59
3.76
2.53

%Pk

—
66%
62%
57%
47%
32%

Gflops/P

—
3.73
3.01
1.27
—
—

%Pk

—
29%
24%
10%
—
—

Performance of Ultra-Scale Applications on Leading Vector and Scalar HPC Platforms

8 J. Earth Sim., Vol. 3, March 2005, 0–00

4.2 Quantum Dot Experiments
In October 2004, the authors returned to the Earth

Simulator Center, and had the opportunity to run
PARATEC experiments on a 488 atom CdSe Cadmium
Selenide Quantum Dot — the largest number of grid
points simulated to date via this code. The range of
100s – 1000s is typical of the size of dot produced by
experiment so it is important to understand the electronic
properties of dots of this size by simulation in order to
improve their design and fabrication for applications such
as electronic dye tags. Results show an impressive per-
formance of 3.64 Gflops/P (45% of peak) using 1024
processors, and 2.67 Gflop/P (33% of peak) at 2048
processors — thus sustaining an aggregate of 5.5 Tflop/s,
the highest performance ever achieved for this applica-
tion. This level of performance opens the possibility to
perform scientific Quantum Dot calculations at an
unprecedented scale.

5. ASTROPHYSICS
One of the most challenging problems in astrophysics

is the numerical solution of Einstein’s equations follow-
ing from the Theory of General Relativity (GR): a set of
coupled nonlinear hyperbolic and elliptic equations con-
taining thousands of terms when fully expanded. The
Cactus Computational ToolKit [7, 1] is designed to
evolve these equations stably in 3D on supercomputers to
simulate astrophysical phenomena with high gravitational
fluxes, such as the collision of two black holes and the
gravitational waves radiating from that event. While
Cactus is a modular framework supporting a wide variety
of multi-physics applications [10], our study focused
exclusively on the GR solver, which implements the
ADM-BSSN method [7] for stable evolutions of black
holes.

The Cactus GR components solve Einstein’s equations
as an initial value problem that evolves partial differential
equations (PDEs) on a regular grid using finite differ-
ences. The core of the GR solver uses the ADM formal-
ism, which decomposes the solution into 3D spatial
hypersurfaces that represent different slices of space
along the time dimension. In this representation, the
equations are written as four constraint equations and 12
evolution equations. Additional stability is provided by
the BSSN modifications to the standard ADM method
[7]. The evolution equations can be solved using a num-
ber of different numerical approaches, including stag-
gered leapfrog, McCormack, Lax-Wendroff, and iterative
Crank- Nicholson schemes. A lapse function describes
the time slicing between hypersurfaces for each step in
the evolution while a shift vector is used to move the
coordinate system at each step to avoid being drawn into

a singularity. The four constraint equations are used to
select different lapse functions and the related shift vec-
tors.

For parallel computation, the global 3D grid is block
domain decomposed so that each processor has its own
section. The standard MPI driver for Cactus solves the
PDEs on a local region and then updates the values at the
ghost zones by exchanging data on the faces of its topo-
logical neighbors. On superscalar systems, the computa-
tions are blocked in order to improve cache locality.
Blocking is accomplished through the use of temporary
slice buffers, which improve cache reuse while modestly
increasing the computational overhead. These blocking
optimizations were disabled on vector architectures since
they reduced the vector length and inhibited performance.

5.1 CACTUS Results
The full-fledged production version of the Cactus

ADM-BSSN application was run on the ES system with
results for two grid sizes shown in Table 4. The problem
size was scaled with the number of processors to keep the
computational load the same (weak scaling). Cactus prob-
lems are typically scaled in this manner because their sci-
ence requires the highest-possible resolutions.

