EXPERIMENTS WITH REPARTITIONING AND LOAD
BALANCING ADAPTIVE MESHES

RUPAK BISWAS* AND LEONID OLIKER!

Abstract. Mesh adaption is a powerful tool for efficient unstructured-grid computa-
tions but causes load imbalance on multiprocessor systems. To address this problem, we
have developed PLUM, an automatic portable framework for performing adaptive large-
scale numerical computations in a message-passing environment. This paper presents
several experimental results that verify the effectiveness of PLUM on sequences of dynam-
ically adapted unstructured grids. We examine portability by comparing results between
the distributed-memory system of the IBM SP2, and the Scalable Shared-memory Mul-
tiProcessing (S2MP) architecture of the SGI/Cray Origin2000. Additionally, we eval-
uate the performance of five state-of-the-art partitioning algorithms that can be used
within PLUM. Results indicate that for certain classes of unsteady adaption, globally
repartitioning the computational mesh produces higher quality results than diffusive
repartitioning schemes. We also demonstrate that a coarse starting mesh produces high
quality load balancing, at a fraction of the cost required for a fine initial mesh. Finally,
we show that the data redistribution overhead can be significantly reduced by apply-
ing our heuristic processor reassignment algorithm to the default partition-to-processor
mapping given by partitioners.

Key words. Dynamicload balancing, graph partitioning, unstructured mesh adap-
tion, data remapping, redistribution cost model.

AMS(MOS) subject classifications. 68Q22, 65M50, 90C35.

1. Introduction. Dynamic mesh adaption on unstructured grids is
a powerful tool for computing large-scale problems that require grid mod-
ifications to efficiently resolve solution features. By locally refining and
coarsening the mesh to capture physical phenomena of interest, such pro-
cedures make standard computational methods more cost effective. Unfor-
tunately, an efficient parallel implementation of these adaptive methods 1s
rather difficult to achieve, primarily due to the load imbalance created by
the dynamically-changing nonuniform grid. This requires significant com-
munication at runtime, leading to idle processors and adversely affecting
the total execution time. Nontheless, it is generally thought that unstruc-
tured adaptive-grid techniques will constitute a significant fraction of fu-
ture high-performance supercomputing. Various dynamic load balancing
methods have been reported to date [4,5,6,7,8,9,11,19,20]; however, most
of them lack a global view of loads across processors.

Given our goal to build a portable system for efficiently performing
large-scale adaptive numerical calculations in a parallel message-passing

* MRJ Technology Solutions, NASA Ames Research Center, Moffett Field, CA 94035.
The work of the first author was supported by NASA under Contract Number NAS 2-
14303.

t Research Institute for Advanced Computer Science, NASA Ames Research Center,
Moffett Field, CA 94035. The work of the second author was supported by NASA under
Contract Number NAS 2-96027.

2 RUPAK BISWAS AND LEONID OLIKER

MESH ADAPTOR LOAD BALANCER

INITIALIZATION

Ve Edge marking NY

Partitioning

Coarsening

Repartitioning

SOLVER

[Refinement |

Fic. 1.1. Overview of PLUM, our framework for parallel adaptive numerical computa-
tion.

environment, a novel method has been developed that dynamically bal-
ances the processor workloads with a global view. Figure 1.1 depicts our
framework, called PLUM, for such an automatic system. The mesh is first
partitioned and mapped among the available processors. A numerical solver
then runs for several iterations, updating solution variables. Once an ac-
ceptable solution is obtained, a mesh adaption procedure is invoked. It
first targets edges for coarsening and refinement based on an error indica-
tor computed from the numerical solution. The old mesh is then coarsened,
resulting in a smaller grid. Since edges have already been marked for re-
finement, it is possible to exactly predict the new mesh before actually
performing the refinement step. Program control is thus passed to the load
balancer at this time. A quick evaluation step determines if the new mesh
will be so unbalanced as to warrant a repartitioning. If the current parti-
tions will remain adequately load balanced, control is passed back to the
subdivision phase of the mesh adaptor. Otherwise, a repartitioning proce-
dure is used to divide the new mesh into subgrids. The new partitions are
then reassigned to the processors in a way that minimizes the cost of data
movement. If the remapping cost is compensated by the computational
gain that would be achieved with balanced partitions, all necessary data is
appropriately redistributed. Otherwise, the new partitioning is discarded.
The computational mesh is then refined and the numerical calculation is
restarted.

Extensive details of the parallel mesh adaption scheme, called 3D_TAG,
that is used in this work is given in [13]. The parallel version consists of
C++ and MPI code wrapped around the original serial mesh adaption
program [3]. An object-oriented approach allowed a clean and efficient
implementation. Notice from the framework in Fig. 1.1 that splitting the
mesh refinement step into two distinct phases of edge marking and mesh
subdivision allows the subdivision phase to operate in a more load balanced

REPARTITIONING AND LOAD BALANCING ADAPTIVE MESHES 3

fashion. In addition, since data remapping is performed before the mesh
grows in size due to refinement, a smaller volume of data is moved. This,
in turn, leads to significant savings in the redistribution cost.

2. Dynamic load balancing. PLUM is a novel method to dynami-
cally balance the processor workloads with a global view. Results reported
earlier either focused on fundamental load balancing issues [16] or various
refinement strategies [2,12] to demonstrate the viability and effectiveness of
our framework. A model that accurately predicts the total cost of data re-
distribution on an SP2 given the number of tetrahedral elements that have
to be moved among processors was presented in [1]. This paper presents the
application of PLUM to three sequences of dynamically adapted unstruc-
tured grids. Portability is investigated by comparing results on an SP2
and an Origin2000. In addition, the performance of five state-of-the-art
partitioning algorithms that can be used within PLUM are examined.

Our load balancing procedure has five novel features: (i) a dual graph
representation of the initial computational mesh keeps the complexity and
connectivity constant during the course of an adaptive computation; (ii) a
parallel mesh repartitioning algorithm avoids a potential serial bottleneck;
(iii) a heuristic remapping algorithm quickly assigns partitions to processors
so that the redistribution cost is minimized; (iv) an efficient data movement
scheme significantly reduces the cost of remapping and mesh subdivision;
and (v) accurate metrics estimate and compare the computational gain
and the redistribution cost of having a balanced workload after each mesh
adaption step.

2.1. Dual graph of initial mesh. Using the dual of the initial com-
putational mesh for the purpose of dynamic load balancing is one of the key
features of this work. Each dual graph vertex has two weights associated
with it. The computational weight, wcomp, models the workload for the
corresponding element. The remapping weight, wremap, models the cost
of moving the element from one processor to another. The weight weomp
is set to the number of leaf elements in the refinement tree because only
those elements that have no children participate in the numerical computa-
tion. The weight wremap, however, is set to the total number of elements in
the refinement tree because all descendants of the root element must move
with it from one partition to another, if so required. Every edge of the
dual graph also has a weight, weomm, that models the runtime interproces-
sor communication. The value of Weomm 18 set to the number of faces in the
computational mesh that corresponds to the dual graph edge. The mesh
connectivity, Weomp, and Weomm together determine how dual graph vertices
should be grouped to form partitions that minimize both the disparity in
the partition weights and the runtime communication. The wWremap deter-
mines how partitions should be assigned to processors such that the cost
of data redistribution is minimized. New computational grids obtained by
adaption are translated to wWeomp and Wremap for every vertex and to Weomm

4 RUPAK BISWAS AND LEONID OLIKER

for every edge in the dual mesh.

