
The New Landscape of Parallel Computer Architecture

John Shalf
NERSC Division, Lawrence Berkeley National Laboratory
1 Cyclotron Road, Berkeley California, 94720, USA

E-mail: jshalf@lbl.gov

Abstract. The past few years has seen a sea change in computer architecture that will impact every
facet of our society as every electronic device from cell phone to supercomputer will need to
confront parallelism of unprecedented scale. Whereas the conventional multicore approach (2, 4,
and even 8 cores) adopted by the computing industry will eventually hit a performance plateau, the
highest performance per watt and per chip area is achieved using manycore technology (hundreds
or even thousands of cores). However, fully unleashing the potential of the manycore approach to
ensure future advances in sustained computational performance will require fundamental advances
in computer architecture and programming models that are nothing short of reinventing computing.
In this paper we examine the reasons behind the movement to exponentially increasing parallelism,
and its ramifications for system design, applications and programming models.

1. Introduction
The past few years has seen a sea change in computer architecture that will impact every facet of our
society as every electronic device from cell phone to supercomputer will need to confront parallelism of
unprecedented scale. Whereas the conventional multicore approach (2, 4, and even 8 cores) adopted by the
computing industry will eventually hit a performance plateau, the highest performance per watt and per
chip area is achieved using manycore technology (hundreds or even thousands of cores). However, fully
unleashing the potential of the manycore approach to ensure future advances in sustained computational
performance will require fundamental advances in computer architecture and programming models that
are nothing short of reinventing computing.

Recent trends in the microprocessor industry have important ramifications for the design of the next
generation of High Performance Computing (HPC) systems as we look beyond the petaflop scale. The
need to switch to a geometric growth path in system concurrency is leading to reconsideration of
interconnect design, memory balance, and I/O system design that will have dramatic consequences for the
design of future HPC applications and algorithms. The required reengineering of existing application
codes will likely be as dramatic as the migration from vector HPC systems to Massively Parallel
Processors (MPPs) that occurred in the early 90’s. Such comprehensive code reengineering took nearly a
decade, so there are serious concerns about undertaking yet another major transition in our software
infrastructure.

A group of University of California researchers with backgrounds ranging from circuit design, computer
architecture, CAD, embedded hardware/software, programming languages, compilers, applied math, to
HPC, met for a period of two years to consider how current constraints on device physics at the silicon
level would affect CPU design, system architecture, and programming models for future systems. The
results of the discussions are documented in the University of California Berkeley Technical Report
entitled “The Landscape of Parallel Computing Research: A View from Berkeley”[1]. Whereas that report
was concerned mostly with the broader microprocessor and consumer electronics industry, this paper
applies the reasoning laid out in the “Berkeley View” to the future of HPC system design.

This paper explores the fundamental device constraints that have led to the recent stall in CPU clock
frequencies. It examines whether multicore (or manycore) is in fact a reasonable response to the
underlying constraints to future IC designs. Then it explores the ramifications of these changes in the
context of computer architecture, system architecture, and programming models for future HPC systems.

2. The End of Traditional Sources for CPU Performance Improvements
One important discontinuity that has developed in system architecture is motivated by changes in device
physics below the 90nm scale. The changes at the chip level create a cascade of design choices that affect
every aspect of system design and result in some of the most daunting challenges for software design on
future trans-petaflop systems.

Figure 1. This graph (from Kunle
Olukotun and Herb Sutter) shows that
Moore’s law is alive and well, but the
traditional sources of performance
improvements (ILP and clock
frequencies) have all been flattening.

Figure 2. The performance of processors as
measured by SpecINT has grown 52% per year
with remarkable consistency, but improvements
tapered off around 2003. [2]

Figure 1 shows that Moore’s law, which states that you can integrate twice as many components onto an
integrated circuit every 18 months at fixed cost, still holds. However, the traditional sources of
performance improvements such as instruction level parallelism (ILP) and clock frequency scaling have
been flattening since 2003. Figure 2 shows the improvements in processor performance as measured by
the SPEC benchmark over the period from 1975 to present. Since 1986 performance has improved by 52
percent per year with remarkable consistency. During that period, as process geometries scaled according
to Moore's law, the active capacitance of circuits scaled down so that supply voltages could be kept
constant or even dropped modestly in order to allow manufacturers to increase clock-speeds. This

approach, known as “constant electric field” frequency scaling [3] fed the relentless increases in CPU
clock-rates over the past decade and a half. However, below the 90nm scale for silicon lithography, this
technique began to hit its limits as static power dissipation from leakage current began to surpass dynamic
power dissipation from circuit switching. Power density has now become the dominant constraint in the
design of new processing elements, and ultimately limits clock-frequency growth for future
microprocessors. The direct result of power constraints has been a stall in clock frequency that is reflected
in the flattening of the performance growth rates starting in 2002. In 2006, individual processor cores are
nearly a factor of three slower than if progress had continued at the historical rate of the preceding decade.
Other approaches for extracting more performance such as Instruction Level Parallelism (ILP) and out-of-
order instruction processing have also delivered diminishing returns (see Figure 1). Having exhausted
other well-understood avenues to extract more performance from a uniprocessor, the mainstream
microprocessor industry has responded by halting further improvements in clock frequency and increasing
the number of cores on the chip. Patterson and Hennessy estimate the number of cores per chip is likely to
double every 18-24 months henceforth. Therefore, new algorithms and programming models will need to
stay ahead of a wave of geometrically increasing system concurrency – a tsunami of parallelism.

