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ABSTRACT
The path towards realizing peta-scale computing is increas-
ingly dependent on scaling up to unprecedented numbers
of processors. To prevent the interconnect architecture be-
tween processors from dominating the overall cost of such
systems, there is a critical need for interconnect solutions
that both provide performance to ulta-scale applications and
have costs that scale linearly with system size. In this work
we propose the Hybrid Flexibly Assignable Switch Topology
(HFAST) infrastructure. The HFAST approach uses both
passive (circuit switch) and active (packet switch) commod-
ity switch components to deliver all of the flexibility and
fault-tolerance of a fully-interconnected network (such as a
fat-tree), while preserving the nearly linear cost scaling asso-
ciated with traditional low-degree interconnect networks. To
understand the applicability of this technology, we perform
an in-depth study of communication requirements across a
broad spectrum of important scientific applications, whose
computational methods include: finite-difference, lattice-
bolzmann, particle in cell, sparse linear algebra, particle
mesh ewald, and FFT-based solvers. We use the IPM (In-
tegrated Performance Monitoring) profiling layer to gather
detailed messaging statistics with minimal impact to code
performance. This profiling provides us sufficiently detailed
communication topology and message volume data to evalu-
ate these applications in the context of the proposed hybrid
interconnect. Overall results show that HFAST is a promis-
ing approach for practically addressing the interconnect re-
quirements of future peta-scale systems.

1. INTRODUCTION
As the field of scientific computing matures, the demands

for computational resources are growing at a rapid rate. It is
estimated that by the end of this decade, numerous mission-
critical applications will have computational requirements
that are at least two orders of magnitude larger than current
levels [1, 2, 17]. However, as the pace of processor clock rate
improvements continues to slow, the path towards realizing
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peta-scale computing is increasingly dependent on scaling
up the number of processors to unprecedented levels. To
prevent the interconnect architecture from dominating the
overall cost of such systems, there is a critical need to ef-
fectively build and utilize network topology solutions with
costs that scale linearly with system size.

HPC systems implementing fully-connected networks
(FCNs) such as fat-trees and crossbars have proven popular
due to their excellent bisection bandwidth and ease of ap-
plication mapping for arbitrary communication topologies.
In fact, as of November 2004, 94 of the 100 systems in the
Top500 [4] employ FCNs (92 of which are fat-trees). How-
ever, it is becoming increasingly difficult and expensive to
maintain these types of interconnects, since the cost of an
FCN infrastructure composed of packet switches grows su-
perlinearly with the number of nodes in the system. Thus,
as supercomputing systems with tens or even hundreds of
thousands of processors begin to emerge, FCNs will quickly
become infeasibly expensive. This has caused a renewed in-
terest in networks with a lower topological degree, such as
mesh and torus interconnects (like those used in IBM Blue-
Gene/L, Cray RedStorm, and Cray X1), whose costs rise
linearly with system scale. However, only a subset of scien-
tific computations have communications patterns that can
be effectively embedded onto these types of networks.

One of the principal arguments for moving to lower-degree
networks is that many of the phenomena modeled by sci-
entific applications involve localized physical interactions.
However, this is a dangerous assumption because not all
physical processes have a bounded locality of effect (e.g. n-
body gravitation problems), and not all numerical methods
used to solve scientific problems exhibit a locality of data
dependencies that is a direct reflection of the phenomena
they model (e.g. spectral methods and adaptive mesh com-
putations). As a result, lower-degree interconnects are not
suitable for all flavors of scientific algorithms. Before moving
to a radically different interconnect solution, it is essential
to understand scientific application communication require-
ments across a broad spectrum of numerical methods.

Several studies have observed that many applications have
communication topology requirements that are far less than
the total connectivity provided by FCN networks. For in-
stance, the most demanding applications investigated by
Vetter and Mueller [18, 19] indicate that the applications
that scale most efficiently to large numbers of processors
tend to depend on point-to-point communication patterns
where each processor’s average topological degree of commu-
nication (TDC) is 3–7 distinct destinations, or neighbors.



This provides strong evidence that many application com-
munication topologies exercise a small fraction of the re-
sources provided by FCN networks.

However, even if the network offers a topological degree
that is greater than or equal to the application’s TDC, tradi-
tional low-degree interconnect approaches have several sig-
nificant limitations. First, there is no guarantee the inter-
connect and application communication topologies are iso-
morphic—hence preventing the communication graph from
being properly embedded into the fixed interconnect topol-
ogy. Additionally, adoption of networks with a lower degree
of topological connectivity leads to considerable problems
with runtime job scheduling. Unless the communication
topology is known before application processes are assigned
to nodes, the mapping of the application process topology
to the fixed network topology may result in hopelessly ineffi-
cient performance. This kind of topological mismatch can be
mitigated by sophisticated task migration and job-packing
by the batch system, but such migration impacts overall
system efficiency. Furthermore, task migration is a complex
software technology, especially for distributed architectures,
and is often absent on modern parallel computers. Finally,
individual link or node failures in a lower-degree intercon-
nection network are far more disruptive than they are to a
fully-interconnected topology. Any failure of a node within
a mesh will create a gap in the interconnect topology that
further complicates job scheduling, and, in some cases, mes-
sage routing. Even if the interconnect can route around
failure, overall application performance then becomes de-
pendent on the slowest link in the interconnect. In contrast,
when a node fails in an FCN, it can be taken offline without
compromising the messaging requirements for the remaining
nodes in the system.