2.2. Parallel mesh repartitioning. If a preliminary evaluation step
determines that the dual graph with a new set of wcomp is unbalanced, the
mesh needs to be repartitioned. A good partitioner should minimize the
total execution time by balancing the computational loads and reducing the
interprocessor communication time. In addition, the repartitioning phase
must be performed very rapidly for our load balancing framework to be
viable. Since PLUM can use any general partitioner, we investigate the
relative performance of five parallel, state-of-the-art algorithms: PMeTiS,
UAMEeTiS, DAMeTiS, Jostle-MD, and Jostle-MS.

PMeTiS [10] and Jostle-MS [21] are global partitioners which make no
assumptions on how the graph is initially distributed among the processors.
Both methods are multilevel k-way partitioning algorithms that reduce the
size of the graph by collapsing vertices and edges, partition the smaller
problem, and uncoarsen the graph back to the original size. PMeTiS uses
a greedy graph growing algorithm for partitioning the coarsest graph, and
uncoarsens it by using a combination of boundary greedy and Kernighan-
Lin refinement. Jostle-MS uses a greedy algorithm to partition the coarsest
graph, followed by a parallel iterative scheme based on relative gain, to
optimize each of the multilevel graphs.

UAMEeTiS [15], DAMeTIS [15], and Jostle-MD [21] are diffusive schemes
which are designed to repartition adaptively refined meshes by modifying
the existing partitions. Reported results indicate that these algorithms pro-
duce partitions of quality comparable to that of their global counterparts,
while dramatically reducing the amount of data that needs to be moved
due to repartitioning. UAMeTiS and DAMeTiS perform local multilevel
coarsening followed by multilevel diffusion and refinement to balance the
graphs while maintaining the edge-cut. The difference between these two
algorithms is that UAMeTiS performs undirected diffusion based on local
balancing criteria, whereas DAMeTiS uses a 2-norm minimization algo-
rithm at the coarsest graph to guide the diffusion, and is thus considered
directed. Jostle-MD performs graph reduction on the existing partitions,
followed by the optimization techniques used in Jostle-MS. One major dif-
ference between these diffusive algorithms is that Jostle-MD employs a
single level diffusion scheme, while UAMeTiS and DAMeTiS use multilevel
diffusion.

2.3. Processor reassignment. Once new partitions are obtained,
they must be mapped to processors such that the redistribution cost is
minimized. In general, the number of new partitions is an integer multiple
F' of the number of processors. Each processor is then assigned F' unique
partitions. The first step toward processor reassignment is to compute a
similarity measure S’ that indicates how the remapping weights wremap of
the new partitions are distributed over the processors. It is represented as
a matrix where entry S;; is the sum of the wremap of all the dual graph

REPARTITIONING AND LOAD BALANCING ADAPTIVE MESHES)

New Partitions

01‘ ‘3‘4‘5‘6‘7
BN N
B @@
129|130 229 446
3 | 13 gy 281 198.

0 l‘OmZ

Old Procmrs

New Procrs

Fi1Gg. 2.1. A similarity matriz after processor reassignment using the heuristic algorithm
and the TotalV metric.

vertices in new partition j that already reside on processor i. A similarity
matrix for P = 4 and F = 2 is shown in Fig. 2.1. Only the non-zero entries
are shown.

The goal of the processor reassignment phase is to find a mapping be-
tween partitions and processors such that the data redistribution cost 1s
minimized. Various cost functions are usually needed to solve this problem
for different architectures. In [12], we investigated two general metrics:
TotalV, that minimizes the total volume of data moved among all proces-
sors, and MaxV, that minimizes the maximum flow of data to or from any
single processor. TotalV assumes that by reducing network contention and
the total number of elements moved, the remapping time will be reduced.
Both an optimal and a heuristic greedy algorithm have been implemented
for solving the processor reassignment problem using TotalV [12]. Apply-
ing the heuristic procedure to the similarity matrix in Fig. 2.1 generates the
processor assignment shown in the bottom row. It was proved in [12] that
a processor assignment obtained using the heuristic algorithm can never re-
sult in a data movement cost that is twice that of the optimal assignment.
MaxV, on the other hand, considers data redistribution in terms of solving a
load imbalance problem, where 1t is more important to minimize the work-
load of the most heavily-weighted processor than to minimize the sum of
all the loads. An optimal algorithm for solving the assignment problem
using MaxV has also been implemented [12].

2.4. Cost models. Once the reassignment problem is solved, a model
is needed to quickly predict the expected redistribution cost for a given ar-
chitecture. Accurately estimating this time is very difficult due to the large
number and complexity of the costs involved in the remapping procedure.
The computational overhead includes rebuilding internal data structures
and updating shared boundary information. Predicting the latter cost is
particularly challenging since it is a function of the old and new parti-
tion boundaries. The communication overhead is architecture-dependent
and can be difficult to predict especially for the many-to-many collective

6 RUPAK BISWAS AND LEONID OLIKER

communication pattern used by the remapper.

Our redistribution algorithm consists of three major steps: first, the
data objects moving out of a partition are stripped out and placed in a
buffer; next, a collective communication appropriately distributes the data
to its destination; and finally, the received data is integrated into each par-
tition and the boundary information is consistently updated. Performing
the remapping in this bulk fashion, as opposed to sending small individ-
ual messages, has several advantages including the amortization of message
start-up costs and good cache performance. Additionally, the total time
can be modeled by examining each of the three steps individually since
the two computational phases are separated by the implicit barrier syn-
chronization of the collective communication. This remapping procedure
closely follows the superstep model of BSP [18].

In [1], we derived the expected time for the redistribution procedure
on bandwidth-rich systems as:

v x MaxSR+ O,

where MaxSR = max(ElemsSent) + max(ElemsRecd) and can be quickly
derived from the solved similarity matrix S; 4 represents the total com-
putation and communication cost to process each redistributed element;
and O is the predicted sum of all constant overheads including the cost of
processing partition boundary information, data compaction costs, commu-
nication start-up costs, and barrier synchronizations. In order to compute
the slope and intercept of this linear function, several data points need to
be generated for various redistribution patterns and their corresponding
run times. A simple least squares fit can then be used to approximate 7y
and O. This procedure needs to be performed only once for each architec-
ture, and the values of v and O can then be used in actual computations to
estimate the redistribution cost. Note that there is a close relationship be-
tween MaxSR of the remapping cost model and the theoretical metric MaxV.
The optimal similarity matrix solution for MaxSR is provably no more than
twice that of MaxV.

The computational gain due to repartitioning is proportional to the
decrease in the load imbalance achieved by running the adapted mesh on
the new partitions rather than on the old partitions. It can be expressed
as ﬂterNadapt(Wﬁlgx — Whew), where Tiger is the time required to run one
solver iteration on one element of the original mesh, Naqapt is the number
of solver iterations between mesh adaptions, and W24 and W2eW are the
sum of the weomp on the most heavily-loaded processor for the old and new
partitionings, respectively.

