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Abstract— The path towards realizing next-generation petas-
cale and exascale computing is increasingly dependent on build-
ing supercomputers with unprecedented numbers of processors.
To prevent the interconnect from dominating the overall cost
of these ultra-scale systems, there is a critical need for scalable
interconnects that capture the communication requirements of
ultrascale applications. It is therefore essential to understand
high-end application communication characteristics across a
broad spectrum of computational methods, and utilize that
insight to tailor interconnect designs to the specific require-
ments of the underlying codes. This work makes several unique
contributions towards attaining that goal. First, we conduct
one of the broadest studies to date of high-end application
communication requirements, whose computational methods in-
clude: finite-difference, lattice-Boltzmann, particle-in-cell, sparse
linear algebra, particle mesh ewald, and FFT-based solvers.
Using derived communication characteristics, we next present
the fit-tree approach for designing network infrastructure that
is tailored to application requirements. The fit-tree minimizes
the component count of an interconnect without impacting
application performance compared to a fully connected network.
Finally, we propose a methodology for reconfigurable networks
to implement fit-tree solutions. Our Hybrid Flexibly Assignable
Switch Topology (HFAST) infrastructure, uses both passive
(circuit) and active (packet) commodity switch components to
dynamically reconfigure interconnects to suit the topological
requirements of scientific applications. Overall our exploration
points to several promising directions for practically addressing
the interconnect requirements of future ultrascale systems.

I. INTRODUCTION

As scientific computing matures, the demands for computa-
tional resources are growing at a rapid rate. It is estimated that
by the end of this decade, numerous grand-challenge applications
will have computational requirements that are at least two orders
of magnitude larger than current levels [1], [2], [23]. However,
as the pace of processor clock rate improvements continues
to slow [3], the path towards realizing ultrascale computing is
increasingly dependent on scaling up the number of processors
to unprecedented levels. To prevent the interconnect architecture
from dominating the overall cost of such systems, there is a
critical need to effectively build and utilize network topology
solutions with costs that scale linearly with system size.

High performance computing (HPC) systems implementing
fully-connected networks (FCNs) such as fat-trees and crossbars
have proven popular due to their excellent bisection bandwidth
and ease of application mapping for arbitrary communication
topologies. However, as supercomputing systems move towards
tens or even hundreds of thousands of processors, FCNs quickly

become infeasibly expensive. These trends have renewed interest
in networks with a lower topological degree, such as mesh and
torus interconnects (like those used in the IBM BlueGene and
Cray XT series), whose costs rise linearly with system scale.
Indeed, the number of systems using lower degree interconnects
such as the BG/L and Cray Torus interconnects has increased from
6 systems in the November 2004 list to 28 systems in the more
recent Top500 list of June 2007 [24] . However, it is unclear what
portion of scientific computations have communication patterns
that can be efficiently embedded onto these types of networks.

Our work proposes a science-driven approach to interconnect
design. We believe the quality of an interconnect should be mea-
sured by how well it captures the communication requirements
of target application, as opposed to theoretical metrics such as
diameter and bisection bandwidth, since such metrics depend
only on the interconnect topology, ignoring the communication
topologies of target applications. For this proposed approach, it
is essential to understand scientific application communication
requirements across a broad spectrum of computational methods.
Once this information is derived, we can then investigate how
to tailor interconnet designs for the specific communication
requirements of the underlying applications in terms of cost and
performance effectiveness, while exploring how new technologies
can be adopted for breakthroughs in interconnect solutions.

This work demonstrates our overall approach to interconnect
design and presents several unique contributions. In Section II, we
conduct one of the broadest studies to date of high-end application
communication requirements, whose computational methods in-
clude: finite-difference, lattice-Boltzmann, particle-in-cell, sparse
linear algebra, particle mesh ewald, and FFT-based solvers. To ef-
ficiently collect this data, we use the IPM (Integrated Performance
Monitoring) profiling layer to gather detailed messaging statistics
with minimal impact to code performance. The data collected
in this phase sets the stage for Section III, which explores
interconnect topologies that efficiently support the underlying
applications’ communication characteristics. To achieve this goal,
we present a novel fit-tree approach for optimizing interconnect
wiring topologies that exactly match application communication
requirements using only a fraction of the resources required by
conventional fat-tree or Clos interconnects.

Our studies further show that the varying communication
requirements of different applications enforce a conservative ap-
proach that over-provisions resources to avoid congestion across
all possible application classes. This limitation can be overcome
within a dynamically reconfigurable interconnect infrastructure,
which leads us to Section IV, where we propose a methodol-
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TABLE I
BANDWIDTH DELAY PRODUCTS FOR SEVERAL HIGH PERFORMANCE INTERCONNECT TECHNOLOGIES. THIS IS THE EFFECTIVE PEAK UNIDIRECTIONAL

BANDWIDTH DELIVERED PER CPU (NOT PER LINK).

System Technology MPI Latency Peak Bandwidth Bandwidth Delay Product
SGI Altix NUMAlink-4 1.1us 1.9 GB/s 2 KB
Cray XT4 Seastar 2 7.3us 1.2 GB/s 8.8 KB
NEC SX-9 IXS Super-Switch 3us 16GB/s 48 KB

AMD Infiniband 4x (Sun/TACC) IB4x DDR 2.3us 950MB/s 2.2 KB

ogy for implementing reconfigurable networks using the Hybrid
Flexibly Assignable Switch Topology (HFAST) infrastructure.
HFAST allows the implementation of interconnect topologies
that are specifically tailored to application requirements, via
the proposed fit-tree approach or other mapping strategies. The
HFAST approach uses both passive (layer-1 / circuit switch) and
active (layer-2 / packet switch) commodity components to deliver
all of the flexibility and fault-tolerance of a fat-tree interconnect,
while preserving the nearly linear cost scaling associated with
traditional low-degree interconnect networks.

Moreover, we believe the HFAST approach can match the
performance of approaches that rely on more complex adaptive
routing strategies using a far simpler and more cost effective
implementation. With adaptive routing, decisions on message
direction cannot be made instantaneously upon arrival of the first
bit of the packet. Rather, the packet header must be buffered long
enough to examine enough header bits to determine the packet’s
destination and to consult the appropriate routing lookup tables —
incuring additional latency and requiring additional buffer space.
Circuit switches, on the other hand, do not require buffering,
allowing instant data traversal without additional buffers or la-
tency delays [21]. This, in turn, reduces complexity, area, and
power requirements, thus motivating the use of bypass paths that
skip over intermediate packet switches for persistent application
communication topologies where dynamic routing decisions prove
unnecessary [4].

Overall results lead to a promising approach for practically
addressing the interconnect requirements of future ultrascale sys-
tems. Although our three research thrusts — HPC communication
characterization, fit-tree design, and HFAST networks — work
closely in concert, each of these components could also be
considered as independent contributions, which advance the state-
of-the art in their respective areas.

II. SCIENTIFIC APPLICATION

COMMUNICATION REQUIREMENTS

In order to quantify HPC interconnect requirements and study
efficient implementation approaches, we must first develop an
understanding of the communication characteristics for realistic
scientific applications. Several studies have observed that many
applications display communication topology requirements that
are far less than the total connectivity provided by fully-connected
networks. For instance, the application study by Vetter and
Mueller [25], [26] indicates that the applications that scale most
efficiently to large numbers of processors tend to depend on point-
to-point communication patterns where each processor’s average
topological degree of communication (TDC) is 3–7 distinct des-
tinations, or neighbors. This provides strong evidence that many
application communication topologies exercise a small fraction of
the resources provided by fully-connected networks.