The stall in clock frequencies and the industry’s comparatively straightforward response of doubling cores
has reinvigorated study of more radical alternative approaches to computing such as Field Programmable
Gate Arrays (FPGAs), Graphics Processing Units (GPU), and even dataflow-like tiled array architectures
such as TRIPS [4]. The principle impediment to adapting a more radical approach to hardware
architecture is that we know even less about how to program efficiently such devices for diverse
applications than we do parallel machines composed of multiple CPU cores. Kurt Keutzer has put this
more elegantly when he states “The shift toward increasing parallelism is not a triumphant stride forward
based on breakthroughs in novel software and architectures for parallelism; instead, this plunge into
parallelism is actually a retreat from even greater challenges that thwart efficient silicon implementation
of traditional uniprocessor architectures.” To get at the heart of Keutzer’s statement, it is necessary to
deconstruct the most serious problems with current CPU core designs.

2.1. New IC Design Constraints
As mentioned in the previous section, due to the leakage current, a number of recent industry studies have
concluded that power dissipation ultimately limits continued performance improvements based on clock
frequency scaling [3][5]. Some chip designs, such as the Intel Tejas, were cancelled due to power
consumption issues [6]. The other problem facing the industry is the extremely high cost of new logic
designs. In order to squeeze more performance out of chips at high frequencies, a considerable amount of
surface area is devoted to latency hiding technology such as deep execution pipelines and out-of-order
instruction processing. The phenomenally complex logic required to implement such features has caused
design costs of new chips to skyrocket. It has also become impractical to verify all logic on new chip
designs containing hundreds of millions of logic gates due to the combinatorial nature of the verification
process. Finally, with more complex chip logic designs, a single defect on the chip surface can render the
entire CPU core non-functional. As we move to smaller feature sizes for future chips, the likelihood of
such defects will continue to increase – dramatically lowering chip yields. These key problems ultimately
conspire to limit the performance and practicality of extrapolating past design techniques to future chip
designs, regardless of whether the logic implements some exotic non-von Neumann architecture or a more
conventional approach.

The following remedies represent the consensus opinion of the contributors to the “Berkeley View” report.

• Power: Parallelism is an energy efficient way to achieve performance [7]. Many simple cores offer
higher performance per unit area for parallel codes than a comparable design employing smaller
numbers of complex cores.

• Design Cost: The behavior of a smaller, simpler processing element is much easier to predict within
existing electronic design-automation workflows and more amenable to formal verification.
Lower complexity makes the chip more economical to design and produce. [8]

• Defect Tolerance: Smaller processing elements provide an economical way to improve defect
tolerance by providing many redundant cores that can be turned off if there are defects. For
example, the Cisco Metro chip [9] has 4 redundant processor cores per die. The STI Cell
processor has 8 cores, but only 6 are enabled in its mainstream consumer application in the Sony
Playstation 3 in order to provide additional redundancy to better tolerate defects.

2.2. Response to Constraints: Manycore vs. Multicore
The new industry buzzword “multicore” captures the plan of doubling the number of standard cores per
die with every semiconductor process generation starting with a single processor. Multicore will obviously
help multiprogrammed workloads, which contain a mix of independent sequential tasks, and prevents
further degradation of individual task performance. But how will individual tasks become faster?
Switching from sequential to modestly parallel computing will make programming much more difficult
without rewarding this greater effort with a dramatic improvement in power-performance. Hence,
multicore is unlikely to be the ideal answer.

Figure 3. The diagram to the left
shows the relative size and power
dissipation of different CPU core
architectures. Simpler processor
cores require far less surface area and
power with only a modest drop in
clock frequency. Even if measured by
sus t a ined pe r fo rmance on
applications, the power efficiency
and performance per unit area is
significantly better when using the
simpler cores.

The alternative approach moving forward is to adopt the ‘manycore’ trajectory, which employs simpler
cores running at modestly lower clock frequencies. Rather than progressing from 2 to 4, to 8 cores with
the multicore approach, a manycore design would start with hundreds of cores and progress geometrically
to thousands of cores over time. Figure 3 shows that moving to a simpler core design results in modestly
lower clock frequencies, but has enormous benefits in power consumption and chip surface area. Even if
you presume that the simpler core will offer only 1/3 the computational efficiency of the more complex
out-of-order cores, a manycore design would still be an order of magnitude more power and area efficient
in terms of sustained performance.

2.3. Convergence Between High End Servers and Consumer Electronics Core Design
The approach of using simpler lower-frequency core designs has been used for many years by the embedded-
computing industry to improve battery life, lower design costs, and reduce time to market for consumer
electronics. In the past the design targets for embedded applications were nearly opposite of the performance-

driven requirements of high-end computing. However, the needs of the high-end-computing market have
converged with the design motivation of the embedded-computing industry as a result of their common need
to improve power efficiency and reduce design costs. With regard to power efficiency, the embedded-
computing industry has the most accumulated expertise and technology. Whereas past design innovations in
high-end-computing, such as superscalar execution and out-of-order instruction pipelines, trickled down to
consumer applications on PCs, we are starting to see innovations that emerged in the embedded space trickling
up into high-end-server designs. This flow of innovation is likely to increase in the future.

