
Scientific Computations on
Modern Parallel Vector Systems ∗

Leonid Oliker, Andrew Canning, Jonathan Carter, John Shalf
CRD/NERSC

Lawrence Berkeley National Laboratory
Berkeley, CA 94720

{loliker,acanning,jtcarter,jshalf}@lbl.gov

Stephane Ethier
Princeton Plasma Physics Laboratory

Princeton University
Princeton, NJ 08453

sethier@pppl.gov

ABSTRACT
Computational scientists have seen a frustrating trend of stagnating
application performance despite dramatic increases in the claimed
peak capability of high performance computing systems. This trend
has been widely attributed to the use of superscalar-based commod-
ity components who’s architectural designs offer a balance between
memory performance, network capability, and execution rate that is
poorly matched to the requirements of large-scale numerical com-
putations. Recently, two innovative parallel-vector architectures
have become operational: the Japanese Earth Simulator (ES) and
the Cray X1. In order to quantify what these modern vector capa-
bilities entail for the scientists that rely on modeling and simulation,
it is critical to evaluate this architectural paradigm in the context of
demanding computational algorithms. Our evaluation study exam-
ines four diverse scientific applications with the potential to run
at ultrascale, from the areas of plasma physics, material science,
astrophysics, and magnetic fusion. We compare performance be-
tween the vector-based ES and X1, with leading superscalar-based
platforms: the IBM Power3/4 and the SGI Altix. Our research team
was the first international group to conduct a performance evalua-
tion study at the Earth Simulator Center; remote ES access in not
available. Results demonstrate that the vector systems achieve ex-
cellent performance on our application suite – the highest of any
architecture tested to date. However, vectorization of a particle-in-
cell code highlights the potential difficulty of expressing irregularly
structured algorithms as data-parallel programs.

1. INTRODUCTION
Computational scientists have seen a frustrating trend of stagnating
application performance despite dramatic increases in the claimed

∗0-7695-2153-3/04 $20.00 (c)2004 IEEE

peak capability of leading parallel systems. This trend has been
widely attributed to the use of superscalar-based commodity com-
ponents whose architectural designs are unbalanced for large-scale
numerical computations. Superscalar architectures are unable to
effectively exploit the large number of floating-point units that can
potentially be fabricated on a chip, due to the small granularity of
their instructions and the correspondingly complex control struc-
ture necessary to support them. Alternatively, vector technology
provides an efficient approach for controlling a large amount of
computational resources provided that sufficient regularity in the
algorithmic structure can be discovered. Vectors exploit compu-
tational symmetries to expedite uniform operations on indepen-
dent data sets. However, when such operational parallelism cannot
be found, efficiency suffers from the properties of Amdahl’s Law,
where the non-vectorizable code portions can quickly dominate the
overall execution time.

Recently, two innovative parallel-vector architectures have become
available to the supercomputing community: the Japanese Earth
Simulator (ES) and the Cray X1. In order to quantify what these
modern vector capabilities entail for the scientists that rely on mod-
eling and simulation, it is critical to evaluate this architectural ap-
proach in the context of demanding computational algorithms. A
number of previous studies [7, 10, 18, 21, 20] have examined par-
allel vector performance for scientific codes; however, few direct
comparisons of large-scale applications are currently available. In
this work, we compare the vector-based ES and X1 architectures
with three state-of-the-art superscalar systems: the IBM Power3,
Power4, and the SGI Altix. Our research team was the first in-
ternational group to conduct a performance evaluation study at the
Earth Simulator Center; remote ES access in not available. We
examine four diverse scientific applications with potential to oper-
ate at ultrascale, from plasma physics (LBMHD), material science
(PARATEC), astrophysics (Cactus), and magnetic fusion (GTC).
Results demonstrate that the vector systems achieve excellent per-
formance on our application suite – the highest of any platform
tested to date. However, the low ratio between scalar and vector
performance make the evaluated vector systems particularly sensi-
tive to unvectorized code segments – pointing out an additional di-
mension for ’architectural balance’ where vector systems are con-
cerned. Additionally, vectorization of a particle-in-cell code high-

Platform CPU/ Clock Peak Memory BW Peak MPI Latency Network BW Bisection BW Network
Node (MHz) (GF/s) (GB/s) (Bytes/flop) (µsec) (GB/s/CPU) (Bytes/s/flop) Topology

Power3 16 375 1.5 0.7 0.47 16.3 0.13 0.087 Fat-tree
Power4 32 1300 5.2 2.3 0.44 7.0 0.25 0.025 Fat-tree
Altix 2 1500 6.0 6.4 1.1 2.8 0.40 0.067 Fat-tree
ES 8 500 8.0 32.0 4.0 5.6 1.5 0.19 Crossbar
X1 4 800 12.8 34.1 2.7 7.3 6.3 0.0881 2D-torus

Table 1: Architectural highlights of the Power3, Power4, Altix, ES, and X1 platforms.

lights the potential difficulty of expressing irregularly structured
algorithms as data-parallel programs. Overall, the ES sustains a
significantly higher fraction of peak than the X1, and often out-
performs it in absolute terms. Results also indicate that the Altix
system is a promising computational platform.

2. ARCHITECTURAL PLATFORMS AND
SCIENTIFIC APPLICATIONS

Table 1 presents a summary of the architectural characteristics of
the five supercomputers examined in our study. Observe that the
vector systems are designed with higher absolute performance and
better architectural balance than the superscalar platforms. The
ES and X1 have high memory bandwidth relative to peak CPU
(bytes/flop), allowing them to continuously feed the arithmetic units
with operands more effectively than the superscalar architectures
examined in our study. Additionally, the custom vector intercon-
nects show superior characteristics in terms of measured latency [4,
23], point-to-point messaging (bandwidth per CPU), and all-to-all
communication (bisection bandwidth) – in both raw performance
(GB/s) and as a ratio of peak processing speed (bytes/flop). Over-
all the ES appears the most balanced system in our study, while the
Altix shows the best architectural characteristics among the super-
scalar platforms.

2.1 Power3
The Power3 experiments reported here were conducted on the 380-
node IBM pSeries system running AIX 5.1 and located at Lawrence
Berkeley National Laboratory. Each 375 MHz processor contains
two floating-point units (FPUs) that can issue a fused multiply-add
(MADD) per cycle for a peak performance of 1.5 Gflop/s. The
Power3 has a pipeline of only three cycles, thus using the regis-
ters more efficiently and diminishing the penalty for mispredicted
branches. The out-of-order architecture uses prefetching to reduce
pipeline stalls due to cache misses. The CPU has a 32KB instruc-
tion cache, a 128KB 128-way set associative L1 data cache, and an
8MB four-way set associative L2 cache with its own private bus.
Each SMP node consists of 16 processors connected to main mem-
ory via a crossbar. Multi-node configurations are networked via the
Colony switch using an omega-type topology.

2.2 Power4
The Power4 experiments in this paper were performed on the 27-
node IBM pSeries 690 system running AIX 5.2 and operated by
Oak Ridge National Laboratory (ORNL). Each 32-way SMP con-
sists of 16 Power4 chips (organized as 4 MCMs), where a chip
contains two 1.3 GHz processor cores. Each core has two FPUs
capable of a fused MADD per cycle, for a peak performance of

1X1 bisection bandwidth is based on a 2048 MSP configuration

5.2 Gflop/s. The superscalar out-of-order architecture can exploit
instruction level parallelism through its eight execution units; how-
ever a relatively long pipeline (six cycles) if necessitated by the
high frequency design. Each processor contains its own private L1
cache (64KB instruction and 32KB data) with prefetch hardware;
however, both cores share a 1.5MB unified L2 cache. The L3 is de-
signed as a stand-alone 32MB cache, or to be combined with other
L3s on the same MCM to create a larger 128MB interleaved cache.
The benchmarks presented in this paper were run on a system em-
ploying the recently-released Federation (HPS) interconnect, with
two switch adaptors per node. None of the benchmarks used large
(16MB) pages, as the ORNL system was not configured for such
jobs.

