
National Energy Research
Scientific Computing Center
(NERSC)

About Memory Bandwidth

John Shalf
NERSC Center Division, LBNL

June 13, 2007

Memory Performance is Key

µProc
60%/yr.

DRAM
7%/yr.

1

10

100

1980 1985 1990 1995 2000

DRAM

CPU

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rfo

rm
an

ce

“Moore’s Law”
1000

Ever-growing processor-memory performance gap

• Total chip performance following Moore’s Law

• Increasing concern that memory bandwidth
may cap overall performance

Concerns about Multicore

• Memory Bandwidth Starvation
– “Multicore puts us on the wrong side of the

memory wall. Will CMP ultimately be
asphyxiated by the memory wall?” Thomas
Sterling

– While true, multicore has not introduced a new
problem

• “memory wall” first described in 1994 paper by Sally
McKee et al. about uniprocessors

• Bandwidth gap matches historical trends FLOPs on
chip doubles every 18months (just by different
means)

– Regardless it is a worthy concern

CCSM3 FVCAM Performance

• FVCAM (atmospheric component of climate model)
OBVIOUSLY correlated with memory bandwidth

• More memory bandwidth means more performance!
• So my theory is “If I move from single-core to dual-core,

my performance should drop proportional to effective
memory bandwidth delivered to each core!” (right?)

Sustained Performance on fvCAM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Power3 Power5 BG/L Itanium2 X1E Earth
Simulator

S
u

st
a
in

e
d

 F
L
O

P
s

o
n

 f
v
C

A
M

Memory Bandwidth

0

5

10

15

20

25

30

35

Power3 Power5 BG/L Itanium2 X1E Earth Simulator

System

G
ig

a
b

y
te

s
/

S
e
c
o

n
d

CAM on Power5+
(test our memory bandwidth theory)

• T85 model (spectral CAM) run sparse and dense
mode. (turn off timers for MPI operations)

• 2% performance drop (per core) when moving
from 1-2 cores

• Does not meet expectations
– Perhaps the Power5 is weird… Lets try another

processor to support my theory

Power5 Stream Triad Performance/core

0

2000

4000

6000

8000

10000

12000

P5+ 1 core P5+ 2 core

M
e
g

a
b

y
te

s
/

s
e
c
o

n
d

Power5+ CAM Performance/core

0

500

1000

1500

2000

2500

3000

3500

4000

P5+ 1 core P5+ 2 core

O
p

 R
a
te

CAM on AMD Opteron

• 3% drop in performance going from single
to dual core
– Still not what I wanted
– Need to find application to support my theory
– Lets look at a broad spectrum of applications!

AMD Opteron STREAM Performance

0

1000

2000

3000

4000

5000

6000

7000

8000

AMD 1 core AMD 2 core

m
e
g

a
b

y
te

s
/

s
e
c

AMD Opteron CAM Performance/proc

0

500

1000

1500

2000

2500

3000

AMD 1 core AMD 2 core

W
a
ll
cl

o
ck

 S
e
co

n
d

s

NERSC SSP Applications

Single vs. Dual Core Performance
(wallclock time at fixed concurrency and problem size)

0

500

1000

1500

2000

2500

3000

3500

4000

CAM MILC GTC GAMESS PARATEC PMEMD MadBench BB3D Cactus

application code

W
a
ll
cl

o
ck

 t
im

e

XT3 SC
XT3 DC

NERSC SSP Applications

Single vs. Dual Core Performance
(wallclock time)

0

500

1000

1500

2000

2500

3000

3500

4000

CAM MILC GTC GAMESS PARATEC PMEMD MadBench BB3D Cactus

application code

W
a
ll
c
lo

c
k
 t

im
e

XT3 SC
XT3 DC

Performance drop (single-to-dual)

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

CAM MILC GTC GAMESS PARATEC PMEMD MadBench BB3D Cactus

Application

P
e
r
c
e
n

t
 d

r
o

p
 i

n
 p

e
r
f
o

r
m

a
n

c
e

• Still 10% drop on average when halving
memory bandwidth!
– #$%^&* application developers write crummy

code!
– Lets pick an application that I KNOW is

memory bandwidth bound!

