
Winner Best Paper, International Parallel & Distributed Processing Symposium (IPDPS), March 24-30, 2007, Long Beach, CA.

Scientific Application Performance on Candidate PetaScale Platforms

Leonid Oliker1, Andrew Canning1, Jonathan Carter1, Costin Iancu1, Michael Lijewski1,
Shoaib Kamil1, John Shalf1, Hongzhang Shan1, Erich Strohmaier1, Stéphane Ethier2, Tom Goodale3

1Computational Research Division / NERSC
Lawrence Berkeley National Laboratory

Berkeley, CA 94720, USA

2Princeton Plasma Physics Laboratory 3Computer Science, Cardiff University
Princeton University The Parade, CF24 4QJ, UK &

Princeton, NJ 08453, USA CCT, LSU, LA 70803, USA

Abstract
After a decade where HEC (high-end computing) capa-

bility was dominated by the rapid pace of improvements to
CPU clock frequency, the performance of next-generation
supercomputers is increasingly differentiated by varying in-
terconnect designs and levels of integration. Understand-
ing the tradeoffs of these system designs, in the context of
high-end numerical simulations, is a key step towards mak-
ing effective petascale computing a reality. This work rep-
resents one of the most comprehensive performance eval-
uation studies to date on modern HEC systems, includ-
ing the IBM Power5, AMD Opteron, IBM BG/L, and Cray
X1E. A novel aspect of our study is the emphasis on full
applications, with real input data at the scale desired by
computational scientists in their unique domain. We ex-
amine six candidate ultra-scale applications, representing
a broad range of algorithms and computational structures.
Our work includes the highest concurrency experiments to
date on five of our six applications, including 32K pro-
cessor scalability for two of our codes and describe sev-
eral successful optimizations strategies on BG/L, as well as
improved X1E vectorization. Overall results indicate that
our evaluated codes have the potential to effectively utilize
petascale resources; however, several applications will re-
quire reengineering to incorporate the additional levels of
parallelism necessary to achieve the vast concurrency of up-
coming ultra-scale systems.

1 Introduction

Computational science is at the dawn of petascale com-
puting capability, with the potential to achieve simulation
scale and numerical fidelity at hitherto unattainable levels.

However, harnessing such extreme computing power will
require an unprecedented degree of parallelism both within
the scientific applications and at all levels of the underlying
architectural platforms. Unlike a decade ago — when the
trend of HEC (high-end computing) systems was clearly to-
wards building clusters of commodity components — today
one sees a much more diverse set of HEC models. Increas-
ing concerns over power efficiency is likely to further accel-
erate recent trends towards architectural diversity through
new interest in customization and tighter system integration.
Understanding the tradeoffs of these computing paradigms,
in the context of high-end numerical simulations, is a key
step towards making effective petascale computing a real-
ity. The main contribution of this work is to quantify these
tradeoffs by examining the effectiveness of various architec-
tural models for HEC with respect to absolute performance
and scalability across a broad range of key scientific do-
mains.

A novel aspect of our effort is the emphasis on full ap-
plications, with real input data at the scale desired by com-
putational scientists in their unique domain, which com-
plements a number of other related studies [4, 9, 21]. Our
application suite includes a broad spectrum of numerical
methods and data-structure representations in the areas of
Magnetic Fusion (GTC), Fluid Dynamics (ELBM3D), As-
trophysics (Cactus), High Energy Physics (BeamBeam3D),
Materials Science (PARATEC), and AMR Gas Dynamics
(HyperCLaw). We evaluate performance on a wide range
of architectures with varying degrees of component cus-
tomization, integration, and power consumption, including:
the Cray X1E customized parallel vector-processor, which
utilizes a tightly-coupled custom interconnect; the com-
modity IBM Power5 and AMD dual-core Opteron proces-
sors integrated with custom fat-tree based Federation and
3D-torus based XT3 interconnects, respectively; the com-



Network Total P/ Clock Peak Stream BW Stream MPI Lat MPI BWName Local Arch Network
Topology P Node (GHz) (GF/s/P) (GB/s/P) (B/F)‡ (µsec) (GB/s/P)

Bassi LBNL Power5 Federation Fattree 888 8 1.9 7.6 6.8 0.85 4.7 0.69
Jaguar ORNL Opteron XT3 3DTorus 10,404 2§ 2.6 5.2 2.5 0.48 5.5∗ 1.2

Jacquard LBNL Opteron InfiniBand Fattree 640 2 2.2 4.4 2.3 0.51 5.2 0.73
BG/L ANL PPC440 Custom 3DTorus 2,048 2 0.7 2.8 0.9 0.31 2.2† 0.16
BGW TJW PPC440 Custom 3DTorus 40,960 2 0.7 2.8 0.9 0.31 2.2† 0.16

Phoenix ORNL X1E Custom Hcube 768 8¶ 1.1 18.0 9.7 0.54 5.0 2.9

Table 1. Architectural highlights of studied HEC platforms.

Name Lines Discipline Methods Structure
GTC 5,000 Magnetic Fusion Particle in Cell, Vlasov-Poisson Particle/Grid

ELBD 3,000 Fluid Dynamics Lattice Boltzmann, Navier-Stokes Grid/Lattice
CACTUS 84,000 Astrophysics Einstein Theory of GR, ADM-BSSN Grid

BeamBeam3D 28,000 High Energy Physics Particle in Cell, FFT Particle/Grid
PARATEC 50,000 Material Science Density Functional Theory, FFT Fourier/Grid

HyperCLaw 69,000 Gas Dynamics Hyperbolic, High-order Godunov Grid AMR

Table 2. Overview of scientific applications examined in our study.

modity Opteron processor integrated with the InfiniBand
high-performance commodity network; and the IBM Blue
Gene/L (BG/L) which utilizes a customized SOC (system
on chip) on commodity, low-power embedded cores, com-
bined with multiple network interconnects.

This work represents one of the most comprehensive per-
formance evaluation studies to date on modern HEC plat-
forms. For five of our six studied applications, we present
the highest concurrency results ever conducted, and show
that the BG/L can attain impressive scalability characteris-
tics all the way up to 32K processors on two of our appli-
cations. We also examine several application optimizations,
including BG/L processor and interconnect mappings for
the SciDAC [17] GTC code, which achieve significant per-
formance improvements over the original superscalar ver-
sion. Additionally, we implement several optimizations
for the HyperCLaw AMR calculation, and show signifi-
cantly improved performance and scalability on the X1E
vector platform, compared with previously published stud-
ies. Overall, we believe that these comprehensive evalu-
ation efforts lead to more efficient use of community re-
sources in both current installations and in future designs.