There are already examples of the convergence between embedded computing and HPC in the design of the
BlueGene and SiCortex supercomputers, which are based on embedded processor cores that are more typically
seen in automobiles, cell-phones and toaster ovens. Parallelism with concurrencies that have formerly been
associated with HPC applications are already emerging in mainstream embedded applications. The Metro chip
in new Cisco CRS-1 router contains 188 general-purpose Tensilica cores, and has supplanted Cisco’s previous
approach of employing custom Application Specific Integrated Circuits (ASICs) for the same purpose [9].
Surprisingly, the performance and power efficiency of the Metro are far higher than could be achieved using
FPGAs (dimming hopes that FPGAs offer a more power efficient approach to computation). The Motorola
Razor cell phone also contains 8 Tensilica cores. The NVidia G80 (CUDA) GPU replaces the semi-custom
pipelines of previous generation GPUs with 128 more general-purpose CPU cores.

The G80 in particular heralds the convergence of manycore with mainstream computing applications.
Whereas traditional GPGPUs have a remarkably obtuse programming model involving drawing an image
of your data to the framebuffer (the screen), the G80’s more general purpose cores can be programmed
using more conventional C code and will soon support IEEE standard double precision arithmetic. The
motivation for the more general-purpose cores is the increasing role of GPUs for accelerating commonly
required non-graphical game calculations such as AI, object interactions, and even models for physical
processes. Companies such as AISeek’s Intia (http://www.aiseek.com/index.html) and Ageia’s PhysX
(http://www.ageia.com/) have implemented game physics acceleration on GPUs that use algorithms that
are very similar to those used for scientific simulation and modelling. ATI (recently acquired by AMD)
will be offering GPUs that share the same cache-coherent HyperTransport fabric of their mainstream
CPUs. Intel’s experimental Polaris chip uses 80 simpler CPU cores on a single chip to deliver 1 Teraflop
of peak performance while consuming only 65 Watts [10] and may feed into future GPU designs from
Intel. Both Intel and AMD roadmaps indicate that tighter integration between GPUs and CPUs is the
likely path toward introducing manycore processing to mainstream consumer applications on desktop and
laptop computers.

2.4. Consumer Electronics Supplanting Desktop PC as Driver for CPU Innovation
Taking a historical perspective on HPC system design, Bell’s Law is likely as important to the
development of HPC system design as Moore’s law. Moore’s law says that you can double the number of
components that can be integrated onto a chip every 18 months for the same cost. Bell’s law is the
corollary that says that by maintaining the same design complexity you can halve the size and costs of the
chip every 18 months. The Top500 project [11] has documented a steady progression from the early years
of supercomputing, from exotic and specialized designs towards clusters composed of components derived
from consumer PC applications. The enormous volumes and profits of desktop PC technology led to huge
cost/performance benefits for employing clusters of desktop CPU designs for scientific applications
despite the lower computational efficiency. As we move in to the new century, the center of gravity for
the market in terms of unit volume and profit has shifted to handheld consumer electronics. This
movement has some significant implications for the future of the HPC.

Figure 4 shows the market share of the consumer electronics applications for CPUs surpassed that of the
desktop PC industry in 2003. Shortly thereafter, revenue in the PC business flattened (Figure 5), and IBM
subsequently divested itself of its desktop and portable personal computer units. During that same period
of time, Apple moved into the portable electronic music player market with the iPod and more recently
into the cellular phone business. This may be the most dramatic twist yet for the HPC industry if these
trends continue (and they likely will). Although the desktop computing industry has been leading a major
upheaval in HPC system design over the past decade (the movement to clusters based on desktop
technology), that industry segment is no longer in the driver’s seat for the next revolution in CPU design.
Rather, the market volume, and hence design targets, are now driven by the needs of handheld consumer
electronics such as digital cameras, cell phones, and other embedded devices.

Figure 4. The graph above shows the declining
influence of PC microprocessors on the overall
revenue share in microprocessor-based electronic
designs (from Tsugio Makimoto: JEITA).

Figure 5. This graph shows how revenues for
IBM’s PC business have flattened in response to
the increasing dominance of consumer
electronics applications in the electronics
industry (from Tsugio Makimoto: from IDC)

The next generation of desktop systems, and consequent HPC system designs, will borrow many design
elements and components from the consumer electronics devices. Namely, the base unit of integration for
constructing new chip designs targeted at different applications will be the CPU cores derived from
embedded applications rather than the transistor. Simpler CPU cores may be combined together with
some specialization to HPC applications (eg. different memory controllers and double precision floating
point), just as transistors are currently arranged to form current CPU designs. Indeed, within the next 3
years, there will be manycore chip designs that contain greater than 2000 CPU cores, which is very close
to the number of transistors that we used in the very first Intel 4004 CPU. This led Chris Rowen, from
Tensilica, to describe the new design trend by saying “The processor is the new transistor”. This is a
brave new world, and we don’t know where it will take us.

3. Ramifications for the HPC Ecosystem
Given current trends, petaflop scale systems in 2011 are projected to have the following characteristics.

