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Executive Summary 

This white paper proposes the foundation of a High Performance Computing (HPC) Application Software 

Consortium (ASC) of academic, research and industry partners for the development and maintenance of a 
framework for multiphysics simulation on HPC systems using commercial and open-source codes. The 

goal of the proposed consortium is to focus the technologies, resources, and expertise to lower the devel-

opment and ownership costs of multiphysics and multidisciplinary simulation software for both the com-
mercial independent software vendors (ISVs) and HPC applications users. Council on Competitiveness 

research has demonstrated that HPC is a major enabler for U.S. competitiveness, but that the cost of HPC 

simulation software and the lack of software robustness is a significant barrier [1]. Council research has 
also identified an industry need to customize products by simulating all life cycle considerations, includ-

ing market and regulatory requirements, in one integrated environment across the product’s supply chain 

[2]. The ISV community for the HPC market is relatively small and fragmented, therefore unable to invest 

sufficient resources into new breakthrough products.  

Overall, there is a need for improvement in sustained performance, scalability, functionality, and manage-

ability of HPC software. Significant technical challenges remain to implement multidisciplinary and mul-

tiphysics modeling, model validation and verification, large-scale data management, and visualization. 
Emerging system-level simulation software products will require a breadth of performance-value-price 

points to satisfy HPC users ranging from entry-level cluster users to large HPC system users. In addition, 

open interfaces and infrastructures are required to support multiphysics modeling, simulation, and data 
analysis in an interoperable multi-vendor environment. The challenge presented is to change the paradigm 

from tooling, independent software vendors, computing system vendors, and individual supply-chain 

companies working separately to having these firms collaborating on solutions, building common frame-

works, and adding cumulative market value. 

1 Background 

Based on recommendations of the Council’s HPC Advisory Committee, the Council and the University of 
Southern California’s Information Sciences Institute (ISI) have been leading an effort to assess the feasi-

bility of an application software consortium to address the critical need for robust multiphysics and 

multidisciplinary simulation software for HPC systems. This effort includes: 

• In December 2007, the Council and ISI organized a planning workshop with a core group of vol-
unteers from academic computing centers, government laboratories, independent software ven-

dors (ISVs), systems vendors, and industrial HPC users to discuss issues facing the community. 

Topics of the planning workshop included: 1) the need to support full-system multiphysics simu-
lation, 2) the fact that future growth in performance is tied to parallelism because of multi-core, 3) 

concerns about the growing cost of commercial HPC software development, and 4) concerns 

about the rising cost of multiphysics simulation software to end-users. The concepts presented in 

this white paper represent findings from this workshop.  

• In March 2008, an HPC Application Software Consortium Summit meeting is planned to further 

explore the requirements for a multiphysics infrastructure based on modeling and simulation. Par-

ticipants will address technical and industry acceptance issues associated with open interfaces and 
open infrastructure that will enable multiphysics modeling, simulation, and analysis. The role of 

reference platforms and pilot projects will be addressed. The value proposition of the proposed 

consortium will be examined from an end-user and ISV perspective with the importance of creat-
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ing a win-win environment for all parties. The summit will hold a strawman vote of attendees to 

determine interest in the creation of the proposed consortium. Attendees will also examine poten-
tial consortium models and charters. 

2 Technical Approach 

There are a number of critical design challenges facing the application physics simulation market that 
must be addressed in the next few years. One of the most important of these is that parallel programming 

will shortly be mandatory in modern workstations. In the past, the industry has taken advantage of the 

exponentially increasing processor performance to expand the capabilities of simulation software. Conse-
quently, there hasn’t been an incentive to improve the parallel scaling of existing software packages. 

However, the computer industry has reached a crisis where the transistor scaling consistent with Moore’s 

Law no longer results in faster clock rates from Dennard scaling [7]. Instead, chip vendors are now in-

creasing the number of cores per chip. Processor designs are expected to change dramatically in the com-
ing years, adopting many-core architectures and dedicated accelerator units. This means that many of the 

legacy code solvers found in mainstream modeling packages will not continue to improve in performance 

unless they are rewritten take advantage of parallel processing cores and novel accelerator architectures. 