2 Target Architectures and
Scientific Applications

‡Ratio of STREAM bandwidth to peak processor computational rate.
§Each Jaguar node consists of a single, dual-core processor.
¶An MSP is defined as a processor for the X1E data.
∗Minimum latency for the XT3 torus. There is a nominal additional

latency of 50ns per hop through the torus.
†Minimum latency for the BG/L torus. There is an additional latency

Our evaluation testbed consists of six production HEC
systems, including: Bassi, the Lawrence Berkeley National
Laboratory (LBNL) IBM Power5-based system intercon-
nected via IBM’s HPS Federation, containing 888 com-
pute processors (111 8-way nodes) and running AIX 5.2;
Jaguar, the Oak Ridge National Laboratory (ORNL) dual-
core AMD Opteron XT3 systems, containing 10,400 pro-
cessors (5,200 2-way nodes) and running Catamount 1.4.22;
Jacquard, the LBNL (single-core) Opteron-based system,
interconnect via Infiniband with 640 processors (320 2-way
nodes) and running Linux 2.6.5; BG/L, the Argonne Na-
tional Laboratory (ANL) IBM PowerPC 440-based system,
containing 2,048 processors (1024 2-way nodes) intercon-
nected via three independent networks and running SuSE
Linux OS (SLES9); BGW a large (40K processor) BG/L
installation located at IBM’s Thomas J. Watson (TJW); and
Phoenix, the ORNL vector-based X1E platform, containing
768 processors (96 8-way MSP nodes) interconnected via
the Cray custom switch and running UNICOS/mp 3.0.23.

Table 1 presents several key architectural features of our
evaluated test suite, including: STREAM benchmark re-
sults [18] showing the measured EP-STREAM [11] triad
bandwidth when all processors within a node simultane-
ously compete for main memory; the ratio of STREAM
bandwidth to the peak computational rate; the measured
inter-node MPI latency [5]; and the measured bidirectional
MPI bandwidth per processor pair when each processor si-
multaneously exchanges data with a distinct processor in
another node. Note that our BG/L measurements primar-
ily examine performance in coprocessor mode where one

of up to 69ns per hop through the torus.



(a) (b) (c) (d) (e) (f)

Figure 1. TOP: Visualization of (a) GTC electrostatic potential field (b) ELBM3D vorticity turbulence
(c) Cactus black hole collisions (d) BeamBeam3D particle tracks (e) PARATEC CdSe quantum dot
electron state and (f) HyperCLaw Helium bubble deformation. BOTTOM: Interprocessor communica-
tion topology and color-coded intensity of corresponding application.

core is used for computation and the second is dedicated
to communication. Additionally, several experiments were
conducted using up to 32K processors on IBM’s Thomas J.
Watson (TJW) BGW in virtual node mode where both cores
are used for both computation and communication.

Six applications from diverse areas in scientific com-
puting were chosen to compare the performance of our
suite of leading supercomputing platforms. We examine:
GTC, a magnetic fusion application that uses the particle-
in-cell approach to solve non-linear gyrophase-averaged
Vlasov-Poisson equations; ELBM3D, a lattice-Boltzmann
code to study turbulent fluid flow; Cactus, an astrophysics
framework for high-performance computing that evolves
Einstein’s equations from the Theory of General Relativ-
ity; BeamBeam3D, a parallel particle-field decomposition
based particle-in-cell code for high energy ring colliders;
PARATEC, a first principles materials science code that
solves the Kohn-Sham equations of density functional the-
ory to obtain electronic wave functions; HyperCLaw, an
adaptive mesh refinement (AMR) framework for solving the
Hyperbolic conservation laws of gas dynamics via a higher-
order Godunov method. Table 2 presents an overview of
the application characteristics and Figure 1 (top) shows a
variety visualizations from our evaluated simulations.

These codes are candidate ultra-scale applications with
the potential to fully utilize leadership-class computing sys-
tems, and represent a broad range of algorithms and compu-
tational structures. Figure 1 (bottom) presents the topologi-
cal connectivity of communication for each code — where
each point in the graph indicates message exchange and
(color coded) intensity between two given processors —
highlighting the vast range of communication requirements
within our application suite. Communication characteris-

tics include: nearest-neighbor and allreduce communication
across the toroidal grid and poloidal grid (respectively) for
the particle-in-cell GTC calculation; simple ghost boundary
exchanges for the stencil-based ELBM3D and Cactus com-
putations; global gather and broadcast operations to com-
pute the charge and field properties in BeamBeam3D; all-
to-all data transpositions used to implement PARATEC’s
3D FFTs, and complex data movements required to create
and dynamically adapt grid hierarchies in HyperCLaw. Ex-
amining these varied computational methodologies across a
set of modern supercomputing platforms allows us to study
the performance tradeoffs of different architectural balances
and topological interconnect approaches.

Experimental results show either strong scaling (where
the problem size remains fixed regardless of concurrency),
or weak scaling (where the problem size grows with con-
currency such that the per-processor computational require-
ment remains fixed) — whichever is appropriate for a given
application’s large-scale simulation. Note these applica-
tions have been designed and highly optimized on super-
scalar platforms; thus, we describe newly devised opti-
mizations for the vector platforms where appropriate. Per-
formance results measured on these systems, presented in
Gflop/s per processor (denoted as Gflops/P) and percentage
of peak, are used to compare the time to solution of our eval-
uated platforms. The Gflop/s value is computed by dividing
a valid baseline flop-count by the measured wall-clock time
of each platform — thus the ratio between the computa-
tional rates is the same as the ratio of runtimes across the
evaluated systems. All results are shown using the fastest
(optimized) available code versions.



0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

64 128 256 512 960 1K 2K 4K 8K 10K 16K 32K

Processors

G
fl
o
p
s/
P
ro
ce
ss
o
r

Bassi
Jacquard
Jaguar
BG/L
Phoenix

(a)

6%

8%

10%

12%

14%

16%

18%

64 128 256 512 960 1K 2K 4K 8K 10K 16K 32K

Processors

P
e
rc

e
n

t 
o

f 
P

e
a
k

Bassi
Jacquard
Jaguar
BG/L
Phoenix

(b)

Figure 2. GTC weak-scaling performance using 100 particles per cell per processor (10 for BG/L) in
(a) Gflops/processor and (b) percentage of peak. All BG/L data collected on the BGW system.

