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ABSTRACT
As power has become the pre-eminent design constraint for future
HPC systems, computational efficiency is being emphasized over
simply peak performance. Recently, static benchmark codes have
been used to find a power efficient architecture. Unfortunately,
because compilers generate sub-optimal code, benchmark perfor-
mance can be a poor indicator of the performance potential of ar-
chitecture design points. Therefore, we present hardware/software
co-tuning as a novel approach for system design, in which tradi-
tional architecture space exploration is tightly coupled with soft-
ware auto-tuning for delivering substantial improvements in area
and power efficiency. We demonstrate the proposed methodol-
ogy by exploring the parameter space of a Tensilica-based multi-
processor running three of the most heavily used kernels in sci-
entific computing, each with widely varying micro-architectural
requirements: sparse matrix vector multiplication, stencil-based
computations, and general matrix-matrix multiplication. Results
demonstrate that co-tuning significantly improves hardware area
and energy efficiency – a key driver for next generation of HPC
system design.

1. INTRODUCTION
Energy efficiency is rapidly becoming the primary concern of all

large-scale scientific computing facilities. According to power con-
sumption data collected by the Top500 list [24], high-performance
computing (HPC) systems draw on the order of 2–5 Megawatts (MW)
of power to reach a petaflop of peak performance. Furthermore,
current projections suggest that emerging multi-petaflop systems
are expected to draw as much as 15 MW of power including cool-
ing. Extrapolating the current trends, the Department of Energy
(DOE) E3 [21] report predicts an exascale system would require
130 MW. At these levels, the cost of electricity will dwarf the pro-
curement cost of the hardware systems; unless the energy efficiency
of future large-scale systems increases dramatically, HPC will face
a crisis in which the cost of running large scale systems is imprac-
tically high.

Our approach in this paper is inspired by embedded system de-
sign methodologies, which routinely employ specialized proces-
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sors to meet demanding cost and power efficiency requirements.
Leveraging design tools from embedded systems can dramatically
reduce time-to-solution as well as non-recurring engineering (NRE)
design and implementation cost of architecturally specialized sys-
tems. Building a System-on-Chip (SoC) from pre-verified param-
eterized core designs in the embedded space, such as the Tensil-
ica approach, enables fully programmable solutions that offer more
tractable design and verification costs compared to a full-custom
logic design. For this reason, we use the Stanford Smart Memo-
ries [12], which is based on Tensilica cores, as the target architec-
ture in this work. Given that the cost of powering HPC systems
will soon dwarf design and procurement costs, energy efficiency
will justify a larger investment in the original system design —
thus necessitating approaches that can significantly decrease energy
consumption.

General-purpose commodity microprocessors, which form the
building blocks of most massively parallel systems, are grossly en-
ergy inefficient because they have been optimized for serial perfor-
mance. This energy inefficiency has not been a concern for small-
scale systems where the power budget is typically sufficient. How-
ever, energy efficiency becomes a concern for large-scale HPC sys-
tems, where a even few megawatts of power savings can make a
dramatic difference in operating costs or even feasability. From the
perspective of an application, energy efficiency is obtained by tai-
loring the code to the target machine, whereas from the perspective
of a machine, energy efficiency comes by tailoring the machine to
the target applications. Naturally, tailoring both the hardware and
software to each other is expected to achieve better energy effi-
ciency — this is the approach taken in this work.

The novelty of our proposed methodology, illustrated in Fig-
ure 1, is to incorporate extensive software tuning into an iterative
process for system design. Due to the increasing diversity of target
architectures, software auto-tuning is becoming the de-facto opti-
mization technique to tailor applications to target machines. Hard-
ware design space exploration is routinely performed to determine
the right hardware design parameters for the target applications.
Our co-tuning strategy integrates the two paradigms of hardware
and software design exploration; we employ automatically tuned
software to maximize the utilization of each potential architectural
design point. The auto-tuning methodology achieves performance
by searching over a large space of software implementations of
an algorithm to find the best mapping to a microarchitecture [6].
Though our proposed approach may seem intuitive, this work is
the first to quantify the potential benefits of co-tuning.

We demonstrate the effectiveness of our methodology using the
sophisticated Stanford Smart Memories [12] simulator on three of
the most heavily used kernels in scientific computing: sparse ma-
trix vector multiplication (SpMV), stencil-based computation, and
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Figure 1: Our proposed approach for hardware/software co-tuning. In essence we have embedded a conventional auto-tuning
framework within our novel-cotuning framework. As efficiency rather than peak performance is our metric of interest, we use models
in conjunction with performance counters to to estimate area and power efficiency. The result is both a hardware configuration and
a software implementation.

general matrix-matrix multiplication (SGEMM). Our experiments
examine co-tuning advantages on isolated kernels, as well as multi-
kernel application experiments. Overall results demonstrate that
our co-tuning strategy can yield significant improvements in perfor-
mance, power efficiency, and area efficiency when compared with
the traditional approaches. We conclude that co-tuning can have a
tremendous impact on future HPC system design.

2. RELATED WORK
Software auto-tuning is an emerging field, with optimization pack-

ages for several key scientific computing kernels, including FFTW [7],
SPIRAL [16], OSKI [26], and ATLAS [28]. The success of the
these examples has demonstrated that software auto-tuning is a
practical method for portable high-performance scientific libraries.
In addition to specific kernel optimization, recent work on the ROSE
compiler project [19] enables auto-tuning individual loops to im-
prove overall code performance. Work on the POET language [31]
allows developers to define domain-specific optimizations for an
application, thus simplifying the process of auto-tuning design.

Current work in system design treats hardware design space ex-
ploration (DSE) and software tuning separately. Approaches to
DSE [10, 11, 14, 15] tune hardware parameters for benchmarks [2,
4,30], with little [10] or no software tuning [11,14,15]. Intuitively,
coupling DSE with software tuning should improve overall perfor-
mance metrics — however, we are the first to study the benefits
of such an approach. In a recent study closest to our work [20],
DSE is performed for horizontally partitioned cache architectures
and it is shown that including compiler (which targets a specific
hardware configuration) in the DSE loop gives better results when
compared to the traditional approach. However, we extend this idea
to include both the compiler and the software auto-tuner in the DSE
loop — the compiler incorporates hardware configuration specific
knowledge, whereas the auto-tuner incorporates application/kernel
specific knowledge to improve performance.

