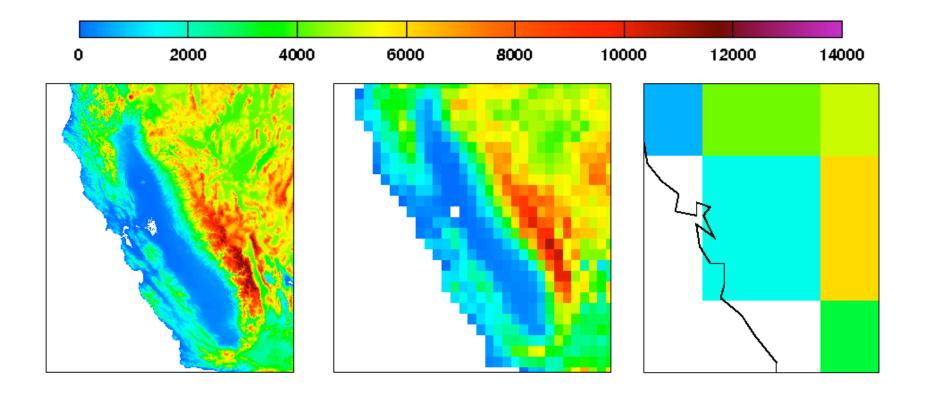


Green Flash: Application Driven System Design for Power Efficient HPC

John Shalf

David Donofrio, Leonid Oliker, Michael Wehner

And many other CRD and NERSC staff


Salishan, April 2009

- We propose a new approach to scientific computing that enables transformational changes for science
 - -Choose the science target first (climate in this case)
 - -Design systems for applications (rather than the reverse)
 - -Design hardware, software, scientific algorithms together using hardware emulation (*RAMP*) and *auto-tuning*
 - -This is the right way to design efficient HPC systems!

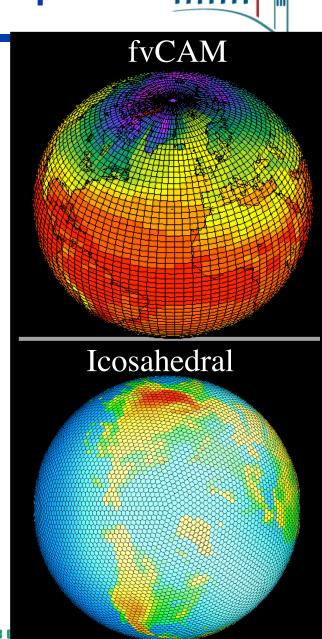
Apply approach to broad range of Exascale-class scientific applications

Global Cloud System Resolving Models are a Transformational Change

1km Cloud system resolving models 25km Upper limit of climate models with cloud parameterizations 200km Typical resolution of IPCC AR4 models

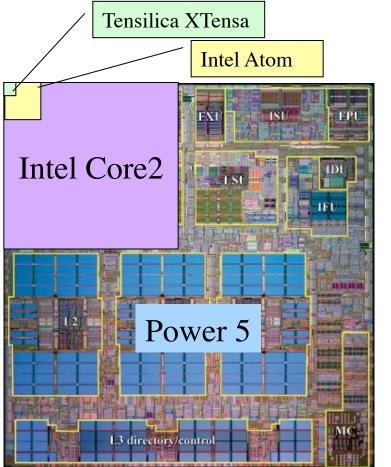
.....

BERKELEY


Requirements for 1km Climate Computer

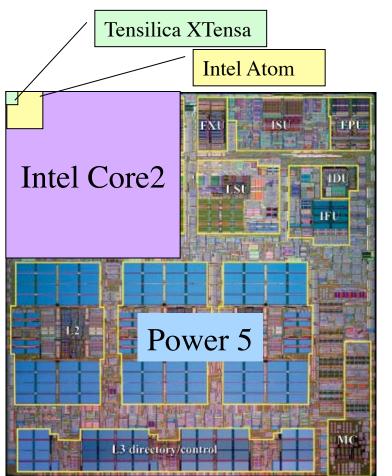
Must maintain 1000x faster than real time for practical climate simulation

- ~2 million horizontal subdomains
- 100 Terabytes of Memory


 –5MB memory per subdomain
- ~20 million total subdomains

 –20 PF sustained (200PF peak)
 –Nearest-neighbor communication
- New discretization for climate model –CSU lcosahedral Code