3 GTC: Particle-in-Cell
Magnetic Fusion

GTC is a 3D particle-in-cell code developed for study-
ing turbulent transport in magnetic confinement fusion plas-
mas [6, 12]. The simulation geometry is that of a torus,
which is the natural configuration of all tokamak fusion de-
vices. As the charged particles forming the plasma move
within the externally-imposed magnetic field, they collec-
tively create their own self-consistent electrostatic (and
electromagnetic) field that quickly becomes turbulent un-
der driving temperature and density gradients. The particle-
in-cell (PIC) method describes this complex interaction be-
tween fields and particles by solving the 5D gyro-averaged
kinetic equation coupled to the Poisson equation. In the PIC
method, the interaction between particles is calculated using
a grid on which the charge of each particle is deposited and
then used in the Poisson equation to evaluate the field. This
is the scatter phase of the PIC algorithm. Next, the force on
each particle is gathered from the grid-base field and evalu-
ated at the particle location for use in the time advance.

GTC utilizes two parallel algorithms. The first one, orig-
inally implemented in GTC, is a one-dimensional domain
decomposition in the toroidal direction (long way around
the torus) while the second is a particle distribution within
each domain. The processors in charge of the same domain
have a copy of the local grid, essentially a single plane,
but hold a fraction of the particles and are linked with each
other by a domain-specific communicator used when updat-
ing grid quantities calculated by individual processors. In
the toroidal direction, a second communicator links a sin-
gle processor in each domain in a ring-like fashion. The
visual representation of the communication topology can
been seen in Figure 1(a).

3.1 Experimental results

Figure 2 shows the results of a weak-scaling study of
GTC on the platforms under comparison in both (a) raw
performance and (b) percentage of peak. The size of the
grid remains fixed since it is prescribed by the size of the
fusion device being simulated, while the number of particles
is increased in a way that keeps the same amount of work
per processor for all cases.

Looking at the raw performance we see that the Phoenix
platform clearly stands out with a Gflops/P rate up to 4.5
times higher than the second highest performer, the XT3
Jaguar. This was expected since the version of GTC used
on Phoenix has been extensively optimized to take advan-
tage of the multi-streaming vector processor [13]. In the lat-
est improvements, the dimensions of the main arrays in the
code have been reversed in order to speed up access to the
memory banks, lead to higher performance. This change is
not implemented in the superscalar version since it reduces
cache reuse and hence slows down the code. Although still
high, the performance per processor on the X1E decreases
significantly as the number of processors, or MSPs, in-
creases. This is probably due to the increase in intra-domain
communications that arises when the number of processors
per toroidal domain increases. An Allreduce operation is
required within each domain to sum up the contribution of
each processor, which can lead to lower performance in cer-
tain cases. Optimizing the processor mapping is one way of
improving the communications but we have not explored
this avenue on Phoenix yet.

Jacquard, Bassi, and Jaguar have very similar perfor-
mance in terms of Gflops/P although Bassi is shown to de-
liver only about half the percentage of peak achieved on
Jaguar, which displays outstanding efficiency and scaling
all the way to 5184 processors. The percentage of peak
achieved by particle-in-cell codes is generally low since



the gather-scatter algorithm that characterizes this method
involves a large number of random accesses to memory,
making the code sensitive to memory access latency. How-
ever, the AMD Opteron processor used in both Jacquard and
Jaguar delivers a significantly higher percentage of peak for
GTC compared to all the other superscalar processors. It
even rivals the percentage of peak achieved on the vector
processor of the X1E Phoenix. This higher GTC efficiency
on the Opteron is due, in part, to relatively low main mem-
ory latency access. On all systems other than Phoenix, GTC
exhibits near perfect scaling, including up to 5K processors
on Jaguar.

The percentage of peak achieved by GTC on BG/L is
the lowest of the systems under study but the scalability is
very impressive, all the way to 32,768 processors! The port-
ing of GTC to the BG/L system was straightforward but
initial performance was disappointing. Several optimiza-
tions were then applied to the code, most of them having
to do with using BG/L-optimized libraries such as MASS
and MASSV. It was determined∗ that the default library
for the sin(), cos(), and exp() functions on BG/L
is the GNU libm library, which is rather slow. MASS and
MASSV are highly optimized libraries for these basic math-
ematical functions, and MASSV includes vector versions of
those functions that can take advantage of improved instruc-
tion scheduling and temporal locality. By calling vector
functions directly in the code, we witnessed a 30% increase
in performance. Other optimizations consisted of loop un-
rolling and replacing calls to the Fortran aint(x) intrin-
sic function by real(int(x)). aint(x) results in a
function call that is much slower than using the equivalent
real(int(x)). These combined optimizations resulted
in a performance improvement of almost 60% over orig-
inal runs. It is important to mention that the results pre-
sented here are for virtual node mode. GTC has shown an
extremely high efficiency of over 95% when using the sec-
ond core on BG/L nodes, which is quite promising as more
cores are added to upcoming processor roadmaps.

Another interesting optimization performed on BGW
was processor mapping. The 3D torus used for point-to-
point communications is ideally suited for the GTC toroidal
geometry. Additionally, the number of toroidal domains
used in the GTC simulations exactly match one of the di-
mensions of the BG/L network torus. Thus by using an ex-
plicit mapping file that aligns the main point-to-point com-
munications that occur when particles move from one do-
main to the next, we were able to improve the performance
of the code by 30% over the default mapping.

∗The authors thank Bob Walkup for his BG/L optimization insights.

4 ELBM3D: Lattice Bolzmann
Fluid Dynamics

Lattice-Boltzmann methods (LBM) have proved a good
alternative to conventional numerical approaches for simu-
lating fluid flows and modeling physics in fluids [20]. The
basic idea is to develop a simplified kinetic model that
incorporates the essential physics, and reproduces correct
macroscopic averaged properties.

