
Performance Evaluation of the SX-6 Vector Architecture for
Scientific Computations

Leonid Oliker, Andrew Canning, Jonathan Carter, John Shalf, David Skinner
CRD/NERSC, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Stéphane Ethier
Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08453

Rupak Biswas, Jahed Djomehri∗, and Rob Van der Wijngaart∗

NAS Division, NASA Ames Research Center, Moffett Field, CA 94035

Abstract

The growing gap between sustained and peak performance for scientific applications is a well-known
problem in high performance computing. The recent development of parallel vector systems offers the
potential to reduce this gap for many computational sciencecodes and deliver a substantial increase in
computing capabilities. This paper examines the intranodeperformance of the NEC SX-6 vector proces-
sor, and compares it against the cache-based IBM Power3 and Power4 superscalar architectures, across a
number of key scientific computing areas. First, we present the performance of a microbenchmark suite
that examines many low-level machine characteristics. Next, we study the behavior of the NAS Parallel
Benchmarks. Finally, we evaluate the performance of several scientific computing codes. Overall re-
sults demonstrate that the SX-6 achieves high performance on a large fraction of our application suite
and often significantly outperforms the cache-based architectures. However, certain classes of applica-
tions are not easily amenable to vectorization and would require extensive algorithm and implementation
reengineering to utilize the SX-6 effectively.

1 Introduction

The rapidly increasing peak performance and generality of superscalar cache-based microprocessors long
led researchers to believe that vector architectures hold little promise for future large-scale computing sys-
tems [15]. Due to their cost effectiveness, an ever-growingfraction of today’s supercomputers employ
commodity superscalar processors, arranged as systems of interconnected SMP nodes. However, the grow-
ing gap between sustained and peak performance for scientific applications on such platforms has become
well known in high performance computing.

The recent development of parallel vector systems offers the potential to reduce this performance gap for
a significant number of scientific codes, and to increase computational power substantially [14]. This was
highlighted dramatically when the Japanese Earth Simulator [2] results were published [20, 21, 24]. The
Earth Simulator, based on NEC SX-61 vector technology, achieves five times the LINPACK performance
with almost half the number of processors of the IBM SP-basedASCI White, one of the world’s most pow-
erful supercomputers [8], built usingsuperscalar technology. In order to quantify what this new capability
entails for scientific communities that rely on modeling andsimulation, it is critical to evaluate these two
microarchitectural approaches in the context of demandingcomputational algorithms.

∗Employee of Computer Sciences Corporation.
1Also referred to as the Cray SX-6 due to Cray’s agreement to market NEC’s SX line.

1



In this paper, we compare the performance of the NEC SX-6 vector processor against the cache-based
IBM Power3 and Power4 architectures for several key scientific computing areas. We begin by evaluating
memory bandwidth and MPI communication speeds, using a set of microbenchmarks. Next, we evaluate five
of the well-known NAS Parallel Benchmarks (NPB) [4, 11], using problem size Class B. Finally, we present
performance results for a number of numerical codes from scientific computing domains, including plasma
fusion, astrophysics, fluid dynamics, materials science, magnetic fusion, and molecular dynamics. Since
most modern scientific codes are already tuned for cache-based systems, we examine the effort required to
port these applications to the vector architecture. We focus on serial and intranode parallel performance of
our application suite, while isolating processor and memory behavior. Future work will explore the behavior
of multi-node vector configurations.

2 Architectural Specifications

We briefly describe the salient features of the three parallel architectures examined. Table 1 presents a
summary of their intranode performance characteristics. Notice that the NEC SX-6 has significantly higher
peak performance, with a memory subsystem that features a three to six times larger bytes/flop ratio than
the IBM Power systems.

Node CPU/ Clock Peak Memory BW Peak Memory Latency
Type Node (MHz) (Gflops/s) (GB/s) Bytes/Flop (µsec)

Power3 16 375 1.5 1.0 0.67 8.6
Power4 32 1300 5.2 6.4 1.2 3.0
SX-6 8 500 8.0 32 4.0 2.1

Table 1: Architectural specifications of the Power3, Power4, and SX-6 nodes.

2.1 Power3

The IBM Power3 was first introduced in 1998 as part of the RS/6000 series. Each 375 MHz processor
contains two floating-point units (FPUs) that can issue a multiply-add (MADD) per cycle for a peak per-
formance of 1.5 GFlops/s. The Power3 has a short pipeline of only three cycles, resulting in relatively low
penalty for mispredicted branches. The out-of-order architecture uses prefetching to reduce pipeline stalls
due to cache misses. The CPU has a 32KB instruction cache and a128KB 128-way set associative L1 data
cache, as well as an 8MB four-way set associative L2 cache with its own private bus. Each SMP node con-
sists of 16 processors connected to main memory via a crossbar. Multi-node configurations are networked
via the IBM Colony switch using an omega-type topology.

The Power3 experiments reported in this paper were conducted on a single Nighthawk II node of the 208-
node IBM pSeries system (named Seaborg) running AIX 5.1, Parallel Environment 3.2, C 6.0, Fortran 8.1,
and located at Lawrence Berkeley National Laboratory.

2.2 Power4

The pSeries 690 is the latest generation of IBM’s RS/6000 series. Each 32-way SMP consists of 16 Power4
chips (organized as four MCMs), where a chip contains two 1.3GHz processor cores. Each core has two
FPUs capable of a fused MADD per cycle, for a peak performanceof 5.2 Gflops/s. Two load-store units,
each capable of independent address generation, feed the two double precision MADDers. The superscalar
out-of-order architecture can exploit instruction level parallelism through its eight execution units. Up to

2



eight instructions can be issued each cycle into a pipeline structure capable of simultaneously supporting
more than 200 instructions. Advanced branch prediction hardware minimizes the effects of the relatively
long pipeline (six cycles) necessitated by the high frequency design.

Each processor contains its own private L1 cache (64KB instruction and 32KB data) with prefetch
hardware; however, both cores share a 1.5MB unified L2 cache.Certain data access patterns may therefore
cause L2 cache conflicts between the two processing units. The directory for the L3 cache is located on-chip,
but the memory itself resides off-chip. The L3 is designed asa stand-alone 32MB cache, or to be combined
with other L3s on the same MCM to create a larger interleaved cache of up to 128MB. Multi-node Power4
configurations are currently available employing IBM’s Colony interconnect, but future large-scale systems
will use the lower latency Federation switch.

The Power4 experiments reported here were performed on a single node of the 27-node IBM pSeries
690 system (named Cheetah) running AIX 5.1, Parallel Environment 3.2, C 6.0, Fortran 7.1, and operated
by Oak Ridge National Laboratory.

2.3 SX-6

The NEC SX-6 vector processor uses a dramatically differentarchitectural approach than conventional
cache-based systems. Vectorization exploits regularities in the computational structure to expedite uniform
operations on independent data sets. Vector arithmetic instructions involve identical operations on the ele-
ments of vector operands located in the vector register. Many scientific codes allow vectorization, since they
are characterized by predictable fine-grain data-parallelism that can be exploited with properly structured
program semantics and sophisticated compilers. The 500 MHzSX-6 processor contains an 8-way replicated
vector pipe capable of issuing a MADD each cycle, for a peak performance of 8 Gflops/s per CPU. The
processors contain 72 vector registers, each holding 256 64-bit words.