In this section, we expand on previous studies by exploring
detailed communication profiles across a broad set of repre-
sentative parallel algorithms. We use the IPM profiling layer
to quantify the type and frequency of application-issued MPI
calls, as well as identify the buffer sizes utilized for both point-
to-point and collective communications. Finally, we study the
communication topology of each application, determining the
average and maximum TDC for bandwidth-limited messaging.

A. IPM: Low-overhead MPI profiling

To profile the communication characteristics of the scientific
applications in our study, we employ the Integrated Performance
Monitoring (IPM) [14] tool — an application profiling layer that
allows us to non-invasively gather the communication character-
istics of these codes as they run in a production environment.
IPM brings together multiple sources of performance metrics
into a single profile that characterizes the overall performance
and resource usage of the application. It maintains low overhead
by using a unique hashing approach that allows a fixed memory
footprint and minimal CPU usage. IPM is open source, relies on
portable software technologies, and is scalable to thousands of
tasks.

IPM collects a wide variety of communication information
using a very low-overhead hashing technique, which allows us
to non-invasively instrument full-scale application codes without
dramatically affecting their performance. In this work, we prin-
cipally utilize information that encodes the number and timing
of each MPI call. We gather communication information on
each task about each MPI call with a unique set of arguments.
Arguments to MPI calls contain message buffer size, as well as
source and destination information. In some cases we also track
information from the MPI Status structure. For instance, in
the case of MPI Send, IPM keeps track of each unique buffer
size and destination, the number of such calls, as well as the
total, minimum and maximum runtimes to complete the call.
IPM also allows code regions to be defined, enabling us to
separate application initialization from steady state computation
and communication patterns, as we are interested, primarily,
in the communication topology for the application in its post-
initialization steady state. Experiments were run on a variety of
Department of Energy supercomputing systems; the data we col-
lected depend on the concurrency, application code, and input—
no machine-dependent characteristics are collected or analyzed in
this study.

B. Message Size Thresholding

Before we explore the TDC for our application suite, we
must first quantify the thresholding size for messages that are
bandwidth limited. Otherwise, we may mistakenly presume that
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TABLE II
OVERVIEW OF SCIENTIFIC APPLICATIONS EVALUATED.

Name Lines Discipline Problem and Method Structure
BBeam3D [22] 28,000 High Energy Physics Vlasov-Poisson via Particle in Cell and FFT Particle/Grid

Cactus [6] 84,000 Astrophysics Einstein’s Theory of GR via Finite Differencing Grid
GTC [18] 5,000 Magnetic Fusion Vlasov-Poisson via Particle in Cell Particle/Grid

LBCFD [20] 3,000 Fluid Dynamics Navier-Stokes via Lattice Boltzmann Method Grid/Lattice
MADbench [5] 5,000 Cosmology CMB Analysis via Newton-Raphson Dense Matrix
PARATEC [7] 50,000 Material Science Density Functional Theory via FFT Fourier/Grid
PMEMD [13] 37,000 Life Sciences Molecular Dynamics via Particle Mesh Ewald Particle
SuperLU [17] 42,000 Linear Algebra Sparse Solve via LU Decomposition Sparse Matrix

a given application has a high TDC even if trivially small (latency-
bound) messages are sent to majority of its neighbors.

To derive an appropriate threshold, we examine the product
of the message bandwidth and the delay (latency) for a given
point-to-point connection. The bandwidth-delay product describes
precisely how many bytes must be “in-flight” to fully utilize
available link bandwidth. This can also be thought of as the
minimum size required for a non-pipelined message to fully
utilize available link bandwidth. Vendors commonly refer to an
N1/2 metric, which describes the message size below which you
will get only 1/2 of the peak link performance; the N1/2 metric is
typically half the bandwidth-delay product. In this paper, we focus
on the minimum message size that can theoretically saturate the
link, i.e. those messages that are larger than the bandwidth-delay
product.

Table I shows the bandwidth-delay products for a number
of leading-edge interconnect implementations, where the best
performance hovers close to 2 KB. We therefore choose 2 KB as
our target bandwidth-limiting messaging threshold. This reflects
the state-of-the-art in current switch technology and an aggressive
goal for future leading-edge switch technologies. We assume
that below this threshold, the latency-bound messages would not
benefit from a dedicated point-to-point circuit. Such messages
are only affected by topology when it comes to the number of
links traversed, and cannot be sped up by increasing available
bandwidth.

C. Evaluated Scientific Applications

We now highlight the salient features of the eight applications
studied in this work. The high level overview of the codes and
methods is presented in Table II. Each of these applications
is actively run at multiple supercomputing centers, consuming
a sizable amount of computational resources. Descriptions of
the algorithms and scientific impacts of these codes have been
extensively detailed elsewhere [5]–[7], [13], [17], [18], [20], [22];
here we present a brief overview of each application.

BBeam3D [22] models the collision process of two counter-
rotating charged particle beams moving at close to the speed of
light. The application is a 3D particle-in-cell computation that
contains multiple models (weak-strong, strong-strong) and mul-
tiple collision geometries (head-on, long-range, crossing angle),
with collisions calculated self-consistently by solving the Vlasov-
Poisson equation using Hockney’s FFT method. Thus the code
exhibits communication characteristics that reflect the combined
requirements of the PIC method and the 3D FFT for the Poisson
solver.

Cactus [6] is an astrophysics computational toolkit designed to
solve the challenging coupled nonlinear hyperbolic and elliptic
equations that arise from Einstein’s Theory of General Relativity.
Consisting of thousands of terms when fully expanded, these
partial differential equations (PDEs) are solved using finite dif-
ferences on a block domain-decomposed regular grid distributed
over the processors. The Cactus communication characteristics
reflect the requirements of a broad variety of PDE solvers on
non-adaptive block-structured grids.

The Gyrokinetic Toroidal Code (GTC) is a 3D particle-in-
cell (PIC) application developed to study turbulent transport in
magnetic confinement fusion [18]. GTC solves the non-linear
gyrophase-averaged Vlasov-Poisson equations [16] in a geometry
characteristic of toroidal fusion devices. By using the particle-in-
cell (PIC) method, the non-linear PDE describing particle motion
becomes a simple set of ordinary differential equations (ODEs)
that can be easily solved in the Lagrangian coordinates. Unlike
BB3D, GTC’s Poisson solver is localized to individual processors,
so the communication requirements only reflect the needs of the
PIC core.

LBCFD [20] utilizes an explicit Lattice-Boltzmann method to
simulate fluid flows and to model fluid dynamics. The basic idea
is to develop a simplified kinetic model that incorporates the
essential physics, and reproduces correct macroscopic averaged
properties. LBCFD models 3D simulations under periodic bound-
ary conditions, with the spatial grid and phase space velocity
lattice overlaying each other, distributed with a 3D domain
decomposition.