• Systems will contain between 200,000 and 1,500,00 processors (50,000 to 200,000 “sockets”).
Each “socket” in the system will be a chip that contains multiple cores (a Chip MultiProcessor or
CMP).

• In 2011 these multicore chips will contain between 8 and 32 conventional processor cores per
chip. Technology based on “manycore” will employ 100s to 1000s of CPU cores per chip.
Consider that the Cisco CRS-1 router currently employs a chip containing 188 processor cores

using conventional 90nm process technology, so “1000 cores on a chip” is not as far away as one
might expect. A System on Chip (SoC) design, such as BlueGene or SiCortex, may still use the
simpler embedded cores (manycore design point), but sacrifice raw core count to integrate more
system services onto the chip (eg. interconnect fabric, memory controllers).

• As microprocessor manufacturers move their design targets from peak-clock-rate to reducing
power consumption and packing more cores per chip, there will be a commensurate trend towards
simplification of the core design. This is already evidenced by the architecture of the Pentium-M
derived Intel Core-Duo processors that utilize pipelines that are half the length of its predecessor,
the Pentium4. The trend towards simpler processor cores will likely simplify performance tuning,
but will also result in lower sustained performance per core as out-of-order instruction processing
is dropped in favor of smaller, less-complex less-power-hungry in-order core designs. Ultimately
this trend portends a convergence between the manycore and multicore design points.

• As the number of cores per socket increase, memory will become proportionally more expensive
and power hungry in comparison to the processors. Consequently, cost and power-efficiency
considerations will push memory balance (in terms of the quantity of memory put on each node)
from the current nominal level of 0.5 bytes of DRAM memory per peak flop, down below 0.1
bytes/flop (possibly even less than 0.02 bytes/flop).

• Cost scaling issues will force fully-connected interconnect topologies such as the fat-tree and
crossbar to be gradually supplanted at the high-end by lower-degree interconnects such as the n-
dimensional torii, meshes or alternative approaches such as hierarchical fully-connected graphs.
The consequence will be that HPC software designers must take interconnect topology and
associated increased non-uniformity in bandwidth and latency into account for both algorithm
design and job mapping. At this point in time, the interconnect topology is typically ignored by
mainstream code and algorithm implementations. BlueGene/L programmers already have to
grapple with the topology mapping issues – it is merely a harbinger of the broader challenges
facing programmers all HPC programmers at some point in the near future.

Whether you are convinced or not that the future is in ‘multicore’ or ‘manycore’ technology, the industry
has already retooled to move in the direction of geometrically scaling parallelism. If you think the levels
of concurrency that result from a transition directly to ‘manycore’ are daunting, the trends on the Top500
list in Figure 6 show that you need only wait 3 years before ‘multicore’ will take you to the same
breathtaking levels of parallelism. With either path, the HPC community faces an unprecedented
challenge to existing design practices for system design, OS design, and our programming model. The
following sections examine the following concerns about how the multicore approach destabilizes
practices that have been established and solidified over the past 15 years of relative stability in the HPC
ecosystem.

Total # of Processors in Top15

0

50000

100000

150000

200000

250000

300000

350000

Ju
n-
93

De
c-
93

Ju
n-
94

De
c-
94

Ju
n-
95

De
c-
95

Ju
n-
96

De
c-
96

Ju
n-
97

De
c-
97

Ju
n-
98

De
c-
98

Ju
n-
99

De
c-
99

Ju
n-
00

De
c-
00

Ju
n-
01

De
c-
01

Ju
n-
02

De
c-
02

Ju
n-
03

De
c-
03

Ju
n-
04

De
c-
04

Ju
n-
05

De
c-
05

Ju
n-
06

List

Pr
oc

es
so

rs

Figure 6. The graph shows the dramatic increase
in system concurrency for the Top 15 systems in
the annual Top500 list of HPC systems. Even if
BG/L systems are removed from consideration,
the inflection point of system concurrency is still
quite dramatic.

 The concerns are summarized as follows;
• System Balance: As we move to integrate more CPU cores on a chip, future system designs will

become increasingly unbalanced with respect to memory and interconnect performance.
• Reliability: As we move to higher concurrencies, the systems will become increasingly prone to

failures.
• Programmability: How on earth will we stay abreast of exponentially increasing parallelism? If

we cannot program a manycore computer system productively, efficiently, and correctly, then
there is little benefit to this approach for maintaining historical per-socket performance
improvements for future HPC systems.

This rest of this section will examine these three areas of concern.

3.1. System Balance
One of the very first concerns that arise when considering manycore designs is that packing so many cores
onto a single chip will destabilize system balance as described by the Amdahl ratios [12]. Namely, the
memory bandwidth will be so constrained as to completely eliminate the benefit of adding additional cores
to the chip (the so called “memory wall”) [13].

3.1.1. Memory Balance
While the memory wall is certainly a worthy concern, it is important to note that it isn’t a new concern.
The term was first coined in 1992 to describe the effects of clock frequency scaling -- multicore simply
continues this historical trend along the same lines. Unlike the historical trend, the stall in clock
frequencies has halted the latency gap given that chip clock frequencies are no longer growing at historical
rates. Finally, we note that GPUs and the Cisco Metro chip show that even today’s technology can deliver
12 times more bandwidth onto the chip than currently used for mainstream processor designs. We choose
not to use high bandwidth memory in desktop systems due to cost considerations. If bandwidth would
ultimately limit performance, it is possible to apportion more of the cost of a new system design to the
cost of the memory.