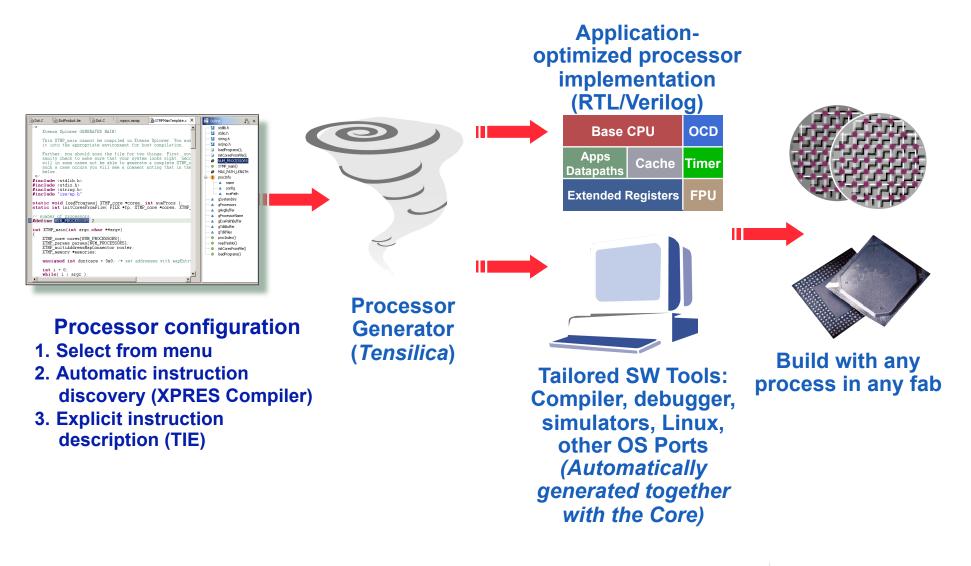
Low-Power Design Principles


- Cubic power improvement with lower clock rate due to V²F
- Slower clock rates enable use of simpler cores
- Simpler cores use less area (lower leakage) and reduce cost

Tailor design to application to REDUCE WASTE

This is how iPhones and MP3 players are designed to maximize battery life and minimize cost

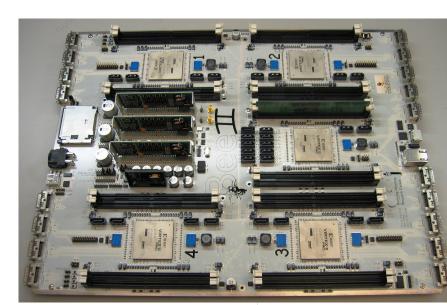
Low-Power Design Principles



- Power5 (server)
 - 120W@1900MHz
 - Baseline
- Intel Core2 sc (laptop) :
 - 15W@1000MHz
 - 4x more FLOPs/watt than baseline
- Intel Atom (handhelds)
 - 0.625W@800MHz
 - 80x more
- Tensilica XTensa (Moto Razor) :
 - 0.09W@600MHz
 - 400x more (80x-120x sustained)

Embedded Design Automation

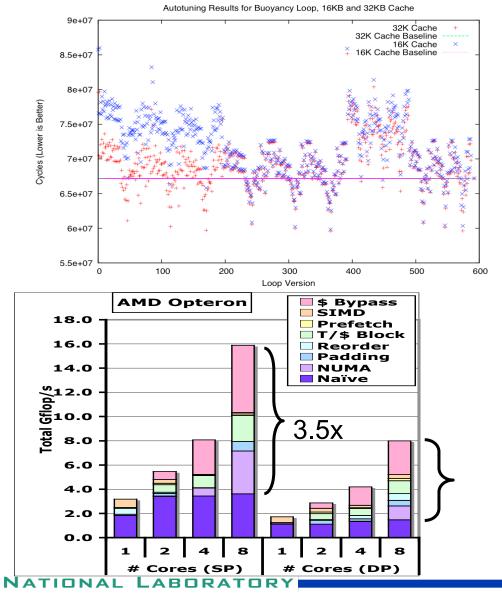
(Example from Existing Tensilica Design Flow)



Advanced Hardware Simulation (RAMP)