To address these deficiencies, we propose the Hybrid Flex-
ibly Assignable Switch Topology (HFAST) infrastructure.
The HFAST approach uses both passive (layer-1 / circuit
switch) and active (layer-2 / packet switch) commodity com-
ponents to deliver all of the flexibility and fault-tolerance of
a fat-tree interconnect, while preserving the nearly linear
cost scaling associated with traditional low-degree intercon-
nect networks. In order to understand the applicability of
this technology, we perform an in-depth study of the com-
munication requirements across a broad spectrum of impor-
tant scientific applications, whose computational methods
include: finite-difference, lattice-bolzmann, particle in cell,
sparse linear algebra, particle mesh ewald, and FFT-based
solvers. To efficiently collect this data, we use the IPM pro-
filing layer, which gathers detailed messaging statistics with
minimal impact on code performance. The derived messag-
ing statistics enable us to compute the topological require-
ments of these applications, in the context of our hybrid
interconnect network. Overall results show that HFAST is
a promising approach for practically addressing the inter-
connect requirements of future peta-scale systems.

2. HYBRID SWITCH ARCHITECTURE
Given the superlinear cost of constructing FCN architec-

tures, the interconnect will rapidly become the dominant
cost of such systems. As we move towards petaflops sys-
tems with tens (or hundreds) of thousands of processors,
the industry will be hard-pressed to continue to build fat-
tree networks into the peta-scale era. For an alternative
to fat-trees and traditional packet-switched interconnect ar-

chitectures, we can look to recent trends in the high-speed
wide area networking community, which has arrived at a
cost-effective hybrid solution to similar problems.

2.1 Circuit Switch Technology
Packet switches, such as Ethernet, Infiniband, and Myri-

net, are the most commonly used interconnect technology
for large-scale parallel computing platforms. A packet switch
must read the header of each incoming packet in order to
determine on which port to send the outgoing message. As
bit rates increase, it becomes increasingly difficult and ex-
pensive to make switching decisions at line rate. Most mod-
ern switches depend on ASICs or some other form of semi-
custom logic to keep up with cutting-edge data rates. Fiber
optic links have become increasingly popular for cluster in-
terconnects because they can achieve higher data rates and
lower bit-error-rates over long cables than is possible using
low-voltage differential signaling over copper wire. How-
ever, optical links require a transceiver that converts from
the optical signal to electrical so the silicon circuits can per-
form their switching decisions. The Optical Electrical Opti-
cal (OEO) conversions further add to the cost and power
consumption of switches. Fully-optical switches that do
not require an OEO conversion can eliminate the costly
transceivers, but per-port costs will likely be higher than
an OEO switch due to the need to use exotic optical mate-
rials in the implementation.

Circuit switches, in contrast, create hard-circuits between
endpoints in response to an external control plane – just like
an old telephone system operator’s patch panel, obviating
the need to make switching decisions at line speed. As such,
they have considerably lower complexity and consequently
lower cost per port. For optical interconnects, micro-electro-
mechanical mirror (MEMS) based optical circuit switches
offer considerable power and cost savings as they do not re-
quire expensive (and power-hungry) optical/electrical trans-
ceivers required by the active packet switches. Also, be-
cause non-regenerative circuit switches create hard-circuits
instead of dynamically routed virtual circuits, they con-
tribute almost no latency to the switching path aside from
propagation delay. MEMS based optical switches, such as
those produced by Lucent, Calient and Glimmerglass, are
common in the telecommunications industry and the prices
are dropping rapidly as the market for the technology grows
larger and more competitive.

2.2 Related Work
Circuit switches have long been recognized as a cost-effect-

ive alternative to packet switches, but it has proven difficult
to exploit the technology for use in cluster interconnects
because the switches do not understand message or packet
boundaries. It takes on the order of milliseconds to recon-
figure an optical path through the switch, and one must be
certain that no message traffic is propagating through the
light path when the reconfiguration occurs. In comparison, a
packet-switched network can trivially multiplex and demul-
tiplex messages destined for multiple hosts without requiring
any configuration changes.

The most straightforward approach is to completely elim-
inate the packet switch and rely entirely on a circuit switch.
A number of projects, including the OptIPuter [8] transcon-
tinental optically-interconnected cluster, use this approach
for at least one of their switch planes. The OptIPuter nodes



use Glimmerglass MEMS-based optical circuit switches to
interconnect components of the local cluster, as well as to
form transcontinental light paths which connect the Uni-
versity of Illinois half of the cluster to the UC San Diego
half. One problem that arises with this approach is how to
multiplex messages that arrive simultaneously from differ-
ent sources. Given that the circuit switch does not respect
packet boundaries and that switch reconfiguration latencies
are on the order of milliseconds, either the message traffic
must be carefully coordinated with the switch state or multi-
ple communication cards must be employed per node so that
the node’s backplane effectively becomes the message mul-
tiplexor; the OptIPuter cluster uses a combination of these
two techniques. The single-adapter approach leads to im-
practical message-coordination requirements in order avoid
switch reconfiguration latency penalties, whereas the mul-
tiadapter approach suffers from increased component costs
due to the increased number of network adapters per host
and the larger number of ports required in the circuit switch.

One proposed solution, the ICN (Interconnection Cached
Network) [10], recognizes the essential role that packet switch-
es play in multiplexing messages from multiple sources at
line rate. The ICN consists of processing elements that are
organized into blocks of size k which are interconnected with
small crossbars capable of switching individual messages at
line rate (much like a packet switch). These k-blocks are
then organized into a larger system via a k ∗Nblocks ported
circuit switch. The ICN can embed communication graphs
that have a consistently bounded topological degree of com-
munication (TDC) less than k. The jobs must be scheduled
in such a way that the bounded contraction of the commu-
nication topology (that is, the topological degree of every
subset of vertices) is less than k. This is an NP-complete
problem for general graphs when k > 2, although such con-
tractions can be found algorithmically for regular topologies
like meshes, hypercubes, and trees. If the communication
topology has nodes with degree greater than k, some of the
messages will need to take more than one path over the cir-
cuit switch and therefore share a path with other message
traffic. Consequently the bandwidth along that path is re-
duced if more than one message must contend for the same
link on the network. Job placement also plays a role in find-
ing an optimal graph embedding. Runtime reconfiguration
of the communication topology on an ICN may require task
migration in order to maintain an optimal embedding for
the communication graph. The HFAST approach detailed
in this work has no such restriction to regular topologies and
needs no task migration.

