Encyclopedia of Grid Computing Technologies and Applications
SAGA — The Simple API for Grid Applications — Motivation, Design and Implementation

Authors:
Shantenu Jha (Louisiana State University, Baton Rouge, Louisiana, USA), sjha@cct.lsu.edu
Hartmut Kaiser (Louisiana State University, Baton Rouge, Louisiana, USA), hkaiser@cct.lsu.edu

Andre Merzky (Louisiana State University, Baton Rouge, Louisiana, USA), andre@merzky.net
John Shalf (Lawrence Berkeley National Lab, USA), JShalf@lbl.gov

Motivation

A key impediment to accelerated development of Grid applications and consequently the uptake of Grids is the
scarcity of high-level application programming abstractions that bridge the gap between existing grid middleware
and application-level needs. Application developers are daunted by the complexity of the vast array of low-level
Grid and distributed computing software APIs that currently exist; APIs have traditionally been developed
using a bottom-up approach that exposes the broadest possible functionality. Coding using these bottom-up
APIs requires extremely verbose code to implement even the simplest of application-level capabilities. Many
Grid computing projects [?, 7, 7] recognized the need for higher-level programming abstractions to simplify
the use of distributed computing for application developers. The Simple API for Grid Applications (SAGA)
attempts to consolidate community effort and make ends meet by employing a top-town approach to distributed
computing software infrastructure.

The specification and implementations of the SAGA API has been guided by detailed examination of the
requirements expressed by existing and emerging distributed computing applications in order to find common
themes and motifs that can be reused across more than one use-case. The main governing design principle for
the SAGA API is the 80:20 Rule: ”"Design an API with 20% complexity that serves 80% of the application
use cases”. They are intended to cover the most common application-level distributed computing programming
constructs such as file transfer, and job management. In general, SAGA embodies the most commonly required
features derived from a broad survey of the community and provides the most common grid programming
abstractions that were identified by several use cases.

Distributed environments are required for a range of reasons (higher throughput, lower times-to-solution,
qualitatively different resources, more-of- the-same resources etc.) and in different usage modes. Some ap-
plications need to be designed — programmatic or otherwise — in order to be able to utilise the distributed
heterogeneous resources. We refer to such applications as “distributed by design”. On the other hand there are
applications that are not cognizant of the environment they are deployed in — distributed or localized. Conse-
quently, there are no changes required of the application independent on the environment they operate in; such
applications can be considered “distributed by deployment”. SAGA provides the abstractions for both classes of
applications. A representative example of the latter class, are applications that need to be task-farmed across a
range of resources (local or distributed); SAGA provides a programming mechanism that enables the creation of
a task-farm manager which is then responsible for marshalling all resources, file-staging etc., and thus enables
applications to remain oblivious to the details of the environment (middleware distribution, resource access
and control mechanism etc.). For applications that are distributed by design, SAGA provides the ability to
exploit the flexibility and power that comes with operating in a distributed environment, without the need for
the application to be specifically adapted for every different resource encountered; this is done by providing a
consistent, uniform and simple programmatic interface to orchestrate a wide range distributed resources. For
example, applications that need to query a range of resources at run time, to determine the optimal resource
to spawn a sub-task onto, benefit from the ability to do so programmatic using standardised interfaces such as
those provided by SAGA.

By definition Grids are characterised as dynamic and heterogeneous environments. They are dynamic due
to time-dependent resources loads, availability and access patterns; the aggregation of specialised resources in

different administrative domains is one source of the heterogeneity. Applications that are designed for dynamic
and heterogeneous environments require the ability to manage varying levels of heterogeneity and dynamical
resources. SAGA is the first comprehensive attempt to provide a programmatic approach for the development
of applications so as to utilise distributed environments, either by design or by virtue of deployment. In
addition to simplifying the programming environment for application developers, SAGA insulates applications
from technological, version changes and other low-level implementation details that regularly occur in the lower
layers of the software stack.

SAGA: Addressing Distributed Application Requirements

Although there are a bewildering number of specific functionality that distributed applications require, a ma-
jority of them require a small subset of these functionality. Consequently the scope of SAGA could potentially
be very broad; thus a design decision was required about how to balance functionality and simplicity.

SAGA covers the most commonly occurring (general) requirements; this defines the target space of the APIL.
The general requirements in addition to driving specific design aspects of the interface specification (modular,
language and middleware independent etc.) also influence the implementation of specification.