Enabling Hardware/Software/Science Co-Design

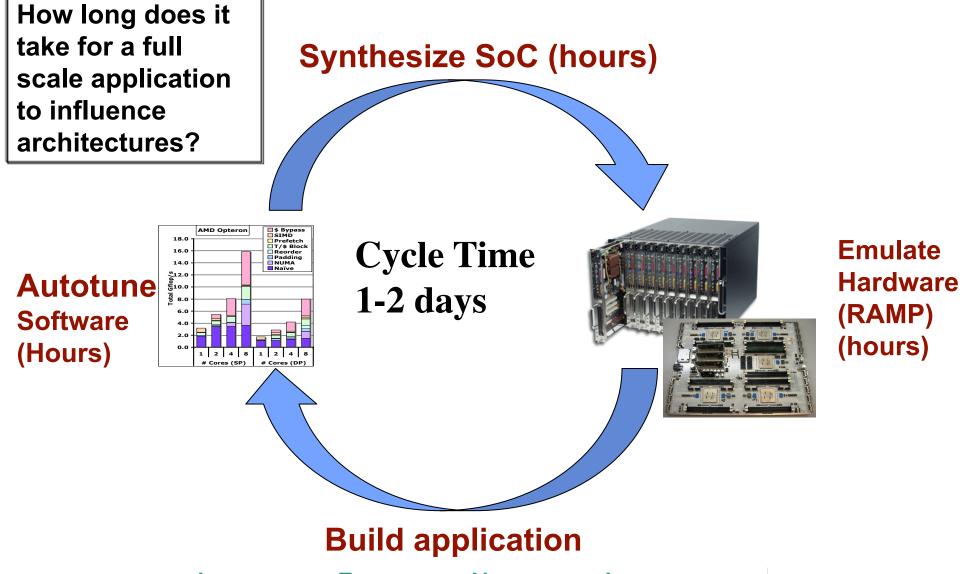
- Research Accelerator for Multi-Processors
 (RAMP)
 - Simulate hardware before it is built!
 - Break slow feedback loop for system designs
 - Enables tightly coupled hardware/software/science co-design (not possible using conventional approach)

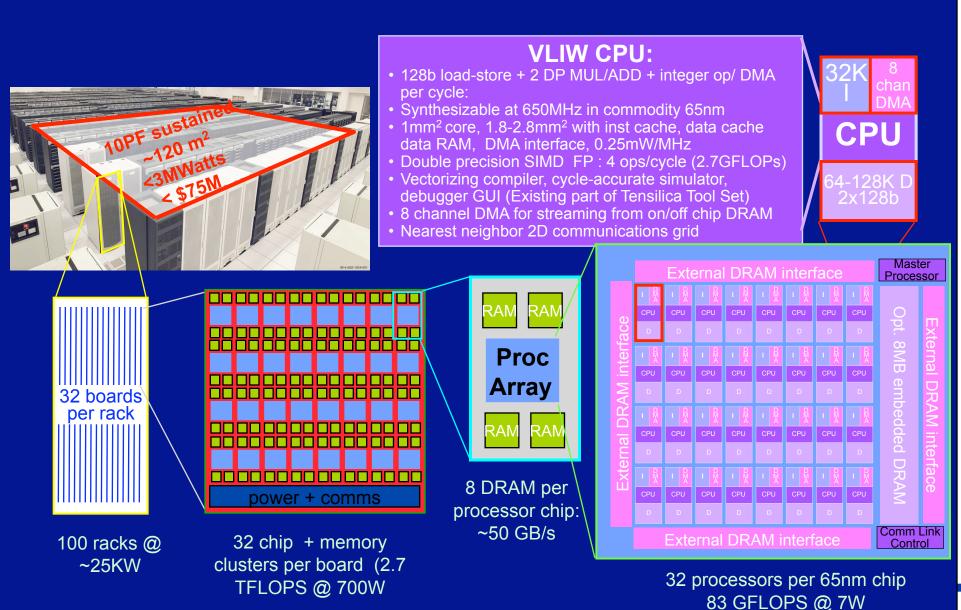

Auto-tuning

- Problem: want to compare best potential performance of diverse architectures, avoiding
 - Non-portable code
 - Labor-intensive user optimizations for each specific architecture
- Our Solution: Auto-tuning
 - Automate search across a complex optimization space

AWRENCE BERKELEY

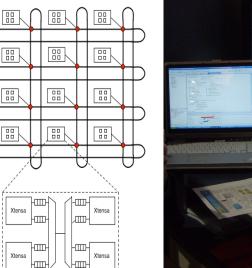
- Achieve performance far beyond current compilers
- achieve performance portability for diverse architectures!