For the vector systems, Cactus achieves almost perfect
VOR (over 99%) while the AVL is dependent on the x-
dimension size of the local computational domain.
Consequently, the larger problem size (250x64x64) exe-
cuted with far higher efficiency on both vector machines
than the smaller test case (AVL = 248 vs. 92), achieving
34% of peak on the ES. The oddly shaped domains for
the larger test case were required because the ES does not
have enough memory per node to support a 2503 domain.
This rectangular grid configuration had no adverse effect
on scaling efficiency despite the worse surface-to-volume
ratio. Additional performance gains could be realized if
the compiler was able to fuse the X and Y loop nests to
form larger effective vector lengths.

Note that that the boundary condition enforcement was
not vectorized on the ES and accounts for up to 20% of
the execution time, compared with less than 5% on the
superscalar systems. This demonstrates a potential limita-
tion of vector architectures: seemingly minor code por-
tions that fail to vectorize can quickly dominate the over-
all execution time. The architectural imbalance between
vector and scalar performance was particularly acute of
the X1, which suffered a much greater impact from
unvectorized code than the ES. As a result, significantly
more effort went into code vectorization of the X1 port –
without this optimization, the nonvectorized code por-
tions would dominate the performance profile. Even with
this additional vectorization effort, the X1 reached only

L. Oliker et al.

9J. Earth Sim., Vol. 3, March 2005, 0–0

6% of peak.
Table 4 shows that the ES reached an impressive 2.7

Tflop/s for the largest problem size using 1024 proces-
sors. This represents the highest per processor perform-
ance (by far) achieved by the full-production version of
the Cactus ADM-BSSN on any evaluated system to date.
The Power3, on the other hand, is 45 times slower than
the ES, achieving only 60 Mflop/s per processor (6% of
peak) at this scale for the larger problem size. The
Power4 system offers even lower efficiency than the
Power3 for the smaller (80x80x80) problem size, but still
ranks high in terms of peak delivered performance in
comparison to the X1 and Altix. We were unable to run
the larger (250x64x64) problem sizes on the Power4 sys-
tem, because there were insufficient high-memory nodes
available to run these experiments. The Itanium2 proces-
sor on the Altix achieves good performance as a fraction
of peak for smaller problem sizes (using the latest Intel
8.0 compilers). Observe that unlike vector architectures,
microprocessor-based systems generally perform better
on the smaller per-processor problem size because of bet-
ter cache reuse. In terms of communication overhead, the
ES spends 13% of the overall Cactus time in MPI com-
pared with 23% on the Power3; highlighting the superior
architectural balance of the network design for the ES.
The Altix offered very low communication overhead, but
its limited size prevented us from evaluating high-concur-
rency performance.

6. MAGNETIC FUSION
The Gyrokinetic Toroidal Code (GTC) is a 3D particle-

in-cell (PIC) application developed at the Princeton
Plasma Physics Laboratory to study turbulent transport in
magnetic confinement fusion [12, 13]. Turbulence is
believed to be the main mechanism by which energy and
particles are transported away from the hot plasma core in
fusion experiments with magnetic toroidal devices. GTC
solves the non-linear gyrophase-averaged Vlasov-Poisson
equations [11] for a system of charged particles in a self-
consistent, self-generated electrostatic field. The geome-

try is that of a torus with an externally imposed equilibri-
um magnetic field, characteristic of toroidal fusion
devices. By using the PIC method, the non-linear PDE
describing the motion of the particles in the system
becomes a simple set of ordinary differential equations
(ODEs) that can be easily solved in the Lagrangian coor-
dinates. The self-consistent electrostatic field driving this
motion could conceptually be calculated directly from the
distance between each pair of particles using an O (N2)
calculation, but the PIC approach reduces it to O (N) by
using a grid where each particle deposits its charge to a
limited number of neighboring points according to its
range of influence. The electrostatic potential is then
solved everywhere on the grid using the Poisson equa-
tion, and forces are gathered back to each particle. The
most computationally intensive parts of GTC are the
charge deposition and gather-push steps that involve large
loops over the particles, which can reach several million
per domain partition.