Finally, there are a number of hybrid approaches that use
combination packet/circuit switch blocks. Here each switch-
ing unit consists of a low bandwidth dynamically-routed net-
work that is used to carry smaller messages and coordinate
the switch states for a high-bandwidth circuit switched net-
work that follows the same physical path. Some examples
include Gemini [7], and Sun Microsystems Clint [9]. Each of
these uses the low-bandwidth packet-switched network to set
up a path for large-payload bulk traffic through the circuit
switch hierarchy. While the circuit switch path is unaware
of the packet boundaries, the lower-speed packet network is
fast enough to mediate potential conflicts along the circuit
path. This overcomes the problems with coordinating mes-
sage traffic for switch reconfiguration exhibited by the purely
circuit-switched approach. While promising, this architec-

ture suffers from the need to use custom-designed switch
components for a very special-purpose use. In the short
term, such a specialized switch architecture will have diffi-
culty reaching a production volume that can amortize the
initial development and manufacturing costs. Our target is
to make use of readily available commodity components in
the design of our interconnect in order to keep costs under
control.

2.3 HFAST: Hybrid Flexibly Assignable
Switch Topology
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Figure 1: General layout of HFAST (left) and ex-
ample configuration for 6 nodes and active switch
blocks of size 4 (right).

We propose HFAST as a solution for overcoming the ob-
stacles we outlined above, by using (Layer-1) passive/circuit
switches to dynamically provision (Layer-2) active/packet
switch blocks at runtime. This arrangement leverages the
less expensive circuit switches to connect processing ele-
ments together into optimal communication topologies us-
ing far fewer packet switches than would be required for
an equivalent fat-tree network composed of packet switches.
For instance, packet switch blocks can be arranged in a
single-level hierarchy when provisioned by the circuit switch-
es to implement a simpler topology like a 3D torus, whereas
a fat-tree implementation would require traversal of many
layers of packet switches for larger systems – contributing
latency at each layer of the switching hierarchy. Therefore
this hybrid interconnection fabric can reduce fabric latency
by reducing the number of packet switch blocks that must
be traversed by a worse-case message route.

Using less-expensive circuit switches, one can emulate many
different interconnect topologies that would otherwise re-
quire fat-tree networks. The topology can be incremen-
tally adjusted to match the communication topology re-
quirements of a code at runtime. Initially, the circuit switch-
es can be used to provision densely-packed 3D mesh com-
munication topologies for processes. However, as data about
messaging patterns is accumulated, the topology can be ad-
justed at discrete synchronization points to better match the
measured communication requirements and thereby dynam-
ically optimize code performance. MPI topology directives
can be used to speed the runtime topology optimization pro-
cess. There is also considerable research opportunities avail-
able for studying compile-time instrumentation of codes to
infer communication topology requirements at compile-time.
In particular, languages like UPC offer a high-level approach
for exposing communication requirements at compile-time.
Similarly, the compiler can automatically insert the neces-



System Technology MPI Latency Peak Bandwidth Bandwidth Delay Product

SGI Altix Numalink-4 1.1us 1.9 GB/s 2 KB
Cray X1 Cray Custom 7.3us 6.3 GB/s 46 KB

NEC Earth Simulator NEC Custom 5.6us 1.5GB/s 8.4 KB
Myrinet Cluster Myrinet 2000 5.7us 500MB/s 2.8 KB

Cray XD1 RapidArray/IB4x 1.7us 2GB/s 3.4 KB

Table 1: Bandwidth delay products for several high performance interconnect technologies. This is the
effective peak unidirectional bandwidth delivered per CPU (not per link).

sary synchronization points that allow the circuit switches
time to reconfigure since the Layer-1 switches do not other-
wise respect packet boundaries for in-flight messages.

HFAST differs from the bounded-degree ICN approach
in that the fully-connected passive circuit switch is placed
between the nodes and the active (packet) switches. This
supports a more flexible formation of communication topolo-
gies without any job placement requirements. Codes that
exhibit non-uniform degree of communication (e.g. just one
or few process(es) must communicate with a large number of
neighbors) can be supported by assigning additional packet
switching resources to the processes with greater communi-
cation demands. Unlike the ICN and OptIPuter, HFAST
is able to treat the packet switches as a flexibly assignable
pool of resources. In a sense, our approach is precisely the
inverse of the ICN – the processors are connected to the
packet switch via the circuit switch, whereas the ICN uses
processors that are connected to the circuit switch via an
intervening packet switch.

Figure 1 shows the general HFAST interconnection be-
tween the nodes, circuit switch and active switch blocks.
The diagram on the right shows an example with 6 nodes
and active switch blocks of size 4. In this example, node 1
can communicate with node 2 by sending a message through
the circuit switch (red) in switch block 1 (SB1), and back
again through the circuit switch (green) to node 2. This
shows that the minimum message overhead will require cross-
ing the circuit switch two times. If the TDC of node 1 is
greater than the available degree of the active SB, multiple
SBs can be connected together (via a myriad of interconnec-
tion options). For the example in Figure 1, if node 1 was
to communicate with node 6, the message would first arrive
at SB1 (red), then be transferred to SB2 (blue), and finally
sent to node6 (orange) — thus requiring 3 traversals of the
circuit switch crossbar and two active SB hops.

2.4 Small Messages and the Bandwidth Delay
Product

The product of the bandwidth and the delay for a giv-
en point-to-point connection describes precisely how many
bytes must be “in-flight” to fully utilize available link band-
width. This can also be thought of as the minimum size
required for a non-pipelined message to fully utilize avail-
able link bandwidth. Vendors commonly refer to an N1/2

metric, which describes the message size below which you
will get only 1/2 of the peak link performance. The N1/2

metric is typically half the bandwidth-delay product. In
this paper, however, we choose to focus on messages that
are larger than the bandwidth-delay product, which is the
minimum message size that can theoretically saturate the
link.

