
National Energy Research
Scientific Computing Center
(NERSC)

Petascale Computing Application Challenges

John Shalf
NERSC Center Division, LBNL

Supercomputing 2007
Reno, Nevada
November 13, 2007

More Processors
More Complexity
More Fear and Loathing

Traditional Sources of Performance
Improvement are Flat-Lining

• New Constraints
– 15 years of exponential

clock rate growth has ended

• But Moore’s Law
continues!
– How do we use all of those

transistors to keep
performance increasing at
historical rates?

– Industry Response: #cores
per chip doubles every 18
months instead of clock
frequency!

Figure courtesy of Kunle Olukotun, Lance
Hammond, Herb Sutter, and Burton Smith

Is Multicore the Correct Response
to New Lithography Constraints?

• Kurt Keutzer: “This shift toward increasing
parallelism is not a triumphant stride forward
based on breakthroughs in novel software and
architectures for parallelism; instead, this plunge
into parallelism is actually a retreat from even
greater challenges that thwart efficient silicon
implementation of traditional uniprocessor
architectures.”

• David Patterson: “Industry has already thrown the
hail-mary pass. . . But nobody is running yet.”

Lets Not be a Headline In the Onion

Convergence of Platforms

– Multiple parallel general-purpose processors (GPPs)
– Multiple application-specific processors (ASPs)

“The Processor is
the new Transistor”

[Rowen]

Intel 4004 (1971):
4-bit processor,
2312 transistors,

~100 KIPS,
10 micron PMOS,

11 mm2 chip

1000s of
processor
cores per

die

Sun Niagara
8 GPP cores (32 threads)

Intel®
XScale

™
 Core
32K IC
32K DC

MEv
2

10

MEv
2

11

MEv
2

12

MEv
2

15

MEv
2

14

MEv
2

13

Rbuf
64 @
128B

Tbuf
64 @
128B
Hash

48/64/1
28Scratc
h

16KB

QDR
SRAM

2

QDR
SRAM

1

RDRA
M
1

RDRA
M
3

RDRA
M
2

G
A
S
K
E
T

PCI

(64b)
66

MHz

IXP280IXP280
00 16b16b

16b16b

11
88

11
88

11
88

11
88

11
88

11
88

11
88

64b64b

S
P
I
4
o
r
C
S
I
X

Stripe

E/D Q E/D Q

QDR
SRAM

3
E/D Q
11
88

11
88

MEv
2
9

MEv
2

16

MEv
2
2

MEv
2
3

MEv
2
4

MEv
2
7

MEv
2
6

MEv
2
5

MEv
2
1

MEv
2
8

CSRs
-Fast_wr

-UART
-Timers

-GPIO
-
BootROM/S
lowPort

QDR
SRAM

4
E/D Q
11
88

11
88

Intel Network Processor
1 GPP Core

16 ASPs (128 threads)

IBM Cell
1 GPP (2 threads)

8 ASPs

Picochip DSP
1 GPP core
248 ASPs

Cisco CRS-1
188 Tensilica GPPs

The Entire Computing Industry is
Betting Its future on Parallelism

• This transition is NOT just about HPC!
– Your Motorola Razor Cell Phone already has 8 Tensilica

CPU cores in it (and will grow geometrically from there)
– Cisco CRS-1 router has 188 tensilica CPU cores/socket

(Metro) and scales to 400,000 cores! (more than HPC…
runs an OS too!)

– Your toaster oven is going be running parallel applications
on manycore processors

• Many key applications that motivate need for
increased performance in consumer electronics
are familiar scientific computing applications!

• Industry has already moved forward with
parallelism without having a software solution in
place (or even agreed upon)

Concurrency Levels in
TOP500

Average

1

10

100

1,000

10,000

100,000

1,000,000

Ju
n-9

3

Ju
n-9

4

Ju
n-9

5

Ju
n-9

6

Ju
n-9

7

Ju
n-9

8

Ju
n-9

9

Ju
n-0

0

Ju
n-0

1

Ju
n-0

2

Ju
n-0

3

Ju
n-0

4

Ju
n-0

5

Ju
n-0

6

#
 p

ro
c

e
s

s
o

rs

 .

Top500 Trends

• Teraflops Era
– 1997: Teraflop/s system #1 on the list with 4,510

compute processors
– 2004: Requires 1 Teraflop just to enter Top500

List (hundreds of processors)

• Petaflops Era
– ~2008: Petaflop/s system #1 on the list with 40k-

128k processors
– ~2008 + 6-8 years: Requires a petaflop just to

enter Top500 list and it will still require 40k-128k
processors

• You cannot escape daunting concurrency!

Humans Think in Terms of Linear Scales
(hard to grok LOG() scale)

Total # of Processors in Top15

0

50000

100000

150000

200000

250000

300000

350000
Ju
n-
93

De
c-
93

Ju
n-
94

De
c-
94

Ju
n-
95

De
c-
95

Ju
n-
96

De
c-
96

Ju
n-
97

De
c-
97

Ju
n-
98

De
c-
98

Ju
n-
99

De
c-
99

Ju
n-
00

De
c-
00

Ju
n-
01

De
c-
01

Ju
n-
02

De
c-
02

Ju
n-
03

De
c-
03

Ju
n-
04

De
c-
04

Ju
n-
05

De
c-
05

Ju
n-
06

List

Pr
oc

es
so

rs

Must ride exponential wave of increasing concurrency for forseeable future!
You will hit 1M cores sooner than you think!