Although the PIC approach drastically reduces the
computational requirements, the grid-based charge depo-
sition phase is a source of performance degradation for
both superscalar and vector architectures. Randomly
localized particles deposit their charge on the grid, there-
by causing poor cache reuse on superscalar machines.
The effect of this deposition step is more pronounced on
vector systems since two or more particle may contribute
to the charge at the same grid point, creating a potential
memory-dependency conflict. Several methods have been
developed to address this issue; GTC uses the work-vec-
tor algorithm [17], where a temporary copy of the grid
array is given an extra dimension corresponding to the
vector length. Each vector operation acts on a given data
set in the register, then writes to a different memory
address, avoiding memory dependencies entirely. After
the main loop, the results accumulated in the work-vector
array are gathered to the final grid array. The only draw-
back is the increased memory footprint, which can be 2 to
8 times higher than the nonvectorized code version.

Since GTC has previously been vectorized on a single-

Table 4 Cactus per processor performance on 80x80x80 and 250x64x64 grids

Power3 Power4 Altix ES X1
P

16
64

256
1024

16
64

256
1024

Gflops/P

0.314
0.217
0.216
0.215
0.097
0.082
0.071
0.060

%Pk

21%
14%
14%
14%
6%
6%
5%
4%

Gflops/P

0.577
0.496
0.475

—
0.556

—
—
—

%Pk

11%
10%
9%
—

11%
—
—
—

%Pk

15%
12%
—
—
9%
7%
—
—

Gflops/P

0.892
0.699

—
—

0.514
0.422

—
—

Gflops/P

1.47
1.36
1.35
1.34
2.83
2.70
2.70
2.70

%Pk

18%
17%
17%
17%
35%
34%
34%
34%

%Pk

4%
3%
3%
—
6%
6%
5%
—

Gflops/P

0.540
0.427
0.409

—
0.813
0.717
0.677

—

Grid
Size

80x80x80
per

processor

250x64x64
per

processor

Performance of Ultra-Scale Applications on Leading Vector and Scalar HPC Platforms

10 J. Earth Sim., Vol. 3, March 2005, 0–00

node SX-6 [20], porting to the ES was relatively straight-
forward. However, performance was initially limited due
to memory bank conflicts, caused by an access concentra-
tion to a few small 1D arrays. Using the duplicate pragma
directive alleviated this problem by allowing the compiler
to create multiple copies of the data structures across
numerous memory banks. This method significantly
reduced the bank conflicts in the charge deposition rou-
tine and increased its performance by 37%. Additional
optimizations were performed to other code segments
with various performance improvements.

GTC is parallelized at a coarse-grain level using mes-
sage-passing constructs. Although the MPI implementa-
tion achieves almost linear scaling on most architectures,
the grid decomposition is limited to approximately 64
subdomains. To run at higher concurrency, a second level
of fine-grain loop-level parallelization is implemented
using OpenMP directives. However, the increased memo-
ry footprint created by the work-vector method inhibited
the use of looplevel parallelism on the ES. A possible
solution could be to add another dimension of domain or
particle decomposition to the code, this strategy is
explored in Section 6.2.

Porting to the X1 was straightforward from the vector-
ized ES version but initial performance was limited. Note
that the X1 suffers from the same memory increase as the
ES due to the work-vector approach, potentially inhibit-
ing OpenMP parallelism. Several additional directives
were necessary to allow effective multistreaming within
each MSP. After discovering that the FORTRAN intrin-
sic function modulo was preventing the vectorization of a
key loop in the gather-push routine, it was replaced by an
equivalent but vectorizable statement mod. The most time
consuming routine on the X1 became the ‘shift’ subrou-
tine. This step verifies the coordinates of newly moved
particles to determine whether they have crossed a subdo-
main boundary and therefore require processor migration.
The shift routine contains nested if statements that pre-
vent the compiler from successfully vectorizing that code
region. However, the non-vectorized shift routine
accounted for significantly more overhead on the X1 than
the ES (54% vs. 11% of overall time). Although both

architectures have the same relative vector to scalar peak
performance (8/1), serialized loops incur an even larger
penalty on the X1. This is because in a serialized segment
of a multistreamed code, only one of the four SSP scalar
processors within an MSP can do useful work, thus
degrading the relative performance ratio to 32/1.
Performance on the X1 was improved by converting the
nested if statements in the shift routine into two succes-
sive condition blocks, allowing the compiler to stream
and vectorize the code properly. The overhead therefore
decreased from 54% to only 4% of the total time. This
optimization was implemented on the ES during our sub-
sequent visit to the Earth Simulator (see Section 6.2).