2.3 Altix 3000
The SGI Altix is a unique architecture, designed as a cache-coherent,
shared-memory multiprocessor system. The computational build-
ing blocks of the Altix consists of four Intel Itanium2 processors,
local memory, and a two controller ASICs called the SHUB. The
64-bit Itanium2 architecture operates at 1.5 GHz and is capable of
issuing two MADDs per cycle for a peak performance of 6 Gflop/s.
The memory hierarchy consists of 128 floating-point (FP) regis-
ters and three on-chip data caches with 32K of L1, 256K of L2,
and 6MB of L3. Note that the Itanium2 cannot store FP data in
L1 cache (only in L2), making register loads and spills a poten-
tial source of bottlenecks; however, the relatively large FP regis-
ter set helps mitigate this issue. The superscalar Itanium2 proces-
sor performs a combination of in-order and out-of-order instruction
execution referred to as Explicitly Parallel Instruction Computing
(EPIC). Instructions are organized into VLIW bundles, where all
instructions within a bundle can be executed in parallel. However,
the bundles themselves must be processed in order

The Altix interconnect uses the NUMAlink3,a high-performance
custom network in a fat-tree topology. This configuration enables
the bisection bandwidth to scale linearly with the number of proces-
sors. In additional to the traditional distributed-memory program-
ming paradigm, the Altix systems implements a cache-coherent,
nonuniform memory access (NUMA) protocol directly in hard-
ware. This allows a programming model where remote data are
accessed just like locally allocated data, using loads and stores. A
load/store cache miss causes the data to be communicated in hard-
ware (via the SHUB) at a cache-line granularity and automatically
replicated in the local cache, however locality of data in main mem-
ory is determined at page granularity. Additionally, one-sided pro-
gramming languages can be efficiently implemented by leveraging
the NUMA layer. The Altix experiments reported in this paper
were performed on the 256-processor system (several reserved for
system services) at ORNL, running 64-bit Linux version 2.4.21 and
operating as a single system image.

Name Lines Discipline Methods Structure

LBMHD 1,500 Plasma Physics Magneto-Hydrodynamics, Lattice Boltzmann Grid
PARATEC 50,000 Material Science Density Functional Theory, Kohn Sham, FFT Fourier/Grid
CACTUS 84,000 Astrophysics Einstein Theory of GR, ADM-BSSN, Method of Lines Grid

GTC 5,000 Magnetic Fusion Particle in Cell, gyrophase-averaged Vlasov-Poisson Particle

Table 2: Overview of scientific applications examined in our study.

2.4 Earth Simulator
The vector processor of the ES uses a dramatically different archi-
tectural approach than conventional cache-based systems. Vector-
ization exploits regularities in the computational structure of sci-
entific applications to expedite uniform operations on independent
data sets. The 500 MHz ES processor contains an 8-way replicated
vector pipe capable of issuing a MADD each cycle, for a peak per-
formance of 8.0 Gflop/s per CPU. The processors contain 72 vector
registers, each holding 256 64-bit words (vector length = 256). For
non-vectorizable instructions, the ES contains a 500 MHz scalar
processor with a 64KB instruction cache, a 64KB data cache, and
128 general-purpose registers. The 4-way superscalar unit has a
peak of 1.0 Gflop/s (1/8 of the vector performance) and supports
branch prediction, data prefetching, and out-of-order execution.

Like traditional vector architectures, the ES vector unit is cache-
less; memory latencies are masked by overlapping pipelined vector
operations with memory fetches. The main memory chip for the
ES uses a specially developed high speed DRAM called FPLRAM
(Full Pipelined RAM) operating at 24ns bank cycle time. Each
SMP contains eight processors that share the node’s memory. The
Earth Simulator is the world’s most powerful supercomputer [6],
containing 640 ES nodes connected through a custom single-stage
crossbar. This high-bandwidth interconnect topology provides im-
pressive communication characteristics, as all nodes are a single
hop from one another. However, building such a network incurs a
high cost since the number of cables grows as a square of the node
count – in fact, the ES system utilizes approximately 1500 miles of
cable. The 5120-processor ES runs Super-UX, a 64-bit Unix oper-
ating system based on System V-R3 with BSD4.2 communication
features. As remote ES access is not available, the reported experi-
ments were performed during the authors’ visit to the Earth Simula-
tor Center located in Kanazawa-ku, Yokohama, Japan in December
2003.

2.5 X1
The recently-released X1 is designed to combine traditional vec-
tor strengths with the generality and scalability features of modern
superscalar cache-based parallel systems. The computational core,
called the single-streaming processor (SSP), contains two 32-stage
vector pipes running at 800 MHz. Each SSP contains 32 vector reg-
isters holding 64 double-precision words (vector length = 64), and
operates at 3.2 Gflop/s peak for 64-bit data. The SSP also contains
a two-way out-of-order superscalar processor running at 400 MHz
with two 16KB caches (instruction and data). The multi-streaming
processor (MSP) combines four SSPs into one logical computa-
tional unit. The four SSPs share a 2-way set associative 2MB data
Ecache, a unique feature for vector architectures that allows ex-
tremely high bandwidth (25–51 GB/s) for computations with tem-
poral data locality. MSP parallelism is achieved by distributing
loop iterations across each of the four SSPs. The compiler must
therefore generate both vectorizing and multistreaming instructions
to effectively utilize the X1. The scalar unit operates at 1/8th the

peak of SSP vector performance, but offers effectively 1/32 MSP
performance if a loop can neither be multistreamed nor vectorized.
Consequently, a high vector operation ratio is especially critical for
effectively utilizing the underlying hardware.

The X1 node consists of four MSPs sharing a flat memory, and
large system configuration are networked through a modified 2D
torus interconnect. The torus topology allows scalability to large
processor counts with relatively few links compared with fat-tree
or crossbar interconnects; however, this topological configuration
suffers from limited bisection bandwidth. Finally, the X1 has hard-
ware supported globally addressable memory which allows for effi-
cient implementations of one-sided communication libraries (MPI-
2, SHMEM) and implicit parallel programming languages (UPC,
CAF). All reported X1 experiments reported were performed on
the 512-MSP system (several reserved for system services) running
UNICOS/mp 2.4 and operated by ORNL.

2.6 Scientific Applications
Four applications from diverse areas in scientific computing were
chosen to compare the performance of the vector-based ES and
X1 with the superscalar-based Power3, Power4, and Altix systems.
The application are: LBMHD, a plasma physics application that
uses the Lattice-Boltzmann method to study magneto-hydrodynam-
ics; PARATEC, a first principles materials science code that solves
the Kohn-Sham equations of density functional theory to obtain
electronic wavefunctions; Cactus, an astrophysics code that evolves
Einstein’s equations from the Theory of General Relativity using
the Arnowitt-Deser-Misner method; and GTC, a magnetic fusion
application that uses the particle-in-cell approach to solve non-linear
gyrophase-averaged Vlasov-Poisson equations. An overview of the
applications is presented in Table 2.

