
Future Hardware Challenges
for Scientific Computing

John Shalf

National Energy Research Supercomputing Center
Lawrence Berkeley National Laboratory

1stNeuroinformatics Congress
Stockholm Sweden, September 7, 2008

Traditional Sources of Performance
Improvement are Flat-Lining

•  New Constraints
–  15 years of exponential clock

rate growth has ended

•  But Moore’s Law continues!
–  How do we use all of those

transistors to keep
performance increasing at
historical rates?

–  Industry Response: #cores per
chip doubles every 18 months
instead of clock frequency!

Figure courtesy of Kunle Olukotun, Lance
Hammond, Herb Sutter, and Burton Smith 1

Traditional Sources of Performance
Improvement are Flat-Lining

•  New Constraints
–  15 years of exponential clock

rate growth has ended

•  But Moore’s Law continues!
–  How do we use all of those

transistors to keep
performance increasing at
historical rates?

–  Industry Response: #cores per
chip doubles every 18 months
instead of clock frequency!

–  Is this a good idea, or is it
completely brain-dead?

Figure courtesy of Kunle Olukotun, Lance
Hammond, Herb Sutter, and Burton Smith 2

Traditional Sources of Performance
Improvement are Flat-Lining

•  New Constraints
–  15 years of exponential clock

rate growth has ended

•  But Moore’s Law continues!
–  How do we use all of those

transistors to keep
performance increasing at
historical rates?

–  Industry Response: #cores per
chip doubles every 18 months
instead of clock frequency!

–  Is this a good idea, or is it
completely brain-dead?

–  Has industry run out of ideas?

Figure courtesy of Kunle Olukotun, Lance
Hammond, Herb Sutter, and Burton Smith 3

•  Current Hardware/Lithography Constraints
–  Power limits leading edge chip designs

•  Intel Tejas Pentium 4 cancelled due to power issues

–  Yield on leading edge processes dropping dramatically
•  IBM quotes yields of 10 – 20% on 8-processor Cell

–  Design/validation leading edge chip is becoming unmanageable
•  Verification teams > design teams on leading edge processors

•  Solution: Small Is Beautiful
–  Simpler (5- to 9-stage pipelined) CPU cores

•  Small cores not much slower than large cores
–  Parallel is energy efficient path to performance:CV2F

•  Lower threshold and supply voltages lowers energy per op
–  Redundant processors can improve chip yield

•  Cisco Metro 188 CPUs + 4 spares; Sun Niagara sells 6 or 8 CPUs
–  Small, regular processing elements easier to verify

Hardware: What are the problems?

4

Elements of a Power-Efficient
Processor Core Design

Intel Core2

15W

Power 5

120W

This is how consumer electronics devices such as iPhones and
MP3 players are designed to maximize battery life and minimize cost

PPC450

3W

Tensilica DP

0.09W

•  Cubic power improvement with lower
clock rate due to V2F

•  Slower clock rates reduce pipeline stages
(fewer transistors for same functionality)

•  Simpler in-order cores use less area
(lower leakage) and reduce cost

•  Tailor design to application reduce waste

How Small is “Small”
•  IBM Power5 (server)

–  120W@1900MHz
–  Baseline

•  Intel Core2 sc (laptop) :
–  15W@1000MHz
–  4x more FLOPs/watt than

baseline

•  IBM PPC 450 (automobiles - BG/P)
–  0.625W@800MHz
–  90x more

•  TensilicaXTensa(Moto Razor) :
–  0.09W@600MHz
–  400x more

Intel Core2

Power 5

PPC450
Tensilica DP

How Small is “Small”
•  IBM Power5 (server)

–  120W@1900MHz
–  Baseline

•  Intel Core2 sc (laptop) :
–  15W@1000MHz
–  4x more FLOPs/watt than

baseline

•  IBM PPC 450 (automobiles - BG/P)
–  0.625W@800MHz
–  90x more

•  TensilicaXTensa(Moto Razor) :
–  0.09W@600MHz
–  400x more

Intel Core2

Tensilica DP

.09W

Power 5

Even if each core operates at 1/3 to 1/10th efficiency of largest chip, you
can pack 100s more cores onto a chip and consume 1/20 the power

Multicore vs. Manycore
•  Multicore: current trajectory

–  Stay with current fastest core design
–  Replicate every 18 months (2, 4, 8 . . . Etc…)
–  Advantage: Do not alienate serial workload
–  Example: AMD X2 (2 core), Intel Core2 Duo (2 cores), Madison (2 cores), AMD

Barcelona (4 cores), Intel Tigerton (4 cores)