In addition to parallel scaling, multiphysics and multidisciplinary coupling presents additional challenges 

for software complexity. Commercial modeling and simulation software has become more sophisticated 

and complex over time to tackle a broader range of challenging engineering problems. HPC provides an 
opportunity for higher fidelity models for increased simulation accuracy. Increased fidelity for the most 

challenging modeling problems depends as much on multiphysics and multidisciplinary coupling as it 

does increasing the resolution and accuracy of any of the individual component solvers. The need to 

tackle increasingly complex multiphysics and multidisciplinary simulation problems challenges current 
monolithic software packages and demands that the software be refactored to enable more modularity in 

order to support more flexible composition of solvers. 

Addressing the parallel programming and multiphysics/multidisciplinary coupling challenges will signifi-
cantly raise software development costs due to increased software complexity. However, industry repre-

sentatives at the planning workshop observed that HPC usage is increasingly driven by the cost of soft-

ware licenses. Either the market must expand to amortize the costs across a broader customer base or the 
software must scale in capability to justify the increased investment. The specter of software complexity 

faced by the application physics-based simulation industry bears some similarity to issues confronting the 

academic and government HPC community today as they develop complex multiphysics software for 

petaflop-scale HPC systems. They have discovered that the effectiveness of these systems is limited by 
the ability to field complex applications. This trend leads to a crisis where complexity hampers the ability 

of software companies to improve their software, which will ultimately limit the growth of the entire HPC 

market, both for hardware and for software. Software complexity must be managed to succeed. 

Today, there is no single independent software vendor (ISV) that can provide integrated multiphysics and 

multidisciplinary solutions applicable to all fields of science and engineering. The scope of the software 

development challenge is too large for any single ISV to take on. What is needed is a framework and re-

lated standards that facilitate integration of existing solutions in order to create the type of multidiscipli-
nary solution that industries require. Advantages of the common framework are clear for smaller ISVs 

that rely on the framework for integration into a complete solution. However, there are also many advan-

tages for larger ISVs to adopt such frameworks, including the reduced integration costs with third-party 
software components, reduced overheads associated with maintaining common operating system level, 

compiler options, etc.  In addition, by adopting a common framework, ISVs enable their customers to ex-

tend and customize their solutions through standard tools and methods, increasing the power of the solu-
tion while reducing the cost of customization and integration of the core simulation software products. 
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Based on the collective experiences of government and academic laboratories developing large sciences 

and defense applications in addition to the success of component architectures in modern business logic 
applications, it is clear that software frameworks offer a compelling approach to address the software de-

velopment challenges described above. The next step is to identify the best technical approach. Sec-

tion 2.1 of this paper defines different levels of component interoperability found in software frameworks. 

Section 2.2 cites relevant examples of software frameworks found in the community. Sections 2.3 and 2.4 
compare software frameworks and recommend a strawman community framework approach. 

2.1 Levels of Component Interoperability in Software Frameworks 

The state of evolution of application physics software can be measured in terms of level of component 
interoperability, given in Figure 1. The level of interoperability is defined by the degree to which compo-

nents must conform to a set of rules set by the framework in order to achieve interoperability. This paper 

refers to three levels of interoperability: 

• Minimal Component Interoperability: A majority of the existing commercial solvers based on 

legacy codes can be described as having minimal component interoperability. Individual physics 

models are handled by separate solvers. Therefore, the physics domains are completely uncou-

pled; static analysis might be performed across physics domains using file translators or common 
interchange file formats, also referred to as workflow coupling. The framework requires nothing 

of the individual solvers except that they share the same file format. 

• Shallow Component Interoperability: Several of the leading simulation software vendors have 
released simulation suites that are beginning to exhibit shallow component interoperability. At 

this level, physics models are loosely coupled at some time step or discrete event. Each solver 

maintains its own internal state representation of its respective domain. Common data is ex-
changed using wrappers to some interchange interface over a network service. Therefore, the de-

velopment guidelines imposed by the framework stop at the interface to the component. The 

framework developer need only provide a standards-based interface that is external to the solver 

to achieve interoperability. In the commercial market, shallow component interoperability is usu-

 

Figure 1. Evolution of Application Physics Software 
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ally limited within a single vendor’s offerings, although some open interchange standards are be-

ginning to emerge based on web services.  

•  Deep Component Interoperability: A few leading HPC laboratories have developed physics 

component frameworks where the solvers share a common service infrastructure for communica-

tions and data management. Physics models can be tightly coupled at this level of interoperabil-

ity. In this case, the component developer must also heed rules regarding the internal organization 
of the component in order to achieve interoperability with the framework. This approach hides 

the complexity of the underlying hardware platform and offers higher-level abstractions for man-

aging parallelism, thereby providing opportunities for improved platform portability and parallel 
system library optimization by the hardware vendors themselves. 