These codes represent candidate ultrascale applications that have
the potential to fully utilize a leadership-class system of Earth Sim-
ulator scale. Performance results, presented in Gflop/s per pro-
cessor (denoted as Gflops/P) and percentage of peak, are used to
compare the relative time to solution of the computing platforms
in our study. When different algorithmic approaches are used for
the vector and scalar implementations, this value is computed by
dividing a valid baseline flop-count by the measured wall-clock
time of each architecture. To characterize the level of vectoriza-
tion, we also examine vector operation ratio (VOR) and average
vector length (AVL) for the ES and X1 where possible. The VOR
measures the ratio between the number of vector operations and the
total overall operations (vector plus scalar); while the AVL repre-
sents the average number of operations performed per issued vector
instruction. An effectively vectorized code will achieve both high
VOR (optimal is 100%) and AVL (256 and 64 is optimal for ES
and X1 respectively). Hardware counter data were obtained with
hpmcount on the Power systems,pfmon on the Altix, ftrace
on the ES, andpat on the X1.

Figure 1: Current density decays of two cross-shaped struc-
tures after several hundred time steps, computed by LBMHD.

3. LBMHD
Lattice Boltzmann methods (LBM) have proved a good alternative
to conventional numerical approaches for simulating fluid flows
and modeling physics in fluids [22]. The basic idea of the LBM
is to develop a simplified kinetic model that incorporates the essen-
tial physics, and reproduces correct macroscopic averaged proper-
ties. Recently, several groups have applied the LBM to the problem
of magneto-hydrodynamics (MHD) [9, 16] with promising results.
LBMHD [17] simulates the behavior of a two-dimensional con-
ducting fluid evolving from simple initial conditions and decaying
to form current sheets. Figure 1 shows the current density decays
of two cross-shaped structures after several hundred time steps as
computed by LBMHD.

The 2D spatial grid is coupled to an octagonal streaming lattice
(shown in Figure 2a) and block distributed over a 2D processor
grid. Each grid point is associated with a set of mesoscopic vari-
ables, whose values are stored in vectors proportional to the num-
ber of streaming directions – in this case nine (eight plus the null
vector). The simulation proceeds by a sequence of collision and
stream steps. A collision step involves data local only to that spa-
tial point, allowing concurrent, dependence-free point updates; the
mesoscopic variables at each point are updated through a complex
algebraic expression originally derived from appropriate conserva-
tion laws. A stream step evolves the mesoscopic variables along the
streaming lattice, necessitating communication between processors
for grid points at the boundaries of the blocks. An example of a
diagonal streaming vector updating three spatial cells is shown in
Figure 2b. Additionally, an interpolation step is required between
the spatial and stream lattices since they do not match. Overall
the stream operation requires interprocessor communication, dense
and strided memory copies, as well as third degree polynomial eval-
uations.

3.1 Porting details
Varying schemes were used in order to optimize the collision rou-
tine on each of the architectures. The basic computational structure
consists of two nested loops over spatial grid points (typically 100-
1000 iterations) with inner loops over velocity streaming vectors
and magnetic field streaming vectors (typically 10-30 iterations),
performing various algebraic expressions. For the Power3/4 and
Altix systems, the inner grid point loop was blocked to increase
cache reuse – leading to a modest improvement in performance

for the largest grids and smallest concurrencies. For the ES, the
inner grid point loop was taken inside the streaming loops and vec-
torized. The temporary arrays introduced were padded to reduce
memory bank conflicts. We note that the ES compiler was unable
to perform this transformation based on the original code. In the
case of the X1, the compiler did an excellent job, multi-streaming
the outer grid point loop and vectorizing (via strip mining) the inner
grid point loop without any user code restructuring. No additional
vectorization effort was required due to the data-parallel nature of
LBMHD.

Interprocessor communication was implemented using the MPI li-
brary, by copying the non-contiguous mesoscopic variables data
into temporary buffers, thereby reducing the required number of
send/receive messages. Additionally, a Co-array Fortran (CAF) [3]
version was implemented for the X1 architecture. CAF is a one-
sided parallel programming language implemented via an extended
Fortran 90 syntax. Unlike explicit message passing in MPI, CAF
programs can directly access non-local data through co-array refer-
ences. This allows a potential reduction in interprocessor overhead
for architectures supporting one-sided communication, as well as
opportunities for compiler-based optimizing transformations. For
example, the X1’s measured latency decreased from 7.3µsec using
MPI to 3.9µsec using CAF semantics [4]. In the CAF implemen-
tation of LBMHD, the spatial grid is declared as a co-array and
boundary exchanges are performed using co-array subscript nota-
tion.

(a) (b)

Figure 2: LBMHD’s (a) the octagonal streaming lattice cou-
pled with the square spatial grid and (b) example of diagonal
streaming vector updating three spatial cells.

3.2 Performance Results
Table 3 presents LBMHD performance on the five studied architec-
ture for grid sizes of40962 and81922. Note that to maximize per-
formance the processor count is restricted to squared integers. The
vector architectures show impressive results, achieving a speedup
of approximately 44x, 16x, and 7x compared with the Power3,
Power4, and Altix respectively (for 64 processors). The AVL and
VOR are near maximum for both vector systems, indicating that
this application is extremely well-suited for vector platforms. In
fact the 3.3 Tflop/s attained on 1024 processor of the ES represents
the highest performance of LBMHD on any measured architecture
to date. The X1 gives comparable raw performance to the ES for
most of our experiments; however for 256 processors on the large
(81922) grid configuration, the ES ran about 1.5X faster due to
the decreased scalability of the X1. Additionally, the ES consis-
tently sustains a significantly higher fraction of peak, due in part to
its superior CPU-memory balance. The X1 CAF implementation
shows about a 10% overall improvement over the MPI version for

Grid Power3 Power4 Altix ES X1 (MPI) X1 (CAF)
Size

P
Gflops/P %Pk Gflops/P %Pk Gflops/P %Pk Gflops/P %Pk Gflops/P %Pk Gflops/P %Pk

4096 16 0.107 7% 0.279 5% 0.598 10% 4.62 58% 4.32 34% 4.55 36%
x 64 0.142 9% 0.296 6% 0.615 10% 4.29 54% 4.35 34% 4.26 33%

4096 256 0.136 9% 0.281 5% — — 3.21 40% — — — —

8192 64 0.105 7% 0.270 5% 0.645 11% 4.64 58% 4.48 35% 4.70 37%
x 256 0.115 8% 0.278 5% — — 4.26 53% 2.70 21% 2.91 23%

8192 1024 0.108 7% — — — — 3.30 41% — — — —

Table 3: LBMHD per processor performance on 4096x4096 and 8192x8192 grids.

the large test case, however MPI slightly outperformed CAF for the
smaller grid size (P=64). For LBMHD, CAF reduced the memory
traffic by a factor of 3X by eliminating user- and system-level mes-
sage copies (latter used by MPI); these gains were somewhat offset
by CAF’s use of more numerous and smaller sized messages. This
issue will be the focus of future investigation.

The low performance of the superscalar systems is mostly due to
limited memory bandwidth. LBMHD has a low computational in-
tensity – about 1.5 FP operations per data word of access – mak-
ing it extremely difficult for the memory subsystem to keep up
with the arithmetic units. Vector systems are able to address this
discrepancy through a superior memory system and support for
deeply pipelined memory fetches. Additionally, the40962 and
81922 grids require 7.5 GB and 30 GB of memory respectively,
causing the subdomain’s memory footprint to exceed the cache size
even at high concurrencies. Nonetheless, the Altix outperforms the
Power3 and Power4 in terms of Gflop/s and fraction of peak due
to its higher memory bandwidth and superior network characteris-
tics. Observe that superscalar performance relative to concurrency
shows more complex behavior than on the vector systems. Since
the cache-blocking algorithm for the collision step is not perfect,
certain data distributions are superior to others – accounting for in-
creased performance at intermediate concurrencies. At larger con-
currencies, the cost of communication begins to dominate, thus re-
ducing performance as in the case of the vector systems.