Single vs. Dual Core Performance
(wallclock time at fixed concurrency and problem size)

0

500

1000

1500

2000

2500

3000

3500

4000

CAM MILC GTC GAMESS PARATEC PMEMD MadBench BB3D Cactus

application code

W
a
ll
cl

o
ck

 t
im

e

XT3 SC
XT3 DC

Distribution of Time Spent in Application
In Dual Core Opteron/XT4 System

0%

20%

40%

60%

80%

100%

CAM MILC GTC GAMESS PARATEC PMEMD MadBench

Application

P
e
rc

e
n

t
T
im

e
 S

p
e
n

t

other
flops
memory contention

Figure 7. This graph shows the wallclock time
consumed by full applications run at their native
concurrency on the Cray XT3 sited at Oak Ridge
National Laboratory. The blue bar shows the
wallclock time when running on one processor
per socket and the red bar shows the time spent
running on both processors in each socket at the
same concurrency.

Figure 8. Thee graph above shows a
breakdown of where time was spent in a
subset of those application codes. Memory
bandwidth contention is not as significant a
factor as the “other” category, which
includes integer operations and latency
stalls.

A recent joint study with the National Energy Research Supercomputing Center (NERSC) and Cray Inc.
[14] examined the current dual-core AMD processor on Cray XT3 and XT4 systems to assess the current
state of system balance and to determine when to invest more of our monetary resources to improve
memory bandwidth. The study used the NERSC SSP [15], which is a diverse array of full-scale
applications that represent a significant fraction of the NERSC workload. As shown in Figure 7, the
surprising result is that application performance showed very little degradation when moving from single-
core to dual core (running same concurrency, but using one verses two cores per socket). The memory
bandwidth seen by the application was effectively halved, but the average performance impact was less
than 10%! This was certainly not what one would expect based on the conventional wisdom regarding the
necessity of bandwidth for HPC applications.

Examining a breakdown of time spent in various components of the code (Figure 8), very little time could
be attributed to memory contention. The largest fraction of time is attributed to either latency stalls or
integer/address arithmetic (the “other” category). So, although in an ideal world, these applications should
be memory-bandwidth bound, existing CPUs are constrained by other microarchitectural bottlenecks.
Multicore can actually help in this area by balancing Little’s Law, which states that the number of
concurrent memory accesses in flight at any given time must equal the product of latency and bandwidth
of the memory interface in order to ensure available memory bandwidth is utilized. Multicore is more
effective than scaling the clock frequency of uniprocessors because it is capable of using the cores to
launch more concurrent accesses to memory. Vector architectures were effective at using memory
bandwidth for similar reasons as the vector register loads greatly increased the number of concurrent load
operations presented to the main memory.

Perhaps more chip real-estate should be devoted to latency hiding features such as vector-like register sets
or software controlled memories. Early data collected on the STI Cell processor indicates that the leading
reason for its high performance relative to other CPU implementations can be traced back to the efficiency
of its software managed memory hierarchy rather than the high FLOP rates and memory bandwidth the
platform offers [16]. At the moment multicore is not memory bandwidth bound, but ideally it should be!

3.1.2. Interconnects
The other concern that arises as we move toward the phenomenal concurrencies shown in Figure 6 is that
the interconnect topologies will be inadequate to the task of handling the communication requirements of
applications. It is becoming impractical to build fully-connected networks such as crossbars or CLOS
networks for ever-increasing concurrencies because such implementations have component costs that
scale exponentially with port count. Lower degree interconnects such as Torii and hypercubes are
characterized by linear scaling in component costs, but application performance on these networks may
ultimately become constrained by the limited bisection bandwidth. In order to better understand the
application communication requirements, we have embarked on a 3-year study of application
communication requirements documented in a series of papers [17][18][19].

0

Max
To

ta
l M

es
sa

ge
 V

ol
um

e

Figure 9. Communication Requirements for HPC Applications [18].

Figure 9 shows the communication patterns of a number of major Department of Energy (DOE) HPC
applications captured non-invasively by IPM [20] as they ran at scale on the IBM SP at NERSC. The
matrix of cells describe the communication volume between processors over the course of code execution.
The conclusion of these studies was that the point-to-point messages tended to be very large (bandwidth
bound), but the pattern of communication was very sparse (typically less than 12 communicating partners
for many applications). Although the bandwidth requirements for the interconnect remain high, an
interconnect topology supporting a large bisection bandwidth would be overkill for most applications.
Even for the 3D FFT (bottom right matrix in Figure 9), which requires a bisection-bandwidth-limited
transpose, as you move to a 2-dimensional domain decomposition required for high concurrency, the
number of communicating partners reduces from P processes to the square root of P processes – thereby
relaxing the bisection bandwidth constraints. Also, the FFT tends to use messages so small the ability to
efficiently overlap computation with communication using very low-overhead one-sided messages is very
effective at mitigating the effects of a low bisection bandwidth interconnect [21].

The second finding was that the collective communications used for synchronization and global reductions
is strongly bound by latency. Rather than routing collective operations over the same interconnect used
for high-bandwidth point-to-point messaging, it may be more effective to use a dedicated interconnect for
latency-sensitive operations. This approach has proven useful on the Thinking Machines CM-5 and IBM
BG/L systems.