2.2 Example Framework Architectures 

The goal of the proposed consortium is to advance the application physics-based simulation market on a 
path towards deep component interoperability. The first step in this path is to support software vendor 

community adoption of a common set of standards for shallow component interoperability. The consor-

tium would provide a neutral environment where commercial interests collaborate on shallow component 

interoperability standards that lower software development costs and provide an overall market benefit. 
The next step is for the emergent application physics software community to agree on a common infra-

structure for deep component interoperability and possibly to develop an open reference implementation. 

Full-system simulation will require large, complex, tightly coupled multiphysics and multidisciplinary 
models only possible with deep component interoperability. The following sections discuss both deep and 

shallow interoperability frameworks and motivations for their use. They are meant to be instructive of the 

capabilities and architectures of frameworks rather than an endorsement of a specific framework. 

2.2.1 Shallow Component Interoperability Framework Example: OMD-SA 

The Open Multi-Discipline - Simulation Architecture (OMD-SA) framework [3] is an extensible and 
flexible Service Oriented Architecture (SOA) for scalable multidisciplinary engineering analysis that has 

been designed by MSC Software to support efficient data transfer for modular multiphysics simulations 
on HPC systems. Whereas older generation codes used data files to exchange model data between various 

solvers in a multiphysics application, the OMD-SA architecture enables direct transfers between the com-

ponents as well as a composition system for combining solver components into a single application. As 
the simulation data can easily be in the gigabytes or even terabytes, the transfer of data across service lay-

ers must be optimized. Specifically, the framework must avoid unneeded copying or transfer of data if it 

is not absolutely necessary. Services in this framework can be either in a local application space in a re-

mote application space. Local services should cost no more than a simple function call, i.e. the framework 
has negligible overhead on the overall performance. The framework supports language interoperability so 

that existing optimized code written in FORTRAN, C, or C++ can be used to implement services within 

the framework to support this capability. Remote services leverage standard and emerging network proto-
cols to maximize performance. A single service can be used both locally and remotely, and it is up to the 

framework to determine the usage and the appropriate optimizations relevant to each case. Services must 

be highly tuned internally for efficient processing, using multi-threading, caching, efficient sharing of 
memory across services where possible, etc.  

There are 4 main elements to the OMD-SA architecture: 

• Component Framework – The component framework is an open SOA model where the services 

are available on-demand. The component framework is comprised of multiple layers. The serv-
ices are connected through the Simulation Bus and a common data model that assures scalability 

and effective application of the services to a simulation application. 

• Simulation Clients – The services are exposed to the various players in the simulation process 
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through different clients, both rich and thin, that address the specific user needs. 

• External Services – External services are available to OMD-SA through standard open plug-in 
technology. Legacy applications, 3rd party applications, as well as in-house developed applica-

tions can be exposed as services to OMD-SA applications. 

• Enterprise Service Bus – The Enterprise Service Bus can be either an existing ESB within an 

enterprise or a third-party ESB to which OMD-SA will interface. This allows for the use of exter-
nal enterprise data and processes within a simulation process, i.e. using geometry from PDM 

within simulation. This allows for the use of simulation services and processes within external en-

terprise applications.  

OMD-SA uses emerging standards for interface definitions and Internet protocols, including OMG-IDL 

(ISO standard 14750) and WDSL for service description and interface definition, UDDI for service dis-

covery, and SOAP for service invocation/interaction. OMD-SA is an open platform for customers and 
partners to address extended or proprietary applications through the customizable service APIs, the SOA, 

and the programmable user interfaces.  

OMD-SA is an example of a shallow component interoperability framework in terms of the interfaces it 

presents to developers. Integrating a component into this framework doesn’t require any changes to the 
internal data model employed by the solver. Each component is able to share data with other physics 

solvers using the standards-based APIs to write data to the simulation bus in an operation that looks like 

writing a file to disk (as would be the case for older multiphysics simulations), but can reside in memory 
for local data exchanges between simulation clients. All parallelism remains internal to each component, 

which enables the solvers to be incorporated with little or no changes to their internal data model or data 

structures. While the shallow interoperability model simplifies coupling of components, the approach 
does not support any form of abstraction or modularity for the implementation of the parallelism. 