4. PARATEC
PARATEC (PARAllel Total Energy Code [5]) performs ab-initio
quantum-mechanical total energy calculations using pseudopoten-
tials and a plane wave basis set. The pseudopotentials are of the
standard norm-conserving variety. Forces can be easily calculated
and used to relax the atoms into their equilibrium positions. PARA-
TEC uses an all-band conjugate gradient (CG) approach to solve
the Kohn-Sham equations of Density Functional Theory (DFT) and
obtain the ground-state electron wavefunctions. DFT is the most
commonly used technique in materials science, having a quantum
mechanical treatment of the electrons, to calculate the structural
and electronic properties of materials. Codes based on DFT are
widely used to study properties such as strength, cohesion, growth,
magnetic, optical, and transport for materials like nanostructures,
complex surfaces, and doped semiconductors. Due to its accurate
predictive power and computational efficiency, DFT based codes
have been one of the largest consumer of supercomputing cycles
in computer centers around the world. Figure 4 shows the induced
current and charge density in crystalized glycine, calculated using
PARATEC. These simulations are used to better understand nu-
clear magnetic resonance experiments [24].

Figure 3: Visualization of induced current (white arrows) and
charge density (colored plane and grey surface) in crystalized
glycine, described in [24].

4.1 Porting Details
In solving the Kohn-Sham equations using a plane wave basis, part
of the calculation is carried out in real space and the remainder
in Fourier space using specialized parallel 3D FFTs to transform
the wavefunctions. The code typically spends most of its time in
vendor supplied BLAS3 (˜30%) and 1D FFTs (˜30%) on which
the 3D FFTs libraries are built, with the remaining time in hand-
coded F90. For this reason, PARATEC generally obtains a high
percentage of peak performance across a spectrum of computing
platforms. The code exploits fine-grained parallelism by dividing
the plane wave (Fourier) components for each electron among the
different processors [5]. PARATEC is written in F90 and MPI
and is designed primarily for massively parallel computing plat-
forms, but can also run on serial machines. The code has run
on many computer architectures and uses preprocessing to include
machine-specific routines such as the FFT calls. Previous work ex-
amined vectorized PARATEC performance on a single NEC SX-6
node [21], making porting to the ES and X1 a relatively simple task.
Since much of the computation involves FFTs and BLAS3, an ef-
ficient vector implementation of these libraries is critical for high
performance. However, while this was true for the BLAS3 routines
on the ES and X1, the standard vendor supplied 1D FFT routines
(on which our own specialized 3D FFTs are written) run at a rela-
tively low percentage of peak. Code transformation was therefore
required to rewrite our 3D FFT routines to use simultaneous (often
called multiple) 1D FFT calls, which allow effective vectorization
across many 1D FFTs. Additionally, compiler directives were in-

432 Atom 686 Atom
Power3 Power4 Altix ES X1 ES X1P

Gflops/P %Pk Gflops/P %Pk Gflops/P %Pk Gflops/P %Pk Gflops/P %Pk Gflops/P %Pk Gflops/P %Pk

32 0.950 63% 2.02 39% 3.71 62% 4.76 60% 3.04 24% — — — —
64 0.848 57% 1.73 33% 3.24 54% 4.67 58% 2.59 20% 5.25 66% 3.73 29%

128 0.739 49% 1.50 29% — — 4.74 59% 1.91 15% 4.95 62% 3.01 24%
256 0.572 38% 1.08 21% — — 4.17 52% — — 4.59 57% 1.27 10%
512 0.413 28% — — — — 3.39 42% — — 3.76 47% — —

1024 — — — — — — 2.08 26% — — 2.53 32% — —

Table 4: PARATEC per processor performance on a 432 and 686 atom Silicon Bulk system.

(a) (b)

Figure 4: A three-processor example of PARATEC’s parallel
data layout for the wavefunctions of each electron in (a) Fourier
space and (b) real space.

serted to force the vectorization (and multistreaming on the X1) of
loops that contain indirect addressing.

4.2 Performance Results
Table 4 presents performance data for 3 CG steps of a 432 and 686
Silicon atom bulk systems and a standard LDA run of PARATEC
with a 25 Ry cut-off using norm-conserving pseudopotentials. A
typical calculation would require between 20 and 60 CG iterations
to converge the charge density. PARATEC runs at a high percent-
age of peak on both superscalar and vector-based architectures due
to the heavy use of the computationally intensive FFTs and BLAS3
routines, which allow high cache reuse and efficient vector utiliza-
tion. The main limitation to scaling PARATEC to large numbers of
processors is the distributed grid transformation during the parallel
3D FFTs which requires global interprocessor communications. It
was therefore necessary to write specialized 3D FFT to reduce these
communication requirements. Since our 3D FFT routine maps the
wavefunction of the electron from Fourier space, where it is repre-
sented by a sphere, to a 3D grid in real space – a significant reduc-
tion in global communication can be achieved by only transposing
the non-zero grid elements. Nonetheless, architectures with a poor
balance between their bisection bandwidth and computational rate
(see Table 1) will suffer performance degradation at higher concur-
rencies due to global communication requirements.

Figure 4 presents a visualization of the parallel data layout for the
wavefunctions of each electron in Fourier space and real space. For
the Fourier-space calculation, the wavefunction is represented by a
sphere of points, divided by columns among the processors. Fig-
ure 4a shows a three-processor example (P0, P1, P2), where each
color represents the processor assignment of a given column. The

computation in Fourier space is load balanced by assigning each
processor approximately the same number of points. The load-
balancing algorithm first orders the columns in descending order,
and then distributes them among the processors such that the next-
available column is assigned to the processor containing the fewest
points. (The number of points a processor has corresponds to the
total length of columns it holds.) The real-space data layout of the
wavefunctions is on a standard Cartesian grid, where each proces-
sor holds a contiguous part of the space arranged in columns, as
shown in Figure 4b. PARATEC uses a specialized 3D FFT to trans-
form between these two data layouts with a minimum amount of
interprocessor communication. The data is arranged in columns
as the 3D FFT is performed, by taking 1D FFTs along theZ, Y,
andX directions with parallel data transposes between each set of
1D FFTs.

Results in Table 4 show that PARATEC achieves impressive per-
formance on the ES, sustaining 2.6 Tflop/s for 1024 processors for
the larger system – the first time that any architecture has attained
over a Teraflop for this code. The declining performance at higher
processor counts is caused by the increased communication over-
head of the 3D FFTs, as well as reduced vector efficiency due to
the decreasing vector length of this fixed-size problem. Since only
3 CG steps were performed in our benchmarking measurements,
the set-up phase accounted for a growing fraction of the overall
time – preventing us from accurately gathering the AVL and VOR
values. The set-up time was therefore subtracted out for the re-
ported Gflop/s measurements. This overhead becomes negligible
for actual physical simulations, which require as many as 60 CG
steps. For example on the smaller 432 atom system on 32 proces-
sors, the measured AVL for the total run was 145 and 46 for the
ES and X1 (respectively); the AVL for only the CG steps (without
set-up) would certainly be higher.

Observe that X1 performance is lower than the ES, even though it
has a higher peak speed. The code sections of handwritten F90,
which typically consume about 30% of the run time, have a lower
vector operation ratio than the BLAS3 and FFT routines. These
handwritten segments also run slower on the X1 than the ES, since
unvectorized code segments tend not to multistream across the X1’s
SSPs. In addition, the X1 interconnect has a lower bisection band-
width network than the ES (see Table 1), increasing the overhead
for the FFT’s global transpositions at higher processor counts. Thus,
even though the code portions utilizing BLAS3 libraries run faster
on the X1, the ES achieves higher overall performance. In fact, due
to the X1’s poor scalability above 128 processors, the ES shows
more than a 3.5X runtime advantage when using 256 processors
on the larger 686 atom simulation. PARATEC runs efficiently on
the Power3, but sustained performance (percent of peak) on the

Figure 5: Visualization of the grazing collision of two black
holes computed by the Cactus code.(Visualization by Werner
Benger/AEI.)