These very same considerations will be as important for the design of interconnects between CPUs on a
chip as they are for interconnections between chips in a large scale MPP. Once chip architectures move to
1000s of cores, the conventional crossbar switch will no longer be feasible for on-chip interconnects, and
the same issues for mapping application communication patterns to lower-degree communication
topologies will arise. Ultimately, future applications will need to be increasingly aware of the interconnect

topology and resulting hierarchical communication characteristics – both on-chip and off-chip. It may be
possible to employ circuit switches to adapt the communication topology to application requirements, or
alternatively the OS could be involved in intelligent task migration so as to map the communication
topology as closely as possible to the constrained topology of the interconnect.

3.2. Reliability
It is generally agreed that as feature sizes shrink down to atomic scale, there will be an increasing number
of both hard and soft errors in chip design [22][23]. While this is true, the move to multicore has nothing
to do with this progression. In fact, the availability of additional redundant cores on chip will make
recovery from manufacturing defects more tractable by building in redundant cores that can replace cores
that were disabled by manufacturing defects (hard errors). Cores can also run in tandem, in a manner
similar to banking systems, to better detect and protect against soft errors. So the manycore appoach offers
many paths to actually improve reliability on-chip.

The largest source of chip errors comes from the sockets where IC’s are plugged in to system boards. Pin
failure rates on sockets tend to be as high or a higher source for failures than soft-errors in many system
implementations. The design of BG/L offers some insight into how to keep such points of failure under
control. In order to minimize such errors, IBM chose to solder memory onto the system board for the
BG/L system in order to improve reliability. In addition, rather than devoting chip surface area to putting
more cores on board or more memory, the BG/L ASIC integrates a large number of system services such
as the interconnect and memory controller, which would otherwise have been implemented as discrete
components on the system board. By employing the SoC (system on chip) integration to reduce the
number of components on the board, and by minimizing the number of socketed chip connections in the
system, the BG/L has a better MTBAF (Mean Time Between Application Failure) than the ASCI Purple
system despite having twelve times as many CPUs. So the benefits of employing simpler core design for
the manycore design point are not limited to simply using chip area for more CPUs – using chip surface
area for increased system integration (and fewer components) can greatly increase the cost-effectiveness
and reduce failure rates for future HPC system implementations.

3.3. Programmability
Keeping abreast of geometrically increasing concurrency is certainly the most daunting challenge as we
move beyond the petaflop in the next few years. Most algorithms and software implementations are built
fundamentally on the premise that concurrencies would continue to increase modestly, just as they have
over the past 15 years. The exponentially increasing concurrency throws all of those assumptions into
question. At a minimum, we will need to embark upon a campaign of reengineering our software
infrastructure that is as dramatic and broad in scope as the transition from vector systems to MPPs that
occurred in the early 90’s. However, the heir apparent to our current programming practice is not
obvious. If we cannot succeed in selecting a scalable programming model to carry us for the next 15 years,
we will be forced to reckon with multiple phases of ground-up software rewrites, or a hard limit to the
useable performance of future system. Consequently, the programming model for manycore systems is
the leading challenge for future systems.

3.3.1. Unfamiliar Programming Target
The multicore or manycore CMP is an unfamiliar programming target. The most popular approach to
programming multicore systems is to adopt the methods used to program familiar targets such as MPPs or
SMPs. The Cray XT4 and BG/L systems are currently programmed using the same flat MPI
programming model used for conventional MPPs. However, many datastructures in our application codes

and even the vendor MPI implementations grow O(N) or O(N2) with the number of processors in the
system – ultimately consuming most of the available memory with redundant copies of shared variables or
with code segments.

As a result, there has been reconsideration of the hybrid OpenMP+MPI programming model that has
shown more failures than successes over the past decade. Even if the deficiencies in implementation that
have limited its effectiveness can be overcome, the barrier synchronizations and serialized setup of shared
verses thread-private variables that occur at the preamble of OpenMP parallel loop structures will be
increasingly stymied by Amdahl’s law at higher on-chip concurrencies. Also the SMP (shared memory
processor) target of OpenMP has dramatically different characteristics from the CMPs that we are
currently considering. Whereas the SMP target for which OpenMP was designed has communication
pathways between CPUs that have latencies and bandwidths that are very similar to the communication
paths to memory, the CMP target offers 10-100 times lower latencies and 10-100 times higher bandwidths
between the CPU cores on chip. OpenMP does not sufficiently exploit the much finer granularity afforded
by the CMP design, and failure to adopt an execution model that exploits this feature will fail to fully
unlock the potential of CMPs.

Some examples of novel execution models and programming primitives that better exploit the capabilities
of the CMP compared to an SMP model are as follows

• CMPs could offer new lightweight coherency and synchronization primitives that only operate
between cores on the same chip. Some examples include the streaming directives used to
coordinate action between Single-Streaming Processors (SSPs) on the Cray X1, split phase
transactions, or fine-grained memory fences.

• Transactional Memory offers a pathway to be more fault resilient and tolerant of programmer
errors with respect to reasoning about concurrency and dataflow hazards [24].