Based on the MADspec cosmology code that calculates the
maximum likelihood angular power spectrum of the cosmic
microwave background (CMB), MADbench [5] is a simplified
benchmark that inherits the characteristics of the application
without requiring massive input data files. MADbench tests the
overall performance of the subsystems of real massively-parallel
architectures by retaining the communication and computational
complexity of MADspec and integrating a dataset generator that
ensures realistic input data. Much of the computational load of
this application is due to its use of dense linear algebra, which is
reflective of the requirements of a broader array of dense linear
algebra codes in the scientific workload.

PARATEC (PARAllel Total Energy Code [7]) performs ab-
initio quantum-mechanical total energy calculations using pseu-
dopotentials and a plane wave basis set. In solving the Kohn-
Sham equations using a plane wave basis, part of the calculation is
carried out in real space and the remainder in Fourier space using
specialized parallel 3D FFTs to transform the wavefunctions. The
communication involved in these FFTs is the most demanding
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Fig. 1. Buffer sizes distribution for collective communication for all codes.
The pink line demarcates the 2 KB bandwidth-delay product.
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Fig. 2. Average and maximum communicating partners for the studied
applications at P = 256, thresholded by the 2KB bandwidth-delay
product. Communications smaller than the threshold are not considered
in calculating the communicating partners.

portion of PARATEC’s communication characteristics. A work-
load analysis at the National Energy Research Scientific Com-
puting Center (NERSC) [27] has shown that Density Functional
Theory (DFT) codes, which include PARATEC, QBox, and VASP,
account for more than 3/4 of the materials science workload.

PMEMD (Particle Mesh Ewald Molecular Dynamics [13]) is
an application that performs molecular dynamics simulations and
minimizations. The force evaluation is performed in an efficiently-
parallel manner using state of the art numerical and commu-
nication methodologies. PMEMD uses a highly asynchronous
approach to communication for the purposes of achieving a high
degree of parallelism. PMEMD represents the requirements of
a broader variety of molecular dynamics codes employed in
chemistry and bioinformatics applications.

SuperLU [17] is a general purpose library for the direct solution
of large, sparse, nonsymmetric systems of linear equations on
high performance machines. The library routines perform an LU
decomposition with partial pivoting as well as a triangular system
solve through forward and back substitution. This application
relies on sparse linear algebra of various kinds for its main
computational kernels, ranging from a simple vector scale to a
large triangular solve. Sparse methods are becoming increasingly
common in the scientific workload because they apply work only
to non-zero entries of the matrix in order to improve time-to-
solution for large scale problems.

Together, this collection of numerical methods spans the char-
acteristics of a great many more applications, especially with
respect to communication patterns. For example the core algo-
rithm of the PARATEC code studied here, has the communication
characteristics of many other important plane-wave density func-
tional theory (DFT) calculations. Likewise a large number of finite
difference and particle-mesh codes exhibit similar communication
patterns to Cactus and PMEMD. Note that certain quantities
relevant to the present study, such as communication degree, are
largely dictated by the scientific problem solved and algorithmic
methodology. For instance, in the case of Cactus where finite
differencing is performed using a regular grid, the number of
neighbors is determined by the dimensionality of the problem
and the stencil size. Profiling a greater number of applications
would of course improve the coverage of this study; however, the
eight applications detailed here broadly represent a wide range
of scientific disciplines and modern parallel algorithms under

realistic computational demands.

D. Communication Characteristics

We now explore the communication characteristics of our
studied applications, by quantifying the MPI call count distribu-
tions, collective and point-to-point buffer sizes, and topological
connectivity.

1) Call Counts: The breakdown of MPI communication call
types is shown in Table III, for each of our studied applications.
Here, we only consider calls dealing with communication and
synchronization, and do not analyze other types of MPI functions
which do not initiate or complete message traffic. Notice that
overall, these applications utilize only a small subset of the
entire MPI library. Most codes use a small variety of MPI calls,
and utilize mostly point-to-point communication functions (over
90% of all MPI calls), except GTC, which relies heavily on
MPI Gather. Observe also that non-blocking communication is
the predominant point-to-point communication model for these
codes.

2) Buffer Sizes for Collectives: Figure 1 presents a cumulative
histogram of buffer sizes for collective communication (that is,
communication that involves all of the processors), across all
eight applications. Observe that relatively small buffer sizes are
predominantly used; in fact, about 90% of the collective messages
are 2 KB or less (shown as the bandwidth-delay product by the
pink line), while almost half of all collective calls use buffers
less than 100 bytes. These results are consistent with previous
studies [25], [26] and validate IBM’s architectural decision to
dedicate a separate lower-bandwidth network on their BlueGene
machines for collective operations. For this broad class of appli-
cations, collective messages are mostly constrained by the latency
of the interconnect, regardless of the topological interconnectivity.

3) Point-to-Point Buffer Sizes: A cumulative histogram of
buffer sizes for point-to-point communication is shown in Figure 3
for each of the applications; once again the 2 KB bandwidth-delay
product is shown by the pink vertical lines. Here we see a wide
range of communication characteristics across the applications.
Cactus, LBCFD, and BBeam3D use a relatively small number
of distinct buffer sizes, but each of these buffers is relatively
large. GTC employs some small communication buffers, but over
80% of the messaging occurs with 1 MB or larger data transfers.
In addition, it can be seen that SuperLU, PMEMD, MADbench,
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TABLE III
BREAKDOWN OF MPI COMMUNICATION CALLS, PERCENTAGE OF POINT-TO-POINT (PTP) MESSAGING, MAXIMUM AND AVERAGE TDC THRESHOLDED

BY 2 KB, AND FCN UTILIZATION (THRESHOLDED BY 2 KB) FOR EVALUATED APPLICATION ON 256 PROCESSORS.

Function BB3D Cactus GTC LBCFD MADbench PARATEC PMEMD SuperLU
Isend 0% 26.8% 0% 40.0% 5.3% 25.1% 32.7% 16.4%
Irecv 33.1% 26.8% 0% 40.0% 0% 24.8% 29.3% 15.7%
Wait 33.1% 39.3% 0% 0% 0% 49.6% 0% 30.6%
Waitall 0% 6.5% 0% 20.0% 0% 0.1% 0.6% 0%
Waitany 0% 0% 0% 0% 0% 0% 36.6% 0%
Sendrecv 0% 0% 40.8% 0% 30.1% 0% 0% 0%
Send 33.1% 0% 0% 0% 32.2% 0% 0% 14.7%
Gather 0% 0% 47.4% 0% 0% 0.02% 0% 0%
(All)Reduce 0.5% 0.5% 11.7% 0.02% 13.6% 0% 0.7% 1.9%
Bcast 0.02% 0% 0.04% 0.08% 6.8% 0.03% 0% 5.3%
% PTP Calls 99.2% 98.0% 40.8% 99.8% 66.5% 99.8% 97.7% 81.0%
TDC (max,avg) 66,66 6,5 10,4 6,6 44,39 255,255 255,55 30,30
FCN Utilization 25.8% 2.0% 1.6% 2.3% 15.3% 99.6% 21.4% 11.7%

and PARATEC use many different buffer sizes, ranging from a
few bytes to over a megabyte in some cases. Overall, Figure 3
demonstrates that unlike collectives (Figure 1), point-to-point
messaging in these applications uses a wide range of buffers,
as well as large message sizes. In fact, for all but two of the
codes, buffer sizes larger than the 2 KB bandwidth-delay product
account for > 75% of the overall point-to-point message sizes.