For non-vectorizable instructions, the SX-6 contains a 500MHz scalar processor with a 64KB instruc-
tion cache, a 64KB data cache, and 128 general-purpose registers. The 4-way superscalar unit has a peak
of 1 Gflops/s and supports branch prediction, data prefetching, and out-of-order execution. Since the vector
unit of the SX-6 is significantly more powerful than its scalar processor, it is critical to achieve high vector
operation ratios, either via compiler discovery or explicitly through code (re-)organization.

Unlike conventional architectures, the SX-6 vector unit lacks data caches. Instead of relying on data lo-
cality to reduce memory overhead, memory latencies are masked by overlapping pipelined vector operations
with memory fetches. The SX-6 uses high speed SDRAM with peakbandwidth of 32GB/s per CPU: enough
to feed one operand per cycle to each of the replicated pipe sets. Each SMP contains eight processors that
share the node’s memory. The nodes can be used as building blocks of large-scale multi-processor systems;
for instance, the Earth Simulator contains 640 SX-6 nodes, connected through a single-stage crossbar.

The vector results in this paper were obtained on the single-node (8-way) SX-6 system (named Rime)
running SUPER-UX 12.1, C++ rev053, and F90 rev264 at the Arctic Region Supercomputing Center
(ARSC) of the University of Alaska.

3 Microbenchmarks

This section presents the performance of a microbenchmark suite that measures some low-level machine
characteristics such as memory subsystem behavior and scatter/gather hardware support using STREAM [7];
and point-to-point communication, network/memory contention, and barrier synchronizations via PMB [5].

3



3.1 Memory Access Performance

First we examine the low-level memory characteristics of the three architectures in our study. Table 2
presents asymptotic unit-stride memory bandwidth behavior of the triad summation:a(i) = b(i) + s× c(i),
using the STREAM benchmark [7]. It effectively captures thepeak bandwidth of the architectures, and
shows that the SX-6 achieves about 48 and 14 times the performance of the Power3 and Power4, respectively,
on a single processor. Notice also that the SX-6 shows negligible bandwidth degradation for up to eight
tasks, while the Power3/4 drop by almost 50% for fully packednodes.

P Power3 Power4 SX-6

1 661 2292 31900
2 661 2264 31830
4 644 2151 31875
8 568 1946 31467

16 381 1552 —
32 — 1040 —

Table 2: Per-processor STREAM triad perfor-
mance (in MB/s) for unit stride. 1

10

100

1000

10000

100000

0 64 128 192 256 320 384 448 512

Stride

T
ri

ad
 S

u
m

m
at

io
n

 (
M

B
/s

)

Pow er3
Pow er4
SX-6

 
Figure 1: Single-processor STREAM triad perfor-
mance (in MB/s) using regularly strided data.

Our next experiment concerns the speed of strided data access on a single processor. Figure 1 presents
our results for the same triad summation, but using various memory strides. Once again, the SX-6 achieves
good bandwidth, up to two (three) orders of magnitude betterthan the Power4 (Power3), while showing
markedly less average variation across the range of stridesstudied. Observe that certain strides impact
SX-6 memory bandwidth quite pronouncedly, by an order of magnitude or more. Analysis shows that
strides containing factors of two worsen performance due toincreased DRAM bank conflicts. On the Power
architectures, a precipitous drop in data transfer rate occurs for small strides (strides less than 20), due to
loss of cache reuse. This drop is more complex on the Power4, because of the extra level of L3 cache.

Finally, Figure 2 presents the memory bandwidth of indirectaddressing through vector triad gather and
scatter operations of various data sizes on a single processor. For smaller sizes, the cache-based architectures
show better data rates for indirect access to memory. However, for larger sizes, the SX-6 is able to utilize its
hardware gather and scatter support effectively, outperforming the cache-based systems.

3.2 MPI Performance

Message passing is the most widely used programming paradigm for high-performance parallel systems.
The MPI library has become the de facto standard for message passing. It allows both intranode and in-
ternode communications, thus obviating the need for hybridprogramming schemes for distributed-memory
systems. Although MPI increases code complexity compared with shared-memory programming paradigms
such as OpenMP, its benefits lie in improved control over datalocality and fewer global synchronizations.

Table 3 presents bandwidth figures obtained using the PallasMPI Benchmark (PMB) suite [5], for
exchanging intranode messages of various sizes. The first row shows the best-case scenario when only two
processors within a node communicate. Notice that the SX-6 has significantly better performance, achieving
more than 19 (7) times the bandwidth of the Power3 (Power4), for the largest messages. The effects of

4



1

10

100

1000

10000

10
0

30
0

70
0

1.
5K

4.
5K 10
K

25
K

60
K

15
0K

37
5K 1M 2M 5M 15
M

Data Size (Bytes)

T
ri

ad
 G

at
h

er
 (

M
B

/s
)

 Pow er3
 Pow er4
 SX-6

 

1

10

100

1000

10000

10
0

30
0

70
0

1.
5K

4.
5K 10
K

25
K

60
K

15
0K

37
5K 1M 2M 5M 15
M

Data Size (Bytes)

T
ri

ad
 S

ca
tt

er
 (

M
B

/s
)

 Pow er3
 Pow er4
 SX-6

 

Figure 2: Single-processor STREAM triad performance (in MB/s) using irregularly strided data of various
sizes: gather (left) and scatter (right).

network/memory contention are visible when all processorswithin each SMP are involved in exchanging
messages. Once again, the SX-6 dramatically outperforms the Power architectures. For example, a message
containing 524288 (219) bytes, suffers 46% (68%) bandwidth degradation when fullysaturating the Power3
(Power4), but only 7% on the SX-6.

8192 Bytes 131072 Bytes 524288 Bytes 2097152 Bytes
P Power3 Power4 SX-6 Power3 Power4 SX-6 Power3 Power4 SX-6 Power3 Power4 SX-6

2 143 515 1578 408 1760 6211 508 1863 8266 496 1317 9580
4 135 475 1653 381 1684 6232 442 1772 8190 501 1239 9521
8 132 473 1588 343 1626 5981 403 1638 7685 381 1123 8753

16 123 469 — 255 1474 — 276 1300 — 246 892 —
32 — 441 — — 868 — — 592 — — 565 —

Table 3: MPI send/receive performance (in MB/s) for variousmessage sizes and processor counts.

Table 4 shows the overhead of MPI barrier synchronization (in µsec). As expected, the barrier overhead
on all three architectures increases with the number of processors. For the fully loaded SMP test case, the
SX-6 has 7.9 (4.2) times lower barrier cost than Power3 (Power4); while for eight processors, the SX-6
performance is 5.4 and 2.0 times better than the Power3/4.

P Power3 Power4 SX-6

2 17.1 6.7 5.0
4 31.7 12.1 7.1
8 54.4 19.8 10.0

16 79.1 28.9 —
32 — 42.4 —

Table 4: MPI synchronization overhead (inµsec).