An additional benefit of data redistribution before mesh subdivision
is the improved performance of the refinement procedure, which runs in a
more load balanced fashion. The savings is therefore incorporated as an
additional term in the computational gain expression. The new partitioning

REPARTITIONING AND LOAD BALANCING ADAPTIVE MESHES 7

and mapping are accepted if the computational gain is larger than the
redistribution cost:

i/ new
ﬂterNadapt(Wﬁlgx - Wrrrlleav)\(]) + Treﬁne <WI213X - 1) > Y X MaxSR + Oa

max

where Trefine 18 the time required to perform the subdivision phase based
on the edge-marking patterns. In that case, all data is appropriately redis-
tributed.

3. Experimental results. The 3D_TAG parallel mesh adaption pro-
cedure and the PLUM global load balancing strategy have been imple-
mented in C and C++, with the parallel activities in MPI for portability.
No architecture-specific optimizations were used to obtain the performance
results reported in this paper.

All experiments were performed on a wide-node IBM SP2 and a SGI/
Cray Origin2000. The SP2 is located in the Numerical Aerospace Simula-
tion division at NASA Ames Research Center. Tt consists of RS6000/590
processors, which are connected through a high performance switch, called
the Vulcan chip. Each chip connects up to eight processors, and eight Vul-
can chips comprise a switching board. An advantage of this interconnec-
tion mechanism and wormbhole routing is that all nodes can be considered
equidistant from one another.

The Origin2000 used in these experiments is a 32-processor R10000
system, located at NCSA | University of Illinois. The Origin2000 is the first
commercially-available 64-bit cache-coherent nonuniform memory access
(CC-NUMA) system. A small high performance switch connects two CPUs,
memory, and I/O. This module, called a node, is then connected to other
nodes in a hypercube fashion. An advantage of this interconnection system
is that additional nodes and switches can be added to create larger systems
that scale with the number of processors. Unfortunately, this configuration
causes an increase in complexity when predicting communication overhead,
since an accurate cost model must consider the number of module hops, if
any, between communicating processors.

3.1. Helicopter rotor test case. The computational mesh used for
the first set of experiments is one used to simulate an acoustics wind-
tunnel test [14]. In that experiment, a 1/7th-scale model of a UH-1H
helicopter rotor blade was tested over a range of subsonic and transonic
hover-tip Mach numbers. Detailed numerical results of the simulation are
given in [17]. In this paper, results are presented for one refinement step
where edges are targeted for subdivision based on an error indicator [17]
calculated directly from the flow solution. Three different cases are studied
with varying fractions of the domain being targeted for refinement. The
strategies, called Real_1, Real 2, and Real_3, subdivided 5%, 33%, and 60%
of the 78,343 edges of initial mesh. Table 3.1 lists the grid sizes for this
single level of refinement for each of the three cases.

8 RUPAK BISWAS AND LEONID OLIKER

TaBLE 3.1
Grid sizes for the three different refinement strategies

| | Vertices | Elements | Edges |
Initial 13,967 60,968 | 78,343
Real_1 17,880 82,489 | 104,209
Real_2 39,332 201,780 | 247,115
Real_3 61,161 321,841 | 391,233

3.1.1. PLUM on SP2 and Origin2000. Figure 3.1 illustrates the
parallel speedup for each of the three edge-marking strategies on the SP2
and the Origin2000. Two sets of results are presented for each machine:
one when data remapping is performed after mesh refinement, and the
other when remapping is performed before refinement. The speedup num-
bers are almost identical on the two machines. The Real_3 case shows
the best speedup performance because i1t 1s the most computation inten-
sive. Remapping the data before refinement has the largest relative effect
for Real_1, because it has the smallest refinement region and load balanc-
ing the refined mesh before actual subdivision returns the biggest benefit.
The results are the best for Real_3 with data remapping before refinement,
showing an efficiency of more than 87% on 32 processors of both the SP2
and the Origin2000. Extensive performance analysis of the parallel mesh
adaption code on an SP2 is given in [13].

60 60
SP2 02000
o o | ---- Remap after ref.
% % 5 — Remap before ref.
& &
5 5
5 5
= £
ko] ko]
& & o Red_1
o Rea_2
“ 7 s Real_3
0 . . . : : 0 , . . . : : .
0 8 16 24 32 40 48 56 64 0 8 16 24 32 40 48 56 64

Number of processors Number of processors

Fic. 3.1. Speedup of 3D_TAG on the SP2 and the Origin2000 when data is remapped
either after or before mesh refinement.

To compare the performance on the SP2 and the Origin2000 more
critically, one needs to look at the actual mesh adaption times rather than
the speedup values. These results are presented in Table 3.2 for the case
when data 1s remapped before the mesh refinement phase. Notice that the
Origin2000 is consistently more than twice as fast as the SP2. One reason is
the faster clock speed of the Origin2000. Another reason is that the mesh

REPARTITIONING AND LOAD BALANCING ADAPTIVE MESHES 9

TABLE 3.2
FEzecution time of 3D_TAG on the SP2 and the Origin2000 when data 1s remapped before
mesh refinement

Real_1 Real_2 Real_3

P | SP2 | 02000 SP2 | 02000 SP2 | 02000
115902 | 2507 | 23.780 | 10.468 | 41.702 | 18.307
2 | 3.312 1.427 | 12.060 | 5.261 | 21.593 | 9.422
4 | 1.981 0.839 | 6.734 | 2.880 | 10.977 | 4.736
8| 1.372 | 0.578 | 3.434 1.470 | 5.682 | 2.492
16 | 0.708 | 0.321 1.846 | 0.794 | 2.903 1.296
32 1 0.425 | 0.193 1.061 0.458 1.490 | 0.651
64 | 0.247 0.550 0.794

adaption code does not use the floating-point units on the SP2, thereby
adversely affecting its overall performance.

Figure 3.2 shows the remapping time for each of the three cases on
the SP2 and the Origin2000. As in Fig. 3.1, results are presented both
when the data remapping is done after and before the mesh subdivision. A
significant reduction in remapping time is observed when the adapted mesh
is load balanced by performing data movement prior to refinement. This is
because the mesh grows in size only after the data has been redistributed.
The remapping times also decrease as the number of processors is increased.
This is because even though the total volume of data movement increases
with the number of processors, there are actually more processors to share
the work. The remapping times when data is moved before mesh refinement
are reproduced in Table 3.3 since the exact values are difficult to read off
the log-scale in Fig. 3.2.

SP2 N 02000
oA a1
(7 L RN g 1 B ---- Remap after ref.
g 10 9 10 B — Remap before ref.
e I
£ E
5 2
g %
3 o 0
10 { 5 10 4 o Red_1
o 14 o Red_2
s Red_3
0 8 16 24 32 40 48 56 64 0 8 16 24 32 40 48 56 64
Number of processors Number of processors

Fi1G. 3.2. Remapping time within PLUM on the SP2 and the Origin2000 when data s
redistributed either after or before mesh refinement.

Perhaps the most remarkable feature of these results is the dramatic re-

10 RUPAK BISWAS AND LEONID OLIKER

TABLE 3.3
Remapping time within PLUM on the SP2 and the Origin2000 when data is redistributed
before mesh refinement

Real_1 Real_2 Real_3

P | SP2 | 02000 | SP2 | 02000 | SP2 | 02000
2 | 2.601 3.259 | 5.273 | 4.940 | 3.679 3.675
4 | 2.813 2.679 | 3.440 3.005 | 3.003 2.786
8 | 2.982 2.876 | 3.321 2.963 | 3.351 2.786
16 | 1.821 1.392 | 2.173 2.346 | 2.049 2.353
32 | 1.012 0.377 | 1.338 0.491 | 1.260 0.435
64 | 0.709 0.890 1.031

duction in remapping times when using all 32 processors on the Origin2000.
This is probably because network contention with other jobs is essentially
removed when using the entire machine. One may see similar behavior on
an SP2 if all the processors in a system configuration are used.