4) Topological Connectivity: We now explore the topological
connectivity for each application by representing the volume and
pattern of message exchanges between all tasks. By recording
statistics on these message exchanges we form an undirected
graph that describes the topological connectivity required by each
application. Note that this graph is undirected as we assume
that most modern switch links are bi-directional; as a result,
the topologies shown are always symmetric about the diagonal.
From this topology graph we then calculate the quantities that
describe communication patterns at a coarse level. Such reduced
metrics are important in allowing us to make direct comparisons
between applications. In particular, we examine the maximum
and average TDC (connectivity) of each code, a key metric
for evaluating the potential of lower-degree and non-traditional
interconnects. We show the max and average connectivity using a
thresholding heuristic based on the bandwidth-delay product (see
Section II-B) that disregards smaller latency-bound messages. In
many cases, this thresholding lowers the average and maximum
TDC substantially. An analysis of these results in the context of
topological network designs are presented in Section II-E.

Figure 4(a) shows the topological connectivity of BBeam3D
for P = 256 as well as the effect of eliminating smaller (latency-
bound) messages on the number of partners. Observe the high
TDC for this charge density calculation due to its reliance on
data transposes during the 3D FFTs. For this code, the maximum
and average TDC is 66 neighbors; both of these are insensitive
to thresholding lower than 64 KB. BBeam3D thus represents an
application class which exhibits a TDC smaller than the full
connectivity of a fat tree, with little sensitivity to bandwidth-
limited message thresholding.

In Figure 4(b), we see that the ghost-zone exchanges of Cactus
result in communications with “neighboring” nodes, represented
by diagonal bands. In fact, each node communicates with at most
6 neighbors due to the regular computational structure of this
3D stencil code. On average, the TDC is 5, because some nodes

are on the boundary and therefore have fewer communication
partners. The maximum TDC is independent of run size (as can
be seen by the similarity of the P = 64 and P = 256 lines) and
is insensitive to thresholding, which suggests that no pattern of
latency-bound messages can be excluded. Note however that the
low TDC indicates limited utilization of an FCN architecture.

As shown in Figure 4(c), we see that GTC exhibits a regular
communication structure typical of a particle-in-cell calculation
that uses a one-dimensional domain decomposition. Each pro-
cessor exchanges data with its two neighbors as particles cross
the left and right boundaries. Additionally, there is a particle
decomposition within each toroidal partition, resulting in an
average TDC of 4 with a maximum of 17 for the P = 256

test case. This maximum TDC is further reduced to 10 when
using our 2 KB bandwidth-delay product message size threshold.
These small TDC requirements clearly indicate that most links
on an FCN are not being utilized by the GTC simulation.

The connectivity of LBCFD is shown in Figure 4(d). Struc-
turally, we see that the communication, like Cactus, occurs in
several diagonal bands. Note that although LBCFD streams the
data in 27 directions (due to the 3D decomposition), the code is
optimized to reduce the number of communicating neighbors to 6,
as seen in Figure 4(d). This degree of connectivity is insensitive
to the concurrency level. The maximum TDC is insensitive to
thresholding, showing that the communications of this application
use larger message sizes.

MADbench’s communication topology characteristics are
shown in Figure 4(e). Each processor communicates with 38
neighbors on average, dropping to 36 if we eliminate messages
smaller than 2 KB. The communication is relatively regular due
to the underlying dense linear algebra calculation, with an average
and maximum TDC that are almost identical. MADbench is
another example of a code whose overall TDC is greater than the
connectivity of a mesh/torus interconnect, but still significantly
less than the number of links provided by a fat-tree.

Figure 4(f) shows the complex structure of communication of
the PMEMD particle mesh ewald calculation. Here the maximum
and average TDC is equal to P and the degree of connectivity is a
function of concurrency. For the spatial decomposition used in this
algorithm, the communication intensity between two tasks drops
as their spatial regions become more distant. The rate of this drop
off depends strongly on the molecule(s) in the simulation. Observe
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Fig. 3. Buffer sizes distribution for point-to-point communication. The pink lines demarcate the 2 KB bandwidth-delay product.

that for P = 256, thresholding at 2 KB reduces the average
connectivity to 55, even though the maximum TDC remains at
256. This application class exhibits a large disparity between the
maximum and average TDC.

Figure 4(g) shows the communication requirements of PARA-
TEC. This communication-intensive code relies on global data
transposes during its 3D FFT calculations, resulting in large,
global message traffic [7]. Here the maximum and average TDC
is equal to P , and the connectivity is insensitive to thresholding.
Thus, PARATEC represents the class of codes that make use of
the bisection bandwidth that an FCN configuration provides.

Finally, Figure 4(h) shows the connectivity and TDC for Su-
perLU. The complex communication structure of this computation
results in many point-to-point message transmissions: in fact,
without thresholding the connectivity is equal to P . However,
by removing the latency-bound messages by thresholding at 2
KB, the average and maximum TDC is reduced to 30 for the 256
processor test case. Also, note that the connectivity of SuperLU
is a function of concurrency, scaling proportionally to

√
P (see

[17]).

In the following section, we analyze the measured topological
connectivities in the context of interconnect requirements.

E. Communication Connectivity Analysis

Based on the topological connectivities of our applications,
we now categorize our codes as follows: Applications with
communication patterns such that the maximum TDC is less than
the connectivity of the interconnection network (case i) can be
perfectly embedded into the network, albeit at the cost of having
some connections be wasted/idle. If the TDC is equal to that of
the underlying interconnect and the communication is isomorphic
to the network architecture, then the communication can also be
embedded (case ii). However, if the TDC is equal and the the
communication is non-isomporphic to the interconnect (case iii)
or if the TDC is higher than the underlying network (case iv),
there is no embedding without sharing some links for messaging,
which can lead to message contention.

F. Point-to-Point Traffic

We now discuss each of the applications and consider the
class of network best suited for its communication requirements.
First, we examine the four codes exhibiting the most regularity
in their communication exchanges: Cactus, GTC, LBCFD, and
MADbench. Cactus displays a bounded TDC independent of run
size, with a communication topology that isomorphically maps to
a regular mesh; thus a fixed 3D mesh/torus would be sufficient to
accommodate these types of stencil codes, although an adaptive
network (see Section IV) would also fulfill Cactus’s requirements
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Fig. 4. Topological connectivity of each of the studied applications, showing volume of communication at P=256.

(i.e. consistent with case i). LBCFD and MADbench also display
a low degree of connectivity; however, while their communication
pattern is isotropic, their respective structures are not isomorphic
to a regular mesh, thereby corresponding to case iii classification.
Although GTC’s primary communication pattern is isomorphic to
a regular mesh, it has a maximum TDC that is higher than the
average due to important connections that are not isomorphic to
a mesh (case iv). Thus a fixed mesh/torus topology would be not
well suited for this class of computation.