Finally we note that our study utilizes the Tensilica processor-
based architecture, due to the significant power efficiency benefits
offered by embedded cores. The practicality of HPC systems built
using power-efficient embedded cores is borne out by the existence
of IBM BlueGene/P [22] (using IBM PowerPC 450 cores), SiCor-
tex [17] (using MIPS cores), and the Anton [9] molecular dynamics
(MD) supercomputer (using Tensilica LX cores).

3. EVALUATED NUMERICAL KERNELS
Many high-performance computing applications spend a high

fraction of their running time in a few, relatively small kernels.
For purposes of the design methodology presented in this work,
we examine three key kernels from scientific computing: matrix-

matrix multiplication (SGEMM), PDEs on structured grids as im-
plemented by a 7-point stencil (Stencil), and sparse-matrix vector
multiplication (SpMV). All examined kernels are single-precision
implementations due to the constraints of the Tensilica simulator
(described in Section 4), and will be extended to double precision
as the Tensilica platform evolves. In general, our design method-
ology could easily be applied to applications dominated by other
kernel classes or in any other precision or data type.

In this section we provide the fundamental details of these ker-
nels as well as the auto-tuning methodologies used to optimize their
performance. Table 1 quantifies some key computational character-
istics, including the total number of floating-point operations, the
arithmetic intensity in flop:DRAM bytes, and the cache or local
store capacity required to attain said arithmetic intensity. Superfi-
cially, SpMV and stencil have arithmetic intensities that are con-
stant with respect to problem size whereas SGEMM has an arith-
metic intensity that scales with cache block size and is limited only
by cache capacity and computational capabilities. As such, one nat-
urally expects SGEMM performance to exceed stencil, and stencil
to exceed SpMV. One should also observe that cache-based and
local store-based implementations will place different demands on
their respective on-chip memories. We will now provide the details
on these three kernels.

3.1 Dense Matrix Matrix Multiplication (SGEMM)
SGEMM (Single-precision General Matrix-Matrix Multiplica-

tion) is a critical dense linear algebra kernel. As a fundamental
BLAS-3 routine, an efficient SGEMM implementation is crucial
for efficient implementation of many linear algebra codes. For our
purposes, the SGEMM kernel performs single-precision matrix-
matrix multiplication with increment on square N×N matrices (C ←
A ·B+C). Such a kernel is easily ammenable to cache blocking in
which the matrix is decomposed into B×B cache blocks. As a re-
sult, SGEMM can attain a high computational intensity, and highly-
tuned implementations usually achieve close to peak machine per-
formance. Note that extensive optimization is necessary, as a naïve
version sub-optimally exploits cache and register resources.

For this work we implement an SGEMM auto-tuner capable of
exploiting local store based architectures and using a subset of the
optimizations presented in previous studies [28]. However, to max-
imize performance we utilize the well-known ATLAS [28] code
generator for the innermost kernel codes. We implemented block-
ing for cache and register file utilization, as well as loop unroll and
jam. For cache-based architectures, we store matrices A and B in
block-major format, and dynamically transpose A to enable unit-
stride access.

Our auto-tuner implements a greedy algorithm and thus oper-
ates in two phases. It first determines the register blocking and



SGEMM Stencil SpMV
FLOPs 2·N3 8·N3 2·NNZ

flop:byte
ratio

< B
6

<1.0 <0.5

Requisite 12·B2 (CC) 8·XY (CC)
LS/Cache 20·B2 (LS) 24·XY (LS)

<4·N

Table 1: Computational characteristics of
three evaluated kernels (in single-precision).
Cache/local store (LS) capacities are measured
in bytes.

cores Power Sustained MFlop/s Sustained PFlop/s
per per per chip with 10MW of chip power

Architecture chip chip DGEMM Stencil SpMV DGEMM Stencil SpMV
Opteron 4 95W 32000 3580 1980 3.37 0.38 0.21

Blue Gene/P 4 16W 10200 520 590 6.38 0.33 0.37

Table 2: Performance of the double-precision implementations of our three key
kernels on petascale computers. Note, power requirements are for the chip only
assuming perfect scaling.

loop unrolling to optimize single-core performance and then de-
termines the cache-blocking parameters for best multi-core perfor-
mance. Due to the time constraints of the software-based simu-
lation framework, we limit our dataset to matrices of dimension
512× 512.

3.2 Stencil Arising from the Heat Equation PDE
A frequent approach to solving partial differential equations (PDE)

is the iterative, explicit finite-difference method. Typically, it sweeps
through the discretized space, usually out-of-cache, performing a
linear combination of each point’s nearest-neighbors — a stencil.
Stencils can be used to implement a variety of PDE solvers, ranging
from simple Jacobi iterations, to complex multi-grid and adaptive
mesh refinement methods [3]. In this work, we examine perfor-
mance of Jacobi’s method to the single-precision 7-point 3D heat
equation, naïvely expressed as triply nested loops ijk over:
B[i, j, k] = C0 ·A[i, j, k] + C1 · (A[i + 1, j, k] + A[i− 1, j, k] +
A[i, j + 1, k] + A[i, j − 1, k] + A[i, j, k + 1] + A[i, j, k − 1]).

The auto-tunner used in this work implements a subset of those
described in previous investigations [5], which had proven to be
extremely effective over a wide range of multi-core architectures.
The work here focuses exclusively on optimizations that are rele-
vant to the architectures within our design space: register blocking,
array padding, and cache/local store blocking, including an imple-
mentation of the circular queue DMA blocking algorithm. We now
briefly describe the implemented optimizations. Interested readers
should refer to the prior work for more details [5].