While LBM methods lend themselves to easy implemen-
tation of difficult boundary geometries (e.g. by the use of
bounce-back to simulate no slip wall conditions), here we
report on 3D simulations under periodic boundary condi-
tions, with the spatial grid and phase space velocity lattice
overlaying each other. Each lattice point is associated with
a set of mesoscopic variables, whose values are stored in
vectors proportional to the number of streaming directions.
The lattice is partitioned onto a 3-dimensional Cartesian
processor grid, and MPI is used for communication — a
snapshot of the communication topology is shown in Fig-
ure 1(b), highlighting the relatively sparse communication
pattern. As in most simulations of this nature, ghost cells
are used to hold copies of the planes of data from neighbor-
ing processors. For ELBM3D, a non-linear equation must
be solved for each grid-point and at each time-step so that
the collision process satisfies certain constraints. Since this
equation involves taking the logarithm of each component
of the distribution function the whole algorithm becomes
heavily constrained by the performance of the log() func-
tion.

4.1 Experimental results

Strong-scaling results for a system of 5123 grid points
are shown in Figure 3 for both (a) raw performance and (b)
percentage of peak. For each of the superscalar machines
the code was restructured to take advantage of specialized
log() functions — ASSV library for IBM and ACML for
AMD — that compute values for a vector of arguments.
(The benefits of these libraries are discussed in Section 3.)
Using this approach gave ELBM3D a performance boost
of between 15–30% depending on the architecture. For the
X1E, the innermost gridpoint loop was taken inside the non-
linear equation solver to allow for full vectorization. After
these optimizations, ELBM3D has a kernel of fairly high
computational intensity and a percentage of peak of 15–
30% on all architectures.

ELBM3D shows good scaling across all of our evalu-
ated platforms. This is due to a lack of load balance issues,
and only nearest neighbor point-to-point messaging being
required. As expected, the parallel overhead increases as the
ratio of communication to computation increases. The par-
allel efficiency on going to higher concurrencies shows the



0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

64 128 256 512 1024
Processors

G
fl
o
p
s/
P
ro
ce
ss
o
r

Bassi
Jacquard
Jaguar
BG/L
Phoenix

(a)

15%

17%

19%

21%

23%

25%

27%

29%

31%

64 128 256 512 1024

Processors

P
e
rc

e
n

t 
o

f 
P

e
a
k

Bassi
Jacquard
Jaguar
BG/L
Phoenix

(b)

Figure 3. ELBM3D strong-scaling performance using a 5123 grid by (a) Gflops/processor and (b)
percentage of peak. ALL BG/L data collected on the ANL BG/L system in coprocessor mode.

least degradation on the BG/L system (although the mem-
ory requirements of the application and MPI implementa-
tion prevents running this size on fewer than 256 proces-
sors). Both Phoenix and Jaguar are very close behind, fol-
lowed by Jacquard and Bassi.

Our experiments bear out the fact that the higher com-
putational cost of the entropic algorithm, as compared to
traditional LBM approaches, can be cast in a way that leads
to efficient computation on commodity processors. We are
thus optimistic that ELBM3D will be able to deliver excep-
tional performance on planned petascale platforms.

5 Cactus: General Relativity
Astrophysics

One of the most challenging problems in astrophysics
is the numerical solution of Einstein’s equations following
from the Theory of General Relativity (GR): a set of cou-
pled nonlinear hyperbolic and elliptic equations contain-
ing thousands of terms when fully expanded. The BSSN-
MoL application makes use of the Cactus Computational
ToolKit [2,8] to evolve Einstein’s equations stably in 3D on
supercomputers to simulate astrophysical phenomena with
high gravitational fluxes — such as the collision of two
black holes and the gravitational waves radiating from that
event. The GR components of Cactus use the ADM-BSSN
formulation [1] to express Einstein’s equations as a system
of partial differential equations (four constraint equations
and 12 evolution equations) that are evolved forward as an
initial value problem. The Method of Lines (MoL) is used
to solve the partial differential equations by discretizing in
all but one dimension, and then integrating the semi-discrete
problem as a system of ODEs in order to improve computa-
tional efficiency. For parallel computation, the grid is block
domain decomposed so that each processor has a section of

the global grid. The standard MPI driver (PUGH) for Cac-
tus solves the PDE on a local grid section and then updates
the values at the ghost zones by exchanging data on the
faces of its six topological neighbors — resulting in the reg-
ular communication topology graph shown in Figure 1(c).

5.1 Experimental results

Figure 4 presents weak-scaling performance results for
the Cactus BSSN-MoL application using an 603 per pro-
cessor grid. In terms of raw performance, the Power5-based
Bassi clearly outperforms any other systems, especially the
BG/L where the Gflops/P rate and the percentage of peak
performance is somewhat disappointing. The lower com-
putational efficiency of BG/L is to be expected from the
simpler dual-issue in-order PPC440 processor. However,
while the per-processor performance of BG/L is somewhat
limited, the scaling behavior is impressive, achieving near
perfect scalability for up to 16K processors. This is (by far)
the largest Cactus scaling experiment to date, and shows
extremely promising results. Due to memory constraints
we could not conduct virtual node mode simulations for the
603 data set, however further testing with a smaller 503 grid
shows no performance degradation for up to 32K (virtual
node) processors. This strongly suggests that the Cactus ap-
plication will scale to much larger, petascale, systems. Ad-
ditional investigations with processor topology mappings
on the BG/L showed no significant effects.

The Jacquard cluster shows modest scaling, which is
probably due to the (relatively) more loosely coupled nature
of this system as opposed to the tight software and hardware
interconnect integration of the other platforms in our study.
Bassi shows excellent scaling but the size of the largest con-
currency was significantly smaller compared to that of the
BG/L so it remains to be seen if IBM’s Federation HPS in-
terconnect will scale to extremely larger systems.



0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

16 64 256 1024 4096 8192 16384

Processors

G
fl
o
p
s/
P
ro
ce
ss
o
r

Bassi
Jacquard
BG/L
Phoenix

(a)

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

16 64 256 1024 4096 8192 16384

Processors

P
e
rc

e
n

t 
o

f 
P

e
a
k

Bassi
Jacquard
BG/L
Phoenix

(b)

Figure 4. Cactus weak scaling experiments on a 603 per processor grid in (a) Gflops/processor and
(b) percentage of peak. All BG/L data was run on BGW. Phoenix data shown on Cray X1 platform.