BBeam3d, SuperLU and PMEMD all exhibit anisotropic com-
munication patterns with a TDC that scales with the number of
processors. Additionally, PMEMD has widely differing maximum
and average TDC. However, with thresholding, the proportion
of processors that have messages that would benefit from the
dedicated links is large but stays bounded to far less than the
number of processors involved in the calculation (consistent with
case iii). Thus a regular mesh or torus would be inappropriate for
this class of computation, while an FCN remains underutilized.
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Finally, PARATEC represents the communications require-
ments for a large class of important chemistry and fluids prob-
lems where part of the problem is solved in Fourier space. It
requires large global communications involving large messages
that fully utilize the FCN and are therefore consistent with case
iv. PARATEC’s large global communications are a result of
the 3D FFTs used in the calculation, which require two stages
of global 3D transposes. The first transpose is non-local and
involves communications of messages of similar sizes between
all the processors, resulting in the uniform background of 32 KB
messages. In the second transpose, processors only communicate
with neighboring processors, resulting in additional message
traffic along the diagonal of the graph. PARATEC’s large global
communication requirements can only be effectively provisioned
with an FCN network.

In summary, only one of the eight codes studied (Cactus)
offered a communication pattern that maps isomorphically to a 3D
mesh network topology (case i). This indicates that mesh/torus
interconnects may be insufficient for a diverse scientific work-
loads. Additionally, only PARATEC fully utilizes the FCN at
large scales (case iv); thereby undercutting the motivation for
using FCNs across a broad range of computational domains. The
under-utilization of FCN for our codes can be clearly seen in
the last row of Table III. Thus, for a wide range of applications
(cases ii and iii), we believe there is space to explore alternative
interconnect architectures that contain fewer switch ports than a
fat-tree but greater connectivity than mesh/tori networks; such
interconnects are explored further in Section III.

III. FIT-TREE INTERCONNECT DESIGNS

Our analysis in the previous section showed that the com-
munication patterns of most applications have irregular patterns,
evincing the limitations of 3D mesh interconnects. At the same
time, most communication patterns are sparse, revealing that
the large bandwidth of a FCN is not necessary and have good
locality, showing that an intelligent task-to-processor assignment
can significantly decrease the load on the network. In this section,
we demonstrate how statistics about communication patterns of
target applications can be adopted to build interconnects that are
more effective and cost-efficient. Specifically, we start with a fat-
tree topology, and then develop the concept of a fit-tree, which
allows comparable performance on target applications at a fraction
of the interconnect resources of a fat-tree. While we examine our
science-driven approach in the context of fat-trees in this article,
the same analysis may be applied to other popular topologies;
our choice of fat-trees is motivated by their high popularity, as
evidenced by their strong presence in TOP500 list.

We start with a review of the fat-tree topology and its resource
requirements in Section III-A, and then examine how well this
topology corresponds to the application communication require-
ments in Section III-B. Establishing the under-utilization of fat-
tree network resources, motivates our novel fit-tree methodology
described in Section III-C.

A. Fat-Tree Resource Requirements

Conceptually, a fat-tree is a k-ary tree with processors on the
bottom-most level, where the thicknesses (capacities) of the edges
increase at higher levels of the tree. Here, k is defined by the k×k

switch block size used to implement the network. That is, 2× 2

switches will yield a binary tree, 4×4 switches yield a 4-ary tree,
etc. In a conventional fat-tree, the total bandwidth is constant for
each level of the tree; thus the thickness of an edge at level i +1

is k times the thickness at level i. Messages can travel up the tree
and back down to traverse from a processor to any other processor
without being constrained by bandwidth limitations; this structure
can be thought of as a “folded” Benes network [9].

We now quantify the relation between the number of levels,
number of processors and the number of switch boxes. A fat-
tree with L levels built with k × k switches can have up to 2kL

processors, since the number of nodes is multiplied by k at each
level from the root down to the tree’s bottom. Conversely, the
depth of a fat-tree for P processors built with k × k switches is
logk P − logk 2. The corrective term of 2 is due to the root level
of the fat-tree, where all switch ports are available for the lower
level, unlike intermediate levels, where half of the ports are used
for connections with the higher level. Since the total bandwidth at
each level is constant, so are the number of switch ports per level.
As a result, the bottom level of the fat-tree, which connects the
processors to the network, requires dP

k e switches; thus a fat-tree
with L levels built with k × k switches requires LP

k = 2LkL−1

switches. Conversely, building a fat tree for P processors requires
(logk P − logk 2)dP

k e of k × k switches.
Constructing fat-trees where the network bandwidth is pre-

served at all levels is extremely challenging for thousands of
processors, and simply infeasible for the next-generation of ultra-
scale computing systems with tens or hundreds of thousands of
processors. Besides the construction complexity, the performance
of a fat-tree network degrades while the cost inflates sharply with
increasing processor count. From the performance perspective,
as the depth of the tree increases with larger concurrencies,
the number of hops per message increases, corresponding to
larger message latencies. While latency due to the interconnection
network may not be significant for small to medium number
of processors, it can dominate the message transmission cost
at very high concurrencies. Additionally, the cost of a fat-tree
grows superlinearly with larger parallel systems, since fat-tree
construction depends on the number of switching blocks as well
as the number of cables employed. These factors eliminate fat-
tree topologies as a practical interconnection paradigm for next
generation supercomputers.

B. Fat-Tree Utilization

In this section, we analyze what fraction of the available
fat-tree bandwidth is utilized by our studied applications. In
previous work [15], we employed two methods to assign tasks
to processors: one that assigns processors based on the natural
ordering of the tasks, and a second method that aims to minimize
the average number of hops for each message using a heuristic
based on graph partitioning. For the analysis here, we assign tasks
to processors using the heuristic methodology.

To create an instance of communication, we use the application
communication patterns presented in Section II. For a given
instance, a processor sends a message to one of its communicating
partners chosen at random. As an approximation of the commu-
nication overhead, we create 10P instances of communication
for each application, and route the messages on the interconnect,
recording how many messages reach each level of the fat-tree.
Using this estimation strategy, we simulate the behavior of each
application to determine the communication load on the network.
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Fig. 5. (a) Underutilization of fat-tree bandwidth for the examined application suite. Level 1 refers to the bottom of the tree closest to the processors. The
vertical axis represents percentage of the bandwidth utilized at each level. (b) The potential savings in the number of required ports (and thus cost) for an
ideal fit-tree compared with the fat-tree approach.

Figure 5(a) displays the results for bandwidth utilization of a
fat-tree built with 2 × 2 switches. In this figure, the horizontal
axis corresponds to the the fit-tree level starting with the leaf
nodes (i.e. the processors). The vertical axis correspond to band-
width utilization, which we compute by counting the number of
messages that reach a given level, and comparing this number
with the level’s total available bandwidth (P for a fat-tree). The
results show that the bandwidth utilization drops sharply as the
tree level increases. For GTC, this number drops to 0 at level
seven, indicating that the highest six levels of the fat-tree are not
used at all. A similar trend is seen in all examined applications.
Even for PARATEC, which uses all-to-all-communication in its
FFT, bandwidth utilization goes down to 74% at the top level
even though P is only 256 processors. These results clearly show
that fat-tree bandwidth is underutilized for most applications,
especially for those that can scale up to thousands of processors.
In the next section, we will use this observation to propose an
alternative interconnection topology.