6.1 GTC Results
Table 5 presents GTC performance results on the five

architectures examined in our study. The first test case is
configured for standard production runs using 10 particles
per grid cell (2 million grid point, 20 million particles).
The second experiment examines 100 particles per cell
(200 million particles), a significantly higher resolution
that improves the overall statistics of the simulation while
significantly (8 fold) increasing the time-to-solution –
making it prohibitively expensive on most superscalar
platforms. For the large test case, both the ES and X1
attain high AVL (228 and 62 respectively) and VOR
(99% and 97%), indicating that the application has been
suitably vectorized; in fact, the vector results represent
the highest GTC performance on any tested platform to
date. In absolute terms the ES shows the highest perform-
ance, achieving 1.56 Gflop/s on the largest problem size
for P = 64 — the highest performance on any evaluated
architecture to date. Additionally, the ES sustains 20% of
peak compared with only 12% on the X1. It should also
be noted that because GTC uses single precision arith-
metic, the X1 theoretical peak performance is actually
25.6 Gflop/s; however limited memory bandwidth and
code complexity that inhibits compiler optimizations
obviate this extra capability.

Comparing performance with the superscalar architec-
tures, the ES vector processors are about 12X faster than
the Power3 and 5X faster than the Power4 and Alitx sys-

Table 5 GTC per processor performance using 10 and 100 particles per cell.

Part/
Cell

Power3 Power4 Altix ES X1

MPI

MPI

Hybrid

P

32
64
32
64

1024

Gflops/P

0.135
0.132
0.135
0.133
0.063

%Pk

9%
9%
9%
9%
4%

Gflops/P

0.299
0.324
0.293
0.294

%Pk

6%
6%
6%
6%

Gflops/P

0.290
0.257
0.333
0.308

%Pk

5%
4%
6%
5%

%Pk

12%
10%
17%
16%

Gflops/P

1.00
0.803
1.50
1.36

%Pk

8%
6%
12%
11%

10

100

Gflops/P

0.961
0.835
1.34
1.25

Code

L. Oliker et al.

11J. Earth Sim., Vol. 3, March 2005, 0–0

tems. Observe that using 1024 processors of the Power3
(in hybrid MPI/OpenMP mode) is still about 35% slower
than 64-way vector runs; GTC’s OpenMP parallelism is
currently unavailable on the vector systems, limiting con-
currency to 64 processors (see Section 6 for the higher
concurrency implementation). Within the superscalar
platforms, the Altix shows the highest raw performance at
over 300 Mflop/s, while the Power3 sustains the highest
fraction of peak (9% compared with approximately 6%
on the Power4 and Altix).

6.2 Particle Decomposition Optimization
At the time of our second visit to the Earth Simulator

Center in October 2004, several new improvements had
been added to GTC. The most important of them was the
implementation of an MPIbased particle decomposition,
which added another level of parallelism and gave the
code access to higher concurrency execution. The parti-
cles inside each spatial domain are now split between a
chosen number of processors. Another improvement was
the inclusion of a fully vectorized version of the shift sub-
routine, as it had been implemented on the X1. However,
the ES version of that subroutine is quite different from
the X1 version since there is no multi-streaming on the
ES. Also, the compiler on the ES requires a very strict
structure in order to vectorize a loop containing an ‘if’
statement. Therefore, the main loop in the shift subrou-
tine had to be split in two in order to conform to that
restriction.