Stencil register blocking consists of an unroll-and-jam in the X
(unit-stride) and Y dimensions. This enables re-use of data in the
register file, and decreases loop overheads. The best unrolling fac-
tors balance an increase in register-pressure against decreased L1
data cache bandwidth. Array padding consists of adding a small
number of dummy cells at the end of each pencil (1D row of the
3D stencil arrays), and perturbs the aliasing pattern of the arrays
in set-associative caches to decrease cache conflict misses. Such
an optimization avoids the need for designs with highly associa-
tive caches. The cache-blocking optimization is an implementa-
tion of the Rivera-Tseng blocking algorithm [18]. We tile in the X
(unit stride) and Y dimensions, and perform a loop-interchange to
bring the Z-dimension (least unit stride) loop inside of the tiled loop
nests, exploiting re-use between vertically adjacent planes. For
cacheless, local store-based targets with software-managed DMA,
the circular-queue technique of local store management [5] is used
to implement the Rivera Tiling and schedule the DMAs to overlap
memory accesses with computation (see Figure 2).

Our approach to auto-tuning the stencil code is designed to bal-
ance coverage of the search space against the amount of simulation
time required. To that end, we implement a greedy algorithm that
starts with the “innermost” optimizations and works its way out-
ward. Thus, it begins by tuning the register-block size, then tunes

Stream out planes to
target grid

Stream in planes
from source grid

Figure 2: Visualization of stencil circular queue optimization
for local store systems [5].

for the optimal array padding, and tunes for the optimal cache-
block size last.

3.3 Sparse Matrix-Vector Multiplication (SpMV)
SpMV dominates the performance of diverse applications in sci-

entific and engineering computing, economic modeling, informa-
tion retrieval, among others. Reference SpMV versions perform
very poorly, running at 10% or less of machine peak on single-
core cache-based microprocessor-based systems [25]. In this work,
we use the single-precision SpMV operation (y ← Ax) in which
a sparse matrix A is multiplied by a dense source vector x. This
produces the dense destination vector y. A is sparse; most of its
entries are zero, and are neither stored in memory or used in the
computation. Typically, A is represented in a compressed sparse
row (CSR) data structure. SpMV has a low arithmetic intensity as
each Ai,j is used exactly once per SpMV to perform one multiply-
accumulate operation. Moreover, to reference Ai,j , CSR demands
an additional 4 bytes of meta data for every nonzero.

Our SpMV auto-tuning optimization approach utilizes previously
established techniques [25, 29], which we describe only briefly.
SpMV performance suffers primarily from large instruction and
storage overheads for sparse matrix data structures and from irreg-
ular memory access patterns. Optimizations focus on selecting a
compact data structure to represent the matrix and code transfor-
mations that exploit both the structure of the sparse matrix and the
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Figure 3: Overview of matrices used for SpMV evaluation,
representing a variety of computational structures.

underlying machine architecture.
This work considers thread, cache, and register blocking, and

software prefetching. On local store-based architectures, cache
blocking is called local store blocking, and prefetching becomes
DMA. Thread blocking is slightly distinguished from paralleliza-
tion in that the matrix is partitioned into equal-sized sub-matrices
that can be individually allocated, padded, and optimized. Cache
blocking exploits re-use of the source vector by tiling accesses to
columns of the matrix. The tiling transformation must be imple-
mented on local store architectures with software-managed DMA
to guarantee correctness rather than to improve performance. Our
software prefetching and DMA optimizations load only the non-
zero values and column index arrays. For local store-based archi-
tectures, we must explicitly load all the referenced source-vector
elements, as well as the matrix data structure.

Our SpMV auto-tuner is a port of the cache-based and Cell/DMA
code described in [29]. However, in this work, as we are tuning
hardware to maximize efficiency, we cannot make the assumption
that our target architecture (see Section 4) will be heavily memory-
bound. Thus, we employ a more complex heuristic [25] that at-
tempts to balance the superfluous memory traffic associated with
filling zeros when register blocking with a register block’s inher-
ently higher raw flop rate.

SpMV performance is heavily dependent upon the nonzero struc-
ture (sparsity pattern) of the sparse matrix. Thus, it is necessary to
evaluate SpMV implementations against matrices drawn from re-
alistic applications. We conducted experiments on seven sparse
matrices from a wide variety of actual applications, including fi-
nite element method-based modeling, circuit simulation, and linear
programming. An overview of their salient characteristics appears
in Figure 3. We also evaluate a dense matrix stored in sparse for-
mat as a performance upper-bound. These matrices cover a range
of properties relevant to SpMV performance: matrix dimension,

non-zeros per row, the existence of dense block substructures, and
degree of non-zero concentration near the diagonal. Previous work
presented an overview of their salient characteristics [29]. Due to
space limitations, we present data only on the median performance.

3.4 Kernel Performance on Petscale Systems
To provide context, Table 2 presents the performance of the double-

precision implementations of DGEMM, the 7-pt stencil, and SpMV
on two petascale-class architectures: the XT4 and BlueGene/P. The
XT4 is built from commodity general-purpose quad-core Opteron
processors, while BlueGene/P is built from customized quad-core
embedded PPC450 processors. Chip performance is shown for
each of the studied kernels. Additionally, as a point of reference,
we extrapolate the maximum attainable PFlop/s performance (as-
suming perfect scaling) given a 10MW chip power budget (clearly
the overall system power will exceed the chip power requirements).
Note that the chip power requirements differ by about a factor of
six with the more power hungry chip delivering superior per node
performance. However, in a power-conscious or constrained world,
the BlueGene/P system would deliver about twice the performance
on a fixed 10MW chip power budget. It is, therefore, clear that
power efficiency will have tremendous impact on the attainable
performance of next-generation supercomputing facilities. Our co-
tuning work, as detailed in the remaining of this study, brings forth
a methodology that can significantly improve a system’s power (or
area) efficiency.