Notice that when using upto 16 processors, the remapping times on
the SP2 and the Origin2000 are comparable. Recall that the remapping
phase within PLUM consists of both communication (to physically move
data around) and computation (to rebuild the internal and shared data
structures on each processor). We cannot report these times separately as
that would require introducing several barrier synchronizations. However,
since the results in Table 3.2 indicate that computation is faster on the
Origin2000, it is reasonable to infer that bulk communication is faster on
the SP2. Additional experimentation is required to verify these claims. In
any case, the results in Figs. 3.1 and 3.2 demonstrate that our methodology
within PLUM is effective in significantly reducing the data remapping time
and improving the parallel performance of mesh refinement.

Figure 3.3 shows how the execution time is spent during the refinement
and the subsequent load balancing phases for the three different cases on
the SP2 and the Origin2000. The processor reassignment times are not
shown since they are negligible compared to the other times. Note that the
graphs for the two machines have different scales on the axes; however, both
machines show similar qualitative behavior. The repartitioning curves,
using PMeTiS [10], are almost identical for the three cases on each machine
because the time to repartition mostly depends on the initial problem size.
Notice that the repartitioning times are almost independent of the number
of processors; however, for our test mesh, there is a minimum when the
number of processors is about 16. This is not unexpected. When there are
too few processors, repartitioning takes more time because each processor
has a bigger share of the total work. When there are too many processors,
an increase in the communication cost slows down the repartitioner. For a

REPARTITIONING AND LOAD BALANCING ADAPTIVE MESHES 11

1
10 Redl_1on SP2 10 Real_1 on 02000
a —e— Adaption a
g 1] -5~ Partitioning g
o 10 —— Remapping by
£ £
= = 100,
5 5
5 . 0] 5
3 10 8
i i
1 T T T T T T T 1 T T T T T T T
Vo 8 16 24 32 4 4 56 6 00 42 8 12 16 20 24 28 22
Number of processors Number of processors
10 10l
Real_2 on SP2 Real_2 on 02000
@ 10 @
£ = 1
s 5%
=3 =1 B\E\E\a‘g
3 10 8
i i
1 T T T T T T T 1 T T T T T T T
Vo 8 16 24 32 4 4 56 6 00 42 8 12 16 20 24 28 2
Number of processors Number of processors
10 10l
Real_3 on SP2 Real_3 on 02000
@ 10 @
£ = 1
s 5%
5 . 0] 5
3 10 8

-1 -1
0o 8 16 24 32 40 48 56 64 Yo 4 8 12 16 20 24 28 R
Number of processors Number of processors

Fi1g. 3.3. Anatomy of execution times for the Real_1, Real 2, and Real 3 refinement
strategies on the SP2 and the Origin2000.

larger initial mesh, the minimum partitioning time will occur for a higher
number of processors. These results show that PLUM can be successfully
ported to different platforms without any code modifications.

3.1.2. Deriving the redistribution cost model. It is important
to note from the results in Fig. 3.3 that the refinement, repartitioning, and
remapping times are generally comparable for the test mesh when using
a large number of processors (P > 32). However, the remapping time
will increase significantly when the mesh grows in size due to adaption.
Thus, remapping is considered the bottleneck in dynamic load balancing
problems. It is for this reason that the remapping cost needs to be predicted

12 RUPAK BISWAS AND LEONID OLIKER

accurately to be certain that the data redistribution cost will be more than
compensated by the computational gain.

The next set of experiments is performed to compute the slope 7 and
the intercept O of our redistribution cost model on both the SP2 and the
Origin2000. Experimental data is gathered by running various redistribu-
tion patterns. The remapping times are then plotted against two metrics,
TotalV and MaxSR, in Fig. 3.4. Results demonstrate that on an SP2, there
is little obvious correlation between the total number of elements moved
(TotalV metric) and the expected run time for the remapping procedure.
On the other hand, there is a clear linear correlation between the max-
imum number of elements moved (MaxSR metric) and the redistribution
time. These results indicate that, on the SP2, our redistribution model
successfully estimates the data remapping time, and that reducing the bot-
tleneck, rather than the aggregate, overhead guarantees a reduction in the
redistribution time.

18

EN

Totalyy on SP2 TotalV on 02000
~ 151 =
o] 3
o 121 o o p a R
£ O £ a
=1 o o =1
= 9 o o = 2
a o =8 LN
% 61 0o A A o s % 4
é s B2 g 1 A A
a a v
€ 4 & oy v v 14 AR A
o7 £
0 T T T 0 T T T
0 100K 200K 300K 400K 0 100K 200K 300K 400K
Total number of elements moved Total number of elements moved
18 4
MaxSR on SP2 o MaxSR on 02000
~ 151 P
a o P=8 o a 34 A
k2 o P=16 o k23
o 121 A p=32 o © © a P=32 A A s
£ v P=64 & £
o 9 o = 2
[oR P! [oR A
g 6 o D g .
5 & 5 1 A8
X g L 14 %%\
@ &£
0 , , , , 0 , , , ,
0 20K 40K 60K 80K 100K 0 10K 20K 30K 40K 50K
Maximum number of elements moved Maximum number of elements moved

FiG. 3.4. Remapping time as a function of TotalV and MaxSR on the SP2 and the
Origin2000.

The situation i1s quite different on the Origin2000. Remapping times
were extremely unpredictable for P < 32; hence, they are not shown in
Fig. 3.4. Observe that, for P = 32, the MaxSR metric is not significantly
better than TotalV. Furthermore, the MaxSR metric is also not as good as
on the SP2. These results indicate that network contention and a complex

REPARTITIONING AND LOAD BALANCING ADAPTIVE MESHES 13

architecture (multiple hops between processors) are probably major factors.
Additional experimentation is required on the Origin2000 to develop a more
reliable remapping cost model.

3.2. Unsteady simulation test case. The final set of experiments
is performed to evaluate the efficacy of PLUM in an unsteady environment
where the adapted region is strongly time-dependent. To achieve this goal,
a simulated shock wave is propagated through the initial mesh shown at
the top of Fig. 3.5. The test case is generated by refining all elements
within a cylindrical volume moving left to right across the domain with
constant velocity, while coarsening previously-refined elements in its wake.
The performance of PLUM is then measured at nine successive adaption
levels. Note that because these results are derived directly from the dual
graph, mesh adaption times are not reported, and remapping overheads
are computed using our redistribution cost model.

Y Pt
AR

i

Fi1G. 3.5. Initial and adapted meshes (after levels 1 and 5) for the simulated unsteady
experiment.