Table 1 shows the bandwidth-delay products for a num-

ber of leading-edge interconnect implementations. The best
bandwidth-delay products hover close to 2 KB. Therefore,
we will choose 2 KB as our target bandwidth-delay product
threshold. It reflects the state of the art in current switch
technology and an aggressive goal for future leading-edge
switch technologies. Below this threshold, we presume that
the messages will not benefit from a dedicated point-to-point
circuit because such messages will not be able to fully utilize
the available bandwidth. Such messages would be routed
over multiple links or a lower-bandwidth interconnect that
is used for collectives.

Therefore, in addition to a high-bandwidth hybrid in-
terconnect, we see the need for a second low-latency low-
bandwidth interconnect for handling collective communica-
tions with small payloads. A tree network, similar to the
one used in the IBM BlueGene/L, does not incur a large ad-
ditional cost because it is designed to handle low-bandwidth
messages and can therefore employ considerably less expen-
sive hardware components. This network could also carry
small point-to-point messages that do not benefit from the
high-bandwidth hybrid interconnect. However, such mes-
sages could also be routed over the high-bandwidth links
without provisioning a dedicated path.

2.5 Hypothesis
We summarize the applicability of HFAST as follows: Ap-

plications with communication patterns that are isotropic
(that is, a topologically regular communication pattern) and
bounded by a low TDC (case i) can be mapped onto reg-
ular limited-connectivity topological networks, such as n-
dimensional torii or hypercubes. Effective packing of multi-
ple jobs and link/node fault tolerance may still pose a dif-
ficult challenge for these types of configurations. Applica-
tions with communication patterns which are anisotropic
(an irregular topology) and bounded by a low TDC (case
ii) cannot be embedded perfectly in a fixed mesh network,
and therefore benefit from adaptive interconnects. Of these
codes, if the maximum TDC is bounded by a low degree,
then bounded-degree approaches such as ICN will be suffi-
cient. For applications where the average TDC is bounded
by a small number, while the maximum TDC is arbitrarily
large (case iii), the more flexible HFAST approach to allo-
cating packet-switch resources is warranted. The final case
is case iv, where the TDC of an application consistently
equals the number of processors used by the application.
The full-bisection capability of an FCN is still required for
such applications.

We hypothesize that case i covers a few of the studied ap-
plications, indicating mesh/torus interconnects may be suffi-
cient for a diverse workload (fault-tolerance and job-packing
problems with the fixed-topology interconnects notwithstand-
ing). Likewise, we surmise that few codes will be described



Name Lines Discipline Problem and Method Structure

Cactus [3] 84,000 Astrophysics Einstein’s Theory of GR via Finite Differencing Grid
LBMHD [15] 1,500 Plasma Physics Magneto-Hydrodynamics via Lattice Boltzmann Lattice/Grid

GTC [14] 5,000 Magnetic Fusion Vlasov-Poisson Equation via Particle in Cell Particle/Grid
SuperLU [13] 42,000 Linear Algebra Sparse Solve via LU Decomposition Sparse Matrix

PMEMD 37,000 Life Sciences Molecular Dynamics via Particle Mesh Ewald Particle
PARATEC [6] 50,000 Material Science Density Functional Theory via FFT Fourier/Grid

Table 2: Overview of scientific applications examined in this work.

by case iv: thereby undercutting the motivation for using
FCNs. Thus, for the wide class of applications with low av-
erage TDC covered by cases i-iii, the HFAST approach offers
a much lower cost solution than FCNs, with the flexibility to
effectively handle anisotropic communication patterns and
nodes with high TDC. Additionally, the HFAST architec-
ture gracefully handles application mapping and link/node
failures. Nevertheless, it is important to keep in mind that
the class of applications characterized by high average TDC
is best served by FCNs.

One important missing piece in HFAST is direct support
for the kinds of high-radix communication patterns required
by MPI collective operations like broadcasts and reductions.
We hypothesize that the typical message size for collective
communication is much smaller than the bandwidth-delay
product of the high-speed network and therefore will benefit
little from a dedicated circuit provisioned by HFAST, and
that such messages are better suited for a dedicated low-
bandwidth tree network.

3. METHODOLOGY

3.1 IPM: Low-overhead MPI profiling
In order to profile the communication characteristics of

scientific applications for our study, we employ the Inte-
grated Performance Monitoring (IPM) tool – an applica-
tion profiling layer that allows us to non-invasively gather
the communication characteristics of these codes as they are
run in a production environment. IPM brings together mul-
tiple sources of performance metrics into a single profile that
characterizes the overall performance and resource usage of
the application. It maintains low overhead by using a unique
hashing approach which allows a fixed memory footprint and
minimal CPU usage. IPM is open source, relies on portable
software technologies and is scalable to thousands of tasks.

Since most of the workload we are interested in uses MPI
for parallelism, we have focused on implementing IPM through
the name-shifted profiling interface to MPI. The use of the
profiling interface to MPI is of widely recognized value in
profiling MPI codes [18, 16]. The name-shifted or PMPI in-
terface allows each MPI call to be wrapped by profiling code
that collects communication performance information.

IPM collects a wide variety of communication informa-
tion through this interface, storing it in a fixed size hash
table. In this work, we are principally using the information
which encodes the number and timing of each MPI call. We
gather communication information on each task about each
MPI call with a unique set of arguments. Arguments to MPI
calls contain message buffer size, as well as source and desti-
nation information. In some cases we also track information
from the MPI Status structure. For instance, in the case of
MPI Send, IPM keeps track of each unique buffer size and

destination, the number of such calls, as well as the total,
minimum and maximum runtimes to complete the call. IPM
also allows code regions to be defined, enabling us to sepa-
rate application initialization from steady state computation
and communication patterns, as we are interested, primar-
ily, in the communication topology for the application in
its post-initialization steady state. We ran using IPM on
Seaborg, the NERSC IBM SP. Overall, the IPM analysis
captures the topology and nature of communication, which
is essential for understanding application applicability to the
HFAST methodology.