On a 32-processor test, the performance of the new
vectorized shift subroutine increased from 51 Mflop/s to
1351 Mflop/s, thus causing its percentage of wallclock
time to decrease from 16% to less than 7%. This
improvement (along with other smaller changes) pushed
the efficiency of the code up to 25% of peak for the larger
problem sizes. The higher concurrency enabled by the
new particle decomposition allowed GTC to access a
much larger number of processors. The efficiency of the
parallel algorithm met the very stringent ES scaling
requirements and ran on 2,048 processors, reaching an
unprecedented 3.7 Tflop/s using 5 billion particles. This

outstanding GTC performance opens the door to a whole
new set of very high phase space resolution simulations
that have never been explored before, and will be the
focus of future scientific experiments.

7. CONCLUSIONS
This work examined four diverse scientific applica-

tions on the parallel vector architectures of the ES and
X1, and three leading superscalar platforms, the Power3,
Power4, and Altix. Since most modern scientific codes
are designed for (super) scalar microprocessors, it was
necessary to port these applications onto the vector plat-
forms; however only minor code transformations were
applied in an attempt to maximize the vector operation
ratio and average vector length. Extensive code reengi-
neering has not been performed.

Table 6 summarize performance across all five studied
architectures, while Figures 1 and 2 show absolute and
sustained performance relative to the ES (using the
largest comparable concurrency for each architecture).
Overall results show that the ES vector system achieved
excellent performance on our application suite – the high-
est of any architecture tested to date – demonstrating the
tremendous potential of modern parallel vector systems.
The ES consistently sustained a significantly higher frac-
tion of peak than the X1, due in part to superior scalar
processor performance, memory bandwidth, and network
bisection bandwidth relative to the peak vector flop rate.
A number of performance bottlenecks exposed on the
vector machines relate to the extreme sensitivity of these
systems to small amounts of unvectorized code. This
sheds light on a different dimension of architectural bal-
ance than simple bandwidth and latency comparisons. It
is important to note that X1-specific code optimizations
have not been performed at this time. This complex vec-
tor architecture contains both data caches and multi-
streaming processing units, and the optimal programming
methodology is yet to be established. Finally, preliminary
Altix results show promising performance characteristics;
however, we tested a relatively small Altix platform and
it is unclear if its network performance advantages would

Table 6 Summary of overall performance based on largest available concurrency and problem size

Code

LBMHD
PARATEC
CACTUS

GTC
Average

Power3 Power4
Sustained Total Sustained Total

Altix
Sustained Total

X1 ES
Sustained Total Sustained Total

0.11
0.41
0.60
0.13
0.18

0.28
1.08
0.48
0.29
0.53

Gflop/P
7%

28%
4%
9%

12%

5%
21%

9%
6%

10%

%Pk
256
256
256

64
208

CPU
111
211

61
9

98

GflopGflop/P %Pk
1024

512
1024

64
656

CPU
71

276
122

19
122

Gflop
0.65
3.24
0.42
0.31
1.15

Gflop/P
11%
54%
7%
5%

19%

%Pk
64
64
64
64
64

CPU
41

207
27
20
74

Gflop
2.70
1.27
0.68
1.36
1.50

Gflop/P
21%
10%
5%

11%
12%

%Pk
256
256
256
64

208

CPU
691
325
173
87

319

Gflop
3.30
2.53
2.70
1.56
2.52

Gflop/P
41%
32%
34%
20%
32%

%Pk
1024
1024
1024

64
784

CPU
3379
2591
2765
100

2209

Gflop

Performance of Ultra-Scale Applications on Leading Vector and Scalar HPC Platforms