Figure 3.6 shows the progression of grid sizes for the nine levels of
adaption in the unsteady simulation. Both coarse and fine meshes, called
Sequence_1 and Sequence_2 respectively, are used in the experiment to in-
vestigate the relationship between load balancing performance and dual
graph size. The coarse initial mesh, shown in Fig. 3.5, contains 50,000
tetrahedral elements. The mesh after the first and fifth adaptions for Se-
quence_l are also shown in Fig. 3.5. The initial fine mesh is eight times
the size of this coarse mesh. Note that even though the size of the meshes
remain fairly constant after four levels of adaption, the refinement region
continues to move steadily across the domain. The growth in size due to

14 RUPAK BISWAS AND LEONID OLIKER

Number of elements
(2

5 - Sequence_1
10 § -8~ Sequence 2
—— Sequence_3

4
9 1 2 3 4 5 6 7 8 9
Adaption level

Fi1G. 3.6. Progression of grid sizes through mnine levels of adaption for the unsteady
stmulation.

refinement is almost exactly compensated by mesh coarsening. A third sce-
nario, called Sequence_3, was also tested on the coarse initial mesh. This
case was generated by reducing the velocity of the cylindrical volume mov-
ing across the domain. Notice that the mesh then continues to grow in size
throughout the course of adaption. The final meshes after nine adaption
levels contain more than 1.8, 12.5, and 6.3 million elements for Sequence_1,
Sequence_2, and Sequence_3, respectively.

3.2.1. Comparison of partitioners. Table 3.4 presents the parti-
tioning times for Sequence_1 using the five different partitioners briefly
described in Section 2.2. PMeTiS is the parallel multilevel k-way parti-
tioning scheme of Karypis and Kumar [10], UAMeTiS and DAMeTiS are
multilevel undirected and directed repartitioning algorithms of Schloegel,
Karypis, and Kumar [15], and Jostle-MS and Jostle-MD are multilevel-
static and multilevel-dynamic configurations of the Jostle partitioner of
Walshaw, Cross, and Everett [21]. Average results' show that UAMeTiS
is the fastest among all five partitioners, while Jostle-MS is the slowest.
PMeTiS is about 40% slower than UAMeTiS, but almost six times faster
than Jostle-MS.

But partitioning time alone is not sufficient to rate the performance of
a mesh partitioner; one needs to investigate the quality of load balancing
as well. We define load balancing quality in two ways: the computational
load imbalance factor? and the percentage of cut edges. These values are
presented for all five partitioners both before and after they are invoked
for Sequence_1 in Tables 3.5 and 3.6. PMeTiS does an excellent job of
consistently reducing the load imbalance factor to within 6% of ideal (cf.
Table 3.5). The Jostle partitioners are only slightly worse than PMeTiS,

1 The last row in Tables 3.4-3.11 is marked with an A. It represents the average
results over all nine levels of adaption.

2 The load imbalance factor is the ratio of the sum of the Weomp oN the most heavily-
loaded processor to the average load across all processors.

REPARTITIONING AND LOAD BALANCING ADAPTIVE MESHES 15

TABLE 3.4
Partitioning time on the SP2 for P=64 using a variety of partitioners for Sequence_1

| L | PMeTiS | UAMeT1S | DAMeTiS | Jostle-MS | Jostle-MD |

1] 052 0.34 0.42 2.20 2.20

2 | 063 0.40 0.51 2.93 2.97

3] 068 0.55 0.68 4.28 4.36

4] 089 0.66 0.67 5.52 5.38

5 1.00 0.83 0.82 7.47 5.57

6 1.07 0.61 0.80 6.01 5.60

7] 1.02 0.58 0.74 6.16 6.66

8] 089 0.65 0.96 4.92 6.13

9 1.02 0.89 1.05 5.47 5.41
|A] 08 | 061 | 074 | 500 | 492 |

and turn in acceptable performances. UAMeTiS and DAMeTiS, on the
other hand, show load imbalance factors larger than two. We do not know
why this happens; however, a poor load imbalance factor after repartition-
ing at any given adaption level is one reason for a higher load imbalance
factor before repartitioning at the next adaption level.

TABLE 3.5
Load imbalance factor before and after mesh partitioning for P=64 using a variety of
partitioners for Sequence_1

PMeTiS UAMeTiS DAMeTiS Jostle-MS | Jostle-MD
Bef | Aft | Bef | Aft | Bef | Aft | Bef | Aft | Bef | Aft

3.58 | 1.03 | 3.58 | 2.32 | 3.58 | 2.46 | 3.58 | 1.02 | 3.58 | 1.02
217 | 1.04 | 463 | 294 | 497 | 2.70 | 2.21 | 1.04 | 2.18 | 1.05
246 | 1.11 | 5.95 | 2.38 | 5.34 | 2.63 | 245 | 1.18 | 2.47 | 1.06
6.42 | 1.08 | 9.99 | 2.33 | 13.7 | 2.25 | 6.35 | 1.30 | 6.29 | 1.39
7.7511.04 | 13.8 | 219 | 114 | 2.07 | 7.64 | 1.14 | 7.59 | 1.14
7.84 | 1.04 | 115] 2.06 | 125 | 1.91 | 7.90 | 1.09 | 7.92 | 1.46
796 | 1.07 | 11.1 | 1.94 | 11.2 | 1.95 | 8.00 | 1.17 | 7.95 | 1.17
8.16 | 1.09 | 10.6 | 1.72 | 9.96 | 1.60 | 7.94 | 1.14 | 7.93 | 1.28
8.01 | 1.06 | 9.99 | 1.57 | 9.10 | 1.30 | 8.00 | 1.12 | 7.70 | 1.28

[6.04 [1.06 [9.02 [2.16 [9.09 | 2.10 [6.01 | 1.13 [5.96 | 1.21

|| 0| co| —1| o | x| wof po| = ||

A comparison of the partitioners in terms of the percentage of cut
edges leads to similar conclusions (cf. Table 3.6). PMeTiS, Jostle-MS, and
Jostle-MD are comparable, but UAMeTiS and DAMeTiS are almost twice
as bad. The number of cut edges always increases after a repartitioning

16 RUPAK BISWAS AND LEONID OLIKER

TABLE 3.6
Percentage of cut edges before and after mesh partitioning for P=64 using a variety of
partitioners for Sequence_1

PMeTiS UAMeTiS DAMeTiS Jostle-MS | Jostle-MD
Bef | Aft | Bef | Aft | Bef | Aft | Bef | Aft | Bef | Aft

6.61 | 895 | 6.61 | 17.8 | 6.61 | 15.8 | 6.61 | 9.04 | 6.61 | 9.04
106 | 13.2 | 22.0 | 25.0 | 194 | 23.6 | 109 | 14.4 | 10.8 | 13.8
13.1) 17.1 | 26.2 | 29.6 | 25.0 | 28.6 | 14.6 | 17.0 | 13.4 | 19.8
9.80 | 16.4 | 20.7 | 31.9 | 20.3 | 32.3 | 954 | 15.1 | 11.5 | 15.0
108 | 16.0 | 23.6 | 30.9 | 206 | 31.6 | 9.82 | 17.4 | 9.62 | 15.6
9.65 | 16.7 | 25.6 | 30.8 | 27.2 | 31.2 | 10.8 | 17.3 | 9.11 | 15.8
938 | 15.8 229|319 | 279 | 30.7 | 10.6 | 17.8 | 9.88 | 17.2
9.62 | 16.0 | 25.1 | 32.1 | 27.2 | 30.6 | 10.8 | 16.9 | 9.83 | 14.6
9.27 | 15.8 | 274 | 31.8 | 244 | 26.2 | 10.0 | 16.3 | 9.22 | 14.8

9.86 [15.1 [22.2 [29.1 | 22.1 [27.8 [104 [15.7 [9.99 | 15.1 |

B || of co| ~a| o | o] | wo| po| —||

since the load imbalance factor has to be reduced.