•  Manycore: converging in this direction
–  Simplify cores (shorter pipelines, lower clock frequencies, in-order processing)
–  Start at 100s of cores and replicate every 18 months
–  Advantage: easier verification, defect tolerance, highest compute/surface-area, best

power efficiency
–  Examples: Cell SPE (8 cores), Nvidia G80 (128 cores),
 Intel Polaris (80 cores), Cisco/Tensilica Metro (188 cores)

•  Convergence: Ultimately toward Manycore
–  Manycore: if we can figure out how to program it!
–  Hedge: Heterogenous Multicore (still must run PPT)

8

Convergence of Platforms

– Multiple parallel general-purpose processors (GPPs)
– Multiple application-specific processors (ASPs)

“The Processor is
the new Transistor”

[Chris Rowen]

Intel 4004 (1971):
4-bit processor,
2312 transistors,

~100 KIPS,
10 micron PMOS,

11 mm2 chip

1000s of
processor
cores per

die

Sun Niagara
8 GPP cores (32 threads)

Intel®
XScale

™
 Core
32K IC
32K DC

MEv2
10

MEv2
11

MEv2
12

MEv2
15

MEv2
14

MEv2
13

Rbuf
64 @
128B

Tbuf
64 @
128B
Hash

48/64/1
28

Scratch
16KB

QDR
SRAM

2

QDR
SRAM

1

RDRAM
1

RDRAM
3

RDRAM
2

G
A
S
K
E
T

PCI

(64b)
66

MHz

S
P
I
4
or
C
S
I
X

Stripe

E/D Q E/D Q

QDR
SRAM

3
E/D Q

MEv2
9

MEv2
16

MEv2
2

MEv2
3

MEv2
4

MEv2
7

MEv2
6

MEv2
5

MEv2
1

MEv2
8

CSRs
-Fast_wr
-UART
-Timers
-GPIO
-BootROM/
SlowPort

QDR
SRAM

4
E/D Q

Intel Network Processor
1 GPP Core

16 ASPs (128 threads)

IBM Cell
1 GPP (2 threads)

8 ASPs

Picochip DSP
1 GPP core
248 ASPs

Cisco CRS-1
188 Tensilica GPPs

9

Ramifications of Massive Parallelism

(fear and loathing)

The Future of
HPC System Concurrency

Must ride exponential wave of increasing concurrency for forseeable future!
 You will hit 1M cores sooner than you think!

11

Ramifications of Massive Parallelism

•  Programming Model
•  Algorithms
•  Compiler Technology
•  Software Engineering

•  Green Flash: Design a machine to fit the
application!

12

Programming Model

targeting million-way parallelism leads to
uncertainty regarding future programming model

Multicore is NOT a Familiar
Programming Target

•  What about Message Passing on a chip?
–  MPI buffers &datastructures growing O(N) to O(N2) problem for limited memory
–  Redundant use of memory for shared variables and program image
–  Flat view of parallelism doesn’t make sense given hierarchical nature of

multicore systems!!! (worry about depth of parallelism rather than breadth)

•  What about SMP on a chip?
–  Hybrid Model (MPI+OpenMP) : Long and mostly unsuccessful history
–  But it is NOT an SMP on a chip

•  10-100x higher bandwidth on chip
•  10-100x lower latency on chip

–  SMP model ignores potential for much tighter coupling of cores
–  Failure to exploit hierarchical machine architecture will drastically inhibit ability

to efficiently exploit concurrency! (requires code structure changes)

•  Entering transition period for programming models

14

Looking Beyond the SMP
(focus on parallelism Depth instead of Breadth)

#sockets relatively constant (# cores is doubling)
What can we do ON-CHIP that is different than off-chip?

•  Cache Coherency: necessary but not sufficient (and not
efficient for manycore!)
–  Fine-grained language elements difficult to build on top of CC

protocol
–  Hardware Support for Fine-grained hardware synchronization

•  Message Queues: direct hardware support for
messages

•  Transactions: Protect against incorrect reasoning about
concurrency
–  If there is an inter-loop dependency, transactions “roll back” and

run slower (but still get the same result as serial case)
–  Allows more aggressive use of auto-parallelization technology
–  Still many “semantic” issues to work out (this is not a panacea)

15

Compiler Technology
Faced with increased architectural diversity

Auto-parallelizing compilers are not going to magically
solve our problems

Performance Portability
•  Diverse set of architectural

options == Daunting
tuning requirements

–  What is a compiler to do?