Phoenix, the Cray X1 platform, showed the lowest com-
putational performance of our evaluated systems. The most
costly procedure for the X1 was the computation of ra-
diation boundary condition, which continued to drag per-
formance down despite considerable effort to rewrite it in
vectorizable form. In previous studies [3], the vectorized
boundary conditions proved beneficial on a number of vec-
tor platforms including the NEC SX-8 and Earth; however
the X1 continued to suffer disproportionally from small por-
tions of unvectorized code due to the large differential be-
tween vector and scalar performance, highlighting that no-
tions of architectural balance cannot focus exclusively on
bandwidth (bytes per flop) ratios.

6 BeamBeam3D:
High Energy Physics

BeamBeam3D [15] models the colliding process of two
counter-rotating charged particle beams moving at close to
the speed of light. An accurate modeling of the beam-beam
interaction is essential to maximizing the luminosity in high
energy accelerator ring colliders.The application performs a
3D particle-in-cell computation that contains multiple mod-
els (weak-strong, strong-strong) and multiple collision ge-
ometries (head-on, long-range, crossing angle). It tracks
macroparticles in colliders using a transfer map.The simu-
lated particles are deposited onto a three-dimensional grid
to calculate the 3D charge density distribution. At collision
points, the electric and magnetic field are calculated self-
consistently by solving the Vlasov-Poisson equation using
Hockney’s FFT method. Then the electric field and mag-
netic field are calculated on the grid and reinterpolated back
to the macroparticles. The macroparticles are advanced in
momentum space using these fields plus external fields from
accelerator forces and focusing elements. The parallel im-

plementation utilizes a particle-field decomposition method
to achieve load balance. BeamBeam3D’s communication is
dominated by the expensive global operations to gather the
charge density, broadcast the electric and magnetic fields,
and perform transposes for the 3D FFTs — this high volume
of global message exchange communication can be seen in
the topology graph of Figure 1(d).

6.1 Experimental results

For the strong-scaling experiments conducted in this
study, we examine a 5 million particle simulation using
grid resolutions of 256x256x32; comparative performance
data are shown in Figure 5(a). In terms of absolute perfor-
mance, Phoenix delivers the fastest time-to-solution on 64
processors, almost twice the rate of the next fastest system
(Bassi). The multi-streaming vector processor on Phoenix
performs excellently on the local computations. However,
Phoenix performance degrades quickly with increasing con-
currency, and is surpassed by Bassi at 512 processors. The
relative degradation on the Phoenix system is partially due
to the high communication to computation ratio for Beam-
Beam3D — at 256 processors over 50% of Phoenix’s run-
time is spent on communication. Alternative programming
paradigms, such as the UPC or CAF global address space
languages could potentially improve the Phoenix commu-
nication bottleneck [19] compared with the current MPI
approach. Additionally, Phoenix performance degrades at
high concurrencies due to decreasing vector lengths for this
fixed size problem, whereas superscalar platforms generally
benefit due to increased cache reuse.

Results also show that Jaguar and Jacquard attain nearly
equivalent performance and scalability behavior. Note that
although these two platforms use similar Opteron processor
technology, they are integrated with vastly different inter-
connect networks. For this communication-intensive exper-



0.0

0.2

0.4

0.6

0.8

1.0

1.2

64 128 256 512 1024 2048

Processors

G
fl

o
p

s/
P

ro
ce

ss
o

r
Bassi
Jacquard
Jaguar
BG/L 
Phoenix

(a)

0%

1%

2%

3%

4%

5%

6%

7%

8%

64 128 256 512 1024 2048

Processors

P
e
rc

e
n

t 
o

f 
P

e
a
k

Bassi
Jacquard
Jaguar
BG/L 
Phoenix

(b)

Figure 5. BeamBeam3D strong-scaling performance on a 2562 × 32 grid using 5 million particles in
(a) Gflops/processor and (b) percentage of peak. For BG/L data, ANL results shown for P ≤ 512,
BGW results for P = 1024,2048.

iment, neither the XT3 nor the InfiniBand approaches con-
fer a performance advantage. However, both of the Opteron
systems are almost 1.8x slower than Bassi on 512 proces-
sors. Looking at the BG/L system, results show a signifi-
cant slowdown compared to the other evaluated platforms
(almost 4.5x slower than Bassi for P=512).

Figure 5(b) presents BeamBeam3D’s sustained percent-
age of peak for our evaluated systems, showing that no
platform attained more than about 5% of theoretical peak.
For 512 processors, Bassi achieves the highest rate (5.1%),
followed by Jacquard (5%), Jaguar (4%), BG/L (3%) and
Phoenix (2%). A number of factors contribute to this low
efficiency: indirect data addressing, substantial amounts of
global all-to-all communication, and extensive data move-
ment (which does not contribute any flops to the calcula-
tion). Due to the large volume of global communication,
the parallel efficiency generally declines quickly on all eval-
uated platforms.

Finally, we highlight the 2048-way BG/L results, rep-
resenting the highest concurrency BeamBeam3D calcula-
tion performed to date. Higher scalability experiments are
not possible for this problem size, since there are a lim-
ited number of available subdomains. This is because a
two-dimensional grid decomposition scheme was chosen
to minimize communication requirements. Note that al-
though both BB3D and GTC are PIC codes simulating
charged particle interactions, they simulate very different
underlying systems. GTC can effectively implement a
toroidal grid-based domain decomposition due to the rel-
atively small movements of the particles; however, the par-
ticles in BB3D move extensively within each beam, mak-
ing a pure domain decomposition too expensive in terms
of required volume of communication. Nonetheless, we
believe that BeamBeam3D has the potential to become a

petascale application, but extensive algorithmic reengineer-
ing would be required to incorporate additional decompo-
sition schemes and eliminate communication bottlenecks in
order to achieve the vast degree of required parallelism.