General Requirements: The main objective of the SAGA API effort is to enable programmers of sci-
entific applications to utilize Grid environments, without the need to understand all details of that
environment. With that goal, SAGA has to:

e be very simple, i.e. the API should hide all non-essential features, unless they are explicitly needed;

shield application development from the complex, diverse and evolving Grid middleware;

be extensible and future proof, i.e. the API should be able to accommodate additional use cases and
future Grid programming models;

provide the abstraction from which Grid programming models can be constructed;

Functional Requirements: The functional requirements of the SAGA API and its scope are drawn from a
set of use cases[?]. These use cases were comprised of a range of applications such as requiring multi-physics
multi-component distributed simulations, high-end visualization, computational steering. A high level summary
of the requirements of the applications that motivated the SAGA effort is shown in Table 1 (more details can be
found in the use SAGA Requirement document|?]). The list represents the functional scope of the SAGA API,
as it defines what functionality the API should cover: for each package listed there, a number of programming
models and API methods included in the SAGA APL

Functional Area +#
Job Management 16
Resource Management 13
Data Management 12
Information Services 11
Data Access 10
Streams 10
Events 9
Communication 7
Steering 5
Logical Files 3
Data Bases 1

Table 1: Functional areas covered by the use cases, ranked by occurrences in these use cases.

Non-Functional Requirements: Non-functional requirements are orthogonal to the functional requirements:
these represent the actions provided by specific calls in SAGA, non-functional requirements describe the desired

Non-Functional Area #
Error 15
Security 12
Auditing

QoS

Asynchronous Operations
Bulk Operations
Workflow

Transactions

O NN O

Table 2: Non-Functional areas covered by the use cases, ranked by occurrences in these use cases.

properties of these actions. For example, a file-copy operation is a functional element of the API — being
able to perform this operation asynchronous and secure, and being able to monitor the operation’s progress, are
non-functional properties of the API. Table 2 lists the high level non-functional requirement areas of the SAGA
API. Many details of these requirements do not make it to the API level, i.e. they are not manifest in specific
function calls or flags, but are properties of SAGA implementations. Other areas require explicit support at
the API level. The end user does not need to interact with any of the non-functional requirements directly
(with the possible exception of the error reporting mechanism), and hence these requirements are expressed as
optional extensions to the base API.

Design of the SAGA API

The functional requirements are addressed by providing specific objects and method calls, which provide the
required programming models and operations. For example, the —saga::rpc— class supports 'Remote Procedure
Calls’. The non-functional requirements are provided by consistent syntactic and semantic elements in the API,
which (explicitly or implicitly) modify the behaviour of the functional API part. For example, the SAGA task
model provides synchronous and asynchronous versions of the above mentioned RPC calls. Finally, the general
requirements are addressed by general design guidelines:

Simplicity: the default form for all Grid operations in SAGA is a simple method call on SAGA objects, such as:

saga::directory dir (url);
dir.copy (source, target);

Additional semantic details (such as asynchronicity of operation, security credentials for operations, notifica-
tions on completion etc) are defined as deviations from this standard form. For example:

// specify security context for operation (session):
saga::directory dir (session, url);

// specify semantic deviation via flag
dir.copy (source, target, saga::file::0verwrite);

// tag operation to be asynchronous:
saga::task t = dir.copy <Async> (source, target);

That way the basic API remains simple, without limiting it to an unacceptably small number of use cases. The
syntactic and semantic additions to the basic functional method calls are encapsulated in a set of classes and
interfaces used by the functional part of the API; these features correspond to those parts of the API for which
there isn’t a direct mapping to a function.

The SAGA interface is driven by and implements both functional non-functional requirements

Extensibility: The functional part of the SAGA API is organized in packages. For example, the API offers a
"job package’ for job submission and control, a ’file package’ for file management and access, a ’stream package’
for streaming data between applications, etc. That approach has a number of advantages:
e the API is extensible, as packages can be added rather easily; additionally the functional packages share
a common model for non-functional requirements, and these are represented using similar syntax and
semantics;
e the user can focus on individual packages, as needed, and can ignore others (Modularity);
e implementations can provide packages separately, lowering the initial effort for implementing SAGA;

SAGA packages implement the functional requirements of the SAGA APL

Figure 1 gives an overview of the SAGA Core API. Although details may not be discernible, the overall
structure should be confirmed: non-functional interfaces and classes (top) are used by a number of small and
focused API packages (bottom). The packages provide high level abstractions such as streams, files, jobs etc.