Lets Try SpMV

• Perhaps full application
codes are a bad example

• Lets try a kernel like SpMV
– Should be memory bound!

– Small kernel

• Highly optimized to maximize
memory performance
– Hand coded (sometimes in asm)

by highly motivated GSRA

– Carefully crafted prefetch

– Exhaustive search for optimal
block size

– Auto-search for optimal
blocking strategy!

Reference

Best: 4x2

Mflop/s

Mflop/s

For finite element problem (BCSR)
[Im, Yelick, Vuduc, 2005]

Example: Sparse Matrix *
Vector

25.6 GB/s21.321.3 GB/sPeak MemBW

22.5 GB/s10.07.5 GB/sSPMv MemBW

 88% 47% 35%Efficiency %

3.41.91.5SPMv
GFLOPS

23%11%2%Efficiency %

15 (DP Fl. Pt.)1875Peak GFLOPS

3.2 GHz2.2 GHz2.3 GHzClock Rate

2-VLIW, SIMD,
local store, DMA

4-/3-issue, SSE, OOO,
caches, prefetch

Architecture

 1*8 = 8 2*2 = 42*4 = 8Chips*Cores

CellOpteronClovertownName

What the #$%^& is going on
Here!!!

• Cannot find data to support my conclusion!
– And it was a good conclusion!

– Theory was proved conclusively by correlation
to memory bandwidth shown on slide #1!

• Correlations do not guarantee causality
– Consumption of memory bandwidth limited by

ability to tolerate latency!

– Vendors sized memory bandwidth to match
what processor core could consume (2nd order
effect manufactured a correlation)

Short Diversion about Latency Hiding

• Little’s Law: bandwidth * latency = concurrency
– bandwidth * latency = #outstanding_memory_fetches

• For Power5+ single-core (theoretical):
– 120ns * 25 Gigabytes/sec
– 3000 bytes of data in flight (375 DP operands)
– 23.4 cache lines (very close to 24 RCQ depth on Power5)
– 375 operands must be in flight to balance Little’s Law!

• But I only have only 32 FP registers
• Even with OOO, only ~100 FP shadow registers, and instruction

reordering window is only ~100
• Means, must depend on prefetch (375 operand prefetch depth)

• Various ways to manipulate memory fetch concurrency
– 2x memory bandwidth: Need 6000 bytes/flight
– 2x cores: Each only needs 1500 bytes/flight
– 2 threads/core: Each needs 750 bytes/flight
– 128 slower cores/threads?: 24 bytes in flight (3 DP words)
– Vectors (not SIMD!): 64-128 words per vec load (1024 bytes)
– Software Controlled Memory (eg. Cell, ViVA)

• Need mem queue depth performance ctr!

Why is the STI Cell So Efficient?
(Latency Hiding with Software Controlled Memory)

• Performance of Standard Cache Hierarchy
– Cache hierarchies underutilize memory bandwidth due to inability to tolerate latency
– Hardware prefetch prefers long unit-stride access patterns (optimized for STREAM)
– But in practice, access patterns are for shorter stanzas: so never reaches peak bandwidth (still latency limited)

• Cell “explicit DMA”
– Cell software controlled DMA engines can provide nearly flat response for a variety of access patterns
– Response is nearly full memory bandwidth can be utilized for all access patterns
– Cell memory requests can be nearly completely hidden behind the computation due to asynchronous DMA

engines
– Performance model is simple and deterministic (much simpler than modeling a complex cache hierarchy),

min{time_for_memory_ops, time_for_core_exec}
– Problem: lack of tractable/broadly applicable programming model

Cell STRIAD (64KB concurrency)

0.000

5.000

10.000

15.000

20.000

25.000

30.000

16 32 64 128 256 512 1024 2048

stanza size

G
B

/
s

1 SPE 2 SPEs 3 SPEs 4 SPEs
5 SPEs 6 SPEs 7 SPEs 8 SPEs

Deep Pipelining for Sparse MVM
(Gerhard Wellein: SR8k review)

PRELOAD FOP ST
PRELOAD FOP ST

PRELOAD FOP ST

PREFETCH
time

ite
ra

tio
n

LD

LD

LDPrefetch index
array COL_IND

Load index from
cache to reg

Preload single data
item X(index)

Additional FPRs support loop
unrolling of 24 iterations!