2.2.2 Shallow Component Interoperability Framework Example: FIPER 

The FIPER technology and software architecture designed by Engineous Software is a web-based distrib-

uted design and integration infrastructure that allows organizations to access, execute, and reuse design 
tools and processes. Design teams may exist as workgroups inside an organization or may be part of a 

geographically dispersed network of partners. The FIPER software architecture employs a loosely cou-

pled, multi-discipline, and multi-view approach to describe its architectural frameworks, as required by 
ANSI/IEEE 1471-2000, OMG/UML 2.0 standards and the recommended best practices for software-

intensive systems. At the very core, FIPER technology is defined as a set of software frameworks along 

four major services that represent scalable enterprise architecture for a high performance enterprise simu-

lation integration and multidisciplinary design exploration platform:  

• Application Architecture Framework is built on top of the FIPER system-level frameworks 

and utilizes the FIPER API classes (a.k.a. FIPER SDK) for developing FIPER models and com-

ponents, local and remote model execution, which communicates with and consumes the man-
agement services of the FIPER ACS.  

• System-Level Frameworks is composed of several helpful utilities and common services that 

provide access to system security and logging, data access, license management, exception han-
dling, and FIPER results. 

• ACS (Application Control System) Framework is based on the J2EE distributed standards and 

utilizes J2EE middleware services and frameworks. The ACS defines a consistent approach for 

reusing FIPER message protocol based on the JMS message provider services, its distributed ob-
jects, data objects, and service components. Key framework components are; distributed event 

system, workflow and distributed resource / job management, model execution, station and secu-

rity services, and Web access services. The ACS also enables FIPER collaboration capabilities 
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such as component and model publishing and sharing via FIPER Library (a virtually centralized 

and physically distributed model and component repository), workgroup collaboration by refer-
ence or by copy for pre-built design processes, and Web Services B2B collaboration based on a 

SOA (Service-Oriented Architecture) solution.      

• System Architecture Framework provides the tight cohesion and loose coupling between the 

FIPER applications, ACS, and its application integration components. The FIPER technology 
standards and framework provide several means to integrate other applications and their perspec-

tive data that can be realized via SOA Web Services, Portal and Portlets, Web Server and Serv-

lets, Message Oriented Middleware, or Enterprise Java Beans frameworks. FIPER also transpar-
ently integrates with other grid computing systems such as LSF and PBS Pro for execution of 

complicated multidisciplinary and multi-objective computation workflows in a Grid environment. 

Integration with other Enterprise Systems (PDM, PLM, etc.) can be achieved via FIPER Enter-
prise Data Bus (an enterprise application integration framework) or via a standard Enterprise 

Service Bus integration solution.    

In summary, FIPER technology provides several software frameworks for integration of modular, distrib-

uted simulation models from different domains into a consistent integrated model based on standardized 
loosely coupled distributed services. FIPER is a commercially supported system in production used by 

hundreds of companies worldwide ranging from aerospace, automotive, energy, to consumer goods. 

2.2.3 Deep Component Interoperability Framework Example: Cactus 

The Cactus Framework [4] is an open source, modular, portable programming environment for collabora-
tive HPC computing. Cactus consists of both a programming model with a set of application-oriented 

APIs for parallel operations, management of grid variables, parameters etc, as well as a set of modular 
swappable tools implementing parallel drivers, coordinates, boundary conditions, elliptic solvers, interpo-

lators, reduction operations, and efficient I/O. Although Cactus originated in the numerical relativity 

community where the largest HPC resources were required to model black holes and neutron stars, Cactus 

is now a general programming environment with application communities in computational fluid dynam-
ics, coastal modeling, reservoir engineering, quantum gravity and others.  

Cactus consists of four main elements: 

• The Cactus Flesh, written in ANSI C, acts as the coordinating glue between modules that enables 
composition of the modules into full applications.  Although the architecture is different, the 

Flesh plays the same role as the “Enterprise Service Bus” for the OMD-SA framework. The Flesh 

is independent of all modules, includes a rule based scheduler, parameter file parser, build sys-

tem, and at run time holds information about the grid variables, parameters, methods in the mod-
ules and acts as a service library for modules.  