7 PARATEC: First Principles
Materials Science

PARATEC (PARAllel Total Energy Code [14]) performs
ab-initio quantum-mechanical total energy calculations us-
ing pseudopotentials and a plane wave basis set. The pseu-
dopotentials are of the standard norm-conserving variety.
Forces can be easily calculated and used to relax the atoms
into their equilibrium positions. PARATEC uses an all-
band conjugate gradient (CG) approach to solve the Kohn-
Sham equations of Density Functional Theory (DFT) and
obtain the ground-state electron wave functions. Much of
the computation time (typically 60%) involves FFTs and
BLAS3 routines, which run at a high percentage of peak
on most platforms. In solving the Kohn-Sham equations
using a plane wave basis, part of the calculation is carried
out in real space and the remainder in Fourier space using
parallel 3D FFTs to transform the wave functions between
the two spaces. The global data transposes within these FFT
operations — as seen in Figure 1(e) — account for the bulk
of PARATEC’s communication overhead, and can quickly
become the bottleneck at high concurrencies.

7.1 Experimental results

Figure 6 presents strong-scaling performance results
for a 488 atom CdSe (Cadmium Selenide) Quantum Dot
(QD) system which has important technological applica-
tions due to its photoluminescent properties. Due to the use



0

1

2

3

4

5

6

64 128 256 512 1024 2048

Processors

G
fl
o
p
s/
P
ro
ce
ss
o
r

Bassi
Jacquard
Jaguar
BG/L
Phoenix

(a)

15%

25%

35%

45%

55%

65%

75%

64 128 256 512 1024 2048

Processors

P
e
rc

e
n

t 
o

f 
P

e
a
k

Bassi
Jacquard
Jaguar
BG/L
Phoenix

(b)

Figure 6. PARATEC strong-scaling performance on a 488 atom CdSe quantum dot. Power5 data for
P=1024 was run on the LLNL Purple system†. The BG/L data, collected on the BGW, is for a 432 atom
bulk silicon due to memory constraints. Phoenix X1E data was collected using an X1 binary.

of BLAS3 and optimized one dimensional FFT libraries,
which are highly cache resident, PARATEC obtains a high
percentage of peak on the different platforms studied. The
results for BG/L are for a smaller system (432 atom bulk
silicon) due to memory constraints.

Results show that the Power5-based Bassi system ob-
tains the highest absolute performance of 5.49 Gflops/P on
64 processors with good scaling to larger processor counts.
The fastest Opteron systems (3.39 Gflops/P) was Jaguar
(XT3) running on 128 processors. (Jacquard did not have
enough memory to run the QD system on 128 processors.)
The higher bandwidth for communications on Jaguar (see
Table 1) allows it to scale better than Jacquard for this
communication-intensive application. The BG/L system
has a much lower single processor performance than the
other evaluated platforms due to a relatively low peak speed
of only 2.8 GF/s. BG/L’s percent of peak drops significantly
from 512 to 1024 processors, probably due to increased
communication overhead when moving from a topologi-
cally packed half-plane of 512 processors to a larger con-
figuration. The smaller system being run on the BG/L (432
atom bulk silicon) also limits the scaling to higher processor
counts. Overall, Jaguar obtained the maximum aggregate
performance of 4.02 Tflops on 2048 processors.

Looking at the vector system, results show that the
Phoenix X1E achieved a lower percentage of peak than the
other evaluated architectures; although in absolute terms,
Phoenix performs rather well due to the high peak speed of
the MSP processor∗. One reason for this is the relatively

†Purple, located at LLNL, is architecturally similar to Bassi and con-
tains 12,208 IBM Power5 processors. The authors thank Tom Spelce and
Bronis de Supinksi of LLNL for conducting the Purple experiments.

∗Results on the X1E were obtained by running the binary compiled on
the X1, as running with an optimized X1E generated binary (-O3) caused
the code to freeze. Cray engineers are investigating the problem.

slow performance of the X1E scalar unit compared to the
vector processor. In consequence, the X1E spends a smaller
percentage of the total time in highly optimized 3D FFTs
and BLAS3 libraries than on any of the other machines. The
other code segments are handwritten F90 routines and have
a lower vector operation ratio.

PARATEC results do not show any clear advantage for
a torus versus a fat-tree communication network. The main
limit to scaling in PARATEC is our handwritten 3D FFTs,
where all-to-all communications are performed to transpose
the data across the machine. In a single 3D FFT the size of
the data packets scales as the inverse of the number of pro-
cessors squared. PARATEC can perform an all-band cal-
culations, allowing the FFT communications to be blocked,
resulting in larger message sizes and avoiding latency prob-
lems. Overall, the scaling of the FFTs is limited to a few
thousand processors; thus in order to utilize PARATEC at
the petascale level with tens (or hundreds) of thousands of
processors, we plan to introduce a second level of paral-
lelization over the electronic band indices. This will greatly
benefit the scaling and reduce per processor memory re-
quirements on architectures such as BG/L.

8 HyperCLaw: Hyperbolic
AMR Gas Dynamics

Adaptive mesh refinement (AMR) is a powerful tech-
nique that reduces the computational and memory resources
required to solve otherwise intractable problems in com-
putational science. The AMR strategy solves the sys-
tem of partial differential equations (PDEs) on a relatively
coarse grid, and dynamically refines it in regions of scien-
tific interest or where the coarse grid error is too high for
proper numerical resolution. HyperCLaw is a hybrid C++/



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

16 32 64 128 256

Processors

G
fl

o
p

s/
P

ro
ce

ss
o

r
Bassi
Jacquard
Jaguar
BG/L 
Phoenix

(a)

0%

1%

2%

3%

4%

5%

6%

16 32 64 128 256 512 1024

Percent of Peak

P
e
rc

e
n

t 
o

f 
P

e
a
k

Bassi
Jacquard
Jaguar
BG/L 
Phoenix

(b)

Figure 7. HyperCLaw weak-scaling performance on a base computational grid of 512x64x32 in (a)
Gflops/processor and (b) percentage of peak. All BG/L data collected on ANL system.

Fortran AMR code developed and maintained by CCSE at
LBNL [7, 16] where it is frequently used to solve systems
of hyperbolic conservation laws using a higher-order Go-
dunov method. The HyperCLaw code consists of an appli-
cations layer containing the physics classes defined in terms
of virtual functions. The basic idea is that data blocks are
managed in C++ in which ghost cells are filled and tempo-
rary storage is dynamically allocated so that when the calls
to the physics algorithms (usually finite difference methods
implemented in Fortran) are made, the same stencil can
be used for all points and no special treatments are required.