4. EXPERIMENTAL PLATFORM AND DE-
SIGN SPACE EXPLORATION

Our study is heavily geared towards producing area- and power-
efficient designs. As such, we embrace SiCortex’s and IBM’s deci-
sion to utilize embedded processors for HPC systems. In this work,
we used the Tensilica XTensa core primarily due to its flexibility,
ease of system integration, configurability of micro-architectural
resources, and of course, XTensa’s target market is energy-efficient
embedded systems.

As a testbed for the evaluation of the myriad of different hard-
ware configurations, our work utilizes the Smart Memories [12]
(SM) reconfigurable simulator developed at Stanford for general-
purpose multi-core research. We present and exploit only the as-
pects of the architecture relevant to our design space, and refer
the reader to cited works for other details. Figure 4 generalizes
our multicore architecture. The SM simulator was designed to
simulate a wide variety of on-chip memory hierarchies for multi-
core processor, and utilizes cycle-accurate simulator of the Tensil-
ica XTensa processor for performance modeling of the individual
cores. The goal of SM is functional emulation and accurate perfor-
mance estimation, subject to the throughput and latency specifica-
tions of the system configuration. Our power and area estimation
methodology is presented in Section 5. In this work, we use the
configurability of the simulator to explore an enumerated design
space. Since the experiments are conducted in a software simu-
lation environment, we have pruned this design space to reduce
the amount of compute time needed. Future work will explore the
space faster by using FPGA-based hardware emulation [27].

Previous studies of numerical algorithms have shown that cache
hierarchy, memory system, and on-chip computational resources
are crucial system design parameters for HPC architectures. Fig-
ure 4 enumerates our hardware design space. The core architec-
ture is a fixed 500MHz single-issue, in-order Tensilica XTensa core
with a private 16KB instruction cache. The 500MHz rate is use-
ful, as it allows the Tensilica toolchain to provide us with accurate
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Component Parameters Explored Configs
Issue width single-issuein-order
Frequency 500 MHzcores XTensa

Number of Cores 1, 4, 16core
Inst. Cache (per core) 16 KB

Coherent Capacity (per core) 16, 32, 64, 128 KB
Data Associativity 4 way

Memory Caches Line size 64 Bytes
Hierarchy Local Store Capacity (per core) 16, 32, 64, 128 KB

External Bandwidth 0.8, 1.6, 3.2 GB/s
DRAM Latency 100 core cycles

(b)

Figure 4: Left: Restricted SmartMemories architecture for some number of cores. Each core has a private instruction cache and
either a private data cache or a private local store. Right: Hardware parameters explored in co-tuning architectural-space explo-
ration. The parameters corresponding to baseline (untuned) hardware configuration are in boldface. Note that data cache and local
store designs are mutually exclusive.

power and area projections. We vary the number of cores from one
to 16 in powers of four. The memory hierarchy is divided into two
parts: on-chip memories, and off-chip memory. On-chip memo-
ries are either a private coherent caches (CC) per core or a private
disjoint local stores (LS) per core. We fixed cache associatvity as
4-way and line size is 64 bytes. For caches and local stores we
explore four different capacities. All cores use the same design
— there is no heterogeneity. Off-chip memory is abstracted as a
uniform memory access DRAM running at one of three different
possible bandwidths.

5. EVALUATION METRICS
Our area of focus is parallelized scientific applications running

on large-scale, energy-efficient, high-performance systems consist-
ing of tens of thousands, if not millions, of individual processing
elements. Obtaining enough power for such systems can obviously
be an impediment to their adoption. Thus, achieving high perfor-
mance when designing such machines is less dependent on max-
imizing each node’s performance, but rather on maximizing each
node’s power efficiency. Moreover, large silicon surface area can
be expensive both from a fabrication cost, and also in its impact
on mean time between failures (MTBF). Thus, our design method-
ology focuses on two key optimization metrics: power efficiency
— the ratio of attained MFlop/s per chip to chip power, and area
efficiency — the ratio of attained MFlop/s per chip to chip area.

Given these metrics, one can impose either a per-node or per-
supercomputer chip power (or area) budget and estimate the resul-
tant attainable performance: minimum of area efficiency × chip
area budget and power efficiency × chip power budget. Systems
with limited power budgets should be selected based on power ef-
ficiency, whereas systems with limited silicon budgets should be
selected based on area efficiency. Identifying the trade-off between
the two allows a designer to balance the system acquisition costs,
system power requirements, and system up time. It is important to
note that further gains in power efficiency can be realized by op-

timizing all the system components (in addition to chip power) —
this will be focus of future investigations.

5.1 Modeling Chip Power
The power estimation is based on the model used in [10] by

weighting a number of key architectural events counted by the soft-
ware simulator with appropriately modeled or derived energies weighted
by the total execution time. Energy for events originating in the
cores are derived using the energy estimates from the Tensilica
tools. The effect of clock gating is taken into account by a reduced
power consumption when the core is stalled (assumed to be 10% of
peak power). The dynamic energy for the caches and local stores
is modeled on a per transaction basis using a CACTI 5 [23] model.
The external DRAM energy is modeled using the current profiles
from the Micron datasheets [13] for a 256 MB DDR2-400 mem-
ory module. Given the low power nature of the Tensilica cores,
DRAM power is substantial. On-chip network energy is calculated
based on the total on-chip network traffic and using the scaled en-
ergy numbers from [10]. Finally, leakage power is assumed to be
15% of peak power for any configuration. Although, every soft-
ware implementation for a given hardware design will yield differ-
ent power estimates, this model allows us to explore variations in
the constants without having to resimulate the design.