• Cactus modules are termed Thorns and can be written in Fortran 77 or 90, C or C++. Each thorn 

is a separate library providing a standardized interface to some functionality. The “thorns” are 
similar in nature to the “Simulation Clients” in OMD-SA, but Cactus further externalizes the im-

plementation of parallelism for the thorns, enabling different architecture-specific implementa-

tions of parallelism to be plugged in. Thorns providing the same interface are interchangeable and 
can be directly swapped.  Each thorn contains four configuration files that specify the interface 

between the thorn and the Flesh or other thorns (variables, parameters, methods, scheduling and 

configuration details). These configuration files have a well-defined language and can thus be 

used as the basis for interoperability with other component based frameworks. 

• Drivers are a specific class of Cactus Thorns that implement the model for parallelism. Each 

solver thorn is written to an abstract model for parallelism, but the Driver supplies the concrete 

implementation for the parallelism. For example, the PUGH (Parallel UniGrid Hierarchy) driver 
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implements MPI parallelism, whereas the ShMUGH (Shared Memory UniGrid Hierarchy) driver 

provides a shared memory/threaded implementation for the parallelism.  The application can use 
different drivers without requiring any changes to the physics thorns.  However, the thorns must 

be written specifically to the guidelines of the Cactus framework.  The modular “drivers” for im-

plementing parallelism are both the principle advantage of the deeply integrated framework 

model, but also the most daunting part due to the need to conform to framework coding require-
ments to take advantage of this capability. 

• Cactus modules or thorns are grouped into Toolkits. Cactus is distributed with the Cactus Com-

putational Toolkit that consists of a collection of thorns providing parallel drivers, boundary con-
ditions, scalable I/O etc to support applications using multi-dimensional finite differencing. 

Community toolkits are provided or are under development by different application areas such as 

Numerical Relativity and Computational Fluid Dynamics. 

The modular design of Cactus with swappable thorns provides several features important for this paper. 

Third-party libraries and packages can be used by applications through the abstract Cactus interfaces, de-

creasing application reliance on any particular package and making it possible to switch to new capabili-

ties as they are available. For example, instead of using the UniGrid parallel driver PUGH distributed 
with Cactus, applications can use a variety of other independent adaptive mesh refinement drivers such as 

Carpet, PARAMESH, SAMRAI. New I/O methods can be added as thorns, and are then available to ap-

plications as a parameter file choice. Cactus currently supports a variety of output formats including 
HDF5, NetCDF, ASCII, JPEG, FlexIO, and provides architecture independent checkpoint and recovery 

along with interfaces for parameter steering and remote visualization.  

Cactus has already been shown to scale to large processor numbers (4,000 to 33,000 cores) for different 
applications, and has active user and developer communities, along with funding from a range of agencies 

to both improve the infrastructure and build new application areas. 

Whereas the shallow component interoperability framework enables modular composition of solver com-

ponents into a multiphysics application, providing a scalable and modular model for parallelism requires 
deeper modifications to the code base.  Deep component interoperability frameworks such as SIERRA 

and Cactus present an approach where the abstract model for parallel computation is external to each of 

the components. This requires a larger initial investment in code, but offers additional performance and 
scalability benefits down the road as systems move towards a massive parallelism on multicore systems. 

2.2.4 Deep Component Interoperability Framework Example: SIERRA 

Sierra is a software framework [5] which is used for multiphysics computational mechanics simulations – 

primarily targeting finite element and finite volume methods for solid mechanics, heat transfer, fluid dy-
namics with reacting chemistry, and multiphysics permutations of these mechanics. Sierra is designed 

around an in-core data model for supporting parallel, adaptive multiphysics on unstructured grids, with an 

emphasis of simultaneously handling parallelism, dynamic mesh modification, and multiple mesh solu-
tions and transfer operations. Sierra also provides common services and interfaces for linear solver librar-

ies, dynamic load balancing, file input parsing, and mesh file I/O.  It was designed to unify and leverage a 

common base of computer science and data capabilities across a wide range of applications, and facilitate 
research, development and deployment of multiphysics capabilities, while managing the complexities of 

parallel distributed mesh data. 