Will Multicore Slam Against
the Memory Wall?

• Memory Bandwidth Starvation
– “Multicore puts us on the wrong side of the memory

wall. Will CMP ultimately be asphyxiated by the
memory wall?” Thomas Sterling

– Memory wall is NOT a problem that is caused by
multicore (term coined in 1994).

• What about latency (other part of memory wall)
– Effective use of bandwidth is progressively inhibited

by poor latency tolerance of modern microprocessor
cores (memory molassas rather than memory wall)

– Stalled clock rates actually halt growing gap of
memory latency / operation

• We can fix bandwidth (but not latency)
– With current technology, we could put 8x more bandwidth onto chips then we

currently do! . . . GPUs and Cicso Metro already do this!
– So why don’t we do it? . . . because it is ineffective for current processor cores
– Manycore can use memory bandwidth more effectively
– Software controlled memory can use bandwidth even more effectively
– Can use manycore to test system balance using controlled environment

FLOP Rate for Each Core
(single vs dual core)

0

50

100

150

200

250

MI
LC GT

C

PA
RA
TE
C
CA
M

MA
DC
AP

GA
ME
SS

Code Name

S
u

st
a
in

e
d

 G
F
L
O

P
/

s
p

e
r

co
re

Singlecore
dualcore

FLOP Rate for Each Core
(single vs dual core)

0

50

100

150

200

250

M
IL
C

GT
C

PA
RA
TE
C

CA
M

M
AD
CA
P

GA
M
ES
S

Code Name

S
u

s
ta

in
e
d

 G
F
L
O

P
/

s
 p

e
r

c
o

re

Singlecore

dualcore

Predicting XT4 Quad Core
Performance

STREAM
1 Core XT3 1 Core XT4 2 Core XT3 2 Core XT4

Copy: 5137 8196 2345 4074
Scale: 5067 7257 2348 4012
Add: 4734 7482 2309 3469
Triad: 4135 7464 2310 3626

STREAM Bandwidth

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Copy: Scale: Add: Triad:

Stream test name

B
a
n

d
w

id
th

 M
B

/
s

1 Core XT3

2 Core XT3

1 Core XT4

2 Core XT4

Membench

MEMBENCH: Cray XT3 and XT4

-

2,000

4,000

6,000

8,000

10,000

12,000

100 1000 10000 100000 1000000 10000000 100000000 1000000000

Size (bytes)

R
a
te

 (
M

B
/

s)

1core XT3

1core XT4

2core XT3

2core XT4

Membench results for XT3 and XT4 indicate primary source of contention is
memory bandwidth (no signs of resource contention when data fits on-chip).

Apex-MAP

• Traces out 2D space of memory access patterns characterized by
their spatial and temporal locality

• Parameter L
– Represents spatial locality
– Describes size of contiguous accesses to a given memory location

• Parameter α
– Represents temporal locality
– Exponent of a power law distribution of memory addresses

• Performance (height of the graph) is given in cycles per memory
access

Apex-MAP

STREAM

HPL FFT

GUPS

α=0
(high)

α=1
(low)

Spatial Locality

Te
m

po
ra

l
Lo

ca
lit

y

L=1
(low)

L=65536
(high)

1 4

1
6

6
4

2
5
6

1
0
2
4

4
0
9
6

1
6
3
8
4

6
5
5
3
6

0.001

0.025

0.500
0.1

1.0

10.0

100.0

1000.0

C
y
c
le

s

L

α

Seaborg Sequential

2.00-3.00
1.00-2.00
0.00-1.00
-1.00-0.00

Apex-MAP

1 2 4 8

16 32 64

12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38
4

32
76
8

65
53
6

0.001

0.01

0.1

1

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

C
y
cl

e
s

p
e
r

in
st

ru
ct

io
n

spatial locality (L)

temporal
locality

(a)

