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Memory Performance is Key
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• Total chip performance following Moore’s Law

• Increasing concern that memory bandwidth
may cap overall performance



Concerns about Multicore

• Memory Bandwidth Starvation
– “Multicore puts us on the wrong side of the

memory wall.  Will CMP ultimately be
asphyxiated by the memory wall?” Thomas
Sterling

– While true, multicore has not introduced a new
problem

• “memory wall” first described in 1994 paper by Sally
McKee et al. about uniprocessors

• Bandwidth gap matches historical trends FLOPs on
chip doubles every 18months (just by different
means)

– Regardless it is a worthy concern



CCSM3 FVCAM Performance

• FVCAM (atmospheric component of climate model)
OBVIOUSLY correlated with memory bandwidth

• More memory bandwidth means more performance!
• So my theory is “If I move from single-core to dual-core,

my performance should drop proportional to effective
memory bandwidth delivered to each core!”  (right?)

Sustained Performance on fvCAM
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CAM on Power5+
(test our memory bandwidth theory)

• T85 model (spectral CAM) run sparse and dense
mode.  (turn off timers for MPI operations)

• 2% performance drop (per core) when moving
from 1-2 cores

• Does not meet expectations
– Perhaps the Power5 is weird… Lets try another

processor to support my theory

Power5 Stream Triad Performance/core
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CAM on AMD Opteron

• 3% drop in performance going from single
to dual core
– Still not what I wanted
– Need to find application to support my theory
– Lets look at a broad spectrum of applications!

AMD Opteron STREAM Performance
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NERSC SSP Applications

Single vs. Dual Core Performance
(wallclock time at fixed concurrency and problem size)
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NERSC SSP Applications

Single vs. Dual Core Performance
(wallclock time)
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Performance drop (single-to-dual)
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• Still 10% drop on average when halving
memory bandwidth!
– #$%^&* application developers write crummy

code!
– Lets pick an application that I KNOW is

memory bandwidth bound!



Lets Try SpMV

• Perhaps full application
codes are a bad example

• Lets try a kernel like SpMV
– Should be memory bound!

– Small kernel

• Highly optimized to maximize
memory performance
– Hand coded (sometimes in asm)

by highly motivated GSRA

– Carefully crafted prefetch

– Exhaustive search for optimal
block size

– Auto-search for optimal
blocking strategy!

Reference

Best: 4x2

Mflop/s

Mflop/s

For finite element problem (BCSR) 
[Im, Yelick, Vuduc, 2005]



Example: Sparse Matrix *
Vector

25.6 GB/s21.321.3 GB/sPeak MemBW

22.5 GB/s10.07.5 GB/sSPMv MemBW

 88% 47% 35%Efficiency %

3.41.91.5SPMv
GFLOPS

23%11%2%Efficiency %

15 (DP Fl. Pt.)1875Peak GFLOPS

3.2 GHz2.2 GHz2.3 GHzClock Rate

2-VLIW, SIMD,
local store, DMA

4-/3-issue, SSE, OOO,
caches, prefetch

Architecture

 1*8 = 8 2*2 = 42*4 = 8Chips*Cores

CellOpteronClovertownName



What the #$%^& is going on
Here!!!

• Cannot find data to support my conclusion!
– And it was a good conclusion!

– Theory was proved conclusively by correlation
to memory bandwidth shown on slide #1!

• Correlations do not guarantee causality
– Consumption of memory bandwidth limited by

ability to tolerate latency!

– Vendors sized memory bandwidth to match
what processor core could consume (2nd order
effect manufactured a correlation)



Short Diversion about Latency Hiding

• Little’s Law: bandwidth * latency = concurrency
– bandwidth * latency = #outstanding_memory_fetches

• For Power5+ single-core (theoretical):
– 120ns * 25 Gigabytes/sec
– 3000 bytes of data in flight (375 DP operands)
– 23.4 cache lines (very close to 24 RCQ depth on Power5)
– 375 operands must be in flight to balance Little’s Law!

• But I only have only 32 FP registers
• Even with OOO, only ~100 FP shadow registers, and instruction

reordering window is only ~100
• Means, must depend on prefetch (375 operand prefetch depth)

• Various ways to manipulate memory fetch concurrency
– 2x memory bandwidth: Need 6000 bytes/flight
– 2x cores: Each only needs 1500 bytes/flight
– 2 threads/core: Each needs 750 bytes/flight
– 128 slower cores/threads?:  24 bytes in flight (3 DP words)
– Vectors (not SIMD!): 64-128 words per vec load (1024 bytes)
– Software Controlled Memory (eg. Cell, ViVA)

• Need mem queue depth performance ctr!