5



4 Scientific Kernels: NPB

The NAS Parallel Benchmarks (NPB) [4, 11] provide a good middle ground for evaluating the performance
of compact, well-understood applications. The NPB were created at a time when vector machines were
considered no longer cost effective. Although they were meant not to be biased against any particular ar-
chitecture, the NPB were written with cache-based systems in mind. Here we investigate the work involved
in producing good vector versions of the published NPB that are appropriate for our current study: CG, a
sparse-matrix conjugate-gradient algorithm marked by irregular stride resulting from indirect addressing;
MG, a quasi-multi-grid code marked by regular non-unit strides resulting from communications between
grids of different sizes; FT, an FFT kernel; BT, a synthetic flow solver that features simple recurrences in
a different array index in three different parts of the solution process; and LU, a synthetic flow solver fea-
turing recurrences in three array indices simultaneously during the major part of the solution process. We
do not report results for the SP benchmark, which is very similar to BT. Table 5 presents MPI performance
results for these codes on the Power3, Power4, and SX-6 for medium problem sizes, commonly referred to
as Class B (this was the largest problem size that fits in the memory of a single node for all three target ma-
chines). Performance results are reported in Mflops/s per processor. To characterize vectorization behavior
we also showaverage vector length(AVL) and vector operation ratio(VOR). Cache effects are accounted
for by TLB misses in % per cycle (TLB) and L1 hits in % per cycle (L1). All performance numbers except
Mflops/s—which is reported by the benchmarks themselves— were obtained using thehpmcount tool on
the Power3/4 andftrace on the SX-6.

Although the CG code vectorizes well and exhibits fairly long vector lengths, uni-processor SX-6 per-
formance is not very good due to the cost of gather/scatter resulting from the indirect addressing. Multi-
processor SX-6 speedup degrades as expected with the reduction in vector length. Power3/4 scalability is
good, mostly because uni-processor performance is so poor due to the serious lack of data locality.

MG also vectorizes well, and SX-6 performance on up to four processors is good. But a decreased
VOR and AVL, combined with the cost of frequent global synchronizations to exchange data between small
grids, causes a sharp drop on eight processors. The mild degradation of performance on the Power systems
is almost entirely due to the increasing cost of communication, as cache usage is fairly constant, and TLB
misses even go down a bit due to smaller per-processor data sets.

FT did not perform well on the SX-6 in its original form, because the computations used a fixed block
length of 16 words. But once the code was modified to use a blocklength equal to the size of the grid
(only three lines changed), SX-6 uni-processor performance improved markedly due to increased vector
length. Speedup from one to two processors is not good due to the time spent in a routine that does a local
data transposition to improve data locality for cache basedmachines (this routine is not called in the uni-
processor run), but subsequent scalability is excellent. Power3/4 scalability is fairly good overall, despite the
large communication volume, due to improved data locality of the multi-processor implementation. Note
that the Power4’s absolute FT performance is significantly better than its performance on CG, although the
latter exhibits fewer L1 and TLB misses. The sum of L1 and L2 (not reported here) cache hits on the Power4
is approximately the same for CG and FT for small numbers of processors. We conjecture that FT, with its
better overall locality, can satisfy more memory requests from L3 (not measured) than CG.

The BT baseline MPI code performed poorly on the SX-6, because subroutines in inner loops inhibited
vectorization. Also, some inner loops of small fixed length were vectorized, leading to very short vector
lengths. Subroutine inlining and manual expansion of smallloops lead to long vector lengths throughout
the single-processor code, and good performance. Increasing the number of processors on the SX-6 causes
reduction of vector length (artifact of the 3D domain decomposition) and a concomitant deterioration of
the speedup. Power3 (Power4) scalability is fair up to 9 (16)processors, but degrades severely on 16 (25)
processors. The reason is the fairly large number of synchronizations per time step that are costly on (almost)
fully saturated nodes. Experiments with a Power3 two-node computation involving 25 processors show a

6



CG
Power3 Power4 SX-6

P Mflops/s L1 TLB Mflops/s L1 TLB Mflops/s AVL VOR

1 54 68.0 0.058 111 65.6 0.013 470 198.6 96.9
2 55 71.9 0.039 111 69.9 0.014 258 147.0 96.0
4 54 73.0 0.027 114 71.8 0.015 253 147.9 96.5
8 55 79.7 0.031 151 77.0 0.020 131 117.1 95.0

16 48 82.5 0.029 177 78.6 0.025 — — —
32 — — — 149 85.2 0.020 — — —

MG
Power3 Power4 SX-6

P Mflops/s L1 TLB Mflops/s L1 TLB Mflops/s AVL VOR

1 207 97.4 0.067 407 87.3 0.029 2207 160.4 97.2
2 213 97.5 0.067 542 87.5 0.037 2053 160.1 97.1
4 193 97.3 0.061 470 85.6 0.033 1660 161.7 97.1
8 185 97.4 0.049 425 90.0 0.028 620 104.7 95.2

16 148 97.3 0.045 337 87.8 0.023 — — —
32 — — — 292 86.1 0.016 — — —

FT
Power3 Power4 SX-6

P Mflops/s L1 TLB Mflops/s L1 TLB Mflops/s AVL VOR

1 133 91.1 0.204 421 52.6 0.086 2021 256.0 98.4
2 120 91.2 0.088 397 57.5 0.022 1346 255.7 98.4
4 117 91.6 0.087 446 56.3 0.024 1324 255.2 98.4
8 112 91.6 0.084 379 57.1 0.022 1242 254.0 98.4

16 95 91.3 0.070 314 58.4 0.020 — — —
32 — — — 259 60.7 0.016 — — —

BT
Power3 Power4 SX-6

P Mflops/s L1 TLB Mflops/s L1 TLB Mflops/s AVL VOR

1 144 96.8 0.039 368 86.9 0.023 3693 100.9 99.2
4 127 97.1 0.116 208 85.6 0.018 2395 51.2 98.7
9 122 97.0 0.032 269 87.5 0.017 — — —

16 103 97.3 0.025 282 87.5 0.011 — — —
25 — — —- 208 98.4 0.013 — — —

LU
Power3 Power4 SX-6

P Mflops/s L1 TLB Mflops/s L1 TLB Mflops/s AVL VOR

1 186 96.6 0.304 422 75.2 0.087 740 100.2 77.7
2 247 97.1 0.293 595 76.4 0.020 656 51.8 77.2
4 257 97.1 0.421 636 77.5 0.092 684 53.0 77.3
8 263 97.0 0.235 636 78.9 0.009 142 29.4 74.5

16 267 96.9 0.173 558 79.6 0.007 — — —
32 — — — 566 78.4 0.006 — — —

Table 5: Per-processor performance of the NAS Parallel Benchmarks Class B.

7



remarkable recovery of the speedup.
LU fared poorly as expected on the SX-6, because data dependencies in the main part of the solver

prevented full vectorization, as evidenced by the low VOR. Performance of the parts that do vectorize
degrades significantly as the number of processors increases, because of the pencil domain decomposition in
the first and second array dimensions. These factors do not play a role on the Power3/4, whose performance
actually improves as the number of processors grows. This isbecause the communication overhead is rather
small, so that the improved cache usage dominates scalability. Note that LU sustains the highest performance
of all NPB on the Power architectures, but it also has the highest rate of TLB misses on the Power3. This
suggests that the cost of a TLB miss is relatively small.

In sum, all NPB except LU suffer significant performance degradation on both architectures when a node
is (nearly) fully saturated. AVL and especially VOR are strongly correlated with performance on the SX-6,
but the occurrence of irregular stride (requiring support of gather/scatter units) or many small messages also
have significant influence. Except for CG with its irregular memory references, there is a strong correlation
between the smaller L1 cache on the Power4 (0.25 times that ofthe Power3) and the number of L1 misses.
Nevertheless, L1 hits and TLB misses alone are weak predictors of performance on the Power3/4, whereas
communication volume and frequency play a significantly larger role than on the SX-6. In a subsequent
study, more detailed performance indicators will be examined that can more fully explain the observed
behavior.