C. Fit-Tree Approach

The motivation for the fit-tree topology comes from our obser-
vation that the available bandwidth of a fat-tree is not utilized
at all levels — especially the higher ones — of a fat-tree
network for many scientific computing applications. Exploiting
this observation, we propose the fit-tree topology, which is an
improvement on fat-trees, providing better scalability in terms of
both performance and cost.

Consider an intermediate node in a fat-tree that is the root
of a sub-tree of P ′ processors. In a conventional fat-tree, this
node corresponds to a P ′ × P ′ switch, whose ports are assigned
so that P ′ of them are connected to the lower level and P ′

are connected to the higher level. This provides P ′ different
communication channels for P ′ processors. Since some of this
bandwidth is redundant (Section III-A), eliminating a portion
of the connections within the higher level will not degrade
performance. Note that although this network design optimization
decreases cabling requirements, it does not improve switch costs
or overall performance.

In the proposed fit-tree design, the number of ports used for
connections to the higher levels of the tree is less than the number

of ports used for connections to the lower levels. This approach
leverages otherwise unutilized switch ports to increase the number
of connected nodes at lower tree levels, allowing an increase in the
number of processors rooted at a node (at the same level). Thus
our fit-tree design has a c : 1 ratio between the number of ports
that go down and up (respectively) for each intermediate level,
where we call c > 1 the fitness ratio. Conversely, a conventional
fat-tree has a 1 : 1 (c = 1) ratio between bandwidth down and up
at each intermediate level.

The fit-tree methodology enables building larger systems for
a fixed number of levels in the interconnect tree. A direct
comparison with fat-trees can be made in two ways. If we assume
that total bandwidth is preserved at each level of the tree, a
fat-tree is built using k children per node. However, a fit-tree’s
node has ck children, where c is the fitness ratio. This translates
to an exponential advantage in the number of processors the
interconnect can support, as a fit-tree of L levels built with k× k

switches and a c : 1 ratio will contain 2(ck)L processors as
opposed to 2kL for a fat-tree. Conversely, the depth of a fit-tree
for a fixed number of processors P built with k × k switches
and a c : 1 ratio is logck P − logck 2. This reduced number of
levels for a fixed number of processors translates to a reduction
in switch count. Overall, this results in a substantial reduction
in the port counts and consequent wiring complexity required to
implement a fit tree that offers the same performance as a fat
tree. Figure 6(a) shows the advantage of the fit-tree approach
for potential system concurrency given a fixed number of levels.
Alternatively, we can consider fixing the number of tree levels
while decreasing the total fit-tree bandwidth at the higher levels.
For a fat-tree the total bandwidth provisioned is computed as:

L−1X
i=1

P

kci−1
=

P ( 1
cL − 1)

k( 1
c − 1)

<
Pc

k(c− 1)

In a fit-tree, however, the bandwidth can be reduced by c at
each level of the tree. It is worth noting that the total bandwidth,
and thus the number of switches, scales linearly with P , which
provides perfect scalability for fit-trees. For example, given c = 2,
the total number of required switches will be no more than
two times the number of switches at the first level. Figure 6(b)
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System Concurrency: Fat-trees vs. Fit-trees
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Fig. 6. Comparison of fat-tree and fit-tree scalabilities in terms of (a) potential system concurrency for a fixed number of tree levels and (b) the required
number of switches per processor.

Fig. 7. A four-level fat-tree built from 2x2 switches. The fit-tree approach “trims” links at the upper levels if the extra bandwidth is unneeded and packs
the resulting necessary links into as few switch blocks as possible.

highlights the fit-tree advantage, by showing a comparison of the
required number of switch components required for fat- and fit-
trees using varying fitness ratios.

In practice it is possible to build hybrid topologies, where each
node has more than k children, thus allowing the bandwidth
to reduce gradually. This allows fit-tree designers to trade off
between cost savings and performance. In Section IV we propose
a hybrid optical/electrical interconnect solution that would allow
fit-tree designs that could be dynamically reconfigured to the
requirements of the underlying application. We now examine the
potential advantage of a fit-tree architecture for our evaluated set
of scientific codes.

D. Fit-Tree Evaluation

In the previous section, we showed how fit-trees can signifi-
cantly improve the cost and scalability of fat-trees, while preserv-
ing performance. The critical question is therefore determining
the appropriate fitness ratio for a given computation. In this
section, we investigate the fitness ratio requirements of our studied
applications. For these experiments, we use the same experimental
setup as in Section III-B, and compute the fitness ratio of level
i + 1 as the ratio between the bandwidth utilization at level i + 1

and i respectively. To reduce the effect of outliers, we consider 4

to be the highest allowable fitness ratio.

Table IV(top) presents the fitness ratios of each examined ap-
plication. For clarity of presentation, we only show the minimum,
average, maximum, and median across all fit-tree levels. Results
show that (as expected) fitness ratios are higher for applications
with sparse communication: GTC, BB3D, LBCFD, MADbench,
Cactus, and SuperLU. Note that these applications are known
to exhibit better scalability compared to communication-intensive
computations such as PARATEC and PMEMD. However, it is
remarkable that even PARATEC, which require global 3D FFTs,
has a fitness ratio of 1.18 at its top level.

Table IV(bottom) presents fitness ratios for each level of
the fit-tree across all studied applications. Again for clarity of
presentation, we only display the minimum, average, maximum,
and median values. Results show that, while the fitness ratios
are low at the lowest levels, they increase with increasing fit-tree
levels. This is expected, as the number of nodes rooted at a node
is doubled at each level of the fat-tree, creating room for locality
where the percentage of local communication increases.

Based on Table IV it is difficult to decide on a single “ideal”
fitness ratio, but the data show strong quantitative support for
the fit-tree concept. After all, even the minimum fitness ratio at
level six is 1.15. It is worth repeating that our main motivation is
interconnect designs for next-generation petascale and exascale
systems, which are expected to have hundreds of thousands of
processors. Therefore, even a fitness ratio of 1.15 will translate
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TABLE IV
FITNESS RATIOS FOR (TOP) EACH APPLICATIONS ACROSS ALL LEVELS AND (BOTTOM) EACH LEVEL ACROSS ALL APPLICATIONS

Code BB3D Cactus GTC LBCFD MADbench PARATEC PMEMD SuperLU
Minimum 1.01 1.22 1.92 1.11 1.19 1.01 1.02 1.04
Average 1.60 1.40 3.01 1.41 1.44 1.05 1.12 1.17
Maximum 4.00 1.59 4.00 1.94 1.67 1.18 1.27 1.52
Median 1.09 1.36 3.00 1.24 1.44 1.03 1.09 1.12

Level 1 2 3 4 5 6 7 8
Minimum 1.01 1.01 1.02 1.03 1.07 1.15 1.54 1.57
Average 1.21 1.22 1.26 1.39 1.35 1.62 2.87 2.57
Maximum 2.00 2.00 1.92 2.17 2.00 3.00 4.00 4.00
Median 1.12 1.09 1.15 1.31 1.22 1.43 2.97 2.13

to enormous savings in costs and improvements in performance as
displayed in Figure 6. The potential savings in switch ports versus
a fat-tree for our examined applications is shown in Figure 5(b).
Even for the moderate concurrency levels explored here, the
hybrid fit-tree approach can reduce the port count requirements
by up to 44% (on average).