Power4 is lower due, in part, to network contention for memory
bandwidth [21]. The loss in scaling on the Power3 is primarily
caused by the increased communication cost as concurrency grows
to 512 processors. The Power4 system has a much lower bisection-
bandwidth to processor speed ratio than the Power3 resulting in
poorer scaling to large numbers of processors. The Altix performs
well on this code (second only to the ES). This is due to the Ita-
nium2’s high memory bandwidth, combined with interconnect net-
work with reasonably-high bandwidth, and extremely low latency
(see Table 1). However, higher scalability Altix measurements are
not available.

5. CACTUS
One of the most challenging problems in astrophysics is the nu-
merical solution of Einstein’s equations following from the Theory
of General Relativity (GR): a set of coupled nonlinear hyperbolic
and elliptic equations containing thousands of terms when fully
expanded. The Cactus Computational ToolKit [2, 8] is designed
to evolve Einstein’s equations stably in 3D on supercomputers to
simulate astrophysical phenomena with high gravitational fluxes –
such as the collision of two black holes and the gravitational waves
radiating from that event. While Cactus is a modular framework
supporting a wide variety of multi-physics applications [11], this
study focuses exclusively on the GR solver, which implements the
Arnowitt-Deser-Misner (ADM) Baumgarte-Shapiro-Shibata-Nak-
amura (BSSN) [8] method for stable evolutions of black holes. Fig-
ure 5 presents a visualization of one of the first simulations of the
grazing collision of two black holes computed by the Cactus code2.
The merging black holes are enveloped by their “apparent hori-
zon”, which is colorized by its gaussian curvature. The concentric
surfaces that surround the black holes are equipotential surfaces of
the gravitational flux of the outgoing gravity wave generated by the
collision.

The Cactus General Relativity components solve Einstein’s equa-
tions as an initial value problem that evolves partial differential
equations on a regular grid using the method of finite differences.
The core of the General Relativity solver uses the ADM formal-
ism, also known also as the 3+1 form. For the purpose of solv-
ing Einstein’s equations, the ADM solver decomposes the solu-

2Visualization by Werner Benger (AEI/ZIB) using Amira [1]

tion into 3D spatial hypersurfaces that represent different slices of
space along the time dimension. In this formalism, the equations
are written as four constraint equations and 12 evolution equations.
Additional stability is provided by the BSSN modifications to the
standard ADM method [8]. The evolution equations can be solved
using a number of different numerical approaches, including stag-
gered leapfrog, McCormack, Lax-Wendroff, and iterative Crank-
Nicholson schemes. A “lapse” function describes the time slicing
between hypersurfaces for each step in the evolution. A “shift met-
ric” is used to move the coordinate system at each step to avoid
being drawn into a singularity. The four constraint equations are
used to select different lapse functions and the related shift vectors.
For parallel computation, the grid is block domain decomposed so
that each processor has a section of the global grid. The standard
MPI driver for Cactus solves the PDE on a local grid section and
then updates the values at the ghost zones by exchanging data on
the faces of its topological neighbors in the domain decomposition
(shown in Figure 6 by the 2D schematic diagram).

Figure 6: Cactus solves PDEs on the local grid section and then
updates ghost zone values on the the faces of its topological
neighbors, as show by the 2D schematic diagram.

5.1 Porting Details
For the superscalar systems, the computations on the 3D grid are
blocked in order to improve cache locality. Blocking is accom-
plished through the use of temporary ‘slice buffers’, which improve
cache reuse while modestly increasing the computational overhead.
On vector architectures these blocking optimizations were disabled,
since they reduced the vector length and inhibited performance.
The ES compiler misidentified some of the temporary variables
in the most compute-intensive loop of the ADM-BSSN algorithm
as having inter-loop dependencies. When attempts to force the
loop to vectorize failed, a temporary array was created to break the
phantom dependency. The cost of boundary condition enforcement
is inconsequential on the microprocessor based systems, however
they unexpectedly accounted for up to 20% of the ES runtime and
over 30% of the X1 overhead. These costs were so extreme for
some problems sizes on the X1 that a hard-coded implementation
of vectorized boundary conditions was performed for the port. The

Grid Power3 Power4 Altix ES X1
Size

P
Gflops/P %Pk Gflops/P %Pk Gflops/P %Pk Gflops/P %Pk Gflops/P %Pk

16 0.314 21% 0.577 11% 0.892 15% 1.47 18% 0.540 4%80x80x80
64 0.217 14% 0.496 10% 0.699 12% 1.36 17% 0.427 3%per

256 0.216 14% 0.475 9% — — 1.35 17% 0.409 3%processor
1024 0.215 14% — — — — 1.34 17% — —

16 0.097 6% 0.556 11% 0.514 9% 2.83 35% 0.813 6%250x64x64
64 0.082 6% — — 0.422 7% 2.70 34% 0.717 6%per

256 0.071 5% — — — — 2.70 34% 0.677 5%processor
1024 0.060 4% — — — — 2.70 34% — —

Table 5: Cactus per processor performance on 80x80x80 and 250x64x64 grids

vectorized radiation boundaries reduced their runtime contribution
from the most expensive part of the calculation to just under 5% of
the overall wallclock time. The ES performance numbers presented
here do not incorporate these additional boundary condition vector-
izations due to our limited stay at the Earth Simulator Center, giv-
ing the X1 an advantage. Future ES experiments will incorporate
these enhancements, thereby enabling a more direct comparison of
the results.

5.2 Performance Results
The full-fledged production version of the Cactus ADM-BSSN ap-
plication was run on the ES system with results for two grid sizes
shown in Table 5. The problem size was scaled with the number of
processors to keep the computational load the same (weak scaling).
Cactus problems are typically scaled in this manner because their
science requires the highest-possible resolutions.

For the vector systems, Cactus achieves almost perfect VOR (over
99%) while the AVL is dependent on the x-dimension size of the
local computational domain. Consequently, the larger problem size
(250x64x64) executed with far higher efficiency on both vector ma-
chines than the smaller test case (AVL = 248 vs. 92), achieving
34% of peak on the ES. The oddly shaped domains for the larger
test case were required because the ES does not have enough mem-
ory per node to support a2503 domain. This rectangular grid con-
figuration had no adverse effect on scaling efficiency despite the
worse surface-to-volume ratio. Additional performance gains could
be realized if the compiler was able to fuse the X and Y loop nests
to form larger effective vector lengths.

Recall that the boundary condition enforcement was not vectorized
on the ES and accounts for up to 20% of the execution time, com-
pared with less than 5% on the superscalar systems. This demon-
strates a potential limitation of vector architectures: seemingly mi-
nor code portions that fail to vectorize can quickly dominate the
overall execution time. The architectural imbalance between vec-
tor and scalar performance was particularly acute of the X1, which
suffered a much greater impact from unvectorized code than the ES.
As a result, significantly more effort went into code vectorization
of the X1 port – without this optimization, the non-vectorized code
portions would dominate the performance profile. Even with this
additional vectorization effort, the X1 reached only 6% of peak.
The majority of the wallclock time on the X1 went to the main GR
solver subroutine (ADMBSSNSources), which consumed 68% of
the overall execution time. (The inner loops in ADMBSSNSources
were fully vectorized and the outer loops 100% multistreamed.)
The next most expensive routine in the profile occupied only 4.5%
of the execution time, leaving few opportunities for optimization in

the rest of the code. While the stand-alone extracted kernel of of
the BSSN algorithm achieved an impressive 4.3Gflop/s on the X1,
the maximum measured serial performance for the full-production
version of Cactus was just over 1Gflop/s. Normally, the extracted
kernel offers a good prediction of Cactus production performance,
but the X1 presents us with a machine architecture that has con-
founded this prediction methodology. Cray engineers continue to
investigate Cactus behavior on the X1.