3.2 Evaluated Applications
In order to evaluate the potential effectiveness of utilizing

hybrid interconnect networks, we must first develop an un-
derstanding of the communication requirements of scientific
applications across a broad spectrum of parallel algorithms.

In this section we highlight the salient features of the ap-
plications studied in this work. The high level overview of
the codes and methods is presented in Table 2. Each of
these applications is actively run at multiple supercomput-
ing centers, consuming a sizable amount of computational
resources. Detailed descriptions of the algorithms and sci-
entific impact of these codes has been detailed elsewhere [5,
13, 6, 14, 15].

Together, this sampling of applications spans the charac-
teristics of a great many more applications, especially with
respect to communication pattern. For instance, though we
examine PARATEC in the present work, its core algorithm
has the communication characteristics of many other impor-
tant plane wave DFT codes (CPMD, VASP, etc.). Likewise
we expect a large number of finite difference and particle-
mesh codes to exhibit similar communication patterns, based
on our study of Cactus and PMEMD. Certain reduced quan-
tities important to the present study, such as communication
degree, should be largely dictated by the problem solved and
algorithmic methodology. For instance, in the case of Cactus
where finite differencing is performed using a regular grid,
the number of neighbors is determined by the dimensional-
ity of the problem and the stencil size. Profiling a greater
number of applications would of course improve the coverage
of this study, but the six applications studied here broadly
represent a wide range of scientific disciplines and modern
parallel algorithms.

We also note that in order to study steady-state communi-
cation characteristics, we use IPM’s regioning feature, which
allows us to examine only the profiling data from one section
of the code. In particular, we eliminate the large amounts
of communication caused by SuperLU during initialization,
primarily consisting of large transfers of the input matrix
from one node to all of the others.



MPI_Waitall (6.5%)
MPI_Irecv (26.8%)
MPI_Isend (26.8%)
MPI_Wait (39.3%)
Other (0.6%)

Cactus

MPI_Gather (47.4%)
MPI_Allreduce (10.9%)
MPI_Sendrecv (40.8%)
Other (0.9%)

GTC

MPI_Waitall (20.0%)
MPI_Irecv (40.0%)
MPI_Isend (40.0%)
Other (0.1%)

LBMHD

MPI_Irecv (24.8%)
MPI_Isend (25.1%)
MPI_Wait (49.6%)
Other (0.5%)

PARATEC

MPI_Irecv (29.3%)
MPI_Isend (32.7%)
Other (1.3%)
MPI_Waitany (36.6%)

PMEMD

MPI_Bcast (5.3%)
MPI_Recv (15.4%)
MPI_Irecv (15.7%)
MPI_Isend (16.4%)
MPI_Wait (30.6%)
Other (1.9%)
MPI_Send (14.7%)

SuperLU

Figure 2: Relative number of MPI communication calls for each of the codes.

4. APPLICATION COMMUNICATION
CHARACTERISTICS

As a first step in understanding the applicability of HFAST,
we analyze the communication characteristics of the six sci-
entific codes in our study. We use the IPM profiling layer to
quantify the type and frequency of application-issued MPI
calls, as well as identify the buffer sizes utilized for both
point-to-point and collective communications. Lastly, we
study the communication topology of each application, de-
termining the average and maximum TDC of each.

4.1 Call counts
The breakdown of MPI communication call types is shown

in Figure 2, for each of our studied applications. Notice that
overall, there is only a small subset of calls used by these ap-
plications relative to the entire MPI library. Here, we only
consider calls dealing with communication and synchroniza-
tion, and do not analyze other types of MPI functions which
do not intiate or complete message traffic. Most codes use a
small variety of MPI calls, and utilize mostly (over 90% of all
MPI calls) point-to-point communication functions, except

in the case of GTC, which relies heavily on MPI Gather. Ob-
serve also that non-blocking communication is the predom-
inant point-to-point communication model for these codes.

4.2 Collectives Buffer Size
Figure 3 shows the cumulatively histogramed buffer sizes

for collective communication, across all six applications. Ob-
serve that relatively small buffer sizes are predominantly
used; in fact, about 90% of the collective messages are 2 KB
or less (shown as the bandwidth-delay product by the pink
line), while almost half of all collective calls use buffers less
than 100 bytes. This confirms our earlier hypothesis that
collective message sizes are generally small, and could be
accommodated by a low-bandwidth tree interconnect.

4.3 Point-to-Point Buffer Size
The cumulatively histogramed buffer sizes for point-to-

point communication are shown in Figure 4 for each of the
applications; once again the 2 KB bandwidth-delay prod-
uct is shown by the pink vertical lines. Here we see a wide
range of communication characteristics across the applica-
tions. Cactus and LBMHD use a relatively small number of
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Figure 4: Buffer sizes distribution for point-to-point communication. The pink line demarcates the
bandwidth-delay product.

sizes, but each of these buffers is relatively large. GTC em-
ploys small communication buffers, but over 80% of the mes-
saging occurs with 1 MB or larger data transfers. In addi-
tion, it can be seen that SuperLU, PMEMD, and PARATEC
use many different buffer sizes, ranging from a few bytes to
over a megabyte in some cases. Overall, Figure 4 demon-
strates that unlike collectives (Figure 3), point-to-point mes-
saging uses a wide range of buffers, as well as large message
sizes – sometimes on the order of megabytes.