Single Core Apex-MAP

1 2 4 8

16 32 64

12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38
4

32
76
8

65
53
6

0.001

0.01

0.1

1

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

C
y
cl

e
s

p
e
r

in
st

ru
ct

io
n

spatial locality (L)

temporal
locality

(a)

Dual Core Apex-MAP

Single Core Dual Core

1 2 4 8

16 32 64

12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38
4

32
76
8

65
53
6

0.001

0.01

0.1

1

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

C
y
cl

e
s

p
e
r

in
st

ru
ct

io
n

spatial locality (L)

temporal
locality

(a)

Ratio of Single-Core to Dual Core

1

4

1
6

6
4

2
5
6

1
0
2
4

4
0
9
6

1
6
3
8
4

6
5
5
3
6

0.001

0.010

0.100

1.0000.0000

0.0050

0.0100

0.0150

0.0200

0.0250

0.0300

Residual Error - Opteron

Difference Residual Error for model

Apex-MAP Conclusion

• A simple latency/bandwidth model
provides a reasonably close estimation of
actual Apex-MAP performance
– Residual error of the model is low
– That is to say, a simple explanation will suffice

for dual-core performance penalty (no need to
chase down more complex models)

• The simple model says that memory
bandwidth contention explains most of the
performance difference between single
and dual core

Estimating Quad-Core Performance
• Assumptions

– Memory bandwidth is the only contended
resource

– Can break down execution time into portion that
is stalled on shared resources (memory
bandwidth) and portion that is stalled on non-
shared resources (everything else)

– Estimate time spent on memory contention
from XT3 single/dual core studies

– Estimate # bytes moved in memory-contended
zone

– Extrapolate to XT4 based on increased memory
bandwidth

• Use to validate model

– Extrapolate to quad-core

Estimating Quad-Core Performance

Execution Time Time=120s

Cray XT3 Opteron@2.6Ghz DDR400

Single Core

Dual Core Execution Time Time=180s

Execution Time

Estimating Quad-Core Performance

Other Exec Time Memory BW Time=160s

Cray XT3 Opteron@2.6Ghz DDR400

Single Core

Dual Core Other Exec Time Time=230sMemory BW Contention

Estimating Quad-Core Performance

Other Exec Time=90s 70s@5GB/s Time=160

Cray XT3 Opteron@2.6Ghz DDR400
Single Core

Dual Core 90s Time=230s140s@2.5GB/s

Estimated Bytes Moved = 0.36 GB

Cray XT4 Opteron@2.6Ghz DDR2-667
90s .36G/8GB/s Time=90+0.36GB/8GBs = 134sSingle Core

Dual Core 90s Time=90+0.36GB/4GB/s = 178s.36G/4GB/s

Estimating Quad-Core Performance

Other Exec Time=90s 70s@5GB/s Time=160

Cray XT3 Opteron@2.6Ghz DDR400
Single Core

Dual Core 90s Time=230s140s@2.5GB/s

Estimated Bytes Moved = 0.36 GB

Cray XT4 Opteron@2.6Ghz DDR2-667
90s 44s Time=90+0.36GB/8GBs = 134sSingle Core

Dual Core 90s Time=90+0.36GB/4GB/s = 178s88s

Error
MILC Prediction for XT4 SC=134s

actual = 127s
error = 5%

MILC Prediction for XT4 DC = 178s
actual = 181s
error = 1.5%

Testing the Performance Model

• Reasonably accurate prediction of XT4 performance
by plugging XT3 data into the analytic model

Prediction Error

-12.00%

-10.00%

-8.00%

-6.00%

-4.00%

-2.00%

0.00%

2.00%

4.00%

6.00%

CAM MILC GTC GAMESS PARATEC PMEMD MadBench BB3D Cactus

Application

P
e
rc

e
n

t
E
rr

o
r

Error In XT4 SC prediction
Error in XT4 DC prediction

Memory Contention

Time Spent in Memory Contention

0%

20%

40%

60%

80%

100%

CA
M

MIL
C

GTC

GAM
ES

S

PA
RA

TE
C

PM
EM

D

Mad
Be

nc
h

BB
3D

Ca
ct
us

Application

P
e
rc

e
n

t
o

f
T
im

e

other
memory contention

“Other” may include anything that isn’t memory bandwidth)
(eg. latency stalls, Integer or FP arithmetic, I/O.)