Table 5 shows that the ES reached an impressive 2.7 Tflop/s for
the largest problem size using 1024 processors. This represents
the highest per processor performance (by far) achieved by the
full-production version of the Cactus ADM-BSSN on any evalu-
ated system to date. The Power3, on the other hand, is 45 times
slower than the ES, achieving only 60 Mflop/s per processor (6%
of peak) at this scale for the larger problem size. The Power4 sys-
tem offers even lower efficiency than the Power3 for the smaller
(80x80x80) problem size, but still ranks high in terms of peak de-
livered performance in comparison to the X1 and Altix. We were
unable to run the larger (250x64x64) problem sizes on the Power4
system, because there were insufficient high-memory nodes avail-
able to run these experiments. The Itanium2 processor on the Altix
achieves good performance as a fraction of peak for smaller prob-
lem sizes (using the latest Intel 8.0 compilers). Observe that unlike
vector architectures, microprocessor-based systems generally per-
form better on the smaller per-processor problem size because of
better cache reuse. In terms of communication overhead, the ES
spends 13% of the overall Cactus time in MPI compared with 23%
on the Power3; highlighting the superior architectural balance of
the network design for the ES. The Altix offered very low commu-
nication overhead, but its limited size prevented us from evaluating
high-concurrency performance.

The relatively low scalar performance on the microprocessor-based
systems is partially due to register spilling, which is caused by the
large number of variables in the main loop of the BSSN calcula-
tion. In addition, the IBM hardware prefetch engines appear to
have difficulty with calculations involving multi-layer ghost zones
on the boundaries. The unit-stride regularity of memory accesses
(necessary to activate automatic prefetching) is broken as the calcu-
lation skips over the ghost zones at the boundaries, thereby keeping
the hardware streams disengaged for the majority of the time [12].
As a result the processor ends up stalled on memory requests even
though only a fraction of the available memory bandwidth is uti-
lized. IBM is aware of this behavior and has added new variants
of the prefetch instructions to the Power5 for keeping the prefetch
streams engaged when exposed to minor data-access irregularities.
We look forward to testing Cactus on the Power5 platform when it
becomes available.

Figure 7: 3D visualization of electrostatic potential in global,
self-consistent GTC simulation of plasma microturbulence in a
magnetic fusion device.

6. GTC
The Gyrokinetic Toroidal Code (GTC) is a 3D particle-in-cell (PIC)
application developed at the Princeton Plasma Physics Laboratory
to study turbulent transport in magnetic confinement fusion [15,
14]. Turbulence is believed to be the main mechanism by which
energy and particles are transported away from the hot plasma core
in fusion experiments with magnetic toroidal devices. An in-depth
understanding of this process is of utmost importance for the design
of future experiments since their performance and operation costs
are directly linked to energy losses.

At present, GTC solves the non-linear gyrophase-averaged Vlasov-
Poisson equations [13] for a system of charged particles in a self-
consistent, self-generated electrostatic field. The geometry of the
system is that of a torus with an externally imposed equilibrium
magnetic field, characteristic of toroidal fusion devices. By us-
ing the PIC method, the non-linear partial differential equation de-
scribing the motion of the particles in the system becomes a simple
set of ordinary differential equations that can be easily solved in
the Lagrangian coordinates. The self-consistent electrostatic field
driving this motion could conceptually be calculated directly from
the distance between each pair of particles using anN2 calcula-
tion, but this method quickly becomes computationally prohibitive
as the number of particles increases. The PIC approach reduces the
computational complexity toN , by using a grid where each par-
ticle deposits its charge to a limited number of neighboring points
according to its range of influence. The electrostatic potential is
then solved everywhere on the grid using the Poisson equation, and
forces are gathered back to each particle. The most computationally
intensive parts of GTC are the charge deposition and gather-push
steps. Both involve large loops over the number of particles, which
can reach several million per domain partition.

Figure 7 shows the 3D visualization of electrostatic potential in
global, self-consistent GTC simulation of plasma microturbulence
in a magnetic fusion device. The elongated “finger-like” structures
are turbulent eddies that act as energy and particle transport chan-

nels. This type of calculation helped to shed light on “anomalous”
energy transport that was observed in real experiments.

6.1 Porting details
Although the PIC approach drastically reduces the computational
requirements, the grid-based charge deposition phase is a source of
performance degradation for both superscalar and vector architec-
tures. Randomly localized particles deposit their charge on the grid,
thereby causing poor cache reuse on superscalar machines. The ef-
fect of this deposition step is more pronounced on vector system,
since two or more particle may contribute to the charge at the same
grid point – creating a potential memory-dependency conflict. Fig-
ure 8 presents a visual representation of the PIC grid charge de-
position phase. In the classic PIC method a particle is followed
directly and its charge is distributed to its nearest neighboring grid
points (see Figure 8a). However, in the GTC gyrokinetic PIC ap-
proach, the fast circular motion of the charged particle around the
magnetic field lines is averaged out and replaced by a charged ring.
The 4-point average method consists of picking four points on that
charged ring, each one having a fraction of the total charge, and
distributing that charge to the nearest grid points (see Figure 8b).
In this way, the full influence of the fast, circular trajectory is pre-
served without having to resolve it. However, this methodology
inhibits vectorization since multiple particles may concurrently at-
tempt to deposit their change onto the same grid point.

(a) (b)

Figure 8: Charge deposition in (a) the classic PIC method and
(b) the 4-point averaging of GTC’s gyrokinetic PIC approach.

Fortunately, several methods have been developed to address the
charge-deposition memory-dependency issue during the past two
decades. Our approach uses the work-vector algorithm [19], where
a temporary copy of the grid array is given an extra dimension cor-
responding to the vector length. Each vector operation acts on a
given data set in the register then writes to a different memory
address, entirely avoiding memory dependencies. After the main
loop, the results accumulated in the work-vector array are gath-
ered to the final grid array. The only drawback of this method is
the increased memory footprint, which can be 2 to 8 times higher
than the nonvectorized code version. Other approaches address this
memory dependency problem via particle sorting strategies which
increase the computational overhead and overall time to solution.

Since GTC has previously been vectorized on a single-node SX-
6 [21], porting to the ES was relatively straightforward. However,
performance was initially limited due to memory bank conflicts,
caused by an access concentration to a few small 1D arrays. Using
theduplicatepragma directive alleviated this problem by allowing
the compiler to create multiple copies of the data structures across

Part/ Power3 Power4 Altix ES X1
Cell

Code P
Gflops/P %Pk Gflops/P %Pk Gflops/P %Pk Gflops/P %Pk Gflops/P %Pk

32 0.135 9% 0.299 6% 0.290 5% 0.961 12% 1.00 8%
10 MPI 64 0.132 9% 0.324 6% 0.257 4% 0.835 10% 0.803 6%

32 0.135 9% 0.293 6% 0.333 6% 1.34 17% 1.50 12%
100 MPI 64 0.133 9% 0.294 6% 0.308 5% 1.25 16% 1.36 11%

Hybrid 1024 0.063 4%

Table 6: GTC per processor performance using 10 and 100 particles per cell.

numerous memory banks. This method significantly reduced the
bank conflicts in the charge deposition routine and increased its
performance by 37%. Additional optimizations were performed to
other code segments with various performance improvements.