The different requirements sets are essentially orthogonal, in the sense that the general, functional, and
non-functional requirements can all be approached independently from each other and do not influence each
others the design features.

Look & Feel
Task Model Monitoring Model o Error Handling
H async steerable callback exception E error_hand. E E permissions E
................................. N e iRt
T Attribute Interface Base Object Security
[——] [— _] i monitorable ! | metric buffer {attribute ! ||} object : session l context l
w || Tttt R T ww—— | | T || e L /A B Py S
’ job l [job_service l ’ streamiserv.] ’ stream l ’ ns_entry l
Streams
- Y
@3 inherits ’job_self] [job_desc] [rpc] file [ns_directory] [logical_file]
—— > ;
implements Job Management RPC A
oot : L L

: interface E

----------------- logical dir.

. File Management Name Space Mngmt. Replica Management
Functional Packages

Figure 1: SAGA class hierarchy

SAGA: The Emerging Standard for Application Level Grid Functionality

SAGA’s goals — simplified application development and independence from evolving Grid middleware — are
impossible without (a) acceptance in the user community, and (b) broad support by various middleware distri-
bution. Middleware vendors and developers are less likely to support such an interface without the conviction
that there is a broad-based requirement and the assurance of a wider user community. On the other hand,
applications developers are less likely to use an interface that is not commonly available or supported — not to
mention that they are less likely to be able to deploy over different platforms.

To address both problems concurrently, and to solve that circular dependency, SAGA has ab initio been
developed and proposed as an emerging specification of the Open Grid Forum (OGF). The standardization
process for the SAGA API is heavily dominated by the same design guidelines as listed in the earlier sections
(top-down approach, 80:20 rule, extensible and modular, high level abstractions, distinction of functional and
non-functional properties). The SAGA Research Group at the OGF is responsible for the evaluation of use
cases and proposing extensions to the core API; the SAGA Core Working Group within OGF is responsible for
defining the SAGA API which implements these requirements. This procedure ensures the top down approach
and the 80:20 rule is maintained as well as future extensions continue to be use-case driven.

The SAGA Core Working Group made a very conscious effort to reflect the concept of having separate sets
of functional versus non-function requirements in the API design. Both are addressed in the main API spec-
ification document [?], whereas the first half of that document addresses the non-functional packages (URLs,
error handling, monitoring, notification, asynchronous operations, memory management security, and generic
attributes), the second half addresses a number of functional packages (jobs, files, replicas, streams, and remote
procedure calls). The specification is thereby kept language neutral (it uses Scientific IDL, SIDL). The struc-
ture allows and encourages add additional API specification documents, which are then to address additional
functional API aspects.

A number of API extensions being prepared at the time of this writing, most notably (with their planned
OGF document number):

e Service Discovery API package (allows to discover Grid services; GFD.91)

e Message Bus API package (provides a wide variety of communication patterns; GFD.94)

e Advert API package (provides the ability to store application level information persistently, and to publish
SAGA objects; GFD.95)

e Checkpoint and Recovery API package (provides a uniform API for application level checkpoint creation
and management; GFD.96)

e Database Access and Integration API package (provides an interface to the OGF standard DAIS)

e possibly a more advanced interface for job creation and management, in sync with the evolution of the
DRMAA, BES and JSDL standards in OGF.

The SAGA Core API are designed to be compatible with the majority of OGF specifications/proposed
recommendations [?] — BES, GridFTP, JSDL, DRMAA, GridRPC, RNS, and BytelO! — which means that the
SAGA API and any SAGA implementations are designed to be compatbile and implementable with middleware
which includes, but is not limited to those which implement OGF standards.

The SAGA Core Working Group is in the process of standardizing various language bindings for the (lan-
guage neutral) SAGA API, as well as for its current and future extension packages. This work is currently
focused around Java and C++, as they are the most demanded languages at the moment, but will eventually
encompass other languages such as C, FORTRAN and Python. The landscape of SAGA specification documents
is depicted in Figure 2, along with the relation of specifications and implementations.

SAGA Reference Implementations

The OGF [?] standardization process requires two independent reference implementations to be available before
a proposed specification will be accepted as a final standard. At the time of writing there are two distinct groups
working on independent implementations of the proposed SAGA specification: a group at the Vrije University
(Amsterdam, Netherlands) is working towards an implementation of the SAGA specification in Java. A second
group at the Center of Computation and Technology at the Louisiana State University (Baton Rouge, USA) is
working on a C++ implementation (along with C, Python, and FORTRAN versions of the specifications) [?].
As the SAGA API is originally specified using the Scientific Interface Description Language (SIDL [?]), these
implementation also represent efforts to develop the corresponding SAGA language bindings specifications.