Why is the STI Cell So Efficient?
(Latency Hiding with Software Controlled Memory)

• Performance of Standard Cache Hierarchy
– Cache hierarchies underutilize memory bandwidth due to inability to tolerate latency
– Hardware prefetch prefers long unit-stride access patterns (optimized for STREAM)
– But in practice, access patterns are for shorter stanzas: so never reaches peak bandwidth (still latency limited)

• Cell “explicit DMA”
– Cell software controlled DMA engines can provide nearly flat response for a variety of access patterns
– Response is nearly full memory bandwidth can be utilized for all access patterns
– Cell memory requests can be nearly completely hidden behind the computation due to asynchronous DMA

engines
– Performance model is simple and deterministic (much simpler than modeling a complex cache hierarchy),

min{time_for_memory_ops, time_for_core_exec}
– Problem: lack of tractable/broadly applicable programming model

Cell STRIAD (64KB concurrency)

0.000

5.000

10.000

15.000

20.000

25.000

30.000

16 32 64 128 256 512 1024 2048

stanza size

G
B

/
s

1 SPE 2 SPEs 3 SPEs 4 SPEs
5 SPEs 6 SPEs 7 SPEs 8 SPEs



Deep Pipelining for Sparse MVM
(Gerhard Wellein: SR8k review)

PRELOAD FOP ST
PRELOAD FOP ST

PRELOAD FOP ST

PREFETCH 
time

ite
ra

tio
n

LD

LD

LDPrefetch index
array COL_IND

Load index from
cache to reg

Preload single data
item X(index)

Additional FPRs support loop
unrolling of 24 iterations!



Will Multicore Slam Against
the Memory Wall?

• Memory Bandwidth Starvation
– “Multicore puts us on the wrong side of the memory

wall.  Will CMP ultimately be asphyxiated by the
memory wall?” Thomas Sterling

– Memory wall is NOT a problem that is caused by
multicore (term coined in 1994).

• What about latency (other part of memory wall)
– Effective use of bandwidth is progressively inhibited

by poor latency tolerance of modern microprocessor
cores (memory molassas rather than memory wall)

– Stalled clock rates actually halt growing gap of
memory latency / operation

• We can fix bandwidth (but not latency)
– With current technology, we could put 8x more bandwidth onto chips then we

currently do!  . . . GPUs and Cicso Metro already do this!
– So why don’t we do it? . . . because it is ineffective for current processor cores
– Manycore can use memory bandwidth more effectively
– Software controlled memory can use bandwidth even more effectively
– Can use manycore to test system balance using controlled environment

FLOP Rate for Each Core
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Predicting XT4 Quad Core
Performance
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Membench

MEMBENCH: Cray XT3 and XT4
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Membench results for XT3 and XT4 indicate primary source of contention is
memory bandwidth (no signs of resource contention when data fits on-chip).



Apex-MAP

• Traces out 2D space of memory access patterns characterized by
their spatial and temporal locality

• Parameter L
– Represents spatial locality
– Describes size of contiguous accesses to a given memory location

• Parameter α
– Represents temporal locality
– Exponent of a power law distribution of memory addresses

• Performance (height of the graph) is given in cycles per memory
access

Apex-MAP
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Apex-MAP
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Dual Core Apex-MAP
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Ratio of Single-Core to Dual Core
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Apex-MAP Conclusion

• A simple latency/bandwidth model
provides a reasonably close estimation of
actual Apex-MAP performance
– Residual error of the model is low
– That is to say, a simple explanation will suffice

for dual-core performance penalty (no need to
chase down more complex models)

• The simple model says that memory
bandwidth contention explains most of the
performance difference between single
and dual core



Estimating Quad-Core Performance
• Assumptions

– Memory bandwidth is the only contended
resource

– Can break down execution time into portion that
is stalled on shared resources (memory
bandwidth) and portion that is stalled on non-
shared resources (everything else)

– Estimate time spent on memory contention
from XT3 single/dual core studies

– Estimate # bytes moved in memory-contended
zone

– Extrapolate to XT4 based on increased memory
bandwidth

• Use to validate model

– Extrapolate to quad-core



Estimating Quad-Core Performance

Execution Time Time=120s

Cray XT3 Opteron@2.6Ghz DDR400

Single Core

Dual Core Execution Time Time=180s

Execution Time



Estimating Quad-Core Performance

Other Exec Time Memory BW Time=160s

Cray XT3 Opteron@2.6Ghz DDR400

Single Core

Dual Core Other Exec Time Time=230sMemory BW Contention



Estimating Quad-Core Performance

Other Exec Time=90s 70s@5GB/s Time=160

Cray XT3 Opteron@2.6Ghz DDR400
Single Core

Dual Core 90s Time=230s140s@2.5GB/s

Estimated Bytes Moved = 0.36 GB

Cray XT4 Opteron@2.6Ghz DDR2-667
90s .36G/8GB/s Time=90+0.36GB/8GBs = 134sSingle Core