Conclusions

• Application codes see modest impact from move to dual-
core (10.3% avg)
– Exception is MILC, which is more dependent on memory

bandwidth due to aggressive use of prefetch
– Indicates most application performance bounded by other

bottlenecks (memory latency stalls for instance)

• Most of the time is spent in “other” category
– Could be integer address arithmetic
– Could also be stalled on memory latency (could not launch

enough concurrent memory requests to balance Little’s Law.
– Could be Floating point performance

• Next generation x86 processors will double the FP
execution rate
– So, how much of “other” is FLOPs?

Refining Model for FLOPs

• Opteron Quad-core enhanced FPU
– Each core has 2x the FLOP rate/cycle of the dual-core

Rev. F implementation
– Need to take into account how much performance may

improve with 2x improvement in FLOP rate

• Approach
– Count # flops performed per core
– Estimate max total execution time spent in FLOPs

assuming no overlap with other operations by dividing
by peak flop rate on current FPU

– Project for 2x faster FPU by halving that contribution to
the overall exec time

• Result is the maximum possible improvement
that could be derived from 2x FPU rate
improvement

Contribution of FLOPs to exec
time for NERSC SSP apps

Time Spent in Application

0%

20%

40%

60%

80%

100%

CAM MILC GTC GAMESS PARATEC PMEMD MadBench

Application

P
e
rc

e
n

t
T
im

e
 S

p
e
n

t

other
flops
memory contention

Cut FP
contribution in

half for 2x
faster FPU.

Quad Core Prediction

Quad Core Performance Benefit

0.00

0.50

1.00

1.50

2.00

2.50

2 Core XT4 4core XT4 DDR667 4 Core XT4 DDR800 4 Core XT4 DDR800 2x
FPU

System Config

P
e
rf

o
rm

a
n

ce
 I

m
p

ro
v
e
m

e
n

t
(o

v
e
r

b
a
se

li
n

e
 X

T
4

 d
u

a
l

co
re

)

• Conclusion: between 1.7x and 2.0x sustained performance
improvement on NERSC SSP applications if we move from
dual-core to quad-core
– This is less than half the 4x peak performance improvement

(but who cares about peak?)
– But nearly 2x improvement is pretty good nonetheless (it

matches the Moore’s law lithography improvement)

Conclusions
(what I AM/AM_NOT saying!)

• I am NOT saying that bandwidth is not important
– We should be bandwidth bound for many of these application

– We want bandwidth to be the primary problem -- it is a failure that
we are not bandwidth bound for most cases

• I AM saying that we are not currently bandwidth bound
because of inability to tolerate latency

• I am NOT saying that all applications are latency bound
– For example, elliptic solvers and BLAS-1 will suffer greatly from

bandwidth starvation

– I am saying that looking at the broader field of scientific applications
will not benefit from a huge bandwidth boost on conventional
microprocessor designs

– I do not consider the status-quo acceptable -- our inability to benefit
from improved memory bandwidth is an indication of serious
deficiencies with existing CPU core design!

Conclusions
(what I AM/AM_NOT saying!)

• I am NOT saying that the memory wall does not exist
– On the contrary, I am saying that it exists and we hit it a long time

ago
– We are still in denial about having hit this wall
– The wall was softer than expected (memory molasses)
– We are up to our necks in the molasses (and STILL in denial)

• What I AM saying bandwidth alone will not rescue us from
the molasses
– Throwing bandwidth at the problem sinks us deeper into the

molasses
– further unbalances Little’s Law
– Is simply throwing bandwidth away
– We either need a new features core design that is better at hiding

latency by increasing memory fetch concurrency (SW controlled
memory), or a new approach to balancing Little’s Law (manycore
w/slower clocks or many HW threads for example)