•  Performance portability
was bad enough
–  Diversity makes

performance portability
tough

–  In many cases, basic
portability is lost

–  Need new approaches such
as multi-target languages,
auto-tuning and/or code
generators

Picochip DSP
1 GPP core
248 ASPs

Cisco CRS-1
188 Tensilica GPPs

Sun Niagara
8 GPP cores (32 threads)

Intel®
XScale
™
 Core
32K IC
32K DC

MEv2
10

MEv2
11

MEv2
12

MEv2
15

MEv2
14

MEv2
13

Rbuf
64 @
128B

Tbuf
64 @
128B
Hash
48/64/1
28
Scratch
16KB

QDR
SRAM
2

QDR
SRAM
1

RDRAM
1

RDRAM
3

RDRAM
2

G
A
S
K
E
T

PCI

(64b)
66
MHz

S
P
I
4
or
C
S
I
X

Stripe

E/D Q E/D Q

QDR
SRAM
3
E/D Q

MEv2
9

MEv2
16

MEv2
2

MEv2
3

MEv2
4

MEv2
7

MEv2
6

MEv2
5

MEv2
1

MEv2
8

CSRs
-Fast_wr
-UART
-Timers
-GPIO
-BootROM/
SlowPort

QDR
SRAM
4
E/D Q

Intel Network Processor
1 GPP Core
16 ASPs (128 threads)

STI Cell
8 ASPs, 1GPP

17

3.5x

Multiprocessor Performance
(auto-tuned stencil kernel)

4.5x 1.4x

4.4x 4.6x

2.0x

23.3x

2.3x

Power Efficiency Performance Scaling

18

Compilers with maximum optimization are not delivering scalable performance

Performance Portability

19

Algorithms

targeting million-way parallelism changes the
selection of algorithms

Technology Trends are Affecting
Algorithm Requirements

•  Parallel computing has thrived on weak-scaling for
past 15 years

•  Flat CPU performance increases emphasis on
strong-scaling

•  Algorithm Requirements will change accordingly
–  Concurrency will increase proportional to system scale (every 18

months)
–  Timestepping algorithms will be increasingly driven towards

implict or semi-implicit stepping schemes
–  Multiphysics/multiscale problems increasingly rely on spatially

adaptive approaches such as Berger-Oliger AMR
–  Strong scaling will push applications towards smaller messages

sizes – requiring lighter-weight messaging (weak point of MPI)

21

•  1.5 orders: increased processor speed and efficiency
•  1.5 orders: increased concurrency
•  1 order: higher-order discretizations

–  Same accuracy can be achieved with many fewer elements

•  1 order: flux-surface following gridding
–  Less resolution required along than across field lines

•  4 orders: adaptive gridding
–  Zones requiring refinement are <1% of ITER volume and

resolution requirements away from them are ~102 less severe

•  3 orders: implicit solvers
–  Mode growth time 9 orders longer than Alfven-limited CFL

Where to Find 12 Orders in 10 years?
(for simulations of ITER)

H
ar
dw

ar
e:
 3

So
,
w
ar
e:
 9

22

David Keyes, Columbia U.

Regarding Code & Model Complexity

23

Application Code Complexity

•  Application Complexity has Grown
– Big Science is a multi-disciplinary, multi-

institutional, multi-national efforts!
– Looking more like science on atom-smashers
– Rapidly outstripping our ability to Verify &

Validate our results against experiments!

•  Advanced Parallel Languages
Necessary, but NOT Sufficient!
– Need higher-level organizing constructs for

teams of programmers and scientists

Community Codes & Frameworks

•  Complexity of hardware is daunting
•  Complexity of the model is even more daunting
•  Both require adoption of more formalized

practices of software engineering (frameworks,
etc…)
–  Idiom for parallelism: Externalize from specification of

the mathematical operators
–  Modular code: unit-testing, algorithm comparisons
–  Frameworks: A social contract between computer

scientists and model developers (no CS magic here)
–  Verification & Validation: Supported by modularity and

standardization of software design practices
25

Community Codes & Frameworks
(hiding complexity using good SW engineering)

•  Community-grown frameworks (eg. Chombo, Cactus, SIERRA, UPIC,
etc…)
–  Clearly separate roles and responsibilities of expert programmers from that

of the domain experts/scientist/users (productivity vs. performance layer)
–  Define social contract between expert programmers and domain scientists
–  Enforce and facilitate SW engineering style/discipline to ensure correctness
–  Hides complex domain-specific parallel abstractions from scientist/users to

enable performance
–  Allow scientists/users to code nominally serial plug-ins that is invoked by a

parallel “driver”
–  Modularity enables efficient UNIT TESTING of components for V&V

•  Properties of the “plug-ins” for successful frameworks (CSE07)
–  Relinquish control of main(): framework decides when to invoke module!
–  Module must be stateless (so it can be invoked in any order)
–  Module only operates on the data it is given (well understood side-effects)

Framework Component Interoperability
(from DARPA frameworks workshop)

•  Physics models are
completely uncoupled.