Dual Core 90s Time=90+0.36GB/4GB/s = 178s.36G/4GB/s



Estimating Quad-Core Performance

Other Exec Time=90s 70s@5GB/s Time=160

Cray XT3 Opteron@2.6Ghz DDR400
Single Core

Dual Core 90s Time=230s140s@2.5GB/s

Estimated Bytes Moved = 0.36 GB

Cray XT4 Opteron@2.6Ghz DDR2-667
90s 44s Time=90+0.36GB/8GBs = 134sSingle Core

Dual Core 90s Time=90+0.36GB/4GB/s = 178s88s

Error
MILC Prediction for XT4 SC=134s

actual = 127s
error = 5%

MILC Prediction for XT4 DC = 178s
actual = 181s
error = 1.5%



Testing the Performance Model

• Reasonably accurate prediction of XT4 performance
by plugging XT3 data into the analytic model

Prediction Error
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Memory Contention

Time Spent in Memory Contention
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“Other” may include anything that isn’t memory bandwidth)
(eg. latency stalls, Integer or FP arithmetic, I/O.)



Conclusions

• Application codes see modest impact from move to dual-
core (10.3% avg)
– Exception is MILC, which is more dependent on memory

bandwidth due to aggressive use of prefetch
– Indicates most application performance bounded by other

bottlenecks (memory latency stalls for instance)

• Most of the time is spent in “other” category
– Could be integer address arithmetic
– Could also be stalled on memory latency (could not launch

enough concurrent memory requests to balance Little’s Law.
– Could be Floating point performance

• Next generation x86 processors will double the FP
execution rate
– So, how much of “other” is FLOPs?



Refining Model for FLOPs

• Opteron Quad-core enhanced FPU
– Each core has 2x the FLOP rate/cycle of the dual-core

Rev. F implementation
– Need to take into account how much performance may

improve with 2x improvement in FLOP rate

• Approach
– Count # flops performed per core
– Estimate max total execution time spent in FLOPs

assuming no overlap with other operations by dividing
by peak flop rate on current FPU

– Project for 2x faster FPU by halving that contribution to
the overall exec time

• Result is the maximum possible improvement
that could be derived from 2x FPU rate
improvement



Contribution of FLOPs to exec
time for NERSC SSP apps

Time Spent in Application
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Quad Core Prediction

Quad Core Performance Benefit
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• Conclusion: between 1.7x and 2.0x sustained performance
improvement on NERSC SSP applications if we move from
dual-core to quad-core
– This is less than half the 4x peak performance improvement

(but who cares about peak?)
– But nearly 2x improvement is pretty good nonetheless (it

matches the Moore’s law lithography improvement)



Conclusions
(what I AM/AM_NOT saying!)

• I am NOT saying that bandwidth is not important
– We should be bandwidth bound for many of these application

– We want bandwidth to be the primary problem -- it is a failure that
we are not bandwidth bound for most cases

• I AM saying that we are not currently bandwidth bound
because of inability to tolerate latency

• I am NOT saying that all applications are latency bound
– For example, elliptic solvers and BLAS-1 will suffer greatly from

bandwidth starvation

– I am saying that looking at the broader field of scientific applications
will not benefit from a huge bandwidth boost on conventional
microprocessor designs

– I do not consider the status-quo acceptable -- our inability to benefit
from improved memory bandwidth is an indication of serious
deficiencies with existing CPU core design!



Conclusions
(what I AM/AM_NOT saying!)

• I am NOT saying that the memory wall does not exist
– On the contrary, I am saying that it exists and we hit it a long time

ago
– We are still in denial about having hit this wall
– The wall was softer than expected ( memory molasses)
– We are up to our necks in the molasses (and STILL in denial)

• What I AM saying bandwidth alone will not rescue us from
the molasses
– Throwing bandwidth at the problem sinks us deeper into the

molasses
– . . . . further unbalances Little’s Law
–  . . . . Is simply throwing bandwidth away
– We either need a new features core design that is better at hiding

latency by increasing memory fetch concurrency (SW controlled
memory), or a new approach to balancing Little’s Law (manycore
w/slower clocks or many HW threads for example)