• Standard coherence protocols are inefficient for certain data communication patterns (e.g.,
producer-consumer traffic), and these inefficiencies will be magnified by the increased core count
and the vast increase in potential core bandwidth and reduced latency of CMPs. More flexible or
even reconfigurable data coherency schemes will be needed to leverage the improved bandwidth
and reduced latency.

If we simply treat a multicore chips as a traditional SMP—or worse still, treat it as a flat MPI machine --
then we may miss opportunities for new architectures and algorithm designs that can exploit these new
features.

3.3.2. Manycore Opportunities
Most of our consternation regarding the move to multicore reflects our uncertainty that we will be able to
extract sufficient parallelism from our existing algorithms. Our community is slowly rediscovering some
of the beneficial properties of the coarse-grained dataflow execution paradigm (much studied in the 80’s),
which enables conservation of off-chip bandwidth by implementing feed-forward dataflow pipelines
between cores on the CMP. This approach of course exposes us to many more potential side-effects and
dataflow hazards than the conventional approach. Such approaches have resulted in reconsideration of
functional programming styles using more familiar modern languages. Examples can be found in CILK
[25] and the DAG scheduling explored by Parry Husbands [30] and Jack Dongarra [25].

Rather than applying all of the cores on a CMP towards parallelism, they could be applied to other tasks
such as background handling of System calls, Interrupts and other OS services as demonstrated by side-
core methods [27]. It could be used for asynchronously monitoring execution and background handling of

load balancing and remeshing for adaptive applications. The cores could be used for background code
analysis [28], code optimization, and even code-rewriting to facilitate aspect oriented programming [29].
Finally, the additional cores could be used in place of DMA engines for efficient background/one-sided
communication. This was certainly the original vision for the Intel Paragon’s communication co-
processor mode and BG/L’s Coprocessor mode of operations, were it not for the lack of L1 cache-
coherency between the CPUs on the node. If we begin by imagining hundreds of processors on each node
rather than 2 or 4, then it opens up our imagination to a much broader set of possibilities for apportioning
computational capability on each socket of a large-scale system.

4. Conclusion
An enormous transition is underway that affects all sectors of the computing industry. We believe that our
current conservative path toward multicore will ultimately stall, and in the long term, the industry will
move rapidly towards a manycore design point containing hundreds or thousands of cores per chip. The
underlying motivation for adopting manycore is driven by power limits for future system designs. The
changes in architecture are also driven by the movement of market volume and capital that go with new
CPU designs, from the desktop PC industry towards the consumer electronics applications.

All of these changes precede emergence of the parallel programming model. This is as much a concern
for the consumer electronics industry as it is for us in the HPC world. We have more familiarity with
parallel algorithms though, but our approach to parallel programming may prove unacceptable to that
industry. Consequently, the desktop and consumer electronics industry are working hard towards an in-
socket parallel programming model that can be adopted by non-expert programmers that populate their
workforce. We may find ourselves forced to use the programming model they develop unless we engage
actively in the development process. This transition is not just about HPC!

These transitions will lead to new era of architectural exploration given uncertainties about programming
and execution model (and we MUST explore!). The HPC community needs to get involved now, given
that it takes 3-5 years for new hardware designs to emerge, 3-5 years lead for new software ideas
necessary to support new hardware to emerge, and 5+ MORE years to general adoption of new software.
We are already too late to have an impact on the petaflop and are likely to be too late for the Exaflop if we
don’t raise the priority for research into programming models and system design immediately.

5. Acknowledgements
I would like to gratefully thank David Patterson, and all of the participants in the Berkeley View report for
organizing 2 years of thought provoking discussions that fed into this work. This work was supported by
the Office of Advanced Scientific Computing Research in the Department of Energy Office of Science
under contract number DE-AC02-05\-CH\-11231.

6. References

[1] Krste Asanovic, et. al., “The Landscape of Parallel Computing Research: A View from Berkeley,
Electrical Engineering and Computer Sciences,” University of California at Berkeley, Technical
Report No. UCB/EECS-2006-183, December 18, 2006. (http://view.eecs.berkeley.edu/)

[2] J. L. Hennessy, D.A. Patterson, ”Computer Architecture: A Quantitative Approach; fourth edition,”
Morgan Kaufmann, San Francisco, 2006.

[3] S. Borkar, “Design challenges of technology scaling,” IEEE Micro, vol. 19, no. 4, Jul.–Aug. 1999, pp.
23–29.

[4] D. Burger, S.W. Keckler, K.S. McKinley, et al., "Scaling to the End of Silicon with EDGE
Architectures," IEEE Computer, 37 (7), pp. 44-55, July, 2004.

[5] P.P. Gelsinger, “Microprocessors for the new millennium: Challenges, opportunities, and new
frontiers,” in Proceedings of the International Solid State Circuits Conference (ISSCC), 2001, pp.
22–25.

[6] A. Wolfe, “Intel Clears Up Post-Tejas Confusion,” VARBus iness , May 17, 2004. (
http://www.varbusiness.com/sections/news/breakingnews.jhtml?articleId=18842588)

[7] A.P. Chandrakasan, S. Sheng, and R.W. Brodersen, “Low-power CMOS digital design,” IEEE Journal
of Solid-State Circuits, vol. 27, no. 4, 1992, pp. 473–484.