•  May exchange static
datasets through flat files.

Structures

Fluids

Acoustics

Electro-
Magnetics

Common
Infrastructure

Minimal Component
Interoperability:

Shallow Component
Interoperability:

•  Physics models are loosely coupled.
•  Data management and parallelism is

independent in each module.
•  Exchange common data events via

wrappers (web services, etc.).

•  Physics models are tightly coupled.
•  Data exchange across shared service

infrastructure.

Deep Component
Interoperability:

Structures
Fluids

Acoustics

Electro-
Magnetics

Structures Fluids

Acoustics

Electro-
Magnetics

Time
 Should be here

Green Flash:
Design a machine to fit the problem

28

Green Flash Overview

•  Research effort: study feasibility and share insight w/community

•  Elements of the approach
–  Choose the science target first (climate or neuroinformatics)
–  Design systems for applications (rather than the reverse)
–  Design hardware, software, scientific algorithms together

using hardware emulation and auto-tuning

•  What is NEW about this approach
•  Leverage commodity processes used to design power efficient embedded

devices (redirect the tools to benefit scientific computing!)
•  Auto-tuning to automate mapping of algorithm to complex hardware
•  RAMP: Fast hardware-accelerated emulation of new chip designs

Applicable to broad range of scientific computing applications

Global Cloud System Resolving
Climate Models

1km 
Cloud system resolving models 

25km 
Upper limit of climate models 
with cloud parameteriza=ons 

200km 
Typical resolu=on of 
IPCC AR4 models 

Surface Altitude (feet)

•  Direct simulation of cloud systems replacing statistical parameterization.
•  This approach recently was called for by the 1st WMO Modeling Summit.

1km-Scale Global Climate Model Requirements

Simulate climate 1000x faster than real time
10 Petaflops sustained per simulation

(~200 Pflops peak)
10-100 simulations (~20 Exaflops peak)
Truly exascale!
Some specs:
•  Advanced dynamics algorithms: icosahedral, cubed

sphere, reduced mesh, etc.
•  ~20 billion cells  Massive parallelism
•  100 Terabytes of Memory
•  Can be decomposed into ~20 million total subdomains

Requires New Algorithmic Approach to Achieve 20M-way
concurrency

•  Collaborating with CSU on Icosahedral Model

fvCAM

Icosahedral

Auto-tuning

•  Problem: want performance on
diverse architectures
–  Code is non-portable
–  Optimizations are architecture-

specific
–  To labor-intensive to hand-optimize

for each system
•  A Solution: Auto-tuning

–  automate search across a complex
optimization space

–  Achieve performance far beyond
current compilers

–  achieve performance portability for
diverse architectures! Reference

Best: 4x2

Mflop/s

Mflop/s

For finite element problem (BCSR)

[Im, Yelick, Vuduc, 2005]

Advanced Hardware Simulation
(RAMP)

•  Research Accelerator for Multi-Processors (RAMP)
–  Utilize FGPA boards to emulate large-scale multicore

systems
–  Simulate hardware before it is built
–  Break slow feedback loop for system designs
–  Allows fast performance validation
–  Enables tightly coupled hardware/software/science
 co-design (not possible using conventional approach)

•  Technology partners:
–  UC Berkeley: John Wawrzynek, David Patterson,
 Jim Demmel, Krste Asanovic, Dan Burke
–  Stanford University / Rambus Inc.: Mark Horowitz
–  Tensilica Inc.: Chris Rowen

Leveraging Commodity Hardware
Design Flow

•  1990s - R&D computing hardware dominated by desktop/COTS
–  Had to learn how to use COTS technology for HPC

•  2010 - R&D investments moving rapidly to consumer electronics/
embedded processing
–  Must learn how to leverage embedded processor technology for

future HPC systems

Image from Dr. TsugioMakimoto

Processor
Generator
(Tensilica) Build with any

process in any fab Tailored SW Tools:
Compiler, debugger,
simulators, Linux,

other OS Ports
(Automatically

generated together
with the Core)

Application-
optimized processor

implementation
(RTL/Verilog)

Base CPU
Apps

Datapaths

OCD

Timer

FPU Extended Registers

Cache

Embedded Design Automation
(Example from Existing Tensilica Design Flow)

Processor configuration
1.  Select from menu
2.  Automatic instruction

discovery (XPRES Compiler)
3.  Explicit instruction

description (TIE)

Embedded Design Toolchain

Traditional New Architecture
Hardware/Software Design

Cycle Time

4-6+ years

Design New System
(2 year concept phase)

Port Application

Build
Hardware
(2 years)

Tune
Software
(2 years)

AMD Opteron

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

1 2 4 8 1 2 4 8

Cores (SP) # Cores (DP)

T
o

ta
l

G
fl

o
p

/
s

$ Bypass
SIMD
Prefetch
T/$ Block
Reorder
Padding
NUMA
Naïve

How long does it
take for a full
scale application
to influence
architectures?