8.1 Experimental results

The HyperCLaw problem examined in this work profiles
a hyperbolic shock-tube calculation, where we model the
interaction of a Mach 1.25 shock in air hitting a spherical
bubble of helium. This case is analogous to one of the
experiments described by Haas and Sturtevant [10]. The
difference between the density of the helium and the sur-
rounding air causes the shock to accelerate into and then
dramatically deform the bubble. The base computational
grids for the problems studied is 512×64×32. These grids
were adaptively refined by an initial factor of 2 and then
a further factor of 4, leading to an effective resolution of
4096× 512× 256.

Figure 1(f) shows the interprocessor communication
topology of the HyperCLaw calculation. Note that each
processor has a surprisingly large number of communicat-
ing partners, making the topology graph look more like a
many-to-many pattern rather than a simple nearest neighbor
algorithm. This highlights the added complexity of main-
taining hierarchical grids throughout the calculation. Un-
derstanding the evolving communication requirements of
AMR simulations will be the focus of future work.

Figure 7 presents the absolute runtime and percent-
age of peak for the weak-scaling HyperCLaw experiments.
In terms of absolute runtime (at P=128), Bassi achieves
the highest performance followed by Jacquard, Jaguar,
Phoenix, and finally BG/L (the Phoenix and Jacquard exper-
iments crash at P≥256; system consultants are investigating
the problems). Observe that all of the platforms achieve
a low percentage of peak; for example at 128 processors,
Jacquard, Bassi, Jaguar, BG/L, and Phoenix achieve 4.8%,
3.8%, 3.5%, 2.5%, and 0.8% respectively. Achieving peak
performance on the BG/L requires both (double hummer)
FPUs to be saturated with work; since it is very difficult
for the compiler to effectively generate these types of in-
structions, BG/L peak performance is most likely to be only
half of the stated peak. With this in mind, the BG/L would
achieve a sustained performance of around 5%, commen-
surate with the other platforms in our study. Note that al-
though these are weak-scaling experiments in the numbers
of grids, the volume of work increases with higher concur-
rencies due to increased volume of computation along the
communication boundaries; thus, the percentage of peak
generally increases with processor count.

Although Phoenix performs relatively poorly for this ap-
plication, especially in terms of its attained percentage of
peak, it is important to point out that two effective X1E op-
timization were undertaken since our initial study into AMR
vector performance [22]. Our preliminary study showed
that the knapsack and regridding phases of HyperCLaw
were largely to blame for limited X1E scalability, cumula-
tively consuming almost 60% of the runtime for large con-
currency experiments. The original knapsack algorithm —
responsible for allocating boxes of work equitably across
the processors — suffered from a memory inefficiency. The
updated version copies pointers to box lists during the swap-
ping phase (instead of copying the lists themselves), and



0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Bassi 
Pwr5

Jacquard 
Opteron

Jaguar 
Opteron

BG/L 
PPC440

Phoenix 
X1E (MSP)

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n

ce
HCLaw (P=128)
BB3D (P=512)
Cactus (P=256)
GTC (P=512)
ELB3D (P=512)
PARATEC (P=512)
AVERAGE

 

(a)

67% 45% 43%55%

0%

5%

10%

15%

20%

25%

30%

Bassi 
Pwr5

Jacquard 
Opteron

Jaguar 
Opteron

BG/L 
PPC440

Phoenix 
X1E (MSP)

P
e
rc

e
n

t 
o

f 
P

e
a
k

(b)

Figure 8. Summary of results for largest comparable concurrencies (a) relative runtime performance
normalized to fastest system and (b) sustained percentage of peak. Cactus Phoenix results are on
the X1 system. BG/L results are shown for P=1024 on Cactus and GTC.

results in knapsack performance on Phoenix that is almost
cost-free, even on hundreds of thousands of boxes.

The function of the regrid algorithm is to replace an ex-
isting grid hierarchy with a new hierarchy in order to main-
tain numerical accuracy, as important solution features de-
velop and move through the computational domain. This
process includes tagging coarse cells for refinement and
buffering them to ensure that neighboring cells are also re-
fined. The regridding phase requires the computations of
box list intersection, which was originally implemented in
a O(N2) straightforward fashion. The updated version uti-
lizes a hashing scheme based on the position in space of the
bottom corners of the boxes, resulting in a vastly-improved
O(NlogN) algorithm. This significantly reduced the cost
of the regrid algorithm on Phoenix, resulting in improved
performance. Nonetheless, Phoenix performance still re-
mains low due to the non-vectorizable and short-vector-
length operations necessary to maintain and regrid the hi-
erarchical data structures.

Overall, our HyperCLaw results highlight the relatively
low efficiency of the AMR approach. This is due (in part)
to the irregular nature of the AMR components necessary to
maintain and regrid the hierarchical meshes, combined with
complex communication requirements. Additionally, the
numerical Godunov solver, although computationally inten-
sive, requires substantial data movement that can degrade
cache reuse. Nevertheless, the efficiency gains associated
with AMR and high-resolution discretizations more than
compensate for the low sustained rate of execution. Other
key result of our study are the knapsack and regridding opti-
mizations, which significantly improved HyperCLaw scala-
bility [22]. These improvements in scaling behavior suggest
that, in spite of the low efficiency, the AMR methodology
is a suitable candidate for petascale systems.

9 Summary and Conclusions

The purpose of any HEC system is to run full-scale
scientific codes, and performance on such applications is
the final arbiter of a platform’s utility; comparative perfor-
mance evaluation data must therefore be readily available
to the HEC community at large. However, evaluating large-
scale scientific applications using realistic problem sizes on
leading supercomputing platforms is an extremely complex
process, requiring coordination of application scientists in
highly disparate areas. Our work presents one of the most
extensive comparative performance results on modern su-
percomputers available in the literature.

Figure 8 shows a summary of results using the largest
comparable concurrencies for all six studied applications
and five state-of-the-art parallel platforms, in relative per-
formance (normalized to the fastest system) and percentage
of peak. Results show that the Power5-based Bassi sys-
tem achieves the highest raw performance for four of our
six applications, thanks to dramatically improved memory
bandwidth (compared to its predecessors), and increased
attention to latency hiding through advanced prefetch fea-
tures. The Phoenix system achieved impressive raw perfor-
mance on GTC and ELBM3D; however, application with
nonvectorizable portions suffer greatly on this architecture
due the imbalance between the scalar and vector proces-
sors. Comparing the two Opteron systems, Jacquard and
Jaguar, we see that, in general, sustained performance is
similar between the two platforms. However, for some ap-
plications such as GTC and PARATEC, the tight integration
of Jaguar’s XT3 interconnect results in significantly better
scalability at high concurrency compared with Jacquard’s
commodity-based InfiniBand network. The BG/L platform
attained the lowest raw and sustained performance on our



suite of applications; however, results at very high concur-
rencies show impressive scalability characteristics and po-
tential for attaining petascale performance.