5.2 Modeling Chip Area
The area of a given processor configuration is an important met-

ric due to its effect on the end cost of fabricating and packag-
ing the circuit. To this end, we model the hardware configuration
area within the design space, assuming 65nm node technology for
the core chip. Core area estimates are provided by the Tensilica
toolchain, while CACTI 5 [23] was used to model cache or local
store area. To mitigate the effect of area on yield, we assume spar-
ing is used for increasing yield — one spare core is assumed for
chips with up to eight cores, and two spare cores are assumed for
chips with 16 cores. Each Tenscilica cores is extremely small when



compared with modern high-performance microprocessors — less
than 0.5 mm2. As such, we expect such a sparing strategy to have
very high die yields and a yield percentage that is effectively inde-
pendent of the chip area. In essence, the resultant yield-adjusted
chip costs should be roughly linear with core chip area. We assume
that the on-chip network and clocking add another 20% to the core
chip area. Finally, we assume that the memory interface adds a con-
stant 35 mm2 to the chip area regardless of the frequency we clock
the DIMMs at—we assume that DRAM area costs 3× less when
compared to core chip area. For comparison, each core is less than
0.5 mm2, and each 128 KB cache is less than 1 mm2. As such,
there is a clear economy of scale by incorporating many cores.

6. EXPERIMENTAL RESULTS
Before delving into the experimental results, we briefly reiterate

our novel co-tuning approach shown in Figure 1: for each of the
three kernels, and for each processor configuration in our search
space, the kernel is auto-tuned on that hardware configuration to
find the software implementation that maximizes performance. There-
fore, given a hardware configuration, we always report data corre-
sponding to the best performance achieved by the auto-tuner on it.
Note that while our auto-tuners heuristically prune their own search
spaces of tuned software implementations, we explore the hard-
ware configuration space exhaustively by running the auto-tuners
on all the configurations within our design space. An application
of co-tuning for a real system, however, would use a more efficient
search strategy to explore a much larger hardware design space.
For the purpose of this paper, though, exhaustive search suffices as
the hardware design space is small and serves well to illustrate the
effectiveness of co-tuning.

We now quantify the effectiveness of our co-tuning methodol-
ogy for a variety of hardware and software optimization strategies
on each of the three numerical kernels. We commence with a study
of the relationship between architectural configuration and attained
performance. Next, we measure the potential improvements in ker-
nel power and area efficiency using our co-tuned design space ex-
ploration. Finally, we analyze the benefit of co-tuning for applica-
tions dominated by a varying mix of these three kernels.

6.1 Performance of Design Parameters
We now explore the per kernel performance response to changes

in both software optimization and processor configuration. Doing
so provides insights into the inherent hardware requirements and
attainable efficiencies for each kernel as well as quantifying the im-
portance of the instantiation of the auto-tuning component within
the co-tuner. Not only do these simulation results, shown in Fig-
ure 5, follow our intuitions regarding the expected performance of
our kernels under varying architectural conditions, they also serve
to validate the underlying simulation environment.

Auto-tuning.
Figures 5(a–c) show the performance benefit of auto-tuning for

SpMV, Stencil, and SGEMM using a fixed memory bandwidth of
1.6 GB/s and either a 64 KB data cache or a 64 KB local store for
1, 4, or 16 cores. The stacked bars indicate the improvement of our
software optimizations.

Observe that due to SpMV’s constant and low arithmetic inten-
sity, with enough cores, SpMV performance plateaus for both the
tuned and untuned code versions using either caches or local stores.
In effect, the changes in processor configuration transitioned its
behavior from compute-bound to memory-bound. Note that for
smaller concurrencies, the untuned DMA-based implementations
outperform the cache coherent versions by a factor of 2×. Such a

situation arises because the DMA version utilizes block transfers,
which represent a means of more easily satisfying Little’s Law [1]
and mandates a reuse-friendy blocked implementation for correct-
ness. Nevertheless, the SpMV auto-tuner provides significant ben-
efit even on bandwidth-limited configurations. This class of SpMV
auto-tuner attempts to both minimize memory traffic and express
more instruction-level-parallelism. The results reaffirm the signif-
icant impact of auto-tuning shown previously shown on numerous
multicore architectures [5, 6, 29].

The stencil code is both moderately more arithmetically intense
than SpMV, and also contains more regularity in its memory access
pattern. Figure 5b demonstrates that, relative to SpMV, the higher
arithmetic intensity forestalls the advent of a memory-bound pro-
cessor configuration. Thus, as applications shift their focus from
SpMV to stencil-like kernels, they may readily exploit more cores.
Most interesting, the quad-core local store version attains the per-
formance comparable to the 16-core cache-based implementation.
In effect, DMA transfers eliminate superfluous write allocate traffic
and express more memory-level parallelism. The incorporation of
effective prefetching into the cache-based stencil auto-tuner might
mitigate the latter. Finally, the tuned local store stencil code can
utilize a large portion (∼75%) of memory system with four cores;
hence the performance improvement is limited to about 30% when
quadrupling the number of cores to 16. With 16-cores, even the
untuned DMA-based code is nearly able to saturate the memory
system.

SGEMM has a high arithmetic intensity arithmetic hierarchally
limited by the register and cache capacities. Thus, it alone among
our kernels is capable of exploiting increasing numbers of cores
(and cache capacities). Figure 5c shows the performance of SGEMM
scales linearly with the number of cores, for any processor con-
figuration both with and without auto-tuning. This does not im-
ply all configurations delivered the same performance or benefits.
To the contrary, auto-tuning was essential on cache-based architec-
tures; improving performance by 64×, but only provided a mod-
erate speedup on the already well-blocked local store implementa-
tions. Moreover, the local store configuration consistently outper-
formed the cache configurations. The naïve code incurs significant
cache conflict misses for large matrices, especially when the ma-
trix dimensions are powers of 2 — the common case in our exper-
iments. Furthermore, the latency penalty of a cache miss is high
due to the absence of an L2 cache in our configurations. Due to
SGEMM’s hierarchal arithmetic intensity, the effects of inner-loop
code generation and blocking for data reuse are extremely impor-
tant. In contrast to the stencil and SpMV codes, even our most
highly optimized SGEMM implementations are not significantly
limited by memory bandwidth.