5 Scientific Applications

Six applications from diverse areas in scientific computingwere chosen to measure and compare the perfor-
mance of the SX-6 with that of the Power3 and Power4. The applications are: TLBE, a fusion energy appli-
cation that performs simulations of high-temperature plasma; Cactus, an astrophysics code that solves Ein-
stein’s equations; OVERFLOW-D, a CFD production code that solves the Navier-Stokes equations around
complex aerospace configurations; PARATEC, a materials science code that solves Kohn-Sham equations
to obtain electron wavefunctions; GTC, a particle-in-cellapproach to solve the gyrokinetic Vlasov-Poisson
equations; and Mindy, a simplified molecular dynamics code that uses the Particle Mesh Ewald algorithm.
The compiler options for running these six applications arelisted in Table 6. Performance results are re-
ported in Mflops/s per processor, except where the original algorithm has been modified for the SX-6 (these
are reported as wall-clock time). As was the case for the NPB,AVL and VOR values are shown for the SX-6,
and TLB and L1 values for the Power systems. All performance numbers were obtained withhpmcount
on the Power3/4 andftrace on the SX-6.

Application Power3 and Power4 SX-6

TLBE -O3 -qtune=auto -qarch=auto -C vopt

Cactus-ADM -O3 -qstrict -qtune=auto -qarch=auto -C vopt

OVERFLOW-D -O3 -q64 -qfixed -qnosave -C vsafe -f0 -size t64

PARATEC -O3 -qarch=auto -C vopt

GTC -O3 -qstrict -qtune=auto -qarch=auto -f4 -C vopt -Wf,"-pvctl

-qcache=auto -Q loopcnt=10000000 vwork=stack"

Mindy -O3 -qstrict -qtune=auto -qarch=auto -f4 -C vopt

Table 6: Compiler options for running our application suiteon the three target architectures.

8



6 Plasma Fusion: TLBE

Lattice Boltzmann methods provide a mesoscopic description of the transport properties of physical systems
using a linearized Boltzmann equation. They offer an efficient way to model turbulence and collisions in a
fluid. The TLBE application [22] performs a 2D simulation of high-temperature plasma using a hexagonal
lattice and the BGK collision operator. Figure 3 shows an example of vorticity contours in the 2D decay of
shear turbulence simulated by TLBE.

Figure 3: TLBE simulated vorticity contours in the 2D decay of shear turbulence.

6.1 Methodology

The TLBE simulation has three computationally demanding components: computation of the mean macro-
scopic variables (integration); relaxation of the macroscopic variables after colliding (collision); and prop-
agation of the macroscopic variables to neighboring grid points (stream). The problem is ideally suited for
vector architectures: the first two steps sweep through a regular 2D grid in column-major order performing a
set of floating-point operations dependent only on local information; the third step consists of a set of strided
copy operations. In addition, distributing the grid via a 2Ddecomposition easily parallelizes the method.
The first two steps require no communication, while the thirdhas a regular, static communication pattern in
which the boundary values of the macroscopic variables are exchanged.

6.2 Porting Details

After initial profiling on the SX-6 using basic vectorization compiler options (-C vopt), only 280 Mflops/s
(3.5% of peak) was achieved for a small642 grid using a serial version of the code. Considering the major
routine is computationally intensive and has no recurrence, this was a poor result. Theftrace tool showed
that VOR was high (95%) and that the collision step dominatedthe execution time (96% of total); however,
AVL was only about 6. We found that the inner loop over the number of directions in the hexagonal lattice
had been vectorized, but not a loop over one of the grid dimensions. Invoking the most aggressive compiler
flag (-C hopt) did not help. Therefore, we rewrote the collision routine by creating temporary vectors,
and inverted the order of two loops to ensure vectorization over one dimension of the grid. As a result, serial
performance improved by a factor of 7, and the parallel TLBE version was created by inserting the new
collision routine into the MPI version of the code.

9



6.3 Performance Results

Parallel TLBE performance using a production grid of20482 is presented in Table 7. The SX-6 results show
that TLBE achieves almost perfect vectorization in terms ofAVL and VOR. The 2- and 4-processor runs
show similar performance as the serial version; however, anappreciable degradation due to memory-bank
conflicts is observed when running eight MPI tasks. These conflicts do not appear for a single-processor
run when the arrays are sized in the same manner as a single task of the 8-way run; hence they are due to
interactions among all eight tasks executing on a single node.

Power3 Power4 SX-6
P Mflops/s L1 TLB Mflops/s L1 TLB Mflops/s AVL VOR

1 70 90.5 0.500 250 58.2 0.069 4060 256.0 99.5
2 110 91.7 0.770 300 69.2 0.014 4060 256.0 99.5
4 110 91.7 0.750 310 71.7 0.013 3920 256.0 99.5
8 110 92.4 0.770 470 87.1 0.021 3050 255.0 99.2

16 110 92.6 0.730 460 88.7 0.019 — — —
32 — — — 440 89.3 0.076 — — —

Table 7: Per-processor performance of TLBE on a20482 grid.

For both the Power3 and Power4 architectures, the collisionroutine rewritten for the SX-6 performed
slightly better than the original. On the cache-based machines, the parallel TLBE showed higher Mflops/s
(per CPU) compared with the serial version. This is due to theuse of smaller grids per processor in the
parallel case, resulting in improved cache reuse. The more complex behavior on the Power4 is due to the
competitive effects of the three-level cache structure andsaturation of the SMP memory bandwidth. In
summary, using all eight CPUs on the SX-6 gives an aggregate performance of 24.4 Gflops/s (38% of peak),
and a speedup factor of 27.7 (6.5) over the Power3 (Power4), with minimal porting overhead.

7 Astrophysics: Cactus

One of the most challenging problems in astrophysics is the numerical solution of Einstein’s equations
following from the Theory of General Relativity (GR): a set of coupled nonlinear hyperbolic and elliptic
equations containing thousands of terms when fully expanded. The Albert Einstein Institute in Potsdam,
Germany, developed the Cactus code [1, 10] to evolve these equations stably in 3D on supercomputers to
simulate astrophysical phenomena with high gravitationalfluxes, such as the collision of two black holes
(see Figure 4) and the gravitational waves that radiate fromthat event.

7.1 Methodology

In order to numerically solve Einstein’s equations, it is generally necessary to decompose the GR 4D for-
mulation (three spatial and one temporal dimension) into a set of equations describing the evolution of a 3D
slice of space-time in time — the so-called 3+1 split. One of the earliest such splits lead to the ADM formal-
ism (used in Cactus), which consists of four constraint equations and 12 evolution equations. The evolution
equations can be solved using a number of different numerical methods, including staggered leapfrog, Mc-
Cormack, Lax-Wendroff, and iterative Crank-Nicholson schemes. The initial data for the evolution must be
chosen to obey the constraint equations, which can subsequently be used to determine how far the numerical
solution has drifted from a correct solution to Einstein’s equations. Analytically, the evolution preserves the
constraints; however, there is usually some numerical drift.

10



Figure 4: Visualization from a recent Cactus simulation of an in-spiraling merger of two black holes.

The freedom to choose coordinates in the space-time slice leads to a corresponding set of “gauge”
functions in the ADM formalism: the lapse function, which describes the amount of coordinate time which
two points on adjacent space-time slices differ by; and the shift vector, which describes the relationship
between spatial coordinates in adjacent slices. These quantities can be chosen arbitrarily, and help prevent
problems in the numerical evolution of the physical variables, e.g. by preserving some property of the space-
time.