Our overall conclusions from the results presented in Tables 3.4-3.6
are as follows. PMeTiS is the best partitioner for Sequence_1 since it is
very fast and gives the highest quality. UAMeTiS and DAMEeTiS are faster
partitioners but suffer from poor load balancing quality. Jostle-MS and
Jostle-MD, on the other hand, produce high quality subdomains but require
a relatively long time to perform the partitioning. In general, we expect
global methods to produce higher quality partitions than diffusive schemes,
since they have more flexibility in choosing subdomain boundaries.

The remapping times for all five partitioners are presented in Table 3.7.
Two remapping strategies are used, resulting in different remapping times
at each level. The first strategy uses the default processor mapping given
by the respective partitioners, while the second performs processor reas-
signment based on our heuristic solution of the similarity matrix. It is
important to note here that our heuristic strategy uses the wremap Weights
of the dual graph vertices to minimize the data remapping cost while the
partitioners use the weomp Weights. Even though the wremap values are the
correct ones to use, it is not possible for the current versions of the various
partitioners to use them. Several observations can be made from the re-
sults. The default remapping times are the fastest for Jostle-MD. PMeTiS
is about 17% while UAMeTiS and DAMeTiS are about 25% slower. How-
ever, the heuristic remapping times for PMeTiS, Jostle-MS, and Jostle-MD
are comparable while those for UAMeTiS and DAMeTiS are about 40%
longer. Also note that our heuristic remapper reduces the remapping time
by more than 28% for PMeTiS and by about 17% for the Jostle partition-
ers. However, the improvement is less than 6% for UAMeTiS and about

REPARTITIONING AND LOAD BALANCING ADAPTIVE MESHES 17

TaBLE 3.7
Remapping time on an SP2 for P=6/ using the default and our heuristic strategies for
Sequence_1

PMeTiS UAMeTiS | DAMeTiS | Jostle-MS | Jostle-MD
Def | Heu | Def | Heu | Def | Heu | Def | Heu | Def | Heu
1.17 | 1.06 | 1.25 | 1.14 | 1.23 | 1.12 | 1.16 | 1.05 | 1.16 | 1.06
2371198 | 234|216 | 2.37 (202|232 196 2.32 | 1.95
6.38 | 4.85 | 5.73 | 546 | 5.63 | 5.24 | 5.14 | 4.88 | 5.07 | 4.84
752 1 6.18 | 109 | 103 | 13.6 | 12.4 | 7.16 | 6.11 | 7.24 | 6.52
11.9 | 740 | 13.4 | 12.7 | 125 | 11.2 | 11.6 | 7.60 | 8.28 | 7.40
115|766 | 11.8 | 11.6 | 13.0 | 11.9 | 9.45 | 7.49 | 9.16 | 7.73
104 | 837 | 12.7 | 11.2 | 11.4 | 10.6 | 104 | 7.75 | 10.6 | 7.74
11.0 | 7.87 | 11.1 | 10.5 | 10.2 | 9.83 | 8.49 | 7.61 | 10.1 | 7.91
11.6 | 7.66 | 9.83 | 9.58 | 9.10 | 8.88 | 9.32 | 7.80 | 9.24 | 8.45

[8.19 [5.89 [8.77 | 8.29 [8.79 | 8.13 [7.23 | 5.81 | 7.02 | 5.96 |

B || of oo 1| o | ot | eo| po| | b

11% for DAMeTiS.

It is interesting to note that for Sequence_1, a global partitioner like
PMeTiS results in a significantly lower remapping overhead than its diffu-
sive counterparts. This seems rather unexpected since the general purpose
of diffusive schemes is to minimize the remapping cost. We believe that this
discrepancy is due to the high growth rate and speed with which our test
meshes are evolving. For this class of problems, globally repartitioning the
graph from scratch seems to be more efficient then attempting to diffuse
the rapidly moving adapted region.

3.2.2. SP2 vs. Origin2000. We next compare the relative perfor-
mance of the SP2 and the Origin2000. Since we had access to only 32
processors of the Origin2000, experiments on the SP2 were also run using
P = 32 for this case. We pared the number of partitioners down to two:
PMeTiS and DAMeTiS. PMeTiS was chosen because it was the best par-
titioner overall. DAMeTiS was chosen over the Jostle partitioners since
faster repartitioning is more important than higher quality in an adaptive-
grid scenario. The partitioning and the remapping times using our heuristic
remapping strategy for Sequence_1 are presented in Table 3.8. Consistent
with the results in Table 3.4, DAMeTiS is slightly faster than PMeTiS
on both machines. Consistent with the results in Table 3.2, run times on
the Origin2000 are about half the corresponding times on the SP2. The
DAMEeTiS remapping times are higher than PMeTiS, but not as bad as in
Table 3.7. Finally, the remapping times are about three times faster on the
Origin2000 than on the SP2 as was also shown earlier in Table 3.3.

The quality of load balancing for this experimental case is presented in

18 RUPAK BISWAS AND LEONID OLIKER
TABLE 3.8

Partitioning and remapping times on the SP2 and the Origin2000 for P=32 using
PMet:S and DAMeTiS for Sequence_1

Partitioning Heuristic Remapping
PMeTiS DAMeTiS PMeTiS DAMeTiS
L [SP2 | 02000 | SP2 | 02000 | SP2 | 02000 | SP2 | 02000
1 1035 045 | 036 | 0.44 | 1.43 | 047 | 1.58| 0.50
2 |042| 020 | 048] 023 |319| 110 | 287 | 1.05
3 1068| 033 |068] 030 |549 | 182 | 886 | 2.68
41096 | 047 | 090 | 044 | 11.0| 3.66 | 17.5 | 6.57
5(1075| 041 |100| 040 |141 | 462 | 17.7| 6.30
6 | 1.09| 050 |075| 043 | 154 | 478 | 149 | 5.83
7T1079| 042 |075| 034 |154 | 478 | 153 | 5.04
8§ | 1.12| 037 | 080 | 032 |15.0| 493 | 133 | 4.65
9108 | 034 |080] 034 |15.7| 5.04 | 149 | 4.03
[AJ078] 039 [072] 036 [10.7] 347 [11.9] 4.07

Table 3.9. Theoretically, these results should be identical on both ma-
chines. However, since PMeTiS and DAMeTiS use pseudo-random num-
bers in their codes, the results were not uniform due to different seeds on
the SP2 and the Origin2000. The results shown in Table 3.9 are obtained
on the Origin2000. PMeTiS is once again better than DAMeTiS, both in
terms of the load imbalance factor and the percentage of cut edges. These
results are consistent with those shown in Tables 3.5 and 3.6; however, the

TABLE 3.9
Load imbalance factor and percentage of cut edges before and after mesh partitioning

for P=32 using PMet1S and DAMeTiS for Sequence_1

Load imbalance factor Percentage of cut edges

PMeTiS

DAMeTiS

PMeTiS

DAMeTiS

Bef | ATt

Bef [ATt

Bef [ATt

Bef [ATt

3.58

1.01

3.58

1.88

4.65

6.28

4.65

15.7

2.17

1.04

3.95

2.12

7.66

9.65

19.3

20.5

2.41

1.06

4.90

2.12

9.57

13.2

21.1

25.3

6.14

1.05

9.82

1.87

7.99

12.2

17.1

28.2

7.31

1.03

10.2

1.68

6.76

11.8

29.1

26.5

7.88

1.05

9.12

1.41

7.15

111

25.3

24.4

7.86

1.04

7.82

1.11

6.47

11.3

20.6

14.2

8.02

1.04

6.66

1.05

6.50

11.5

10.0

13.9

7.92

1.05

6.61

1.05

6.21

10.9

9.41

14.2

P o] oo ~1| o o x| of po| ||

5.92 [1.04 [6.96

[1.59 [7.00 [10.9 |

174 |

20.3 |

REPARTITIONING AND LOAD BALANCING ADAPTIVE MESHES 19

values are smaller here. The load imbalance factors are lower because
fewer processors are used. The percentages of cut edges are smaller since
the surface-to-volume ratio decreases with the number of partitions.