IBES - service interface GFD.108; GridFTP - protocol, GFD.51, GFD.20; JSDL - language GFD.65, GFD.111 and GFD.115;
DRMAA - API GFD.22; GridRPC - API, GFD.52; RNS - service interface, GFD.101; BytelO - service interface, GFD.87, GFD.88

GFD.71 (UC)

> GFD.72 (Req)

[

> GFD.90 (Core) —l>[GFD.?? (C++) l | ion A } { Adaptor Local
> GFD.91 (SD) \—l>< Implementation B —l>[Adaptor Globus
> GFD.94 (MBus) . > Adaptor OMII-UK

> GFD.95 (Advert)

Vv
>

:>[Adaptor Local]

> GFD.96 (CPR) —1>[GFD.?? (Java)

>| GFD.?? (DAIS) {AdaptorGIobus]

> GFD.?? (DRMAA) : > Adaptor OMII-UK

Figure 2: SAGA standard landscape.

Any implementation of the SAGA specification must cater to the development and deployment requirements of
applications in a grid environment. They must provide a “simple” and “easy-to-use” API — a primary original
motivation for SAGA. Additional design objectives of any successful implementation include, but are not limited

to:

It must cope with evolving grid standards and changing grid environments.

It must be able to cope with future SAGA extensions, without breaking backward compatibility.

It must shield application programmers from evolving middleware, and should allow various incarnations
of grid middleware to co-exist.

It must actively support fail safety mechanisms, and hide the dynamic nature of resource availability.

It must be portable and platform independent - both syntactically and semantically.

It must allow latency hiding techniques to be implemented.

It must meet other end user requirements outside of the actual API scope, such as ease of deployment,
ease of configuration, documentation, and support of multiple language bindings.

The C++ implementations (see figure ?7), has the following key features, which support the general require-
ments of any SAGA implementation listed above:

Extensible to new adaptors and functional requirements. API extensions are greatly simplified by a generic
call routing mechanism, and by macros resembling (SIDL) used in the SAGA specification.

Modular in design to support flexibility and extensibility. A modular architecture also minimizes the
run-time memory footprint.

Synchronous, asynchronous and task (same as asynchronous, but execution has not been started so far)
oriented versions of every operation are transparently provided.

Dynamically loaded adaptors bind the API to the appropriate grid middleware environment, at run-time,
link time binding is also supported.

Adaptors are selected on a call-by-call basis (late binding, supported by an object state repository), which
allows for incomplete adaptors and inherent fail safety.

Latency hiding (e.g. asynchronous operations and bulk optimizations) is generically and transparently
applied.

Portable across heterogeneous platforms

Application using SAGA API

" 7y A 7y
SAGA ENSINE |y nssmis e § Packages
é % e q.... ... E-. ... 1
i Y h 4 Y

<«€— Link time binding I] b
P ' & ;

«€---» Runtime binding

«€---» Call redirection

Figure 3: Architecture: A lightweight engine dispatches SAGA calls to dynamically loaded middleware adaptors.

From an end-user perspective, the SAGA reference implementations provide the following:

Consistency Across Programming Languages: The SAGA API specification uses SIDL which is language
independent, with language specific bindings in the most common languages. Specific language (Java and C++)
implementations have the similar semantics as the SIDL specification and follows the SAGA API specification
closely, as will subsequent language bindings to these implementations.

Support for Diverse Middleware and Dynamic Environments: The need for any API implementation to
operate over a broad range of middleware distributions requires an adaptor mechanism - which become the only
middleware distribution specific component. Late binding, fall back mechanisms, and flexible adaptor selection
allow for additional resilience and operation in a dynamic run time environment.

Modularity ensures Fxtensibility: — Implementations are able to cope with the expected evolution and
extension of the SAGA API. The adaptor mechanism allows for easy extensions of the library as well as
providing additional middleware bindings.

Portability and Scalability: Heterogeneous distributed systems require portable code. The implementations
are carefully written to be very portable, being developed on Windows, Linux and MacOS concurrently.

Simplicity for the End User: SAGA is designed to be simple. However, simplicity of an API is not
only determined by the specification, but also by its implementation, such as the simple deployment and
configuration, resilience against lower level failures, adaptability to diverse environments, stability, correctness,
and peaceful coexistence with other tools and libraries.