On-chip Memory Capacity.
Figures 5(d–f) quantify performance response to changes in core

count and per-core memory capacity for the auto-tuned codes. We
show both the cache-based and DMA-based codes for each of 1, 4,
and 16 cores. Although the cache-based configurations can be more
sensitive to cache size compared with the local store versions —
since it is harder to control blocking and data movement via scalar
loads and stores — performance is relatively insensitive to cache
and local-memory sizes. SpMV performance hardly changes at all,
as the smallest cache size is enough to exploit re-use of the two vec-
tors. The cache-based stencil code sees about 60% performance
improvement as the cache size increase from 16 KB to 64 KB.
However, the explicitly-blocked, DMA-based stencil code can ex-
ploit nearly all temporal locality using the smallest local memory.
SGEMM on 16-core systems benefits from increased cache and lo-



(a) SpMV, effect of auto-tuning (b) Stencil, effect of auto-tuning (c) SGEMM, effect of auto-tuning

(d) SpMV, effect of cache/localstore size (e) Stencil, effect of cache/localstore size (f) SGEMM, effect of cache/localstore size

(g) SpMV, effect of memory bandwidth (h) Stencil, effect of memory bandwidth (i) SGEMM, effect of memory bandwidth

Figure 5: The interplay between processor configuration and auto-tuning for the SpMV, Stencil, and SGEMM kernels. Note: ’LS’
indicates DMA-managed local store architectures, and ’CC’ indicates coherent-cache systems.

cal memory sizes due to memory bandwidth contention; the larger
caches enable larger block sizes and reduce pressure on memory
bandwidth — i.e. higher arithmetic intensity.

Memory Bandwidth.
Figures 5(g–i) show performance as the processors’ memory band-

width is changed. Clearly, for SpMV and stencil, increasing the
number of cores is only viable when the memory bandwidth is
similarly increased since they are ultimately memory limited. This
effect is less pronounced for Stencil due to its higher arithmetic
intensity. SGEMM, on the other hand, only begins to show the
limitations of memory bandwidth with 16 cores.

6.2 Tuning for Power and Area Efficiency
Having established raw performance characteristics, we now ex-

amine the power and area efficiency of our methodology. Figure 6
plots these efficiency metrics (as defined in Section 5) for our three
test kernels. Each point in the scatter plot represents a unique pro-

cessor configuration, with yellow circles, green triangles, and red
triangles corresponding to auto-tuned cache, untuned cache, and
(either auto-tuned or untuned) local store versions respectively. Ad-
ditionally, a circle is drawn to highlight the configurations with the
best power or area efficiencies.

These figures serve to demonstrate the extreme variation in both
efficiency metrics spanned by the design points within our configu-
ration search space. Figure 6a shows that a poor choice of hardware
can result in as much as a 3× degradation in power efficiency for
SpMV (MFlops/s per Watt), whether software tuning is employed
or not. Figure 6b shows that for stencil, the difference is nearly
8×. For SGEMM in Figure 6c, this difference is nearly two orders
of magnitude! Since the operational cost and performance ceiling
of future HPC facilities are limited by the power consumption of
compute resources, these results quantify the potential impact of
an energy-efficient design and hold the promise of reducing petas-
cale system power by several megawatts.

We now measure the potential effectiveness of our combined
hardware/software tuning methodology. Performance is explored



(a) SpMV area vs. power efficiency (b) Stencil area vs. power efficiency (c) SGEMM area vs. power efficiency

Figure 6: Area efficiency vs. power efficiency for each of the three Kernels. ’AE’ and ’PE’ denote the most area- and power-efficient
configurations respectively.

in the context of four configurations: untuned software on the fastest
processor configuration, auto-tuned software on the fastest pro-
cessor configuration, tuned hardware running untuned (fixed) soft-
ware, and co-tuned hardware/software. This serves to differentiate
the efficiency gains from tuning software and hardware individu-
ally from the efficiency gains of co-tuning.

Out-of-the box: Untuned Software on the Fastest Pro-
cessor Configuration.

Our lowest baseline comparison is the conventional wisdom strat-
egy of choosing a system design by using the most powerful hard-
ware configuration. We do not tune the software running on these
processors. The most powerful hardware configuration within our
search space is a coherent-cache chip multi-processor with 16 cores,
128 KB of L1 data cache per core, and 3.2 GB/s of main mem-
ory bandwidth. While local store architectures generally provide
better performance, it is impossible to produce un-tuned codes to
utilize them. As this comparison represents putting essentially no
effort into the system design, it is highly unlikely to be a viable
power- or area-efficient solution. Rather, we present it as a point
of comparison to illustrate how much efficiency our coupled hard-
ware/software design space exploration provides. Table 3 presents
an overview of the optimal power and area efficiency data for each
optimization strategy (including the improvement impact of co-
tuning), starting with this baseline configuration, shown in the fourth
column. Observe that our co-tuning methodology would deliver
3.2–80× better power and area efficiencies for our evaluated ker-
nels.

Auto-Tuned Software on the Fastest Processor Config-
uration.

In order to differentiate the efficiency that the current state-of-
the-art provides, we present the result of auto-tuned software on the
fastest hardware. This combination is analogous to building a sys-
tem from high-performance commodity cores and utilizing auto-
tuning for software optimization — an increasingly common solu-
tion. The hardware provides as much of each architectural resource
as our design space allows, but without having been specifically tai-
lored to any specific kernel. The auto-tuned kernels exploit those
resource to maximize performance. The fifth column (auto-tuned
SW, fastest HW) of Table 3 shows the optimal power and area effi-
ciency produced by this approach.

Since the hardware configuration is the same as the untuned SW
on fastest HW, the efficiency gains correspond roughly to improve-
ments in attained floating-point performance through auto-tuning.

These ratios are different for power and area efficiency, since power
depends on the activities of the various architectural resources, while
area depends only on their physical quantity. Comparing the fourth
and fifth columns of Table 3 shows that SGEMM’s auto-tuning
achieves an impressive 54× and 53× improvement in power and
area efficiency (respectively), due to the enormous performance im-
pact of auto-tuning on this kernel. For Stencil and SpMV, the im-
provement is not as spectacular, but nonetheless substantial: Auto-
tuning improves Stencil’s power efficiency by 1.5× and its area
efficiency by 1.2×, while SpMV benefits by 1.8× in power ef-
ficiency, and 2.2× in area efficiency. These results reiterate the
conclusions of prior works [5, 6, 29] that auto-tuned codes can out-
perform compiler-only optimizations by a wide margin.