For performance evaluation, we focused on a core Cactus ADM solver, the Fortran77-based ADM ker-
nel (BenchADM [9]), written when vector machines were more common; consequently, we expect it to
vectorize well. BenchADM is computationally intensive, involving 600 flops per grid point. The loop body
of the most numerically intensive part of the solver is large(several hundred lines of code). The enormous
size of this loop results in moderate register pressure, as evidenced by the number of register spills in the
Power3/4 assembly code. Normally, loop splitting is performed to alleviate this register pressure, but the
expressions evaluated in the inner loop have such complex dependencies that any splitting arrangement re-
quires storage of intermediate results. Numerous past attempts to split this loop have yielded no benefits
since the increased number of load/stores tends to outweighthe advantages of reducing register spilling.

7.2 Porting Details

BenchADM vectorized almost entirely on the SX-6 in the first attempt. However, the vectorization appears
to involve only the innermost of a triply nested loop (x, y, andz-directions for a 3D evolution). The result-
ing effective vector length for the code is directly relatedto thex-extent of the computational grid. This
dependence led to some parallelization difficulties because the typical block-oriented domain decomposi-
tions reduce the vector length, thereby affecting uni-processor performance. In order to decouple parallel
efficiency and uni-processor performance, the domain was decomposed using Z-slices.

7.3 Performance Results

Table 8 presents performance results for BenchADM on a1273 grid. The mild deterioration of performance
on the Power systems as the number of processors grows up to 16is due to the communication cost, with
a steep drop in performance as a Power4 node gets fully saturated (32 processors). Increasing the grid size
by just one point in each dimension to1283 results in severe performance degradation due to cache-line
aliasing. This is a well-understood problem with set-associative caches that can be handled automatically

11



Power3 Power4 SX-6
P Mflops/s L1 TLB Mflops/s L1 TLB Mflops/s AVL VOR

1 274 99.4 0.030 672 92.2 0.010 3912 126.7 99.6
2 236 99.4 0.030 582 92.6 0.010 3500 126.7 99.5
4 249 99.4 0.020 619 93.2 0.010 2555 126.7 99.5
8 251 99.4 0.030 600 92.4 0.010 2088 126.7 99.3

16 226 99.5 0.020 538 93.0 0.010 — — —
32 — — — 379 97.0 0.001 — — —

Table 8: Per-processor performance of the Cactus BenchADM kernel on a1273 grid.

by the compiler using array padding; however, the compilerswe were using could not infer a reasonable
padding to prevent the aliasing.

While for smaller grid sizes the SX-6 performance is mediocre, the1273 grid uni-processor computation
returns an impressive 3.9 GFlops/s with a sizable AVL and a VOR of almost 100%. The SX-6 is immune
to the effects of power-of-two aliasing because of the absence of cache memory. The vector memory sub-
system is not affected by bank conflicts because most accesses are still unit stride. To date, SX-6’s 49% of
peak performance is the best achieved for this benchmark on any current computer architecture. SX-6 multi-
processor performance deteriorates fairly rapidly due to the rising cost of interprocessor synchronization;
however, the AVL and VOR are hardly affected. Performance counters indicated that boundary exchange
accounts for 12% of the execution time for a 2-processor run,but increases to 47% when running on eight
processors. We determined empirically that the high cost ofboundary exchange on the SX-6 is most likely
due to latencies caused by the calling overhead and/or copying operations rather than any memory subsys-
tem deficiencies. When we artificially doubled the size of themessages, the fraction of time spent in the
boundary exchange increased only from 12% to 14% (for a 2-processor run); if the communication were
predominantly bandwidth limited, the overhead would have nearly doubled.

8 Fluid Dynamics: OVERFLOW-D

OVERFLOW-D [23] is an overset grid methodology [12] for high-fidelity viscous Navier-Stokes CFD simu-
lations around realistic aerospace configurations. The application can handle complex designs with multiple
geometric components, where individual body-fitted grids are easily constructed about each component.
OVERFLOW-D is designed to simplify the modeling of problemswhen components are in relative mo-
tion (dynamic grid systems). At each time step, the flow equations are solved independently on each grid
(“block”) in a sequential manner. Boundary values in grid overlap regions are updated before each time
step, using a Chimera interpolation procedure. The code uses finite differences in space, and a variety of
implicit/explicit time stepping.

8.1 Methodology

The MPI version of OVERFLOW-D (in F90) is based on the multi-block feature of the sequential code,
which offers a natural coarse-grain parallelism. The sequential code consists of an outer “time-loop” and
an inner “grid-loop”. The inter-grid boundary updates in the serial version are performed successively.
To facilitate parallel execution, grids are clustered intogroups; one MPI process is then assigned to each
group. The clustering strategy uses a connectivity test that inspects for an overlap between a pair of grids
before assigning them to the same group, regardless of the size of the boundary data or their connectivity to

12



other grids. The grid-loop in the parallel implementation contains two levels, a loop over groups (“group-
loop”) and a loop over the grids within each group. The group-loop is executed in parallel, with each group
performing its own sequential grid-loop and inter-grid updates. The inter-grid boundary updates across the
groups are achieved via MPI. Further details can be found in [13].

8.2 Porting Details

The MPI implementation of OVERFLOW-D is based on the sequential version, the organization of which
was designed to exploit early Cray vector machines. The samebasic program structure is used on all three
target architectures except that the code was compiled withthe -C vsafe option on the SX-6. A few
minor changes were made in some subroutines in an effort to meet specific compiler requirements.

8.3 Performance Results

Our experiments involve a Navier-Stokes simulation of vortex dynamics in the complex wake flow region
around hovering rotors. The grid system consisted of 41 blocks and approximately 8 million grid points.
Figure 5 presents a sectional view of the test grid and the vorticity magnitude contours of the final solution.

Figure 5: Sectional views of the OVERFLOW-D test grid systemand the computed vorticity magnitude
contours.

Table 9 shows execution times per time step (averaged over 10steps) on the Power3, Power4, and SX-6.
The current MPI implementation of OVERFLOW-D does not allowuni-processor runs. Results demonstrate
that the SX-6 outperforms the cache-based machines; in fact, the run time for eight processors on the SX-6
is less than three-fourths the 32-processor Power4 number.Scalability is similar for both the Power4 and
SX-6 architectures, with computational efficiency decreasing for a larger number of MPI tasks primarily
due to load imbalance. It is interesting to note that Power3 scalability exceeds that of the Power4. On
the SX-6, the relatively small AVL and limited VOR explain why the code achieves a maximum of only
7.8 Gflops/s on eight processors. Reorganizing OVERFLOW-D would achieve higher vector performance;
however, extensive effort would be required to modify this production code of more than 100K lines.

13



Power3 Power4 SX-6
P sec L1 TLB sec L1 TLB sec AVL VOR

2 46.7 93.3 0.245 17.1 84.4 0.014 5.5 87.2 80.2
4 26.6 95.4 0.233 9.4 87.5 0.010 2.8 84.3 76.0
8 13.2 96.6 0.187 5.6 90.4 0.008 1.6 79.0 69.1

16 8.0 98.2 0.143 3.2 92.2 0.005 — — —
32 — — — 2.2 93.4 0.003 — — —

Table 9: Per-processor performance of OVERFLOW-D on a 8 million-grid point problem.