Given the potential gains of the fit-tree methodology, we now
propose a hardware solution for dynamically constructing fit-trees
appropriate for each application, thus building the best-performing
interconnect at the lowest cost in terms of switch ports.

IV. RECONFIGURABLE INTERCONNECT ARCHITECTURE

In the previous section, we demonstrated the tremendous sav-
ings that can be achieved by designing interconnects by taking
application requirements into account. In particular, we showed
that fit-trees can be as effective as fat-trees, but with linearly
scaling costs. However, the caveat here is the communication
requirements of application can vary significantly. Thus guaran-
teeing high performance for all code classes requires designing
each part of the interconnect for the maximum demand among all
target applications — resulting in over-provisioning and degraded
efficiency. The remedy is in reconfigurability, which would allow
us to build an interconnect dynamically for each application to
achieve maximum performance with minimum resources.

In this section, we present a methodology for dynamically
creating interconnects. This approach would allow us to build
fit-trees with variable fitness ratios as well as arbitrary network
configurations. Our proposed technology, called HFAST (Hy-
brid Flexibly Assignable Switch Topology), uses passive/circuit
switches to dynamically provision active/packet switch blocks
— allowing the customization of interconnect resources for
application-specific requirements. Before describing the details of
our infrastructure, we first motivate the discussion by looking at
recent trends in the high-speed wide area networking community,
which has developed cost-effective solutions to similar challenges.

A. Circuit Switch Technology

Packet switches, such as Ethernet, Infiniband, and Myrinet,
are the most commonly used interconnect technology for large-
scale parallel computing platforms. A packet switch must read
the header of each incoming packet in order to determine on
which port to send the outgoing message. As bit rates increase, it
becomes increasingly difficult and expensive to make switching

decisions at line rate. Most modern switches depend on ASICs or
some other form of semi-custom logic to keep up with cutting-
edge data rates. Fiber optic links have become increasingly
popular for cluster interconnects because they can achieve higher
data rates and lower bit-error-rates over long cables than is
possible using low-voltage differential signaling over copper wire.
However, optical links require a transceiver that converts from
the optical signal to electrical so the silicon circuits can perform
their switching decisions. The Optical Electrical Optical (OEO)
conversions further add to the cost and power consumption of
switches. Fully-optical switches that do not require an OEO
conversion can eliminate the costly transceivers, but per-port costs
will likely be higher than an OEO switch due to the need to use
exotic optical materials in the implementation [19].

Circuit switches, in contrast, create hard-circuits between end-
points in response to an external control plane – just like an
old telephone system operator’s patch panel, obviating the need
to make switching decisions at line speed. As such, they have
considerably lower complexity and consequently lower cost per
port. For optical interconnects, micro-electro-mechanical mirror
(MEMS) based optical circuit switches offer considerable power
and cost savings as they do not require expensive (and power-
hungry) optical/electrical transceivers required by the active
packet switches. Also, because non-regenerative circuit switches
create hard-circuits instead of dynamically routed virtual circuits,
they contribute almost no latency to the switching path aside from
propagation delay. MEMS based optical switches, such as those
produced by Lucent, Calient and Glimmerglass, are common
in the telecommunications industry and the prices are dropping
rapidly as the market for the technology grows larger and more
competitive.

B. Related Work

Circuit switches have long been recognized as a cost-effect-
ive alternative to packet switches, but it has proven difficult to
exploit the technology for use in cluster interconnects because
the switches do not understand message or packet boundaries. It
takes on the order of milliseconds to reconfigure an optical path
through the switch, and one must be certain that no message traffic
is propagating through the light path when the reconfiguration
occurs. In comparison, a packet-switched network can trivially
multiplex and demultiplex messages destined for multiple hosts
without requiring any configuration changes.
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The most straightforward approach is to completely eliminate
the packet switch and rely entirely on a circuit switch. A
number of projects, including the OptIPuter [10] transcontinental
optically-interconnected cluster, use this approach for at least one
of their switch planes. The OptIPuter nodes use Glimmerglass
MEMS-based optical circuit switches to interconnect components
of the local cluster, as well as to form transcontinental light paths
which connect the University of Illinois half of the cluster to the
UC San Diego half. One problem that arises with this approach is
multiplexing messages that arrive simultaneously from different
sources. Given that the circuit switch does not respect packet
boundaries and that switch reconfiguration latencies are on the
order of milliseconds, either the message traffic must be carefully
coordinated with the switch state or multiple communication cards
must be employed per node so that the node’s backplane effec-
tively becomes the message multiplexor; the OptIPuter cluster
uses a combination of these two techniques. The single-adapter
approach leads to impractical message-coordination requirements
in order avoid switch reconfiguration latency penalties, whereas
the multi-adapter approach suffers from increased component
costs due to the increased number of network adapters per host
and the larger number of ports required in the circuit switch.

One proposed solution, the ICN (Interconnection Cached Net-
work) [12], recognizes the essential role that packet switches
play in multiplexing messages from multiple sources at line rate.
The ICN consists of processing elements that are organized into
blocks of size k which are interconnected with small crossbars
capable of switching individual messages at line rate (much like
a packet switch). These k-blocks are then organized into a larger
system via a k ∗ Nblocks ported circuit switch. The ICN can
embed communication graphs that have a consistently bounded
topological degree of communication (TDC) less than k. The jobs
must be scheduled in such a way that the bounded contraction of
the communication topology (that is, the topological degree of
every subset of vertices) is less than k. This is an NP-complete
problem for general graphs when k > 2, although such con-
tractions can be found algorithmically for regular topologies like
meshes, hypercubes, and trees. If the communication topology
has nodes with degree greater than k, some of the messages
will need to take more than one path over the circuit switch and
therefore share a path with other message traffic. Consequently
the bandwidth along that path is reduced if more than one message
must contend for the same link on the network. Job placement
also plays a role in finding an optimal graph embedding. Runtime
reconfiguration of the communication topology on an ICN may
require task migration in order to maintain an optimal embedding
for the communication graph. The HFAST approach detailed in
this work has no such restriction to regular topologies and needs
no task migration.

Adaptive routing (AR) offers an alternative approach to re-
ducing link contention in low-degree interconnects. However, the
additional logic required for AR greatly increases hardware com-
plexity to achieve the same goal as the HFAST approach. HFAST
reduces interconnect link contention by reconfiguring the wiring
using simpler circuit switches, whereas adaptive routing makes
contention-avoiding such decisions on a packet-by-packet basis.
In our study, we have used a broad array of HPC applications to
demonstrate that routing decisions made on a longer timescale,
which is amenable to the circuit switch reconfiguration times,
offer an efficient approach to reducing hot-spots in a lower-degree

interconnect. Overall, HFAST offers lower design complexity
and hence a more cost-effective approach to achieving the same
capabilities for hot-spot avoidance as AR.