Untuned software, Tuned Hardware.
We now examine the effect of hardware design space exploration

alone, without the benefit of software auto-tuning. Note that we
omit local store-based configurations in the hardware tuning design
space for this case. This is because our so-called “untuned” kernels
on local store-based configurations are cognizant of both the local
store capacity, as well as the locality inherent in the algorithms. A
truly untuned (architecturally and algorithmically agnostic) local
store code would doubtlessly achieve significantly lower perfor-
mance. The green triangles in the scatter plots in Figure 6 represent
the range of efficiencies that hardware-only tuning achieves, while
the sixth column (untuned SW, tuned HW) in Table 3 shows the
efficiencies of the Pareto-optimal hardware configurations.

Looking at the sixth column of Table 3 shows simply tuning over
the hardware space improves both power and area efficiency for all
our kernels. SpMV, stencil and SGEMM achieve power efficiency
improvements of approximately 1.7×, and area efficiency gains of
1.3×, 1.4×, and 1.1× (respectively), when compared the untuned
SW/HW. Note that since we are optimizing for power and area
efficiency, the attained floating-point performance is lower com-
pared with the untuned SW/HW case. Examining the fifth and sixth
columns of Table 3 shows that even after searching over the hard-
ware design space, we can still under-perform even on the most
powerful hardware configuration, if auto-tuning software is not em-
ployed. This difference is quite dramatic for SGEMM (30× and
47× lower power and area efficiency) because it benefits tremen-
dously from tuning, especially for the specific matrix dimensions
used in our experiments.

Hardware/Software Co-Tuning.
Our hardware/software co-tuning methodology performs soft-



Design Co-Tuned Untuned SW Auto-Tuned SW Untuned SW Co-Tuned
Objective Kernel

Metric
Fastest HW Fastest HW Tuned HW∗ SW/HW

MFlop/s 397 895 127 229
Power (W) 4.8 6.0 0.9 0.9SpMV

Power Efficiency 82.4 150.2 141.6 267.5
Co-Tuning Advantage 3.2x 1.7x 1.9x —

MFlop/s 906 1139 262 686
Power Power (W) 4.5 3.5 0.8 0.9

Efficiency
Stencil

Power Efficiency 203.2 321.9 344.5 756.9
Co-Tuning Advantage 3.7x 2.4x 2.2x —

MFlop/s 132 7079 122 5823
Power (W) 1.9 1.9 1.0 1.3SGEMM

Power Efficiency 68.7 3750.5 124.7 4431.4
Co-Tuning Advantage 65x 1.2x 36x —

Design Co-Tuned Untuned SW Auto-Tuned SW Untuned SW Co-Tuned
Objective Kernel

Metric
Fastest HW Fastest HW Tuned HW∗ SW/HW

MFlop/s 397 895 390 897
Area (mm2) 70.3 70.3 52.0 45.3SpMV

Area Efficiency 5.8 12.7 7.5 19.8
Co-Tuning Advantage 3.5x 1.6x 2.6x —

MFlop/s 906 1139 923 2502
Area Area (mm2) 70.3 70.3 52.0 52.0

Efficiency
Stencil

Area Efficiency 12.9 16.2 17.9 48.1
Co-Tuning Advantage 3.7x 3x 2.7x —

MFlop/s 132 7079 110 8173
Area (mm2) 70.3 70.3 52.0 55.0SGEMM

Area Efficiency 1.9 100.7 2.1 149.9
Co-Tuning Advantage 80x 1.5x 70x —

Table 3: Summary of optimal power-efficiency (in MFlops/s/Watt) and area-efficiency (in MFlops/s/mm2) data (and relative im-
provement of co-tuning) for each optimization configuration.∗The hardware configuration space for ‘Untuned SW, Tuned HW’ only
includes coherent-cache based configurations.

ware auto-tuning for each potential point in the hardware design
space, and thus represents a more complete coverage of the over-
all system design space than the other examined approaches. Each
hardware design point is evaluated with a more complete picture
of its potential for performance and efficiency. The last column in
Table 3 shows the power and area efficiency of the Pareto-optimal
configurations using the co-tuning methodology. Results show that
this approach yields significant improvements in power and area
efficiency when compared to the three previously discussed config-
urations (as shown in the parenthesized values of each column).

It is interesting to compare co-tuning (seventh column) with only
software-based (fifth column) or hardware-based (sixth column)
tuning. Given the tremendous benefits of software tuning, it is not
surprising to see that co-tuning outperforms the hardware-only tun-
ing approach. This difference is particularly dramatic for SGEMM
— 36× and 70× in power and area efficiency respectively — where
the untuned code performs quite poorly. Additionally, co-tuning
gains for stencil and SpMV range from 1.9×–2.7×. Comparison
of the co-tuning versus the software-only tuning approach shows
that even after fully optimizing the code on the fastest hardware,
there is still significant room for efficiency improvements. Notably,
the power efficiency gains of co-tuning for SpMV, SGEMM, and
stencil are 1.7×, 2.4×, and 1.2× respectively, whereas, the area ef-
ficiency improvements are 1.6×, 3×, and 1.5× respectively. These
are the first results to quantify the intuitive notion that ignoring ei-
ther hardware or software optimization while performing system
design will naturally lead to suboptimal solutions. Finally, we also

note that each individual kernel can have different optimal hard-
ware configurations which is evident by the different areas for the
best area efficiency configurations.

6.3 Co-Tuning for Multiple-Kernel Applications
No one individual kernel can give a complete picture of an entire

application’s performance on a given system. Realistic large-scale
scientific applications consist of multiple subsystems that solve dif-
ferent parts of the overall problem. We therefore approximate the
effect of co-tuning on a multi-kernel application by combining the
results from Section 6.2.