Results also indicate that our evaluated codes have the
potential to effectively utilize petascale resources. How-
ever, some applications, such as PARATEC and Beam-
Beam3D, will require significant reengineering to incorpo-
rate the additional levels of parallelism necessary to utilize
vast numbers of processors. Other applications, including
the lattice-Bolzmann ELBM3D and the dynamically adapt-
ing HyperCLaw simulation, are already showing scaling
behavior with promising prospects to achieve ultra-scale.
Finally, two of our tested codes, Cactus and GTC, have
successfully demonstrated impressive scalability up to 32K
processors on the BGW system. A full GTC production
simulation was also performed on 32,768 processors and
showed a perfect load balance from beginning to end. This,
combined with its high efficiency on multi-core processors,
clearly qualifies GTC as a primary candidate to effectively
utilize petascale resources.

Overall, these extensive performance evaluations are an
important step toward conducting simulations at the petas-
cale level, by providing computational scientists and system
designers with critical information on how well numerical
methods perform across state-of-the-art parallel systems.
Future work will explore a wider set of computational meth-
ods, with a focus on irregular and unstructured algorithms,
while investigating a broader set of HEC platforms, includ-
ing the latest generation of multi-core technologies.

Acknowledgments

The authors would like to gratefully thank Bob Walkup
for optimizing GTC on the BG/L as well as Tom Spelce and
Bronis de Supinksi of LLNL for conducting the Purple ex-
periments. The authors also thank IBM Watson Research
Center for allowing BG/L access via the BGW Consortium
Day. All authors from LBNL were supported by the Office
of Advanced Scientific Computing Research in the Depart-
ment of Energy Office of Science under contract number
DE-AC02-05CH11231. Dr. Ethier was supported by the
Department of Energy under contract number DEAC020-
76-CH-03073 and by the GPSC SciDAC project.

References

[1] M. Alcubierre, G. Allen, B. Brügmann, et al. Towards an
understanding of the stability properties of the 3+1 evo-
lution equations in general relativity. Phys. Rev. D, (gr-
qc/9908079), 2000.

[2] Cactus Code Server. http://www.cactuscode.org.
[3] J. Carter, L. Oliker, and J. Shalf. Performance evaluation of

scientific applications on modern parallel vector systems. In

VECPAR: High Performance Computing for Computational
Science, Rio de Janeiro, Brazil, July 10-12, 2006.

[4] T. H. Dunigan Jr., J. S. Vetter, J. B. White III, and P. H.
Worley. Performance evaluation of the Cray X1 distributed
shared-memory architecture. IEEE Micro, 25(1):30–40, Jan-
uary/February 2005.

[5] ORNL Cray X1 Evaluation. http://www.csm.ornl.
gov/∼dunigan/cray.

[6] S. Ethier, W. Tang, and Z. Lin. Gyrokinetic particle-in-cell
simulations of plasma microturbulence on advanced com-
puting platforms. J. Phys. : Conf. Series, 16, 2005.

[7] C. for Computational Sciences and E. L. B. N. Laboratory.
http://seesar.lbl.gov/CCSE.

[8] T. Goodale, G. Allen, G. Lanfermann, et al. The Cactus
framework and toolkit: Design and applications. In VEC-
PAR: 5th International Conference, Lecture Notes in Com-
puter Science, Berlin, 2003. Springer.

[9] F. Gygi, E. W. Draeger, B. R. de Supinski, et al. Large-scale
first-principles molecular dynamics simulations on the Blue-
Gene/L platform using the Qbox code. In Proc. SC2005,
Seattle, WA, Nov 12-18, 2005.

[10] J.-F. Haas and B. Sturtevant. Interaction of weak shock
waves with cylindrical and spherical gas inhomogeneities.
Journal of Fluid Mechanics, 181:41–76, 1987.

[11] HPC challenge benchmark. http://icl.cs.utk.
edu/hpcc/index.html.

[12] Z. Lin, T. S. Hahm, W. W. Lee, et al. Turbulent transport re-
duction by zonal flows: Massively parallel simulations. Sci-
ence, Sep 1998.

[13] L. Oliker, J. Carter, M. Wehner, et al. Leading computa-
tional methods on scalar and vector HEC platforms. In Proc.
SC2005, Seattle, WA, Nov 12-18, 2005.

[14] PARAllel Total Energy Code. http://www.nersc.
gov/projects/paratec.

[15] J. Qiang, M. Furman, and R. Ryne. A parallel particle-in-
cell model for beam-beam interactions in high energy ring
colliders. J. Comp. Phys., 198, 2004.

[16] C. A. Rendleman, V. E. Beckner, M. L., W. Y. Crutchfield,
et al. Parallelization of structured, hierarchical adaptive
mesh refinement algorithms. Computing and Visualization
in Science, 3(3):147–157, 2000.

[17] SciDAC: Scientific Discovery through Advanced Comput-
ing. http://www.scidac.gov/.

[18] STREAM: Sustainable memory bandwidth in high perfor-
mance computers. http://www.cs.virginia.edu/
stream.

[19] E. Strohmaier and H. Shan. Apex-Map: A global data ac-
cess benchmark to analyze HPC systems and parallel pro-
gramming paradigms. In Proc. SC2005, Seattle, WA, Nov
12-18, 2005.

[20] S. Succi. The lattice Boltzmann equation for fluids and be-
yond. Oxford Science Publ., 2001.

[21] J. Vetter, S. Alam, T. Dunigan, Jr., et al. Early evaluation
of the Cray XT3. In Proc. IEEE International Parallel &
Distributed Processing Symposium (IPDPS), Rhodes Island,
Greece, April 25-29, 2006.

[22] M. Welcome, C. Rendleman, L. Oliker, et al. Performance
characteristics of an adaptive mesh refinement calculation
on scalar and vector platforms. In CF ’06: Proceedings of
the 3rd conference on Computing Frontiers, May 2-5,2006.