3.2.3. Coarse vs. fine initial mesh. Figure 3.7 presents the parti-
tioning and remapping times using PMeTiS for the two mesh granularities,
Sequence_1 and Sequence_2. Remapping results are presented only for our
heuristic remapping strategy. A couple of observations can be made from
the resulting graphs. First, when comparing the two sequences, results
show that the finer mesh increases both the partitioning and the remap-
ping times by almost an order of magnitude. This is expected since the
initial fine mesh is eight times the size of the initial coarse mesh. The
larger graph is thus more expensive to partition and requires more data
movement during remapping. Second, increasing the number of processors
from 16 to 64 does not have a major effect on the partitioning times, but
causes an almost three-fold reduction in the remapping times. This indi-
cates that our load balancing strategy will remain viable on a large number
of processors.

103 103
P=16 P=64

—~ & A . o Partitioning — Sequence_1
g 2] “ aTTTATAT g 2] s Remapping ---- Sequence_2
g 81w I L
[} Q AT
£ £ :
g g
=] =]
g o g o
@ 105 @ 105

-1 T T T T T T T T T -1 T T T T T T T T T

0 1 2 3 45 6 7 8 9 0 1 2 3 45 6 7 8 9

Adaption level Adaption level

Fig. 3.7. PMeTiS partitioning and remapping times using the heuristic strategy for
P=16 and 64 on an SP2 for Sequence_l and Sequence_2.

Figure 3.8 presents the quality of load balancing for Sequence_1 and Se-
quence_2 using PMeTiS. Load balancing quality is again measured in terms
of the load imbalance factor and the percentage of cut edges. For all the
cases, the partitioner does an excellent job of reducing the imbalance factor
to near unity. Using a finer mesh has a negligible effect on the imbalance
factor after load balancing, but requires a substantially longer repartition-
ing time (cf. Fig. 3.7). The percentage of cut edges always increases with
the number of processors. This is expected since the surface-to-volume ra-
tio increases with the number of partitions. Also notice that the percentage
of cut edges generally grows with each level of adaption, and then stabi-
lizes when the mesh size stabilizes. This is because successive adaptions
create a complex distribution of computationally-heavy nodes in the dual
graph, thereby requiring partitions to have more complicated boundaries

20 RUPAK BISWAS AND LEONID OLIKER

P=16

151 v Imbalance factor — Sequence_1
A % Cut edges ---- Sequence_2

Load balancing quality
©

Load balancing quality
©

61 61
A
3 - 31
v S A -
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Adaption level Adaption level

FiG. 3.8. Load imbalance factor and percentage of cut edges after mesh partitioning
using PMeTiS for P=16 and 64 for Sequence_1 and Sequence 2. Note that the imbalance
factor curves for the two sequences are overlaid.

to achieve load balance. This increases the surface-to-volume ratio of the
partitions, resulting in a higher percentage of cut edges. The finer mesh
consistently has a smaller percentage of cut edges because the partitioner
has a wider choice of edges to find a better cut. However, we believe that
this savings in the number of cut edges does not warrant the significantly
higher overhead of the finer mesh.

3.2.4. Growing vs. stable mesh. Lastly, we compare the perfor-
mance of PMeTiS and DAMeTiS for Sequence_3 on 32 processors of the
SP2. The reason for this experiment was to investigate the effect of our
load balancing strategy on a mesh that continuously grows in size through
the course of adaption. The partitioning and the remapping times are pre-
sented in Table 3.10. A comparison with the results in Table 3.8 shows that
the partitioning times for both partitioners are almost unchanged. This is
because both Sequence_1 and Sequence_3 use the same initial mesh; thus,
the partitioners work on dual graphs that are topologically identical. The
remapping times, however, are significantly higher for Sequence_3 because
of a much larger adapted mesh. Even though the adaption region is moving
with a lower velocity here than for Sequence_1, the mesh is growing very
rapidly, gaining more than two orders of magnitude in only nine adap-
tion levels. Our heuristic remapper reduces the remapping time by more
than 23% for PMeTiS and by almost 17% for DAMeTiS. Once again, the
global repartitioning strategy using PMeTiS produces a lower remapping
overhead than the diffusive scheme.

The quality of load balancing is presented in Table 3.11. PMeTiS is
once again significantly better than DAMeTiS in terms of the load imbal-
ance factor. Compared to the corresponding results in Table 3.9, the imbal-
ance factor after mesh repartitioning is higher, particularly for DAMeTiS.
This is due to the lower speed of the adapted region, which increases the
maximum values of Weomp and Weomm in the dual graph. This, in turn, lim-

REPARTITIONING AND LOAD BALANCING ADAPTIVE MESHES 21

TaBLE 3.10
Partitioning and remapping times on an SP2 for P=32 using PMetiS and DAMeTiS
for Sequence_3

Partitioning Remapping

PMeTiS DAMEeTiS
L | PMeTiS | DAMeTiS | Def | Heu | Def | Heu
1 0.34 0.59 1.30 | 1.26 | 1.15 | 1.18
2 0.32 0.34 1.45 | 1.27 | 1.53 | 1.38
3 0.34 0.38 217 | 1.72 | 2.39 | 1.95
4 0.60 0.46 5.68 | 4.52 | 4.80 | 4.47
5 0.88 0.75 15.1 | 10.6 | 17.1 | 14.3
6 1.35 0.72 23.9 | 164 | 324 | 27.3
7 1.25 1.32 442 | 29.4 | 58.6 | 40.6
8 1.18 0.93 53.8 1393 | 86.9 | 71.2
9 0.95 0.76 50.5 | 47.8 | 81.7 | 75.4

[A] 080 | 069 [220[16.9]318]264 |

its the efficacy of the partitioner to balance the mesh, since certain nodes
have become very heavy. An additional side effect is that the percentage of
cut edges are significantly worse for Sequence_3 than for the higher speed
simulation of Sequence_1, shown in Table 3.9. Nonetheless, a near per-
fect load balance is achieved by PMeTiS for this test case, even though it
is partitioning the dual of an initial mesh which has grown by over 120-
fold in only nine adaptions. This indicates that our dual graph scheme with