9 Materials Science: PARATEC

PARATEC (PARAllel Total Energy Code) [6] performs first-principles quantum mechanical total energy cal-
culations using pseudopotentials and a plane wave basis set. The approach is based on Density Functional
Theory (DFT) that has become the standard technique in materials science to calculate accurately the struc-
tural and electronic properties of new materials with a fullquantum mechanical treatment of the electrons.
Codes performing DFT calculations are among the largest consumers of computer cycles in centers around
the world, with the plane-wave pseudopotential approach being the most commonly used. Both experimental
and theory groups use these types of codes to study properties such as strength, cohesion, growth, catalysis,
magnetic, optical, and transport for materials like nanostructures, complex surfaces, doped semiconductors,
and others. Figure 6 shows the induced current and charge density in crystalized glycine, calculated using
PARATEC. These simulations were used to better understand nuclear magnetic resonance experiments [25].

Figure 6: Visualization of induced current (white arrows) and charge density (colored plane and grey sur-
face) in crystalized glycine, calculated using PARATEC [25].

9.1 Methodology

PARATEC uses an all-band conjugate gradient (CG) approach to solve the Kohn-Sham equations of DFT
to obtain the wavefunctions of the electrons. A part of the calculations is carried out in real space and the
remainder in Fourier space using specialized parallel 3D FFTs to transform the wavefunctions. The code
spends most of its time (over 80% for a large system) in vendorsupplied BLAS3 and 1D FFTs on which the
3D FFTs are built. For this reason, PARATEC generally obtains a high percentage of peak performance on

14



different platforms. The code exploits fine-grained parallelism by dividing the plane wave components for
each electron among the different processors. For a review of this approach with applications, see [16, 19].

9.2 Porting Details

PARATEC, an MPI code designed primarily for massively parallel systems, also runs on serial machines.
Since much of the computation involves vendor supplied FFTsand BLAS3, an efficient vector implemen-
tation of the code requires these libraries to vectorize well. While this is true for the BLAS3 routines on
the SX-6, the standard FFTs (e.g.,ZFFT) run at a low percentage of peak. It is thus necessary to use the
simultaneous 1D FFTs (e.g.,ZFFTS) to obtain good vectorization. A small amount of code rewriting was
required to convert the 3D FFT routines to simultaneous (“multiple”) 1D FFT calls.

9.3 Performance Results

The results in Table 10 show scaling tests of a 250 Si-atom bulk system for a standard LDA run of PARATEC
with a 25 Ry cut-off using norm-conserving pseudopotentials. The simulations are for three CG steps of
the iterative eigensolver, and include the set-up and I/O steps necessary to execute the code. A typical
calculation using the code would require 20 to 60 CG steps to converge the charge density.

Power3 Power4 SX-6
P Mflops/s L1 TLB Mflops/s L1 TLB Mflops/s AVL VOR

1 915 98.3 0.166 2290 95.6 0.106 5090 113.0 98.0
2 915 98.3 0.168 2250 95.5 0.104 4980 112.0 98.0
4 920 98.3 0.173 2210 96.6 0.079 4700 112.0 98.0
8 911 98.3 0.180 2085 95.9 0.024 4220 112.0 98.0

16 840 98.4 0.182 1572 96.1 0.090 — — —
32 — — — 1327 96.7 0.064 — — —

Table 10: Per-processor performance of PARATEC on a 250 Si-atom bulk system.

Results show that PARATEC vectorizes well and achieves 64% of peak on one processor of the SX-6.
The AVL is approximately half the vector register length, but with a high fraction of VOR. This is because
most of the time is spent in 3D FFTs and BLAS3. The loss in scalability to eight processors (53% of
peak) are due primarily to memory contention and initial code set-up (including I/O) that do not scale well.
Performance increases with larger problem sizes and more CGsteps: for example, running 432 Si-atom
systems for 20 CG steps achieved 73% of peak on one processor.

PARATEC runs efficiently on the Power3; the FFT and BLAS3 routines are highly optimized for this
architecture. The code ran at 61% of peak on a single processor and at 56% on 16 processors. Larger physical
systems, such as the one with 432 Si-atoms, ran at 1.02 Gflops/s (68% of peak) on 16 processors. On the
Power4, PARATEC sustains a much lower fraction of peak (44% on one processor) due to its relatively poor
ratio of memory bandwidth to peak performance. Nonetheless, the Power4 32-processor SMP node achieves
high total performance, exceeding that of the 8-processor SX-6 node. The L1 hit rate is primarily determined
by the serial FFT and BLAS3 libraries; hence it does not vary much with processor count. We conclude
that, due to the high computational intensity and use of optimized numerical libraries, these types of codes
execute efficiently on both scalar and vector machines, without the need for significant code restructuring.

15



10 Magnetic Fusion: GTC

The goal of magnetic fusion is the construction and operation of a burning plasma power plant producing
clean energy. The performance of such a device is determinedby the rate at which the energy is transported
out of the hot core to the colder edge of the plasma. The Gyrokinetic Toroidal Code (GTC) [18] was devel-
oped to study the dominant mechanism for this transport of thermal energy, namely plasma microturbulence.
Plasma turbulence is best simulated by particle codes, in which all the nonlinearities are naturally included.
Figure 7 presents a visualization of electrostatic potential fluctuations in a global nonlinear gyrokinetic sim-
ulation of microturbulence in magnetically confined plasmas.

Figure 7: Electrostatic potential fluctuations of microturbulence in magnetically confined plasmas using
GTC.

10.1 Methodology

GTC solves the gyroaveraged Vlasov-Poisson (gyrokinetic)system of equations [17] using the particle-
in-cell (PIC) approach. Instead of interacting with each other, the simulated particles interact with a self-
consistent electrostatic or electromagnetic field described on a grid. Numerically, the PIC method scales as
N , instead ofN2 as in the case of direct binary interactions. Also, the equations of motion for the particles
are simple ODEs (rather than nonlinear PDEs), and can be solved easily (e.g. using Runge-Kutta). The main
tasks at each time step are: deposit the charge of each particle at the nearest grid points (scatter); solve the
Poisson equation to get the potential at each grid point; calculate the force acting on each particle from the
potential at the nearest grid points (gather); move the particles by solving the equations of motion; find the
particles that have moved outside their local domain and migrate them accordingly.

The parallel version of GTC performs well on massive superscalar systems, since the Poisson equation
is solved as a local operation. The key performance bottleneck is the scatter operation, a loop over the
array containing the position of each particle. Based on a particle’s position, we find the nearest grid points
surrounding it and assign each of them a fraction of its charge proportional to the separation distance. These
charge fractions are then accumulated in another array. Thescatter algorithm in GTC is complicated by the
fact that these are fast gyrating particles, where motion isdescribed by charged rings being tracked by their
guiding center (the center of the circular motion).

10.2 Porting Details

GTC’s scatter phase presented some challenges when portingthe code to the SX-6 architecture. It is difficult
to implement efficiently due to its non-contiguous writes tomemory. The particle array is accessed sequen-

16



tially, but its entries correspond to random locations in the simulation space. As a result, the grid array
accumulating the charges is accessed in random fashion, resulting in poor cache performance. This problem
is exacerbated on vector architectures, since many particles deposit charges at the same grid point, causing
a classic memory dependence problem and preventing vectorization. We avoid these memory conflicts by
using temporary arrays of vector length (256 words) to accumulate the charges. Once the loop is completed,
the information in the temporary array is merged with the real charge data; however, this increases memory
traffic and reduces the flops/byte ratio.

Another source of performance degradation was a short innerloop located inside two large particle loops
that the SX-6 compiler could not vectorize. This problem wassolved by inserting a vectorization directive,
fusing the inner and outer loops. Finally, I/O within the main loop had to be removed to allow vectorization.