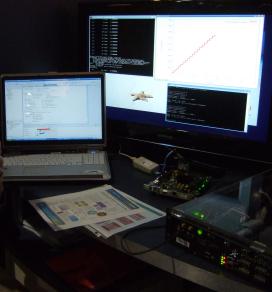

Traditional New Architecture Hardware/Software Design


Proposed New Architecture Hardware/Software Co-Design

Climate System Design Concept Strawman Design Study

Green Flash Strawman System Design In 2008

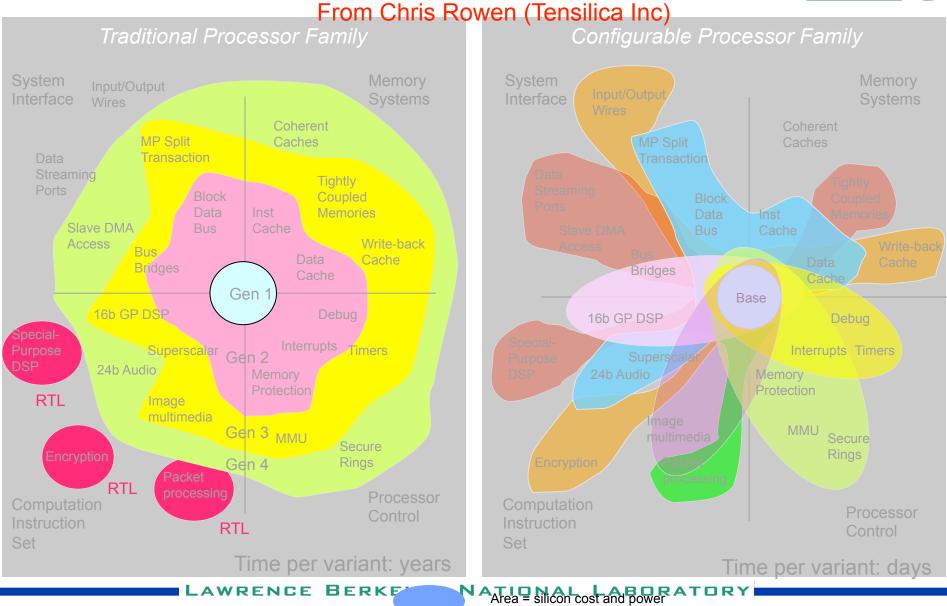

We examined three different approaches:


- AMD Opteron: Commodity approach, lower efficiency for scientific applications offset by cost efficiencies of mass market
- BlueGene: Generic embedded processor core and customize system-on-chip (SoC) services to improve power efficiency for scientific applications
- Tensilica XTensa: Customized embedded CPU w/SoC provides further power efficiency benefits but maintains programmability

Processor	Clock	Peak/ Core (Gflops)	Cores/ Socket	Sockets	Cores	Power	Cost 2008
AMD Opteron	2.8GHz	5.6	2	890K	1.7M	179 MW	\$1B+
IBM BG/P	850MHz	3.4	4	740K	3.0M	20 MW	\$1B+
Green Flash / Tensilica XTensa	650MHz	2.7	32	120K	4.0M	3 MW	\$75M

Green Flash Hardware Demo

- Demonstrated during SC '08
- Proof of concept
 - -CSU atmospheric model ported to Tensilica Architecture
 - Single Tensilica processor running atmospheric model at 50MHz
- Emulation performance advantage
 - Processor running at 50MHz
 vs. Functional model at 100
 kHz
 - -500x Speedup
- Actual code running not representative benchmark



What Have We Learned?

Peel Back the Historical Growth of Instruction Sets (accretion of cruft)

A Short List of x86 Opcodes that Science Applications Don't Need!

lui)