4.4 Connectivity
In this section, we present the topological connectivity for

each application by representing the volume and pattern of
message exchanges between all tasks. By recording statis-
tics on these message exchanges we can form an undirected
graph which describes the topological connectivity required
by the application. This graph is undirected because we as-
sume that switch links are bi-directional. As a result, the
topologies shown are always symmetric about the diagonal.
From this graph we can calculate certain reduced quanti-
ties which describe the communication pattern at a coarse
level. Such reduced metrics are important in being able to

make direct comparisons between applications. In particu-
lar, we examine the maximum and average TDC (connectiv-
ity) of each code, a key metric for evaluating the potential
of the HFAST approach. In addition to showing the max
and average, we explore a thresholding heuristic based on
the bandwidth-delay product (see Section 2.4) that disre-
gards smaller latency-bound messages. In many cases, this
thresholding lowers the average and maximum TDC sub-
stantially.

As shown in Figure 5, we see that GTC has a regular com-
munication structure. This particle-in-cell calculation uses
a one-dimensional domain decomposition across the toroidal
computational grid, causing each processor to exchange data
with its two neighbors as particles cross the left and right
boundaries. Additionally, there is a particle decomposition
within each toroidal partition, resulting in an average TDC
of 4 with a maximum of 17 for the P = 256 test case. This
maximum TDC is further reduced to 10 when using our
2 KB bandwidth-delay product message size cutoff. These
small TDC requirements clearly indicate that most links on
an FCN are not being utilized for the GTC simulation.

In Figure 6, we see that the ghost-zone exchanges of Cac-
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tus result in communications with “neighboring” nodes, rep-
resented by diagonal bands. In fact, each node communi-
cates with at most 6 neighbors due to the regular compu-
tational structure of this 3D stencil code. On average, the
TDC is 5, because some nodes are on the boundary and
therefore have fewer communication partners. The maxi-
mum TDC is independent of run size (as can be seen by
the similarity of the P = 64 and P = 256 lines) and is
insensitive to thresholding, which suggests that no pattern
of latency-bound messages can be excluded. Note however
that the low TDC indicates limited utilization of an FCN
architecture.

The connectivity of LBMHD is shown in Figure 7. Struc-
turally, we see that the communication, unlike Cactus, is
scattered (not occuring on the diagonal). This is due to the
interpolation between the diagonal streaming lattice and un-
derlying structure grid. Note that although the 3D LBMHD
streams the data in 27 directions, the code is optimized to
reduce the number of communicating neighbors to 12, as
seen in Figure 7. This degree of connectivity is insensitive
to the concurrency level, as can be seen by the overlap of the
P = 64 and P = 256 graphs. The maximum TDC is insen-
stivive to thresholding, showing that there is no pattern of
latency-bound messages to be excluded within the HFAST
model.

Figure 8 shows the connectivity and TDC for our Su-
perLU runs. The complex communication structure of this

computation results in many point-to-point message trans-
missions: in fact, without thresholding the connectivity is
equal to P . However, by removing the latency-bound mes-
sages by thresholding at 2 KB, the average and maximum
TDC is reduced to 30 for the 256 processor test case. Also,
note that the connectivity of SuperLU is a function of con-
currency, scaling proportionally to

√
P , as can be seen by

the different TDC requirements of P = 64 and P = 256 in
Figure 8. SuperLU–DIST communication is described more
completely in a 2003 paper by Li and Demmel [13].

Figure 9 shows the complex structure of communication
of the PMEMD particle mesh ewald calculation. Here the
maximum and average TDC is equal to P and the degree of
connectivity is a function of concurrency. For the spatial de-
composition used in this algorithm, each task’s data transfer
with another task drops off as their spatial regions become
more distant. The rate of this drop off depends strongly on
the molecule(s) in the simulation. Observe that for P = 256,
thresholding at 2 KB reduces the average connectivity to 55,
even though the maxium TDC remains at 256. This dispar-
ity between the maximum and average TDC can be effec-
tively addressed using our proposed HFAST methodology.

Finally, Figure 10 shows the communication requirements
of PARATEC. This communication-intensive code relies on
global data transposes during its 3D FFT calculations, re-
sulting in large, global message traffic [6]. Here the maxi-
mum and average TDC is equal to P , and the connectivity is
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Figure 8: SuperLU (a)volume of communication at P=256 and (b) effect of thresholding on TDC for P=64,256

insensitive to thresholding. Only with a relatively large mes-
sage size cutoff of 32 KB do we see any reduction in the num-
ber of communicating partners required. Thus, PARATEC
represents the class of codes that make use of the bisec-
tion bandwidth that a fully-connected network configuration
provides. This type of communication presents formidable
challenges to the HFAST approach or any low-degree con-
nectivity solution.

Table 3 presents a summary of the application communi-
cation characteristics derived in this section. (SuperLU and
PMEMD exhibit misleadingly low median point-to-point buf-
fer sizes, but this is due to the fact they sometimes send
with buffer sizes of 0 bytes, in cases where a communicat-
ing partner expects a message that is not necessary for the
computation.)

In the next section, we utilize these results to determine
the applicability of HFAST to each of the applications we
study.

5. ANALYSIS
Based on the analysis of Section 4 we now investigate

the potential advantages of the HFAST approach. For each
application, we examine the TDC of each node, thresholded
by the 2 KB bandwidth-delay product (defined Section 2.4),
and determine the number of switches required to build an
HFAST network compared with FCN configurations.

One important simplifying assumption we apply to our

analysis is that each node contains only a single processor.
While most practical systems will likely use SMP nodes, the
analysis would need to consider bandwidth localization al-
gorithms for assigning processes to nodes in addition to the
analysis of the interconnection network requirements. How-
ever, bandwidth localization is a separable issue — one that
unnecessarily complicates our analysis of the interconnect
behavior and requirements. Therefore, we focus exclusively
on single-processor nodes in this paper, and leave the anal-
ysis of SMP nodes for future work.