Through its solvers class capability and external interfaces, Sierra provides plug-in capability of a range 

of solver libraries for different mechanics. Plug-ins play the same role as the “thorns” in Cactus nomen-
clature and the “Simulation Clients” in OMD-SA. At the coupled physics level, Sierra provides a proce-

dural language to support operator splitting methods to couple mechanics, including the ability to iterate 

to convergence and to sub-cycle physics modules relative to one another. The procedural language, called 
SolutionControl, allows a user to specify how the coupled mechanics for the various Sierra Regions are 
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executed in sequence, how variables are mapped between the computational domains of each region, and 

how solution convergence is controlled at the coupling level before moving the simulation forward in 
time. SolutionControl is the basis for composing solver components into composite multiphysics applica-

tions, much as the OMD-SA scripting environment and Cactus “Flesh” is used to support module compo-

sition in those respective frameworks. Sierra also supports limited tighter coupling through forming full 

Jacobians for multiphysics within a single Sierra Mechanics Region.  

Sierra's support for parallelism is pervasive, and is designed to limit the amount of work and complexity 

associated with parallel data structures for the mechanics developer, so that they can focus on the physics-

relevant aspects of their solver module. Like Cactus, the implementation of the parallelism is externalized 
from each of the solver modules, so that the implementation of the parallelism need not be replicated for 

each module that comprises the framework. Supporting this capability requires the solvers to adopt some 

common data structures and conform to framework coding requirements, which is the hallmark of a 
deeply integrated framework. 

2.3 Comparison of Framework Architectures 

Examining both shallow and deeply integrated frameworks for modeling and simulation on parallel com-

puting platforms, some common themes have emerged. Physics solvers in these frameworks are imple-
mented as modular software components so they can support flexible reconfiguration for different mul-

tiphysics problems. The coupling of physics modules follows step-level or loose coupling as opposed to 

full coupling or workflow coupling. The framework provides a flexible composition environment that 
matches the requirements of the application domain. In addition to these common features, deep compo-

nent interoperability frameworks also partition the implementation of parallelism into separate compo-

nents, in other words abstracting the implementation of parallelism, to reduce programming errors and 
support performance optimization and portability across diverse hardware platforms. The key distinction 

between shallow and deep component interoperability frameworks is that shallow framework components 

manage their own parallelism and data structures and exchange data using external interfaces, whereas a 

deep framework components externalize the parallelism and data structures so that they can be optimized 
and ported independently from the solver component implementations.  

Frameworks also provide a base set of services and build tools that simplify the customization of existing 

software components, and building and integration of new components within the framework. Examples 
of such services are I/O services, memory management services, error handling services, etc. As existing 

software modules are to be imported into a framework, their “outer layer” (a main program calling the 

subroutines) is “peeled off” and rewritten as declarations to the framework, which describe the high-level 

dataflow between the components. The framework manages the coarse-grain dataflow of an application, 
which is required for efficient parallelization. However, fine-grain dataflow within subroutines remains 

under control of the individual components and thus remains highly efficient. 

The shallow integrated frameworks are attractive because they minimize the amount of code rewriting 
internal to each of the solver components. Each component interacts through a common SOA interface 

that preserves the opaqueness of the internal architecture of the component.  However, such an architec-

ture makes it difficult to impose constraints on the data layouts employed within each module, and there-
fore can lead to inefficient coupling between components due to the extra layer of data copying that must 

be employed between components with incompatible data layouts. It also limits the ability of a third party 

to innovate the implementation of parallelism for the components without getting inside of each module 

and rewriting the solver implementation. However, the shallow framework component model is well 
tested in enterprise applications and would require the least amount of effort for ISVs to cooperate. These 

shallow integration framework architectures consist of a few (tens) of components, each operating on 

large amounts of data for a significant amount of time. Overheads due to staging, invocation, load distri-
bution etc. are amortized over the run time of the components' activity. One crucial advantage of shallow 
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frameworks is that they arise naturally from pre-existing, independent, large software packages as the 

need for coupling arises. 

The deeply integrated applications require that solvers agree upon an external data representation for the 

model data that is exchanged between solvers. This architecture also manages the parallelism external to 

the solvers. The framework then defines the optimal data layout that is common to all of the components, 

so as to minimize the amount of data recopying required to couple components together. In addition, the 
deeply integrated approach enables the implementation of parallelism to be separated from the solver 

components, so that innovations in parallelization methods (particularly for multicore processors) can be 

exploited by the solvers without requiring them to be rewritten.  However, the price of such a deep level 
of integration is that existing solver components must all be rewritten to conform to the framework’s re-

strictions.  This requires a more significant initial investment and a deeper level of cooperation among 

ISVs, but can lead to a platform that is more scalable to future trends in concurrency. 