12 J. Earth Sim., Vol. 3, March 2005, 0–00

remain for large system configurations.
Finally, Table 7 presents updated ES results from the

authors second visit to the Earth Simulator Center in
October 2004, where significant improvements were
achieved for three of the evaluated codes. First, we exam-
ined a 3D-lattice version of LBMHD, which sustained a
remarkable 68% of peak on 4096 processors for an aggre-
gate performance of 22.2 Tflop/s. Next, we examined a
larger atom simulation for PARATEC, using a CdSe
Cadmium Selenide Quantum Dot. The larger grid size of
this system allowed scalability to reach 2048 processors
while sustaining 33% of peak, for an aggregate perform-
ance of 5.5 Tflop/s. Finally, a new implementation of
GTC was evaluated that utilizes a second level of paral-
lelism via particle-based decomposition. Results show
that — unlike the previous version where concurrency
was limited to 64 — the updated GTC code successfully
scaled to 2048 processors, attaining an impressive 23% of
peak for an aggregate total of 3.7 Tflop/s. These results
underscore the potential of the ES system to perform sci-
entific caculations at unprecenteded scale and resolution.

Future work will extend our study to include perform-
ance comparisons with the latest generation of high-end
computing platforms. We also plan to investigate new
application domains, in the areas of climate, molecular
dynamics, cosmology, and combustion. We are particu-
larly interested in investigating the vector performance of
adaptive mesh refinement (AMR) methods, as we believe
they will become a key component of future high-fidelity
multi-scale physics simulations, across a broad spectrum
of application domains.

Acknowledgments
The authors would like to gratefully thank: J. Snyder of

NEC for their help in porting applications to the ES.
Special thanks to Thomas Radke, Tom Goodale, and
Holger Berger for assistance with the vector Cactus ports.
This research used resources of the National Energy
Research Scientific Computing Center, which is support-
ed by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC03-76SF00098. This
research used resources of the Center for Computational
Sciences at Oak Ridge National Laboratory, which is sup-
ported by the Office of Science of the Department of
Energy under Contract DE-AC05-00OR22725. All
authors from LBNL were supported by the Office of
Advanced Scientific Computing Research in the
Department of Energy Office of Science under contract
number DE-AC03-76SF00098. Dr. Ethier was supported
by the Department of Energy under contract number DE-
AC020-76-CH03073.

REFERENCES
[1] Cactus Code Server. http://www.cactuscode.org.

[2] Co-Array Fortran. http://www.co-array.org.

[3] ORNL Cray X1 Evaluation.

Fig. 1 Absolute performance as a ratio of the ES, based on
largest comparable concurrency and problem size.

A
b

s
o

lu
te

 P
e
rf

o
rm

a
n

c
e
 R

e
la

ti
v
e
 t

o
 E

S

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
LBMHD PARATEC CACTUS GTC

Power3
Power4
Altix
X1

Fig. 2 Sustained percentage of peak as a ratio of the ES, based
on largest comparable concurrency and problem size.

A
b

s
o

lu
te

 P
e
rf

o
rm

a
n

c
e
 R

e
la

ti
v
e
 t

o
 E

S

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
LBMHD PARATEC CACTUS GTC

Power3
Power4
Altix
X1

Table 7 Comparison between original ES results (top) and
updated ES performance gathered from second visit to
Earth Simulator Center, October 2004 (bottom).
(GTC-PD refers to the updated version of GTC that
utilizes particle decomposition.)

Code Problem
Sustained

2D LBMHD
3D LBMHD
PARATEC
PARATEC

GTC
GTC-PD

81922

10243

686 Si Atom
Quantum Dot
0.2B Particles
5B Particles

Total

3.30
5.50
2.53
2.67
1.56
1.80

Gflops/P
41%
68%
32%
33%
20%
23%

%Pk
1024
4096
1024
2048

64
2048

CPU
3.4

22.2
2.6
5.5
0.1
3.7

Tflop/s

L. Oliker et al.

13J. Earth Sim., Vol. 3, March 2005, 0–0

http://www.csm.ornl.gov/˜dunigan/cray.

[4] PARAllel Total Energy Code. http://www.nersc.gov/proj-

ects/paratec.