BERKELEY LAB

mnemonic	opl	<u>op2</u>	<u>op3</u>	004	iext	pf	DF p.	50	0 010	c st	m rl	l x	tested f	modif f	def f	undef f	f values	description, notes
		AN					3,	-					a	oszapc	a.c	052.p.		ASCII Adjust After Addition
		AR				+	_	5 0 A	+	+	++	++		oszapc		0a.c		ASCII Adjust AX Before Division
		AN				+	_	4 0 A	-	+	++	+		ossapc	52.p.	0 a .c		ASCII Adjust AX After Multiply
		AR				+	33		_	+	++	+	-	-	a.c			ASCII Adjust AL After Subtraction
		r8				+	1	_	_	-	++-	L	a	05zapc		052.p.		
						+	_	_	Ξ.	_	++	L T.		ossapc	ossapc			Add with Carry
		r15/32/54				+	1.		Ξ	_	++	-	c	05 24 pc	oszapc			Add with Carry
		r/m8				+	1:	-	Ξ	_	++-	++	c	ossapc	ossapc			Add with Carry
		r/m15/32/54				+	1:		<u>т</u>	_	++-	++	c	oszapc	oszapc			Add with Carry
	AL	imm8				+	1.		_	_	++	+		oszapc	ossapc			Add with Carry
	rax	imm15/32				\square	1.		_	_	11	++	c	oszapc	ossapc			Add with Carry
	r/m8	imm8				\square	8	-	2	_	11	L		oszapc	ossapc			Add with Carry
	r/m16/32/64	imm15/32					8.		2	_	\square	L		oszapc	ossapc			Add with Carry
	r/m8	imm8					83	_	2			L	c	oszapc	ossapc			Add with Carry
ADC	r/m16/32/64	imm8					8:		2			L	c	ossapc	ossapc			Add with Carry
ADD	r/m8	1 8					0	D	I			L		ossapc	ossapc			Add
ADD	r/m16/32/64	r16/32/64					0.	1	I			L		oszapc	ossapc			Add
ADD	r 8	r/m8					0;	2	т					oszapc	oszapc			Add
ADD	r16/32/64	r/m15/32/54					0:	3	I		П			ossapc	ossapc			Add
ADD	AL	imm8					0.	4						ossapc	ossapc			Add
ADD	rAX	imm15/32					0.	5			\square			oszapc	ossapc			Add
ADD	r/m8	imm8				+	81	0	0	+	++	L		ossapc	ossapc			Add
ADD	r/m16/32/64	iman15/32				+	8.	1	0	-	++	L		ossapc	ossapc			Add
ADD	r/m8	imm8				+	8:	2	0	+	++	L		052apc	052apc			Add
ADD	r/m16/32/64	imm8				+	8:		0	+	++	L		- 052apc	- 052apc			Add
	xmm	xmm/m128			55e2	66	0F 5:	_	r P4+	+	++							Add Packed Double-FP Values
	xmm.	xmm/m128			ssel	+ +	0F 5:		r P3+	+-	++							Add Packed Single-FP Values
	xmm.	xman√m54			55e2		0F 5:		r P4+	+	++	++						ådd Scalar Double-FP Values
	xmm	xmm/m32			ssel	+ +	0F 5:	-	r P3+	+-	++	++						Add Scalar Single-FP Values
	xonon.	xmm/m128			55e3		OF D		r P4+	_	++	+						Packed Double-FP Add/Subtract
	xmm.	xmm/m128			5563		OFD		r P4+	_	++	++						Packed Single-FP Add/Subtract
		AN	imm8		2200	1.5	D.			·	++	+		oszapc	sz.p.	0 a .c		Adjust AX Before Division
ALTER		ar .	1110110			54			P4+	1	++	++		osampe	»»	0		
						04	_		P 47	<u>ש</u>	++-	++						Alternating branch prefix (used only with Jcc instructions)
		AN	imm8			\square	D			_	11	+		oszapc	5z.p.	0 a .c		Adjust AX After Multiply
	-	rð				\square	2		I I	_	11	L		oszapc	osz.pc			Logical AND
		r16/32/64					2.		I			L		oszapc	05%.pc	a		Logical AND
		r/m8					23		τ					oszapc	osz.pc	a	0c	Logical AMD
		r/m15/32/54					2:		I					ossapc	052.pc	a		Logical AND
	AL	imm8					2							ossapc	05%.pc	a	oc	Logical AND
AND	rAX	imm16/32					2.							oszapc	oss.pc	a	oc	Logical AND
AND	r/m8	imm8					81	0	4			L		oszapc	052.pc	a	oc	Logical AND
AND	r/m16/32/64	imm15/32				Π	8.		4			L		ossapc	osz.pc	a	oc	Logical AND
AND	r/m8	imm8					8;	2	4			L		ossapc	osz.pc	a	oc	Logical AND
AND	r/m16/32/64	imm8				\square	8:	3	4 03+			L		oszapc	052.pc	a	0c	Logical AND
ANDNPD	жтт.	xmm/m128			55e2	66	0F 5.	5	r P4+									Bitwise Logical AND NOT of Packed Double-FP Values
ANDNP S	xmm.	xmm/m128			ssel		0F 5-	_	r P3+									Bitwise Logical AND NOT of Packed Single-FP Values
ANDPD		xmm/m128			sse2		0F 5-		I P4+	-								Bitwise Logical AND of Packed Double-FP Values
		xmm/m128			ssel		0F 5-	4	r P3+									Bitwise Logical AND of Packed Single-FP Values
			LAW			ιŕ	2 F	- 1	ŔF	r' P	k	F	LEY			5 I I		ORATORY

More Wasted Opcodes

ARPL

BOUND

BSF

BSR

BT BT

BTC

BTC

BTR

BTR

BTS

BTS

CALL

CALL

CALL

CALL

CALLF

CALLF

CBW

св₩

CWDE

CDQE

CDQ CLC CLD CLFLUSH

CLI CLTS

CMC CMOVB

CMOUNAE

CMOVE

CMOVBE

CMOUNA

CMOUNGE

CMOVLE

CMOUNG

CMOUNB

CMOVAE

CMOUNC

CMOUNDE

CMOVA

CMOMME.