Deep component interoperability framework architectures consist of many (hundreds) of smaller compo-

nents, each invoked many times in parallel, operating only on small subsets of the overall data set, super-

vised by a framework driver layer.  Efficiency is guaranteed by the driver layer's control over the data 

layout, which enables it to orchestrate calculations and relocate data as required. Examples of deeply in-
teroperable framework architectures are Cactus, SIERRA, Chombo, and UPIC. The crucial advantage of 

deep component interoperability frameworks is the close yet efficient interaction since parallelization is 

handled by the driver layer potential, which allows for more accurate multiphysics simulation. 

2.4 Community Framework Model 

This paper is intended to facilitate a community dialogue to determine what level of interoperablity is ap-
propriate to meet the needs of the multiphysics modeling and simulation tool market for the coming dec-
ade. The initial list of important multiphysics multi-effect “use cases” recommended at the HPC-ASC 

planning meeting included: structure/fluid, chemical/fluid, structure/fluid/acoustic, molecular/fluid, ther-

mal/structural/fluid, electromagnetics, and electrical/thermal.  

The design goals for the framework are: 

• Support modular composition of multiphysics applications using components supplied from dif-

ferent vendors 

• Enable scalable application performance with a minimum of solver code rewriting as the hard-
ware industry moves towards multi-core architectures with massive parallelism. 

• Reduce the software development costs associated with addressing the first two concerns. 

Several different approaches to implementing a framework that meets these design goals have been pre-

sented. The choice of how to proceed will require additional community discussion. Finally, it is possible 
to pursue a framework-in-framework approach, where a loosely integrated outer framework consists of 

components which are themselves made up of applications based on a tightly integrated framework, al-

lowing a phasing-in of tightly integrated framework components.  

The tightly integrated framework architecture consists of several key components: 

• A backbone which orchestrates the overall simulation, touching only metadata 

• A driver layer providing the "heavy lifting", handling memory management and parallelism 

• Regridding components which define or modify the data structures on which the simulation oper-

ates (structured, unstructured, AMR) 

• I/O and visualization components which can move potentially large data amounts of data into or 

out of the simulation, using specialized APIs and hints to negotiate with the driver 



HPC Application Software Consortium 10 

• Physics components, operating on driver-defined subsets of the data 

• Solver components, interacting closely with the driver layer 

• Statistics components, collecting metadata and providing feedback (provenance, performance, 

progress monitoring) 

Such structures can readily be identified in existing components of loosely integrated frameworks; in the 

transition from a loosely to a tightly integrated framework, these structures have to be extracted and, 
where appropriate, replaced with existing components of a tightly integrated framework. 

3 Consortium Organization Models 

The Market Potential of an application increases to the square of the number of other applications with 

which it is interoperable [8]. Achieving interoperability across independent software vendors (ISVs), sys-

tem vendors, value-added resellers, and end users requires a community organization that supports close 

collaboration. There are many frameworks and standards that provide interoperability across commercial 
and open-source software, for example: Business Process Execution Language (BPEL), Web Service In-

vocation Framework (WSIF), Eclipse Modeling Framework (EMF), and many more. The management 

styles of these frameworks follow different organizational models according to the culture and objectives 
of the participants. This paper proposes three organizational models for consideration by potential consor-

tium members and provides exemplars of each: 

3.1 Focused Research Model 

The focused research model is a non-profit organization that combines research contributions from con-
sortium members for the purpose of funding long-term pre-competitive research, usually for the benefit of 

a single industry segment. Consortium members have input on the research projects that are funded and 

share the derived intellectual property. This approach has proven effective because it lowers research 
costs among individual members and focuses research on the success the technology areas that the mem-

bers depend on.  This model follows the precept that “a rising tide floats all boats”.  

An exemplar of this model is the Semiconductor Research Corporation (SRC). It was founded in 1982 at 
the recommendation of the board of the Semiconductor Industry Association (SIA) to ensure continued 

research on advancing silicon technology and improved manufacturability of integrated circuits (ICs). 

SRC operates multiple research programs both in the U.S. and globally to provide competitive advantage 
to its members. SRC provides low-overhead research and related programs that meet the needs of the 

semiconductor industry for technology and talent. SRC maintains core competencies in contracting and 

management for research at universities with terms and conditions that assure members’ ability to use 

results with minimal risk of future encumbrances, including intellectual property protection of significant 
research results and mechanisms for timely transfer of research products. In addition, SRC manages stu-

dent programs to maximize the flow of talent to the member companies. SRC obtains funding for its pro-

grams by recruitment and retention of member companies through appropriate fee algorithms for the rele-
vant market segments and by leveraging government funding. 