Finally, there are a number of hybrid approaches that use
combination packet/circuit switch blocks. Here each switching
unit consists of a low bandwidth dynamically-routed network
that is used to carry smaller messages and coordinate the switch
states for a high-bandwidth circuit switched network that follows
the same physical path. Some examples include Gemini [8],
and Sun Microsystems Clint [11]. Each of these uses the low-
bandwidth packet-switched network to set up a path for large-
payload bulk traffic through the circuit switch hierarchy. While
the circuit switch path is unaware of packet boundaries, the
lower-speed packet network is fast enough to mediate potential
conflicts along the circuit path. This overcomes the problems with
coordinating message traffic for switch reconfiguration exhibited
by the purely circuit-switched approach. While promising, this
architecture suffers from the need to use custom-designed switch
components for a very special-purpose use. In the short term, such
a specialized switch architecture will have difficulty reaching a
production volume that can amortize the initial development and
manufacturing costs. Our target is to make use of readily available
commodity components in the design of our interconnect in order
to keep costs under control.

C. HFAST: Hybrid Flexibly Assignable
Switch Topology
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Fig. 8. General layout of HFAST (left) and example configuration for 6
nodes and active switch blocks of size 4 (right).

We propose HFAST as a solution for overcoming the obsta-
cles we outlined in the previous subsection, by using (Layer-
1) passive/circuit switches to dynamically provision (Layer-2)
active/packet switch blocks at runtime. This arrangement lever-
ages the less expensive circuit switches to connect processing
elements together into optimal communication topologies using
far fewer packet switches than would be required for an equivalent
fat-tree network composed of packet switches. For instance,
packet switch blocks can be arranged in a single-level hierarchy
when provisioned by the circuit switches to implement a simpler
topology like a 3D torus, whereas a fat-tree implementation would
require traversal of many layers of packet switches for larger
systems – contributing latency at each layer of the switching
hierarchy. Therefore this hybrid interconnection fabric can reduce
fabric latency by reducing the number of packet switch blocks that
must be traversed by a worse-case message route.

Using less-expensive circuit switches, one can emulate many
different interconnect topologies that would otherwise require fat-
tree networks. The topology can be incrementally adjusted to
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match the communication topology requirements of a code at
runtime. Initially, the circuit switches can be used to provision
densely-packed 3D mesh communication topologies for pro-
cesses. However, as data about messaging patterns is accumulated,
the topology can be adjusted at discrete synchronization points
to better match the measured communication requirements and
thereby dynamically optimize code performance. MPI topology
directives can be used to speed the runtime topology optimiza-
tion process. There is also considerable research opportunities
available for studying compile-time instrumentation of codes to
infer communication topology requirements at compile-time. In
particular, languages like UPC offer a high-level approach for
exposing communication requirements at compile-time. Similarly,
the compiler can automatically insert the necessary synchroniza-
tion points that allow the circuit switches time to reconfigure since
the Layer-1 switches do not otherwise respect packet boundaries
for in-flight messages.

HFAST differs from the bounded-degree ICN approach in
that the fully-connected passive circuit switch is placed between
the nodes and the active (packet) switches. This supports a
more flexible formation of communication topologies without
any job placement requirements. Codes that exhibit non-uniform
degree of communication (e.g. just one or few process(es) must
communicate with a large number of neighbors) can be supported
by assigning additional packet switching resources to the pro-
cesses with greater communication demands. Unlike the ICN and
OptIPuter, HFAST is able to treat the packet switches as a flexibly
assignable pool of resources. In a sense, our approach is precisely
the inverse of the ICN – the processors are connected to the packet
switch via the circuit switch, whereas the ICN uses processors
that are connected to the circuit switch via an intervening packet
switch.

Figure 8 shows the general HFAST interconnection between
the nodes, circuit switch and active switch blocks. The diagram
on the right shows an example with 6 nodes and active switch
blocks of size 4. In this example, node 1 can communicate with
node 2 by sending a message through the circuit switch (red)
in switch block 1 (SB1), and back again through the circuit
switch (green) to node 2. This shows that the minimum message
overhead will require crossing the circuit switch two times. If the
TDC of node 1 is greater than the available degree of the active
SB, multiple SBs can be connected together (via a myriad of
interconnection options). For the example in Figure 8, if node 1
was to communicate with node 6, the message would first arrive
at SB1 (red), then be transferred to SB2 (blue), and finally sent
to node 6 (orange) — thus requiring 3 traversals of the circuit
switch crossbar and two active SB hops.

The HFAST approach holds a clear advantage to statically
built interconnects, since additional packet switch resources can
dynamically be assigned to the subset of nodes with higher com-
munication requirements. HFAST allows the effective utilization
of interconnect resources for the specific requirements of the
underlying scientific applications. This methodology can therefore
satisfy the topological connectivity of applications categorized in
cases i-iii (defined in Section II-E). Additionally, HFAST could be
used to dynamically create fit-trees with static or variable fitness
rations. Furthermore, because the circuit switches have allocated
a network that matches the application, the network can avoid
elaborate dynamic routing approaches that result in greater router
complexity and slower routing speed. This approach avoids job

fragmentation, since “migration” is essentially a circuit switch
configuration that can be performed at a barrier in milleseconds.
Finally, the HFAST strategy could even iteratively reconfigure
the interconnect between communication phases of a dynamically
adapting application [15]. Future work will continue to explore
the potential of the HFAST in the context of demanding scientific
applications.

V. SUMMARY AND CONCLUSIONS

There is a crisis looming in parallel computing driven by
rapidly increasing concurrency and the non-linear scaling of
switch costs. It is therefore imperative to investigate interconnect
alternatives to ensure that future HPC systems can cost-effectively
support the communication requirements of ultrascale applica-
tions across a broad range of scientific disciplines. Before such
an analysis can be undertaken, one must first understand the com-
munication requirements of large-scale HPC applications, which
are the ultimate drivers for future interconnect technologies.

To this end, we first presented one of the broadest studies to
date of high-end communication requirements, across a broad
spectrum of important scientific disciplines, whose computational
methods include: finite-difference, lattice-Boltzmann, particle-in-
cell, sparse linear algebra, particle mesh ewald, and FFT-based
solvers. Analysis of these data show that most applications do not
utilize the full connectivity of traditional fully-connected network
implementations. Based on these observations, we proposed a
novel network called the fit-tree architecture. Our work reveals
that fit-trees can significantly improve the cost and scalability
of fat-trees, while preserving performance through reduced com-
ponent count and lower wiring complexity. Finally, we propose
the HFAST infrastructure, which combines passive and active
switch technology to create dynamically reconfigurable network
topologies, and could be used to create custom-tailored fit-
tree configurations for specific application requirements. This
approach meets the performance benefits of adaptive routing
approaches without the design complexity. Overall results lead to
a promising approach for ultra-scale system interconnect design
and analysis.

In future work we plan to pursue two major thrusts. First, we
will expand the scope of both the applications profiled and the
data collected through the IPM profiling. The low overhead of
IPM profiling opens up the possibility of the characterization
of large and diverse application workloads. We will also pursue
more detailed performance data collection, including the analysis
of full chronological communication traces. Studying the time
dependence of communication topologies could expose opportu-
nities to reconfigure an HFAST interconnect within a dynamically
evolving computation. Our studies will also have application
to interconnect topologies and circuit provisioning for emerging
chip multiprocessors (CMPs) that contain hundreds or thousands
of cores per socket. Finally, the second thrust will continue
our exploration of fit-tree solutions in the context of ultra-scale
scientific computations. This portion of the investigation will
require comparisons with alternative approaches such as high-
radix routers, as well as examining the physical aspects of
constructing reconfigurable fit-tree interconnects including issues
of packaging and cable layout.
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