We thus construct co-tuning results for the set of kernels by tak-
ing a weighted mean of their tuned performance data on each hard-
ware configuration. Given that each individual kernel contributes
some fraction of the floating-point operations for an entire appli-
cation, we sum these kernel contributions via a weighted harmonic
mean. This basic strategy assumes that interaction between ker-
nels does not have significant impact on whole-application perfor-
mance. Although this is clearly a simplifying assumption, it is
nonetheless an important first step toward quantifying the poten-
tial impact of the co-tuning methodology to full-scale applications.
Expanding this approach will be the focus of future work.

Figure 7a plots the power efficiency of the best co-tuned hard-
ware configuration relative to the fractions of floating-point oper-
ations contributed by the three kernels, where the individual con-
tributions always sum to one. We present these data by defining
the x-axis and y-axis of Figure 7a as the fractional contribution of



(a) Co-tuned weighted power efficiency showing optimal con-
figuration: CC/LS, core count, CC/LS size (KB), memory
BW (GB/s).

(b) Weighted improvements in power efficiency of co-tuning
versus untuned-hardware with tuned-software approach.

Figure 7: Co-tuning for multiple kernels, using a 3D graph with the fractional contribution of SPMV on the x-axis, stencil on the
y-axis, and SGEMM on the implicit z-axis. Each square in (a) depicts the HW parameters of the corresponding square in (b). The
sum of the three kernels’ flops contributions (x-,y-, and z-axis) always adds up to one.

Stencil and SpMV to an application’s computation, while the re-
maining fractional portion represents the contribution of SGEMM
(on the implicit z-axis). Therefore, the lower-left corner of the plot
represents optimized hardware configurations for applications con-
sisting entirely of SGEMM-like dense linear algebra algorithms.
Similarly, the lower-right corner represents applications consisting
entirely of SpMV-like sparse linear algebra, while and the upper
left corner is stencil-based grid computations. As the most power
efficient configuration differs for each mix of kernels, we annotate
Figure 7a with the parameters of the best configuration: CC/LS,
core-count (1-16), CC/LS size (16K-128K), and memory band-
width (0.8-3.2 GB/s). Results show the variety of co-tuning archi-
tectural solutions and corresponding power efficiencies based on a
given application’s underlying characteristics.

Figure 7b plots the power efficiency improvements of the co-
tuned systems for each kernel mix compared with the untuned-
software tuned-hardware approach (described in Section 6.2). This
approach most closely resembles prior work in automated system
design, which have hitherto not included extensive software opti-
mization. Recall, that we only consider coherent-cache based con-
figurations for untuned-software base case (see Section 6.2). Re-
sults show that co-tuning results in power efficiency gains ranging
between 1.2×–2.4× depending on each kernels contributions. A
similar analysis for area efficiency (not shown), demonstrates im-
provements varying from 1.6× to 3× (as seen in Table 3). Over-
all this approach points to the potential of applying our co-tuning
methodology to more complex, multi-algorithmic applications.

7. CONCLUSIONS AND FUTURE WORK
Power efficiency is rapidly becoming the primary concern for

HPC system design. Conventionally designed ultra-scale platforms
constructed with the conventional-wisdom approach based on using
commodity server-oriented processors, will draw tens to hundreds
of Megawatts — making the cost of powering these machines im-
practically high. Therefore, it is critical to develop design tools and
technologies that improve the power efficiencies of future high-end
systems.

We have proposed a novel co-tuning methodology — traditional
architecture space exploration is tightly coupled with software auto-
tuning — for high-performance system design, and demonstrated

that it provides substantial efficiency benefits by customizing the
system’s architecture to software and software to the system’s ar-
chitecture. Our study applies this approach to a multi-core pro-
cessor design with three heavily used kernels from scientific ap-
plications spanning a wide variety of computational characteris-
tics. Based on the optimization results for the individual kernels,
we demonstrate power and area efficiency gains of 1.2–2.4× and
1.5–3× respectively, due to co-tuning — when compared to using
auto-tuned software on the fastest, embedded processor configura-
tion. Additionally, we show that these improvements can also be
attained in multi-kernel application environments. As highlighted
in Table 2, this increased efficiency can translate into hundreds
of Teraflops, if not Petaflops, of additional performance for next-
generation power-constrained HPC systems.

Building platforms from pre-verified parameterized core designs
in the embedded space enables programmability and accelerated
system design compared to a full-custom logic design, while pro-
viding higher efficiencies than general purpose processors tailored
for serial performance. Furthermore, our hardware/software co-
tuning methodology is a tool for assisting and automating the op-
timization of programmable HPC systems for energy efficiency.
Tools for automatic design space exploration in the context of ad-
hoc architectures do not exist, and the design space is intractably
large. However, basing architectures on programmable multi-core
processors constrains the design space, making the search space
tractable and verification costs reasonable — as the same core can
be replicated millions of times.

Future work will examine more complex architectural designs
that can potentially improve power efficiency such as VLIW, SIMD,
vector, streaming and hardware multi-threading. Additionally, we
plan to explore more algorithmic techniques as well as their inter-
actions and potential cross-kernel optimizations. We also note that
the search space in our study is primarily limited by the software-
based architectural simulators. Each auto-tuning search produces
hundreds of individual kernel implementations that must be exe-
cuted on all 72 hardware configurations explored in our study—
requiring thousands of CPU-hours of simulation time. Our ongo-
ing work is therefore leveraging RAMP [27] to optimize architec-
tural configurations by using FPGA-based hardware emulation to
accelerate the exploration process. Finally, we plan to incorporate



intelligent pruning approaches [8] into our methodology to accel-
erate searching of the co-tuning design space.

Our proposed co-tuning strategy offers a promising trade-off be-
tween the additional design cost of architectural customization and
the portability and programmability of off-the-shelf microproces-
sors. Moreover, existing toolchains of companies like Tensilica
enable a large space of hardware configurations, and the evolv-
ing maturity of auto-tuners for scientific kernels provides the abil-
ity to extract near-peak performance from these designs. Overall,
this approach can provide a quantum leap in hardware utilization
and energy efficiency, the primary metrics driving the design of the
next-generation HPC systems.
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