3.2 Commercial Fusion Model 

The commercial fusion model is a for-profit strategic alliance of consortium members founded to sell a 

combined set of products and services tailored to a specific market. Consortium members provide intel-
lectual properties and/or venture investment into the alliance company in return for a share of the profits.  

The fusion approach allows members to address a complex market that would otherwise be difficult to 

target individually. It also lowers marketing and support costs for each member to that market. An exem-
plar of the commercial fusion model is Fusion Petroleum Technologies.  
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Fusion Petroleum Technologies, Incorporated is an integrator of products and services for the petroleum 

exploration and production market. Fusion is a strategic partnership of hardware and software technology 
providers, engineering and analysis companies, and regional support organizations that provide their cus-

tomers with a single portal for the services required by the petroleum market. These include technology 

services such as seismic imaging and analysis, inversion modeling, geopressure analysis, and petrophysi-

cal analysis as well as expertise services such as integrated interpretation, executive and legal services, 
reservoir studies, and technical training.  

In 2007, Fusion released a software platform called LANGIAPPE™ that provides an integrated environ-

ment for the processing and analysis of seismic data for petroleum exploration and production. The plat-
form operates on Linux clusters and interfaces to their visualization package called AMIGO™. LAN-

GIAPPE includes an open development platform for Fusion clients and partners that wish to integrate 

their software into the unified workflow. Fusion supplies expert and developer tool kits that allow third 
party software to take advantage of the integration, parallelization, and visualization environments. 

3.3 Open Source Foundation Model 

The open source foundation model is a non-profit consortium founded to manage open-source software 

components on which commercial companies can build for-profit businesses. This model has become 
very popular with Unix system vendors. When the market rejected closed proprietary solutions, these 

companies survived by opening the source of core functionality and providing commercial products and 

support services using these frameworks. Open frameworks allow individuals and small companies to 
tailor the software for their needs and thereby extend the user base and software utility. A broader devel-

opment base lowers software development and support costs incurred by the companies that use them. 

There are a number of examples of this model; one successful example is the Eclipse Foundation. 

The Eclipse Foundation was established in 2004 as a not-for-profit corporation to provide a vendor neu-

tral organization for collaboration by consortium software vendors developing integrated development 

tools. Eclipse provides an overall collaborative business model and governance system for organizing, 

publicizing, approving, and managing open-source projects. It is an overall platform for tool and utility 
integration with a common look and feel, mechanisms for interoperability, and an extensive plug-in tech-

nology. Eclipse has 60 open source projects that have technology embedded into over 1000 open-source 

and commercial products. The Eclipse Public License enables the use of open source software in com-
mercial products and services. The Eclipse Public License is a non-viral license, allows redistribution, 

allows embedding, and is not specific to Eclipse projects. The structured IP approval process of Eclipse 

gives a level of confidence that components can be distributed in commercial products.   

Eclipse provides a development ecosystem and robust community support. There is a well-defined proc-
ess for project startup that uses community reviews, management through meritocracy, and formal annual 

releases. The foundation supports annual conventions (EclipseCon and Eclipse Summit Europe), online 

resource catalogs, marketing resources, magazines, and web portals.  The foundation hosts code reposito-
ries, bug databases, mailing lists, wikis, and software distribution sites. 

Eclipse membership levels are segmented by role and contribution in the community: 

• Strategic Members are organizations that view Eclipse as a strategic platform and are investing 
developer resources. Annual membership fees range from $50K to $500K based on the number of 

in-kind developers contributing to the projects. 

• Add-in Provider Members are organizations that view Eclipse as part of their corporate and 

product strategy and participate in the ecosystem. Annual membership fees are $5K. 

• Associate Members are organizations that are non-profits, standards bodies, universities, and re-

search institutes. 

• Committer Members are individuals that are the core developers and make source code changes.  
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3.4 Community Feedback 

Initial feedback from the HPC Application Software Consortium Planning meeting in December 2007 
was that the open source foundation model was the most promising approach and that there are consider-

able advantages to joining an established development community such as the Eclipse Foundation as a 

special topics project rather than investing resources building similar infrastructure.  Each of these ap-

proaches will be discussed at the HPC Application Software Consortium Summit. 
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