[5] Top500 Supercomputer Sites. http://www.top500.org.

[6] P. A. Agarwal et al. Cray X1 evaluation status report. In

Proc. of the 46th Cray Users Group Conference, May

17 – 21, 2004.

[7] M. Alcubierre, G. Allen, B. Brgmann, E. Seidel, and

W.-M. Suen. Towards an understanding of the stability

properties of the 3+1 evolution equations in general rela-

tivity. Phys. Rev. D, (gr-qc/9908079), 2000.

[8] P. J. Dellar. Lattice kinetic schemes for magnetohydrody-

namics, J. Comput. Phys., 79, 2002.

[9] T. H. Dunigan Jr., M. R. Fahey, J. B. White III, and

P. H. Worley. Early evaluation of the Cray X1. In Proc.

SC2003: High performance computing, networking, and

storage conference, Phoenix, AZ, Nov 15 – 21, 2003.

[10] J. A. Font, M. Miller, W. M. Suen, and M. Tobias. Three

dimensional numerical general relativistic hydrodynamics:

Formulations, methods, and code tests. Phys. Rev. D,

Phys. Rev. D61, 2000.

[11] W. W. Lee. Gyrokinetic particle simulation model. J.

Comp. Phys., 72, 1987.

[12] Z. Lin, S. Ethier, T.S. Hahm, and W.M. Tang. Size scaling

of turbulent transport in magnetically confined plasmas.

Phys. Rev. Lett., 88, 2002.

[13] Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang, and

R. B. White. Turbulent transport reduction by zonal flows:

Massively parallel simulations. Science, Sep 1998.

[14] A. Macnab, G. Vahala, P. Pavlo, , L. Vahala, and M. Soe.

Lattice boltzmann model for dissipative incompressible

MHD. In Proc. 28th EPS Conference on Controlled

Fusion and Plasma Physics, volume 25A, Funchal,

Portugal, June 18 – 22, 2001.

[15] A. Macnab, G. Vahala, L. Vahala, and P. Pavlo. Lattice

boltzmann model for dissipative MHD. In Proc. 29th EPS

Conference on Controlled Fusion and Plasma Physics,

volume 26B, Montreux, Switzerland, June 17– 21, 2002.

[16] K. Nakajima. Three-level hybrid vs. flat mpi on the earth

simulator: Parallel iterative solvers for finite-element

method. In Proc. 6th IMACS Symposium Iterative

Methods in Scientific Computing, volume 6, Denver,

Colorado, March 27 – 30, 2003.

[17] A. Nishiguchi, S. Orii, and T. Yabe. Vector calculation of

particle code. J. Comput. Phys., 61, 1985.

[18] L. Oliker and J. Shalf A. Canning, J. Carter. Scientific

computations on modern parallel vector systems. In Proc.

SC2004: High performance computing, networking, and

storage conference, Pittsburgh, PA, Nov. 6 – 12, 2004.

[19] L. Oliker, R. Biswas, J. Borrill, A. Canning, J. Carter, J.

Djomehri, H. Shan, and D. Skinner. A performance evalu-

ation of the Cray X1 for scientific applications. In VEC-

PAR: 6th International Meeting on High Performance

Computing for Computational Science, Valencia, Spain,

June 28 – 30, 2004.

[20] L. Oliker, A. Canning, J. Carter, J. Shalf, D. Skinner,

S. Ethier, R. Biswas, J. Djomehri, and R. Van der Wijngaart.

Evaluation of cache-based superscalar and cacheless vec-

tor architectures for scientific computations. In Proc.

SC2003: High performance computing, networking, and

storage conference, Phoenix, AZ, Nov 15 – 21, 2003.

[21] S. Succi. The lattice boltzmann equation for fluids and

beyond. Oxford Science Publ., 2001.

[22] H. Uehara, M. Tamura, and M. Yokokawa. MPI perform-

ance measurement on the Earth Simulator. Technical

Report # 15, NEC Research and Development, 2003/1.