CMOVGE

CMOUNLE

CMOVG

CMOVL

BSWAP

r/ml6

r16/32

r16/32/64

r16/32/64

r16/32/64 r/m15/32/54

r/m15/32/54

r/m16/32/64

r/m16/32/64

r/m16/32/64

r/m16/32/64

r/m16/32/64

r/m16/32/64

rel16/32

r/m16/32

ptr16:16/32

re132

r/mδ4

m15:15/

AN

AN

EBX

RAX EDX

m8

CRO

r16/32,

r16/32,

r16/32,

r16/32,

r16/32

r16/32,

r16/32,

r16/32,

r16/32

r16/32,

r16/32, r16/32,

r16/32,

r16/32

r16/32/

r16/32,

r16/32, r16/32, •We

instr

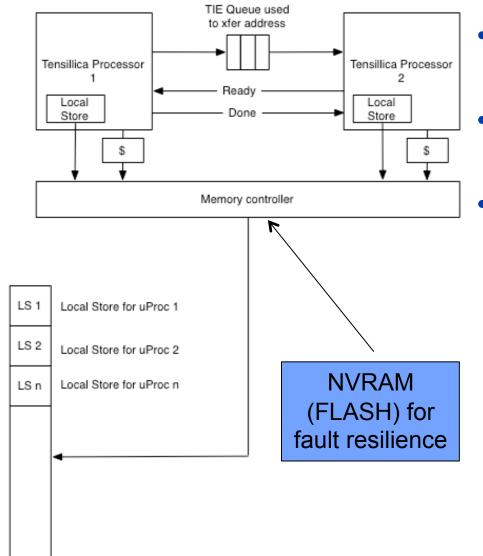
•Still

•Wid

Neit

•Neit

•Mov

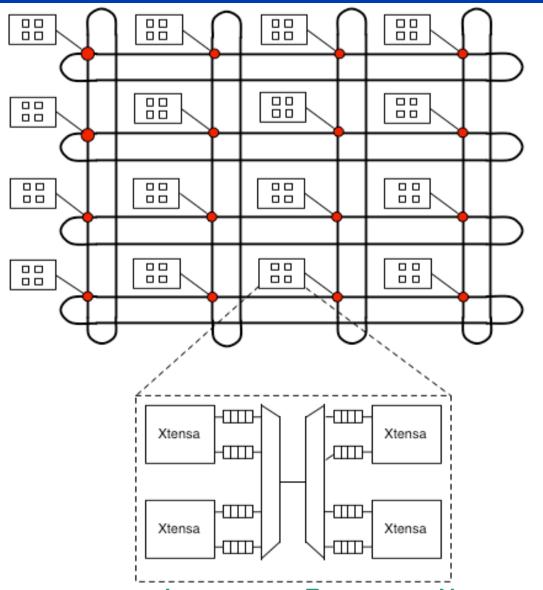

preci

			41 M N N A N N	1	1 / 100	1							
			CVTP32PD	HETTER.	xmm/m128								
			CVTP32PI	mm.	xmm/m54								
			CVTSD2SI	r32/64	xmm/m54					•	BERKEI	EY LAB	_
			CVTSD2SS	HETTER.	хиал/т64 1./т32/54					FXCH4	SI	STi	
r16		СМ	CUTSI2SD CUTSI2SS	xmm.	r/m32/64		r16/32/64	r/m15/32/54		FXCH4	SI	STi	1
m15/32515/32	eFlags	СМ	OTSI255	xmm.	27 m327 b4		r16/32/64	r/m15/32/54		FXCH7	SI	STi	+
r/m15/32/54		СМ	0	x32/64	xmm/ m32		r16/32/64	r/m15/32/54					+
r/m15/32/54		СМ	P COISSESI	252/04 xmm	xmm/m32		r/m8 r/m15/32/54	10 15/32/54		- FXCH7	SI	STi	
		. см		πm.	xmm/m128		18	r/m8		FXRSTOR	SI	SI1	
r15/32/54		- CM		ann	xmm/m128		r15/32/54	r/m15/32/54		- FXRSTOR	ST	ST1	
immo imm8		СМ		πon.	xmm/ m54		AL	imm8		FXSAVE	m512	ST	
r15/32/54		СМ		x32/64	2,100/1054		r AX	imm15/32		FXSAVE	m512	ST	
r16/32/64		СМ		x32/64	xmm/ m32		r/m8	imm8		FXTRACT	SI		
imm8		СМ		DX	AX		r/m15/32/54	imm15/32		FYL2X	SI1	ST	
r15/32/54		СМ	P	DX	AX		r/m8	imm8		- FYL2XP1	SI1	ST	1
imm8		СМ	P 0000	EDX	EAX		r/m15/32/54	imm8 xmm/m128	imm8	G3	GS		+
		. см см	P	RDX	RAX		xmm.	xmm/m128	imm8	HADDPD	in the second se	xmm/m128	+
		см		EAX	AX		m8	m8	1110110	HADDPD		xmm/m128	+
			PIDAA	AZ			728	702 B			xmm.	XIMIV MIZO	+
			PDAS	AL			mlő	mlő		- HLT HSITEPD		/m128	+
						3 instruct		es				- - - -	+
Vide SIMD Doesn't Make Sense with Small Cores Jeither does Cache Coherence												-	+
											-	+	
leither does HW Divide or Sqrt for loops											+		
											1		
•Creates pipeline bubbles													
•Better to unroll it across the loops (like IBM MASS libraries)												+	
Nove TLB to memory interface because its still too huge (but still get												_	
love/	I LB to	o mo	emory	/ interf	ace be	ecause it	s still t	oo hug	ge (I	but si	fill get		
ocico.	AVCO	ntio	ne fro	mean	monto	d protect	tion on	Aach	cor				1
CUSE	exce	puo	115 110	in seg	mente	u protec		cauli	COI	C)			4
									то	INTO	eFlags		

INVLPG

m

Architectural Support for Pmodels Make hardware easier to program!