5.1 Collectives
Consistent with our earlier hypothesis in Section 2.5, Fig-

ure 3 shows that nearly all of the collective communication
payload sizes fall below 2 KB. This result is consistent with
previous research [18] and validates IBM’s architectural de-
cision to dedicate a separate lower-bandwidth network on
BG/L for collective operations. One could imagine com-
puting a minimum-latency routing pattern that is overlaid
on the high-bandwidth interconnect topology, but the com-
plexity of such an algorithm is out of the scope of this pa-
per. Therefore, we will presume a lower-bandwidth, low-
cost dedicated-tree network, similar to the one in BG/L,
will carry the collective messages and possibly small-payload
point-to-point messages, and focus the remaining analysis
on using HFAST to accelerate large payload point-to-point
messages.
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5.2 Point To Point Traffic
We now discuss each of the applications and consider the

class of network best suited for its communication require-
ments. First, we examine the three codes exhibiting the
most regularity in their communication exchanges: Cac-
tus, LBMHD, and GTC. Cactus displays a bounded TDC
independent of run size, with a communication topology
that isomorphically maps to a regular mesh; thus a fixed
3D mesh/torus would be sufficient to accommodate these
types of stencil codes, although an adaptive approach would
also fulfill Cactus’s requirements (consistent with case i de-
scribed in Section 2.5). LBMHD also displays a low de-
gree of connectivity, but while its communication pattern
is isotropic, the structure is not isomorphic to a regular
mesh, thereby requiring an adaptive approach such as ICN
or HFAST network (case ii). Although GTC’s primary com-
munication pattern is isomorphic to a regular mesh, it has
a maximum TDC that is quite higher than the average
due to important connections that are not isomorphic to a
mesh(case iii). Thus, neither a fixed mesh/torus topology,
nor the bounded-degree adaptive network of ICN, would be
well suited for this class of computation. Here, the HFAST
approach holds a clear advantage, since additional packet
switch resources can dynamically be assigned to the subset
of nodes with higher TDC requirements.

SuperLU and PMEMD exhibit anisotropic communica-

tion patterns with a TDC that scales with the number of
processors. Additionally, PMEMD has widely differing max-
imum and average TDC. However, with thresholding, the
proportion of processors that have messages that would ben-
efit from the dedicated links is large but stays bounded to
far less than the number of processors involved in the cal-
culation (consistent with case iii). A regular mesh or torus
would be inappropriate for this class of computation, but an
FCN remains underutilized. However, the HFAST network
can be dynamically reconfigured to satisfy the requirements
of these complex applications.

Finally, PARATEC represents the communications require-
ments for a large class of important chemistry and fluids
problems where part of the problem is solved in fourier
space. It requires large global communications involving
large messages that fully utilize the FCN and are therefore
consistent with case iv. PARATEC’s large global commu-
nications are a result of the 3D FFTs used in the calcu-
lation, which require two stages of global 3D transposes.
The first transpose is non-local and involves communica-
tions of messages of similar sizes between all the processors,
resulting in the uniform background of 32 KB messages.
In the second transpose, processors only communicate with
neighboring processors, resulting in additional message traf-
fic along the diagonal of the graph. A more detailed descrip-
tion of the communication requirements can be found in [6].



% median % median TDC @ 2KB FCN Circuit
Code Procs PTP Calls PTP buffer Col. calls Col. buffer cutoff(max,avg) Utilization (avg.)

GTC 64 42.0 128k 58.0 100 2, 2 3%
256 40.2 128k 59.8 100 10, 4 2%

Cactus 64 99.4 299k 0.6 8 6, 5 9%
256 99.5 300k 0.5 8 6, 5 2%

LBMHD 64 99.8 811k 0.2 8 12, 11.5 19%
256 99.9 848k 0.1 8 12, 11.8 5%

SuperLU 64 89.8 64 10.2 24 14, 14 22%
256 92.8 48 7.2 24 30, 30 25%

PMEMD 64 99.1 6k 0.9 768 63, 63 100%
256 98.6 72 1.4 768 255, 55 22%

PARATEC 64 99.5 64b 0.5 8 63, 63 100%
256 99.9 64 0.1 4 255, 255 100%

Table 3: Summary of code characteristics for point-to-point (PTP) and collective (Col.) communications.

%
 c

al
ls

 <
= 

b
u

ff
er

 s
iz

e

0

20

40

60

80

100

buffer size (bytes)
1 10 100 1k 10k 100k 1MB

Collective Buffer Sizes for All Codes

Figure 3: Buffer sizes distribution for collective com-
munication for all codes. The pink line demarcates
the bandwidth-delay product.

PARATEC is an example where the HFAST solution is in-
appropriate. The large global communication requirements
can only be effectively provisioned with an FCN network.

In summary, only one of the six codes studied offered a
communication pattern that maps isomorphically to a 3D
mesh network topology (case i). Only one of the codes fully
utilizes the FCN at large scales (case iv). The preponder-
ance of codes can benefit from an adaptive communication
network that uses a lower radix active switching solution.
This result is consistent with the hypothesis stated in Sec-
tion 2.5.

5.3 HFAST Cost Model
Fat Tree networks are built in layers of N -port switches

such that L layers can be used to create a fully connected
network for P processors where P = 2 ∗ (N/2)L. However,
the number of switch ports in the interconnection network
per processor grows at a rate of (1 + 2(L − 1)). So, for
instance, a 6 layer fat-tree composed of 8-port switches re-
quires 11 switch ports for each processor for a network of
2048 processors! Messages must traverse up to 21 layers of
packet switches to reach their destination. While state-of-
the-art packet switches typically contribute less than 50ns

to the message latency, traversing 21 layers of them can be-
come a significant component of the end-to-end latency.