GTC is parallelized at a coarse-grain level using message-passing
constructs. Although the MPI implementation achieves almost lin-
ear scaling on most architectures, the grid decomposition is limited
to approximately 64 subdomains. To run at higher concurrency, a
second level of fine-grain loop-level parallelization is implemented
using OpenMP directives. However, the increased memory foot-
print created by the work-vector method inhibited the use of loop-
level parallelism on the ES. A possible solution could be to add an-
other dimension of domain decomposition to the code. This would
require extensive code modifications and will be examined in fu-
ture work. Our short stay at the Earth Simulator Center prevented
further optimization.

Porting to the X1 was straightforward from the vectorized ES ver-
sion but initial performance was limited. Note that the X1 suffers
from the same memory increase as the ES due to the work-vector
approach, potentially inhibiting OpenMP parallelism. Several ad-
ditional directives were necessary to allow effective multistream-
ing within each MSP. After discovering that the FORTRAN in-
trinsic functionmodulowas preventing the vectorization of a key
loop in the gather-push routine, it was replaced by an equivalent
but vectorizable statementmod. The most time consuming routine
on the X1 became the ’shift’ subroutine. This step verifies the co-
ordinates of newly moved particles to determine whether they have
crossed a subdomain boundary and therefore require processor mi-
gration. The shift routine contains nestedif statements that prevent
the compiler from successfully vectorizing that code region. How-
ever, the non-vectorized shift routine accounted for significantly
more overhead on the X1 than the ES (54% vs. 11% of overall
time). Although both architectures have the same relative vector
to scalar peak performance (8/1), serialized loops incur an even
larger penalty on the X1. This is because in a serialized segment of
a multistreamed code, only one of the four SSP scalar processors
within an MSP can do useful work, thus degrading the relative per-
formance ratio to 32/1. Performance on the X1 was improved by
converting the nestedif statements in the shift routine into two suc-
cessive condition blocks, allowing the compiler to stream and vec-
torize the code properly. The overhead therefore decreased from
54% to only 4% of the total time. This optimization has not been
implemented on the ES.

6.2 Performance Results
Table 6 presents GTC performance results on the five architectures
examined in our study. The first test case is configured for stan-
dard production runs using 10 particles per grid cell (2 million grid
point, 20 million particles). The second experiment examines 100
particles per cell (200 million particles), a significantly higher res-

olution that improves the overall statistics of the simulation while
significantly (8 fold) increasing the time-to-solution – making it
prohibitively expensive on most superscalar platforms. For the
large test case, both the ES and X1 attain high AVL (228 and 62
respectively) and VOR (99% and 97%), indicating that the applica-
tion has been suitably vectorized; in fact, the vector results repre-
sent the highest GTC performance on any tested platform to date.
In absolute terms the X1 shows the highest performance, achieving
1.50 Gflop/s on the largest problem size for P=32 (1.87 Gflop/s in
usertime) – a 12% improvement over the ES; however, recall that
the ES version does not incorporate the vectorized shift routine,
giving the X1 an advantage. Nonetheless, the ES sustains 17% of
peak compared with only 12% on the X1. It should also be noted
that because GTC uses single precision arithmetic, the X1 theo-
retical peak performance is actually 25.6 Gflop/s; however limited
memory bandwidth and code complexity that inhibits compiler op-
timizations obviate this extra capability.

Comparing performance with the superscalar architectures, the vec-
tor processors are about 10X, 5X, and 4X faster than the Power3,
Power4 and Altix systems (respectively). Observe that using 1024
processors of the Power3 (in hybrid MPI/OpenMP mode) is still
about 20% slower than 64-way vector runs; GTC’s OpenMP paral-
lelism is currently unavailable on the vector systems, limiting con-
currency to 64 processors (see Section 6.1). Within the superscalar
platforms, the Altix shows the highest raw performance at over 300
Mflop/s, while the Power3 sustains the highest fraction of peak (9%
compared with approximately 6% on the Power4 and Altix).

Examining scalability from 32 to 64 processor, the ES and X1 per-
formance drop 9% (7%) and 20% (9%) respectively, using a fixed
size problem of 10 (100) particles per cell. This is primarily due
to shorter loop sizes and correspondingly smaller vector lengths, as
well as increased communication overhead. Superscalar architec-
tures, while also suffering from communication overhead, actually
benefit from smaller subdomains due to increased cache reuse. Re-
sults show that the Power3/4 sees little overall degradation when
scaling from 32 to 64 processor (less than 3%), while the Altix
suffers as much as 11%. This discrepancy is currently under inves-
tigation.

7. SUMMARY AND CONCLUSIONS
This work compares performance between the parallel vector ar-
chitectures of the ES and X1, and three leading superscalar plat-
forms, the Power3, Power4, and Altix. We examined four diverse
scientific applications with the potential to utilize ultrascale com-
puting systems. Since most modern scientific codes are designed
for (super)scalar microprocessors, it was necessary to port these
applications onto the vector platforms; however only minor code
transformations were applied in an attempt to maximize VOR and
AVL, extensive code reengineering has not been performed.

ES speedup vs.Name
Power3 Power4 Altix X1

LBMHD 30.6 15.3 7.2 1.5
PARATEC 8.2 3.9 1.4 3.9
CACTUS 45.0 5.1 6.4 4.0

GTC 9.4 4.3 4.1 0.9
Average 23.3 7.1 4.8 2.6

Table 7: Summary of applications performance, based on
largest comparable processor count and problem size.

Table 7 summarize the raw application performance relative to the
ES (using the largest comparable concurrency for each architec-
ture), while sustained performance for a fixed concurrency (P=64)
is shown in Figure 9. Overall results show that the ES vector system
achieved excellent performance on our application suite – the high-
est of any architecture tested to date – demonstrating the tremen-
dous potential of modern parallel vector systems. The ES consis-
tently sustained a significantly higher fraction of peak than the X1,
due in part to superior scalar processor performance, memory band-
width, and network bisection bandwidth relative to the peak vector
flop rate. A number of performance bottlenecks exposed on the
vector machines relate to the extreme sensitivity of these systems
to small amounts of unvectorized code. This sheds light on a differ-
ent dimension of architectural balance than simple bandwidth and
latency comparisons. It is important to note that X1-specific code
optimizations have not been performed at this time. This complex
vector architecture contains both data caches and multi-streaming
processing units, and the optimal programming methodology is yet
to be established. Finally, preliminary Altix results show promising
performance characteristics; however, we tested a relatively small
Altix platform and it is unclear if its network performance advan-
tages would remain for large system configurations.

The regularly structured, grid-based LBMHD simulation was ex-
tremely amenable to vectorization, achieving an amazing speed up
of over 44X compared to the Power3 using 64 processors; the ad-
vantage was reduced to 30X when concurrency increased to 1024.
This decrease in relative performance gain often occurs when com-
paring cache-based scalar and vector systems for fixed sized prob-
lems. As computational domains shrink with increasing proces-
sor counts, scalar architectures benefit from the improved cache-
reuse while vector platforms suffer a reduction in efficiency due to
shorter vector lengths. Additionally, LBMHD highlighted the po-
tential benefits of CAF programming, which improved the X1 raw
performance to slightly exceed that of the ES for the large test case.
Future work will examine CAF performance in more detail.

PARATEC, a computationally intensive code, is well suited for
most architectures as it typically spends most of its time in vendor
supplied BLAS3(̃30%) and FFT(̃30%) routines. This electronic
structures code requires the transformation of wavefunctions be-
tween real and Fourier space via specialized 3D FFTs. However,
global communication during the grid transformation can become a
bottleneck at high concurrencies. Here the ES significantly outper-
formed the X1 platform due to its superior architectural balance of
bisection bandwidth relative to computation rate, achieving a run-
time advantage of almost 4X.