Global address space

• Logical topology is a full crossbar

- Each local store mapped to global address space
- To initiate a DMA transfer between processors:
 - Processors exchange starting addresses through TIE Queue interface
 - Optimized for small transfers
 - -When ready, copy done directly from LS to LS
 - -Copy will bypass cache hierarchy

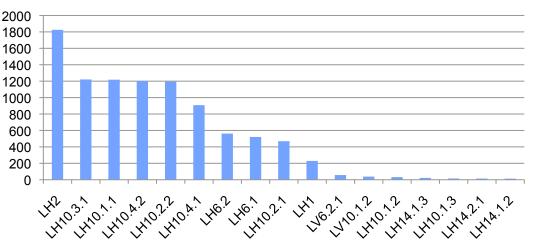
CMP Architecture - Physical View

- Concentrated
 torus
 - –Direct connect between 4
 - processors on a tile

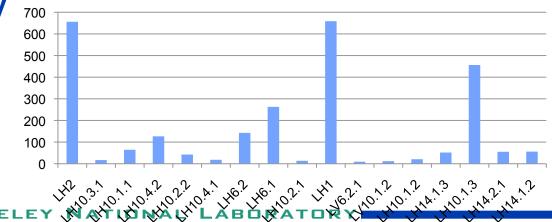
.....

BERKELEY LAE

m

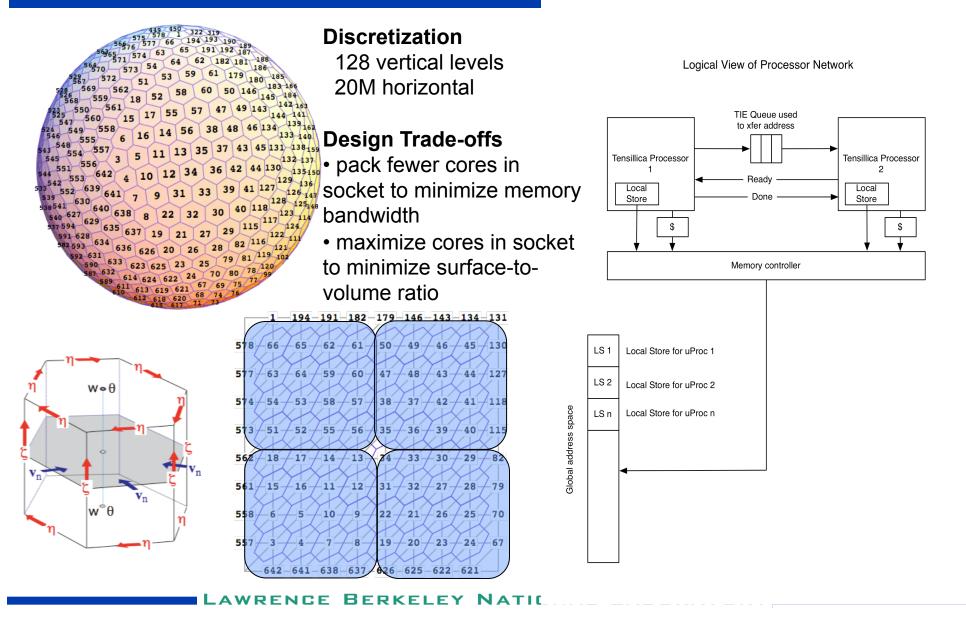

- Packet switched
 network connecting
 tiles
- Between 64 and 128 processors per die

Memory: Perhaps we *don't* need 1 Byte/FLOP (Scripted Memory Movement)

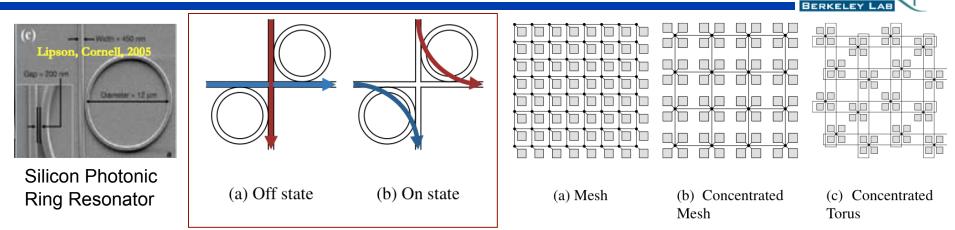


- Trace analysis key to memory requirements
 - Actually running the code gives realistic values for memory footprint, temporal reuse, DRAM bandwidth requirements
- Memory footprint: unique addresses accessed → size of local store needed
- Temporal reuse: maximum number of addresses which will be reused at any time → size of cache needed
- DRAM bandwidth
 - (instruction throughput) X (memory footprint)/ (instruction count)