With the HFAST solution, the number of ports required
for the passive circuit switch grows by the same proportion
as a full FCN. However, the cost per port for the circuit
switch is far less than the cost per port for a packet switch
using a leading-edge technology. Packet switches, the most
expensive component per-port, can be scaled linearly with
the number of processors used in a given system design. So
unlike a fixed topology mesh, hypercube, or torus intercon-
nect, the cost of HFAST is not entirely linearly-proportional
to the number of processors because of the cost of the fully
connected circuit switch. However, the cost of the most
expensive component, the packet switches and network in-
terface cards for the hosts, scales proportionally with the
number of processors.

We introduce a simple cost function that represents the
applicability of HFAST given the TDC of each node in the
computation. To simplify our analysis, we present an upper-
bound that does not use any sophisticated graph-theoretic
methods to optimize mappings. In addition, we assume a
homogenous active switch block size of 16 ports.

Generally, the cost CostHFAST is given by

Nactive ∗ Costactive + Costpassive + Costcollective,

where Nactive is the number of active switch blocks required,
and Costactive, Costpassive, and Costcollective are the re-
spective costs of a single active switch block, the passive
switch, and the collective network. HFAST is effective if
CostHFAST < Costfat−tree.

For a given code, we examine each node in turn. For each
node, if the TDC is less than the active switch block size (in
our case 15), we assign it one active switch block. However,
if the TDC is greater than 15, we assign it the number of
switch blocks needed to build a tree network large enough to
communicate with all of the node’s partners. This algorithm
uses potentially twice as many switch ports as an optimal
embedding, but it has the advantage that it will complete
in linear time.

As an example, we determine the cost for Cactus, a code
that exhibits an average and maximum TDC of 6 per node.
For each node, then, we assign a single active switch block,
giving us Nactive = P . That is, the number of active switch
blocks required is equal to the number of processors in a run.
For codes like PMEMD that exhibit a maximum TDC that
is higher than the average, additional packet switch blocks



can be provisioned (if available) to construct a higher-radix
tree network to support the higher-degree communication
pattern required by that subset of processors.

The procedure outlined above creates an efficient mapping
when average TDC is less than the switch block size. How-
ever, the method yields a far less efficient mapping, relative
to a Fat-Tree, for codes with higher TDC. The mapping pro-
cedure uses the packet switches exclusively for fan-in and
fan-out of connections between nodes, and therefore does
not exercise the full internal bisection connectivity of these
switch blocks.

The general problem of switch block assignment can be
reduced to the clique-mapping problem where tightly in-
terconnected cliques are mapped to switch blocks in order
to maximize the utilization of internal switch connectivity.
The optimal solution to the fully generalized clique-mapping
problem is NP-complete [12]. However, the fact that the
switch blocks are of finite size bounds the complexity of the
problem to less than NP-complete, but it still involves a
large search space. We are investigating various heuristics
that provide sub-optimal solutions in polynomial time.

6. CONCLUSIONS + FUTURE WORK
Most high-end computing platforms currently employ fully

interconnected networks whose cost grows superlinearly rel-
ative to system size. Thus these interconnect technologies
will become impractical for next-generation peta-flop plat-
forms employing tens (or hundreds) of thousands of proces-
sors. Fixed networks (such as 3D meshes/torii), on the other
hand, are inflexibly bounded in their topological degree and
suffer the overheads of job fragmentation. In this work, we
propose the HFAST interconnect which combines passive
and active switch technology to create dynamically reconfig-
urable network topologies. Our solution maintains a linear
cost function between the expensive (active switch) compo-
nents and system scale, allows anisotropic communication
patterns within the applications, and obviates the need for
job-packing by the batch-system. We have analyzed 6 paral-
lel codes that represent a wide array of scientific algorithms
and associated communication topologies. We have shown
that these codes have communication requirements that typ-
ically underutilize the capabilities of an FCN, but also do
not usually map isomorphically to a fixed n-dimensional net-
work like a mesh or torus. This suggests constructing a
hybrid interconnect that supports a lower average topolog-
ical degree (like mesh networks), but uses circuit switches
so the topology can adapt to code requirements that other-
wise cannot map to the fixed mesh topology. We show that
the costs of the circuit switch components of HFAST scale
similarly to a fat-tree, but the cost per port of the circuit
switch is far less than the cost of components used to imple-
ment an FCN. The cost of the most expensive component,
the packet switches, scales linearly with system size just as
they would for a 3D mesh interconnect. HFAST also offers
benefits for fault-tolerance and job scheduling that are not
available from a mesh interconnect.

The cost estimates presented in this work are based on a
rather simple topology mapping algorithm that is not op-
timal and in many cases is an overestimate of the optimal
mapping and therefore cost. The simple approach we have
taken allows embedding arbitrary communication topologies
in linear time, but may miss certain more complex highly
optimal mappings between switch and application. An opti-

mal process mapping may consume as little as half as many
ports as the general approach detailed above, but is an NP-
complete problem for embedding arbitrary communication
graphs. For problems that are consistent with case i and
case ii, there exist algorithms with bounded complexity for
communication graph mapping. In future work, we will in-
vestigate clique-mapping techniques to improve the qual-
ity of our mapping algorithm. We may also adapt the ge-
netic programming approaches used for optimizing the fixed
switch topology of the Flat Neighborhood Networks [11] to
optimize the embedding. An even more promising approach
is to apply runtime iterative or adaptive approaches that in-
crementally arrive on an optimal embedding by monitoring
runtime communication and gradually optimizing the switch
topology to minimize communication time as described in
Section 2.3.

In future work we hope to expand the scope of both the
applications profiled and the data collected through IPM.
The low overhead of IPM profiling opens up the possibil-
ity of the characterization of large and diverse application
workloads. We will also pursue more detailed performance
data collection. For instance producing a full chronological
communication trace of most applications would incur sig-
nificant performance penalties; however, computing a time-
windowed TDC as the application progresses would not. By
studying the time dependence of communication topology
one could expose opportunities to reconfigure an HFAST
switch as the application is running. It is expected that
different program phases will have different communication
needs and might benefit from such runtime reconfiguration.
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