10.3 Performance Results

Table 11 shows GTC performance results for a simulation comprising of 4 million particles and 1,187,392
grid points over 200 time steps. The geometry is a torus described by the configuration of the magnetic field.
On a single processor, the Power3 achieves 10% of peak, whilethe Power4 performance represents only 5%
of its peak. The SX-6 single-processor experiment runs at 701 Mflops/s, or only 9% of its theoretical peak.
This poor SX-6 performance is unexpected, considering the relatively high AVL and VOR values. We
believe this is because the scalar units need to compute the indices for the scatter/gather of the underlying
unstructured grid. However, in terms of raw performance, the SX-6 still outperforms the Power3/4 by factors
of 4.6 and 2.5, respectively.

Power3 Power4 SX-6
P Mflops/s L1 TLB Mflops/s L1 TLB Mflops/s AVL VOR

1 153 95.1 0.130 277 89.4 0.015 701 186.8 98.0
2 155 95.1 0.102 294 89.8 0.009 653 184.8 98.0
4 163 96.0 0.084 310 91.2 0.007 548 181.5 97.9
8 167 96.6 0.052 326 92.2 0.007 391 175.4 97.7

16 155 97.3 0.025 240 92.8 0.006 — — —
32 — — — 275 92.7 0.006 — — —

Table 11: Per-processor performance of GTC on a 4-million particle simulation.

Parallel results demonstrate that scaling on the SX-6 is notnearly as good as on the Power3/4. In fact,
both the Power3 and Power4 initially (throughP = 8) show superlinear speedup, a common characteristic
of cache-based machines. This is explained by the higher L1 hit rates and lower TLB misses with increasing
processor count. Superlinear scaling for a fixed problem size cannot be maintained past a certain number of
processors since all the data ultimately fits in cache while the communication-to-computation ratio continues
to increase. Limited scaling on the SX-6 is probably due to the 1D decomposition which reduces the length
of the biggest vector loops as the number of processors increases; however, this is not the final word. More
work is being done on GTC to improve its scalability and efficiency on vector architectures.

11 Molecular Dynamics: Mindy

Mindy is a simplified serial molecular dynamics (MD) C++ code, derived from the parallel MD program
called NAMD [3]. The energetics, time integration, and file formats are identical to those used by NAMD.

17



11.1 Methodology

Mindy’s core is the calculation of forces betweenN atoms via the particle mesh Ewald algorithm. ItsO(N2)
complexity is reduced toO(N log N) by dividing the problem into boxes, and then computing electrostatic
interaction in aggregate by considering neighboring boxes. Neighbor lists and a variety of cutoffs are used
to decrease the required number of force computations.

11.2 Porting Details

Modern MD codes such as Mindy present special challenges forvectorization, since many optimization and
scaling methodologies are at odds with the flow of data suitable for vector architectures. The reduction of
floating point work fromN2 to N log N is accomplished at the cost of increased branch complexity and
nonuniform data access. These techniques have a deleterious effect on vectorization; two strategies were
therefore adopted to optimize Mindy on the SX-6. The first severely decreased the number of conditions
and exclusions in the inner loops, resulting in more computation overall, but less inner-loop branching. We
refer to this strategy asNO EXCL.

The second approach was to divide the electrostatic computation into two steps. First, the neighbor
lists and distances are checked for exclusions, and a temporary list of inter-atom forces to be computed is
generated. The force computations are then performed on this list in a vectorizable loop. Extra memory
is required for the temporaries and, as a result, the flops/byte ratio is reduced. This scheme is labeled
BUILD TEMP.

Mindy uses C++ objects extensively, hindering the compilerto identify data-parallel code segments.
Aggregate datatypes call member functions in the force computation, which impede vectorization. Inlining
member functions of C++ classes is harder for a compiler thaninlining C functions given the possibility of
inheritance, runtime templates, and virtual functions. Compiler directives were used to specify that certain
code sections contain no dependencies, allowing partial vectorization of those regions.

11.3 Performance Results

The case studied here is the apolipoprotein A-I molecule (see Figure 8, a 92224-atom system important in
cardiac blood chemistry that has been adopted as a benchmarkfor large-scale MD simulations on biological
systems.

Figure 8: The apolipoprotein A-I molecule, a 92224-atom system simulated by Mindy.

18



Table 12 presents performance results of the serial Mindy algorithm. Neither of the two SX-6 optimiza-
tion strategies achieves high performance. TheNO EXCL approach results in a very small VOR, meaning
that almost all the computations are performed on the scalarunit. TheBUILD TEMP strategy (also used
on the Power3/4) increases VOR, but incurs the overhead of increased memory traffic for storing temporary
arrays. In general, this class of applications is at odds with vectorization due to the irregularly structured na-
ture of the codes. The SX-6 achieves only 165 Mflops/s, or 2% ofpeak, slightly outperforming the Power3
and trailing the Power4 by about a factor of two in run time. Effectively utilizing the SX-6 would likely
require extensive reengineering of both the algorithm and the object-oriented code.

Power3 Power4 SX-6: NO EXCL SX-6: BUILD TEMP
sec L1 TLB sec L1 TLB sec AVL VOR sec AVL VOR

15.7 99.8 0.010 7.8 98.8 0.001 19.7 78.0 0.03 16.1 134.0 34.8

Table 12: Serial performance of Mindy on a 92224-atom systemwith two different SX-6 optimization
approaches.

12 Summary and Conclusions

This paper presented the performance of the NEC SX-6 vector processor and compared it against the cache-
based IBM Power3 and Power4 superscalar architectures, across a wide range of scientific computations.
Experiments with a set of microbenchmarks demonstrated that for low-level program characteristics, the
specialized SX-6 vector hardware significantly outperforms the commodity-based superscalar designs of
the Power3/4.

Next we examined the NAS Parallel Benchmarks, a well-understood set of kernels representing key
areas in scientific computations. These compact codes allowed us to perform the three main variations
of vectorization tuning: compiler flags, compiler directives, and actual code modifications. The resulting
optimized codes enabled us to identify classes of applications both at odds with and well suited for vector
architectures, with performance ranging from 5.9% to 46% ofpeak on a single SX-6 processor, and from
1.6% to 16% on a fully saturated node of eight processors. Similar percentages of peak performance were
achieved on eight processors of the Power3 and Power4, although the top performing codes on vector and
cache systems were not the same. Absence of data dependencies in the main loops and long vector lengths in
FT produced the best results on the SX-6, whereas good locality and small communication overhead made
LU the best performing code on the Power systems.

Several applications from key scientific computing domainswere also evaluated; however, extensive
vector optimizations have not been performed at this time. Since most modern scientific codes are designed
for (super)scalar systems, we simply examined the effort required to port these applications to the vector
architecture. Table 13 summarizes the overall performance, sorted by SX-6 speedup against the Power4.
Results show that the SX-6 achieves high sustained performance (relative to theoretical peak) for a large
fraction of our application suite and, in many cases, significantly outperforms the scalar architectures.