TaBLE 3.11
Load imbalance factor and percentage of cut edges before and after mesh partitioning

for P=32 using PMetiS and DAMeT1S for Sequence_3

Load imbalance factor Percentage of cut edges
PMeTiS DAMeTiS PMeTiS DAMeTiS
Bef | Aft | Bef | Aft | Bef | Aft | Bef | Aft

1.89 | 1.03 | 1.89 | 1.13 | 4.70 | 4.73 | 4.70 | 6.75
4.46 | 1.03 | 431 | 1.39 | 4.75 | 6.85 | 8.82 | 15.5
3.26 | 1.04 | 3.78 | 2.37 | 11.6 | 20.8 | 29.5 | 25.8
217 | 1.08 | 3.99 | 2.75 | 28.6 | 34.4 | 36.6 | 33.3
231 | 1.03 | 433 | 3.08 | 34.2 | 47.7 | 33.6 | 42.2
3.80 | 1.08 | 5.69 | 2.59 | 404 | 49.6 | 41.7 | 44.8
359 | 1.15 | 3.72 | 297 | 41.3 | 48,9 | 394 | 444
406 | 1.13 | 8.26 | 2.42 | 37.6 | 44.4 | 42.4 | 42.6
4451 1.15 | 5.26 | 2.09 | 37.2 | 45.5 | 36.8 | 444

3.33 [1.08 | 4.58 | 2.31 | 26.7 | 33.7 | 30.4 | 33.3 |

Pl ol ool 1| o ot x| cof po| —||

22 RUPAK BISWAS AND LEONID OLIKER

adjustable vertex and edge weights can be successfully used even when the
mesh is growing significantly and rapidly.

4. Conclusions. We have shown in this paper that our load balancing
scheme, called PLUM, works well for both steady and unsteady adaptive
problems with many levels of adaption, even when using a coarse initial
mesh. A finer starting mesh may be used to achieve lower edge cuts and
marginally better load balance, but is generally not worth the increased par-
titioning and data remapping times. Portability was demonstrated by pre-
senting results on the two vastly different architectures of the SP2 and the
Origin2000, without the need for any code modifications. We examined the
performance of five state-of-the-art parallel partitioners within PLUM, and
found that a global repartitioner can outperform diffusive schemes in both
subdomain quality and remapping overhead. Additionally, we showed that
the data redistribution overhead can be reduced by applying our heuris-
tic processor reassignment algorithm to the default partition-to-processor
mapping given by all five partitioners. Finally, we applied the SP2 redis-
tribution cost model to the Origin2000, but with limited success. Future
research will address the development of a more comprehensive remapping
cost model for the Origin2000.

Acknowledgements. The authors would like to sincerely thank Vipin
Kumar and George Karypis at the University of Minnesota for their help
with the MeTiS partitioners, and Chris Walshaw at the University of Green-
wich for his help with the Jostle partitioners.

REFERENCES

[1] R. Biswas aND L. OLIKER, Load balancing sequences of unstructured adaptive
grids, 4th International Conference on High Performance Computing (1997),
to appear.

[2] R. Biswas, L. OLIKER, AND A. SOHN, Global load balancing with parallel mesh
adaption on distributed-memory systems, Supercomputing (1996).

[3] R. Biswas AND R.C. STRAWN, A new procedure for dynamic adaption of three-
dimensional unstructured grids, Applied Numerical Mathematics, 13 (1994),
pp. 437-452.

[4] N. CHR1sOoCHOIDES, Multithreaded model for the dynamic load-balancing of parallel
adaptive PDE computations, Applied Numerical Mathematics, 20 (1996), pp.
321-336.

[5] H.L. pE Couany, K.D. DEVINE, J.E. FLAHERTY, R.M. Loy, C. OZTURAN, AND
M.S. SHEPHARD, Load balancing for the parallel adaptive solution of partial
differential equations, Applied Numerical Mathematics, 16 (1994), pp. 157—
182.

[6] G. CYBENKO, Dynamic load balancing for distributed-memory multiprocessors,
Journal of Parallel and Distributed Computing, 7 (1989), pp. 279-301.

[7] S.K. Das, D.J. HARVEY, AND R. Biswas, Adaptive load-balancing algorithms us-
ing symmetric broadcast networks: performance study on an IBM SP2, 26th
International Conference on Parallel Processing (1997), pp. 360-367.

REPARTITIONING AND LOAD BALANCING ADAPTIVE MESHES 23

[8] B. GHOSH AND S. MUTHUKRISHNAN, Dynamic load balancing in parallel and dis-
tributed networks by random matchings, 6th ACM Symposium on Parallel
Algorithms and Architectures (1994), pp. 226-235.

[9] G. HorTON, A multi-level diffusion method for dynamic load balancing, Parallel
Computing, 19 (1993), pp. 209-229.

[10] G. Karypis AND V. KUMAR, Parallel multilevel k-way partitioning scheme for
irregular graphs, Department of Computer Science, University of Minnesota,
Minneapolis, MN (1996), Technical Report 96-036.

[11] G.A. KoHRING, Dynamic load balancing for parallelized particle simulations on
MIMD computers, Parallel Computing, 21 (1995), pp. 683-693.

[12] L. OLIKER AND R. Biswas, Efficient load balancing and data remapping for adap-
tive grid calculations, 9th ACM Symposium on Parallel Algorithms and Ar-
chitectures (1997), pp. 33-42.

[13] L. OLIKER, R. Biswas, AND R.C. STRAWN, Parallel implementation of an adaptive
scheme for 3D unstructured grids on the SP2, Parallel Algorithms for Irregu-
larly Structured Problems, Springer-Verlag, LNCS 1117 (1996), pp. 35-47.

[14] T.W. PURCELL, CFD and transonic helicopter sound, 14th European Rotorcraft
Forum, Milan, Italy (1988), Paper 2.

[15] K. SCHLOEGEL, G. KARyYPIs, AND V. KUMAR, Multilevel diffusion schemes for
repartitioning of adaptive meshes, Department of Computer Science, Univer-
sity of Minnesota, Minneapolis, MN (1997), Technical Report 97-013.

[16] A. Sonn, R. Biswas, AND H.D. SIMON, Impact of load balancing on unstructured
adaptive grid computations for distributed-memory multiprocessors, 8th IEEE
Symposium on Parallel and Distributed Processing (1996), pp. 26-33.

[17] R.C. STRAWN, R. Biswas, AND M. GARCEAU, Unstructured adaptive mesh compu-
tations of rotorcraft high-speed impulsive noise, Journal of Aircraft, 32 (1995),
pp. 754-760.

[18] L.G. VALIANT, A bridging model for parallel computation, Communications of the
ACM, 33 (1990), pp. 103-111.

[19] R. VAN DRIESSCHE AND D. ROOSE, Load balancing computational fluid dynamics
calculations on unstructured grids, Parallel Computing in CFD, AGARD-R-
807 (1995), pp. 2.1-2.26.

[20] A. ViDwaNns, Y. KALLINDERIS, AND V. VENKATAKRISHNAN, Parallel dynamic load-
balancing algorithm for three-dimensional adaptive unstructured grids, ATAA
Journal, 32 (1994), pp. 497-505.

[21] C. WaLsHAw, M. Cross, AND M.G. EVERETT, Parallel dynamic graph-partitioning
for unstructured meshes, School of Computing and Mathematical Sciences,
University of Greenwich, London, UK (1997), Technical Report 97/1M/20.