Proposed New Architecture
Hardware/Software Co-Design

Cycle Time

1-2 days

AMD Opteron

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

1 2 4 8 1 2 4 8

Cores (SP) # Cores (DP)

T
o

ta
l

G
fl

o
p

/
s

$ Bypass
SIMD
Prefetch
T/$ Block
Reorder
Padding
NUMA
Naïve

Synthesize SoC (hours)

Build application

Emulate
Hardware
(RAMP)
(hours)

Autotune
Software
(Hours)

How long does it
take for a full
scale application
to influence
architectures?

Strawman System Design
We examined three different approaches (in 2008 technology)

Computation .015oX.02oX100L: 10 PFlops sustained, ~200 PFlops peak
•  AMD Opteron: Commodity approach, lower efficiency for scientific applications

offset by cost efficiencies of mass market
•  BlueGene: Generic embedded processor core and customize system-on-chip

(SoC) to improve power efficiency for scientific applications
•  Tensilica XTensa: Customized embedded CPU w/SoC provides further

power efficiency benefits but maintains programmability

Processor Clock Peak/
Core
(Gflops)

Cores/
Socket

Sockets Cores Power Cost
2008

AMD Opteron 2.8GHz 5.6 2 890K 1.7M 179 MW $1B+
IBM BG/P 850MHz 3.4 4 740K 3.0M 20 MW $1B+
Green Flash /
Tensilica XTensa

650MHz 2.7 32 120K 4.0M 3 MW $75M

Climate System Design Concept
Strawman Design Study

32 boards
per rack

100 racks @
~25KW

power + comms

32 chip + memory
clusters per board (2.7

TFLOPS @ 700W

VLIW CPU:
•  128b load-store + 2 DP MUL/ADD + integer op/ DMA

per cycle:
•  Synthesizable at 650MHz in commodity 65nm
•  1mm2 core, 1.8-2.8mm2 with inst cache, data cache

data RAM, DMA interface, 0.25mW/MHz
•  Double precision SIMD FP : 4 ops/cycle (2.7GFLOPs)
•  Vectorizing compiler, cycle-accurate simulator,

debugger GUI (Existing part of Tensilica Tool Set)
•  8 channel DMA for streaming from on/off chip DRAM
•  Nearest neighbor 2D communications grid

Proc
Array

RAM RAM

RAM RAM

8 DRAM per
processor chip:

~50 GB/s

CPU
64-128K D

2x128b

32K
I

8
chan
DMA

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

CPU

D

I
D
M
A

O
pt. 8M

B
 em

bedded D
R

A
M

External DRAM interface

External DRAM interface

E
xternal D

R
A

M
 interface E

xt
er

na
l D

R
A

M
 in

te
rfa

ce

Master
Processor

Comm Link
Control

32 processors per 65nm chip
83 GFLOPS @ 7W

Summary

– Choose the science target first
– Design the supercomputer around

application needs
– Design hardware, software, scientific

algorithms together using hardware
emulation and auto-tuning

– This approach is “fully programmable” and
uses commodity design tools! (its not the
same as full-custom design)

Could We Do this for
Neuroinformatics Applications?

•  Problem contains massive amount of
innate parallelism
– 1011 neurons, 1015 synaptic connections?

•  Add instructions for application
– Already have fast trapezoidal integration
– Direct hardware support for sending events

(synaptic connections) to neighbor processors

•  This is a fully programmable approach

42

Conclusions

•  Enormous transition is underway that affects all
sectors of computing industry
–  Motivated by power limits
–  Proceeding before emergence of the parallel programming

model
•  Will lead to new era of architectural exploration

given uncertainties about programming and
execution model (and we MUST explore!)

•  Need to get involved now
–  3-5 years for new hardware designs to emerge
–  3-5 years lead for new software ideas necessary to support new

hardware to emerge
–  5+ MORE years to general adoption of new software

43

More Info

•  The Berkeley View
– http://view.eecs.berkeley.edu

•  NERSC Science Driven System
Architecture Group
– http://www.nersc.gov/projects/SDSA

44