The grid structured, computationally intensive Cactus code was
also well-suited for vectorization achieving up to a 45X improve-
ment on the ES compared with the Power3. However, the bound-

Sustained Performance

0%

10%

20%

30%

40%

50%

60%

LBMHD PARATEC CACTUS GTC

Percent of Peak

Power3
Power4
Altix
ES
X1

Figure 9: Sustained performance using 64 processors on largest
comparable problem size (P=16 is shown for Cactus on the
Power4).

ary condition calculation was unvectorized and consumed a much
higher fraction of the overall runtime compared with superscalar
systems (where this routine was insignificant). This example demon-
strates that for large-scale numerical simulations even a small non-
vectorizable code segment can quickly dominate the execution time
from the properties of Amdahl’s Law. This is especially important
in the context of multistreaming on the X1 architecture. Although
both the ES and X1 have the same relative vector to scalar peak
performance (8/1), serialized loops incur an even larger penalty on
the X1. This is because in a serialized segment of a multistreamed
code, only one of the four SSP scalar processors within an MSP
can do useful work, thus degrading the relative performance ratio
to 32/1.

Finally, vectorizing the particle-in-cell GTC code highlighted some
of the difficulties in expressing irregularly structured algorithms
as a data-parallel program. However, once the code successfully
vectorized, the vector architectures once again showed impressive
performance, achieving a 4X to 10X runtime improvement over
the scalar architectures in our study. The vector systems there-
fore have the potential for significantly higher resolution calcula-
tions that would otherwise be prohibitively expensive in terms of
time-to-solution on conventional microprocessors. Implementing
the vectorized version for this unstructured code, however, required
the addition of temporary arrays, which increased the memory foot-
print dramatically (between 2X and 8X). This inhibited the use of
OpenMP loop-level parallelization, and limited concurrency to a
coarse grained distribution of 64 processors. This issue will be ad-
dress in future work. Nonetheless, the 64-way vector systems still
performed up to 20% faster than 1024 Power3 processors.

Future work will extend our study to include applications in the ar-
eas of climate, molecular dynamics, cosmology, and combustion.
We are particularly interested in investigating the vector perfor-
mance of adaptive mesh refinement (AMR) methods, as we believe
they will become a key component of future high-fidelity multi-
scale physics simulations, across a broad spectrum of application
domains.

Acknowledgments
The authors would like to gratefully thank: the staff of the Earth
Simulator Center, especially Dr. T. Sato, S. Kitawaki and Y. Tsuda,
for their assistance during our visit; D. Parks and J. Snyder of
NEC America for their help in porting applications to the ES. Spe-
cial thanks to Thomas Radke, Tom Goodale, and Holger Berger
for assistance with the vector Cactus ports. This research used
resources of the National Energy Research Scientific Computing
Center, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC03-76SF00098.
This research used resources of the Center for Computational Sci-
ences at Oak Ridge National Laboratory, which is supported by
the Office of Science of the Department of Energy under Contract
DE-AC05-00OR22725. All authors from LBNL were supported by
the Office of Advanced Scientific Computing Research in the De-
partment of Energy Office of Science under contract number DE-
AC03-76SF00098. Dr. Ethier was supported by the Department of
Energy under contract number DE-AC020-76-CH03073.

8. REFERENCES
[1] Amira - Advanced 3D Visualization and Volume Modeling.

http://www.amiravis.com .

[2] Cactus Code Server.http://www.cactuscode.org .

[3] Co-Array Fortran.http://www.co-array.org .

[4] ORNL Cray X1 Evaluation.
http://www.csm.ornl.gov/˜dunigan/cray .

[5] PARAllel Total Energy Code.
http://www.nersc.gov/projects/paratec .

[6] Top500 Supercomputer Sites.
http://www.top500.org .

[7] P. A. Agarwal et al. Cray X1 evaluation status report. InProc.
of the 46th Cray Users Group Conference, May 17-21, 2004.

[8] M. Alcubierre, G. Allen, B. Brgmann, E. Seidel, and W.-M.
Suen. Towards an understanding of the stability properties of
the 3+1 evolution equations in general relativity.Phys. Rev.
D, (gr-qc/9908079), 2000.

[9] P.J. Dellar. Lattice kinetic schemes for
magnetohydrodynamics.J. Comput. Phys., 79, 2002.

[10] T. H. Dunigan Jr., M. R. Fahey, J. B. White III, and P. H.
Worley. Early evaluation of the Cray X1. InProc. SC2003:
High performance computing, networking, and storage
conference, Phoenix, AZ, Nov 15-21, 2003.

[11] J. A. Font, M. Miller, W. M. Suen, and M. Tobias. Three
dimensional numerical general relativistic hydrodynamics:
Formulations, methods, and code tests.Phys. Rev. D,
Phys.Rev. D61, 2000.

[12] G. Griem, L. Oliker, J. Shalf, and K. Yelick. Identifying
performance bottlenecks on modern microarchitectures using
an adaptable probe. InProc. 3rd International Workshop on
Performance Modeling, Evaluation, and Optimization of
Parallel and Distributed Systems (PMEO-PDS), Santa Fe,
New Mexico, Apr. 26-30, 2004.

[13] W. W. Lee. Gyrokinetic particle simulation model.J. Comp.
Phys., 72, 1987.

[14] Z. Lin, S. Ethier, T.S. Hahm, and W.M. Tang. Size scaling of
turbulent transport in magnetically confined plasmas.Phys.
Rev. Lett., 88, 2002.

[15] Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang, and R. B.
White. Turbulent transport reduction by zonal flows:
Massively parallel simulations.Science, Sep 1998.

[16] A. Macnab, G. Vahala, P. Pavlo, , L. Vahala, and M. Soe.
Lattice boltzmann model for dissipative incompressible
MHD. In Proc. 28th EPS Conference on Controlled Fusion
and Plasma Physics, volume 25A, Funchal, Portugal, June
18-22, 2001.

[17] A. Macnab, G. Vahala, L. Vahala, and P. Pavlo. Lattice
boltzmann model for dissipative MHD. InProc. 29th EPS
Conference on Controlled Fusion and Plasma Physics,
volume 26B, Montreux, Switzerland, June 17-21, 2002.

[18] K. Nakajima. Three-level hybrid vs. flat mpi on the earth
simulator: Parallel iterative solvers for finite-element
method. InProc. 6th IMACS Symposium Iterative Methods in
Scientific Computing, volume 6, Denver, Colorado, March
27-30, 2003.

[19] A. Nishiguchi, S. Orii, and T. Yabe. Vector calculation of
particle code.J. Comput. Phys., 61, 1985.

[20] L. Oliker, R. Biswas, J. Borrill, A. Canning, J. Carter,
J. Djomehri, H. Shan, and D. Skinner. A performance
evaluation of the Cray X1 for scientific applications. In
VECPAR: 6th International Meeting on High Performance
Computing for Computational Science, Valencia, Spain, June
28-30, 2004.

[21] L. Oliker, A. Canning, J. Carter, J. Shalf, D. Skinner,
S. Ethier, R. Biswas, J. Djomehri, and R. Van der Wijngaart.
Evaluation of cache-based superscalar and cacheless vector
architectures for scientific computations. InProc. SC2003:
High performance computing, networking, and storage
conference, Phoenix, AZ, Nov 15-21, 2003.

[22] S. Succi. The lattice boltzmann equation for fluids and
beyond.Oxford Science Publ., 2001.

[23] H. Uehara, M. Tamura, and M. Yokokawa. MPI performance
measurement on the Earth Simulator. Technical Report # 15,
NEC Research and Development, 2003/1.

[24] Y-G Yoon, B.G. Pfrommer, S.G. Louie, and A. Canning.
NMR chemical shifts in amino acids: effects of
environments, electric field and amine group rotation.Solid
State Communications, 131, 2004.