Memory footprint (KB)



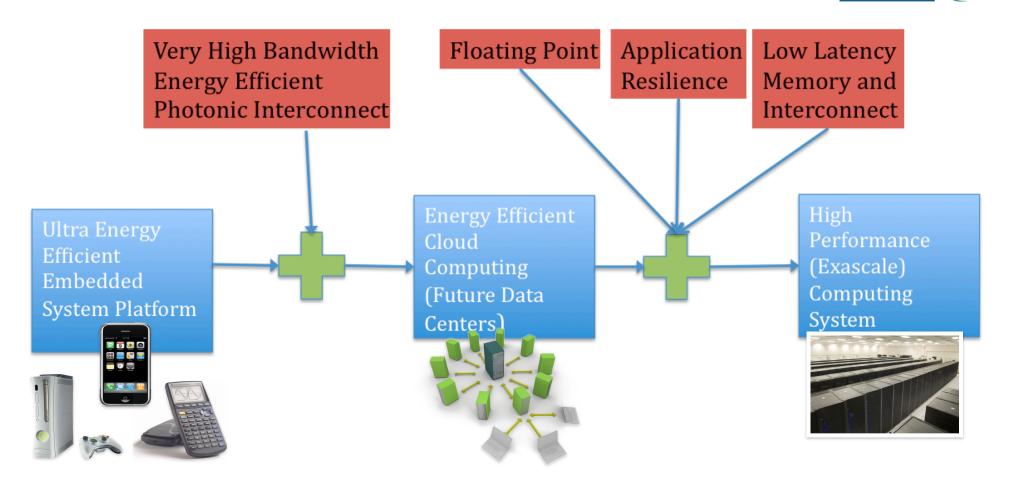
Bandwidth Requirements (MB/s) (Instructions/Cycle=1, 500 MHz)



Hardware Support for PGAS



Silicon Photonics for Energy-Efficient Communication



- Silicon photonics enables optics to be integrated with conventional CMOS
- Enables up to 27x improvement in communication energy efficiency!

....

Technology Continuity for A Sustainable Hardware Ecosystem

....

BERKELEY

Need building blocks for a compelling environment at all scales

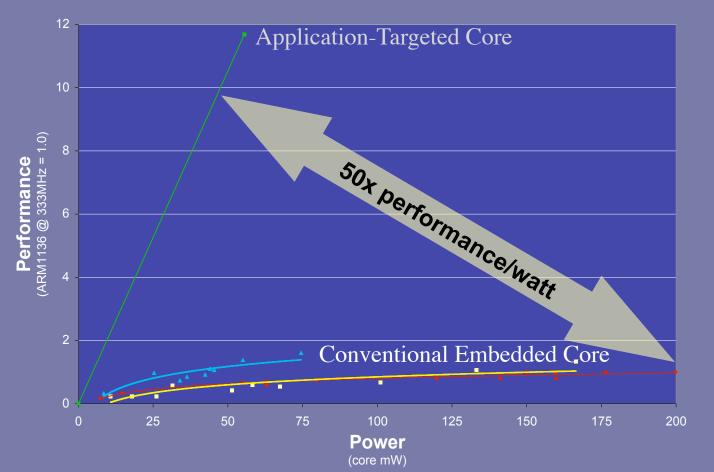
- We propose a new approach to scientific computing that enables transformational changes for science
 - -Choose the science target first (climate in this case)
 - -Design systems for applications (rather than the reverse)
 - -Design hardware, software, scientific algorithms together using hardware emulation and auto-tuning
 - -This is the right way to design efficient HPC systems!

Apply approach to broad range of Exascale-class scientific applications

- Identify target applications FIRST

 Demonstrate using Climate Application (Green Flash)
- Tailor system to requirements of target scientific problem
 - -Use design principles from embedded computing
- Tightly couple hardware/software/science development

 Simulate hardware before you build it (RAMP)
 Use applications as the test, not kernels (V&V)
 Automate software tuning process (AutoTuning)


Processor Power and Performance

Embedded Application-Specific Cores

....

BERKELEY

Courtesy of Chris Rowen, Tensilica Inc.

ARM1026EJ-S, Tensilica Diamond 570T, T1050 and T1030, MIPS 20K, NECVR5000). MIPS M4K, MIPS 4Ke, MIPS 4Ks, MIPS 24K, ARM 968E-S, ARM 966E-S, ARM926EJ-S, ARM7TDMI-S scaled by ratio of Dhrystone MIPS within architecture family. All power figures from vendor websites, 2/23/2006.