[8] D. Sylvester and K. Keutzer, “Microarchitectures for systems on a chip in small process geometries,”
Proceedings of the IEEE, Apr. 2001, pp. 467–489.

[9] W. Eatherton, “The Push of Network Processing to the Top of the Pyramid,” keynote address at
Symposium on Architectures for Networking and Communications Systems, Oct. 26–28, 2005.
Slides available at http://www.cesr.ncsu.edu/ancs/slides/eathertonKeynote.pdf

[10] Intel Polaris Chip: http://www.intel.com/research/platform/terascale/teraflops.htm
[11] Top500 Project: http://www.top500.org/
[12] G. Bell, J. Gray, A. Szalay, “Petascale Computational Systems,” IEEE Computer, Volume: 39,

Issue: 1 Jan. 2006, pp 110-112.
[13] W. Wulf and S. McKee, “Hitting the memory wall: Implications of the obvious,” Computer

Architecture News, 23(1), 1995.
[14] J. Carter, H. He, J. Shalf, E. Strohmaier, H. Shan, and H. Wasserman, “The Performance Effect of

Multi-Core on Scientific Applications,” Cray User Group (CUG2007), Seattle Washington, May
7–10, 2007.

[15] William T.C. Kramer, John Shalf, and Erich Strohmaier, “The NERSC Sustained System
Performance (SSP) Metric,” LBNL Technical Report LBNL-58868, September 2005.

[16] S. Williams, J. Shalf, L. Oliker, P. Husbands, S. Kamil, K. Yelick, "The Potential of the Cell
Processor for Scientific Computing", International Journal of Parallel Programming (IJPP), DOI
10.1007/s10766-007-0034-5, April 2007.

[17] J. Shalf, S.A. Kamil, L. Oliker, and D. Skinner, “Analyzing Ultra-Scale Application Communication
Requirements for a Reconfigurable Hybrid Interconnect,” in Proceedings of the 2005 ACM/IEEE
Conference on Supercomputing (SC ’05), Seattle, WA, Nov. 12–18, 2005. (LBNL-58052)

[18] S. Kamil, J. Shalf, L. Oliker, and D. Skinner, “Understanding Ultra-Scale Application
Communication Requirements,” in Proceedings of the 2005 IEEE International Symposium on
Workload Characterization (IISWC), Austin, TX, Oct. 6–8, 2005, pp. 178–187. (LBNL-58059)

[19] S. Kamil, A. Pinar, D. Gunter, M. Lijewski, L. Oliker, J. Shalf, "Reconfigurable Hybrid
Interconnection for Static and Dynamic Scientific Applications", ACM International Conference on
Computing Frontiers, 2007.

[20] IPM Homepage: http://ipm-hpc.sourceforge.net/
[21] C. Bell, D. Bonachea, R. Nishtala, K. Yelick, “Optimizing Bandwidth Limited Problems Using One-

Sided Communication and Overlap,” 20th International Parallel & Distributed Processing
Symposium (IPDPS), 2006. (LBNL-59207)

[22] S. Borkar, “Designing Reliable Systems from Unrealiable Components: The Challenges of Transistor
Variability and Degradation,” IEEE Micro, Nov.–Dec. 2005, pp. 10–16.

[23] S.S. Mukherjee, J. Emer, and S.K. Reinhardt, "The Soft Error Problem: An Architectural
Perspective," in Proceedings of the 11th International Symposium on High-Performance Computer
Architecture (HPCA-11 2005), Feb. 2005, pp. 243–247.

[24] C. Kozyrakis and K. Olukotun, “ATLAS: A Scalable Emulator for Transactional Parallel Systems,”
in Workshop on Architecture Research using FPGA Platforms, 11th International Symposium on
High-Performance Computer Architecture (HPCA-11 2005), San Francisco, CA, Feb. 13, 2005.

[25] S.S. Mukherjee, J. Emer, and S.K. Reinhardt, "The Soft Error Problem: An Architectural
Perspective," in Proceedings of the 11th International Symposium on High-Performance Computer
Architecture (HPCA-11 2005), Feb. 2005, pp. 243–247.

[26] Alfredo Buttari, Jack Dongarra, Jakub Kurzak, Julien Langou, Piotr Luszczek, and Stanimire Tomov.
“The impact of multicore on math software,” In PARA 2006, Umea Sweden, June 2006.

[26] Sanjay Kumar, Himanshu Raj, Karsten Schwan, Ivan Ganev, “Re-architecting VMMs for Multicore
Systems: The Sidecore Approach,” to appear in WIOSCA 2007, in conjunction with ISCA 2007.

[27] Robert W. Wisniewski, Peter F. Sweeney, Kartik Sudeep, Matthias Hauswirth, Evelyn Duesterwald,
Calin Cascaval, and Reza Azimi, "Performance and Environment Monitoring for Whole-System
Characterization and Optimization", PAC2 (Conference on Power/Performance interaction with
Architecture, Circuits, and Compilers), 2004.

[28] Kiczales, Gregor; John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-Marc
Loingtier, and John Irwin (1997). "Aspect-Oriented Programming", Proceedings of the European
Conference on Object-Oriented Programming, vol.1241, pp.220–242.

[30] P. Husbands, K. Yelick, “Multi-threading and One-Sided Communication for Matrix Factorization”,
Proceedings of SC2007, (to appear) 2007.