The Cactus-ADM kernel vectorized almost entirely on the SX-6 in the first attempt. The rest of our
applications required the insertion of compiler directives and/or minor code modifications to improve the
two critical components of effective vectorization: long vector length and high vector operation ratio. Vector
optimization strategies included loop fusion (and loop reordering) to improve vector length; introduction of
temporary variables to break loop dependencies (both real and compiler imagined); reduction of conditional
branches; and alternative algorithmic approaches. For applications such as TLBE, minor code changes were
sufficient to achieve good vector performance and a high percentage of theoretical peak, especially for the
multi-processor computations. For OVERFLOW-D, we obtained fair performance on both the cache-based
and vector machines using the same basic code structure. PARATEC represented a class of applications

19



Application Scientific Lines Power3 Power4 SX-6 SX-6 Speedup vs.
Name Discipline of Code % Pk % Pk % Pk P Power3 Power4

TLBE Plasma Fusion 1,500 7.3 9.0 38.1 8 27.8 6.5
Cactus-ADM Astrophysics 1,200 16.8 11.5 26.1 8 8.3 3.5
OVERFLOW-D Fluid Dynamics 100,000 7.8 5.3 12.2 8 8.2 3.5
PARATEC Materials Science 50,000 60.7 40.1 52.8 8 4.6 2.0
GTC Magnetic Fusion 5,000 11.1 6.3 4.9 8 2.3 1.2
Mindy Molecular Dynamics 11,900 6.3 4.7 2.1 1 1.0 0.5

Table 13: Summary overview of application suite performance.

relying heavily on highly optimized BLAS3 libraries. For these types of codes, all three architectures
performed very well due to the regularly structured, computationally intensive nature of the algorithm. On
a single SX-6 processor, PARATEC achieved 64% of peak, whileTLBE and Cactus-ADM were at 50%;
however, TLBE showed a factor of 58.0 (16.2) performance improvement over the Power3 (Power4).

Finally, we presented two applications with poor vector performance: GTC and Mindy. They feature
indirect addressing, many conditional branches, and loop carried data-dependencies. These particle-in-cell
and particle mesh Ewald algorithms are representative of sparse computational methods at odds with vector
parallelism, since multiple particle forces may potentially contribute to the energy calculation at a particular
grid point. Effectively vectorizing these applications requires the removal of potential data dependencies
through techniques such as copied temporary arrays, particle sorting, or graph coloring. However, these
code transformations may increase the vector efficiency at the cost of significant computational (or memory)
overheads, thus limiting overall efficacy. For Mindy, an additional problem was the use of C++ objects,
which made it difficult for the compiler to identify data-parallel loops. Effectively utilizing the SX-6 would
likely require extensive reengineering of both the algorithm and the implementation for these applications.

Acknowledgements

The authors would like to gratefully thank the Arctic RegionSupercomputing Center for access to the NEC
SX-6, the Center for Computational Sciences at ORNL for access to the IBM p690, and the National En-
ergy Research Scientific Computing Center at LBNL for accessto the IBM SP. All authors from LBNL
were supported by Director, Office of Computational and Technology Research, Division of Mathemati-
cal, Information, and Computational Sciences of the U.S. Department of Energy under contract number
DE-AC03-76SF00098. The Computer Sciences Corporation employees were supported by NASA Ames
Research Center under contract number DTTS59-99-D-00437/A61812D with AMTI/CSC.

References

[1] Cactus Code Server. http://www.cactuscode.org.

[2] Earth Simulator Center. http://www.es.jamstec.go.jp.

[3] Mindy: A ‘minimal’ molecular dynamics program.
http://www.ks.uiuc.edu/Development/MDTools/mindy.

[4] NAS Parallel Benchmarks. http://www.nas.nasa.gov/Software/NPB.

[5] Pallas MPI Benchmarks. http://www.pallas.com/e/products/pmb.

20



[6] PARAllel Total Energy Code. http://www.nersc.gov/projects/paratec.

[7] STREAM: Sustainable memory bandwidth in high performance computers.
http://www.cs.virginia.edu/stream.

[8] Top500 Supercomputer Sites. http://www.top500.org.

[9] A. Abrahams, D. Bernstein, D. Hobill, E. Seidel, and L. Smarr. Numerically generated black hole
spacetimes: interaction with gravitational waves.Phys. Rev. D, 45:3544–3558, 1992.

[10] G. Allen, T. Goodale, G. Lanfermann, T. Radke, E. Seidel, W. Benger, H.-C. Hege, A. Merzky,
J. Massó, and J. Shalf. Solving Einstein’s equations on supercomputers.IEEE Computer, 32(12):52–
58, 1999.

[11] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi, S. Fineberg, P. Freder-
ickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan, and S. Weeratunga. The NAS Parallel
Benchmarks. Technical Report RNR-94-007, NASA Ames Research Center, 1994.

[12] P.G. Buning, D.C. Jespersen, T.H. Pulliam, W.M. Chan, J.P. Slotnick, S.E. Krist, and K.J. Renze.
Overflow user’s manual, version 1.8g. Technical report, NASA Langley Research Center, 1999.

[13] M.J. Djomheri and R. Biswas. Performance enhancement strategies for multi-block overset grid CFD
applications.Parallel Computing, 29(11-12):1791–1810, 2003.

[14] T.H. Dunigan, Jr., M.R. Fahey, J.B. White III, and P.H. Worley. Early evaluation of the Cray X1. In
Proc. SC2003, CD-ROM, 2003.

[15] R. Espasa, M. Valero, and J.E. Smith. Vector architectures: past, present and future. InProc. Intl.
Conf. on Supercomputing, pages 425–432, 1998.

[16] G. Galli and A. Pasquarello.First-Principles Molecular Dynamics, pages 261–313. Computer Simu-
lation in Chemical Physics. Kluwer, 1993.

[17] W.W. Lee. Gyrokinetic particle simulation model.J. Comp. Phys., 72:243–262, 1987.

[18] Z. Lin, S. Ethier, T.S. Hahm, and W.M. Tang. Size scalingof turbulent transport in magnetically
confined plasmas.Phys. Rev. Lett., 88:195004, 2002.

[19] M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and J.D.Joannopoulos. Iterative minimization tech-
niques for ab initio total-energy calculations: Moleculardynamics and conjugate gradients.Rev. Mod.
Phys., 64:1045–1098, 1993.

[20] H. Sakagami, H. Murai, Y. Seo, and M. Yokokawa. 14.9 TFLOPS three-dimensional fluid simulation
for fusion science with HPF on the Earth Simulator. InProc. SC2002, CD-ROM, 2002.

[21] S. Shingu, H. Takahara, H. Fuchigami, M. Yamada, Y. Tsuda, W. Ohfuchi, Y. Sasaki, K. Kobayashi,
T. Hagiwara, S. Habata, M. Yokokawa, H. Itoh, and K. Otsuka. A26.58 Tflops global atmospheric
simulation with the spectral transform method on the Earth Simulator. InProc. SC2002, CD-ROM,
2002.

[22] G. Vahala, J. Carter, D. Wah, L. Vahala, and P. Pavlo.Parallelization and MPI performance of Thermal
Lattice Boltzmann codes for fluid turbulence. Parallel Computational Fluid Dynamics ’99. Elsevier,
2000.

21



[23] A.M. Wissink and R. Meakin. Computational fluid dynamics with adaptive overset grids on paral-
lel and distributed computer platforms. InProc. Intl. Conf. on Parallel and Distributed Processing
Techniques and Applications, pages 1628–1634, 1998.

[24] M. Yokokawa, K. Itakura, A. Uno, T. Ishihara, and Y. Kaneda. 16.4-Tflops Direct Numerical Simu-
lation of turbulence by Fourier spectral method on the EarthSimulator. InProc. SC2002, CD-ROM,
2002.

[25] Y. Yoon, B.G. Pfrommer, S.G. Louie, and A. Canning. NMR chemical shifts in amino acids: effects
of environments, electric field and amine group rotation.Phys. Rev. B, submitted.

22