Concerns about Multicore
(in the context of HPC)

• System Balance: Concern that memory and
interconnect performance will ultimately cap multicore
performance

• Reliability: More “moving parts” means more
opportunity for failures

• Programmability: How can I possibly program 1M+
cores in an effective manner?

Memory Technology

• Less Memory Bandwidth per core
– Balancing Little’s Law is actually a bigger problem (and a

much ignored problem)
– Very much commodity price limited than technology limited
– Bandwidth is going to force packaging changes (but they

understand the technology to do so)

• Less Memory Per core
– This is a cost issue
– Currently, do not guarantee that we use all memory.
– If memory is that costly, do we start sacrificing CPUs to get

more memory? (if they are equally expensive, then perhaps
that’s the right approach)

Processor Technology

• Multicore vs. Manycore
– Wait 3 years and you’ll be at the same concurrency anyways

• Deeper hierarchical architectures
– CMPs
– NUMA effects on on SMPs
– Hierarchical interconnect fabrics (copper/optical)
– Locality Locality Locality

• Accelerators
– Please don’t make me suffer Xylinx wire routing heuristics or

hack on OpenGL (Fortran is bad enough)
– Please don’t make me write my program twice (look at

ISCA08 Kozyrakis)
– Please don’t make me bounce memory around between

accelerator and host (it was our least-favorite feature of the
CM-5 and its still no fun now)

I/O For Massive Concurrency

• Scalable I/O for massively concurrent systems!
– Many issues with coordinating access to disk within node (on chip

or CMP)

– OS will need to devote more attention to QoS for cores competing
for finite resource (mutex locks and greedy resource allocation
policies will not do!) (it is rugby where device == the ball)

471 Mbytes/sec25 Mbytes/sec128

318 Mbytes/sec11 Mbytes/sec64

217 Mbytes/sec11 Mbytes/sec32

139 Mbytes/sec7 Mbytes/sec16

131 Mbytes/sec-8

I/O Rate

8 tasks per node

I/O Rate

16 Tasks/node

nTasks

Old OS Assumptions are
Bogus for Hundreds of Cores!

• Assumes limited number of CPUs that must be shared
– Old OS: time-multiplexing (context switching and cache pollution!)
– New OS: spatial partitioning

• Greedy allocation of finite I/O device interfaces (eg. 100 cores go
after the network interface simultaneously)
– Old OS: First process to acquire lock gets device (resource/lock contention!

Nondeterm delay!)
– New OS: QoS management for symmetric device access

• Background task handling via threads and signals
– Old OS: Interrupts and threads (time-multiplexing) (inefficient!)
– New OS: side-cores dedicated to DMA and async I/O

• Fault Isolation
– Old OS: CPU failure --> Kernel Panic (will happen with increasing frequency

in future silicon!)
– New OS: CPU failure --> Partition Restart (partitioned device drivers)

• Inter-Processor Communication
– Old OS: invoked for ANY interprocessor communication or scheduling
– New OS: direct HW access mediated by hypervisor

Concerns about Programmability

• Widespread panic regarding a programming model
that can ride the “Tsunami of concurrency”

• “Be afraid. . . Be Very Afraid.” Ken Kennedy SC06

“The Processor is the new Transistor”
(Chris Rowen: Tensilica)

• NERSC’s 1999 flagship computing system, seaborg, contained as
many processors as there are transistors in the original Intel 8080a
implementation (6,000 transistors vs 6,000 processors)

– Seaborg’s replacement, franklin, has 20,000 processors!

• BG/L at LLNL contains as many processors as there are transistors in
the MC68000 (manufactured in 1980, the MC68000L was a 32-bit
processor and contained 68,000 transistors).

• The next generation of BlueGene is likely to have more processors
than there are logic gates in its constituent processing elements. (is
that ironic or is it outrageous?)

The complexity of a Petascale system is
exceeding the complexity of its components

• Applications developers today write programs that
are as complex as describing where every single bit
must move between the 6,000 transistors of the
8080a.

• We need to at least get to the “assembly language”
level.

• We may need to reconsider our entire
hardware/software programming model if this
is indeed what the future holds for us.

Programmability

• Widespread panic over programming model that can ride the
“Tsunami of concurrency”

• Inter-dependent requirements for programming environment
– Productivity
– Performance
– Correctness

• Approaches
– Abstracting single-chip parallelism

• Focus of the Broader Consumer Electronics/Computing Industry
• Even in HPC, observe that # chips growing much slower than # cores

– Hiding complexity of global parallelism
• Frameworks, Advanced compilers and programming languages, Auto-tuning

– Nightmare Scenario: Microsoft solves in-socket programming model and we are
stuck writing MPI between sockets that run C# code!

• Competing Goals
– Productivity Layer: Simplify specification of program/problem to solve
– Performance Layer: Expose all hardware Capabilities to programmer

Multicore is NOT a Familiar
Programming Target

• What about Message Passing on a chip?
– MPI buffers & datastructures growing O(N) or O(N2) a problem for constrained memory
– Redundant use of memory for shared variables and program image
– Flat view of parallelism doesn’t make sense given hierarchical nature of multicore sys.

• What about SMP on a chip?
– Hybrid Model (MPI+OpenMP) : Long and mostly unsuccessful history
– But it is NOT an SMP on a chip

• 10-100x higher bandwidth on chip
• 10-100x lower latency on chip

– SMP model ignores potential for much tighter coupling of cores
– Failure to exploit hierarchical machine architecture will drastically inhibit ability to

efficiently exploit concurrency! (requires code structure changes)

• Looking beyond SMP
– Cache Coherency: necessary but not sufficient (and not efficient for manycore!)
– Fine-grained language elements difficult to build on top of CC protocol
– Hardware Support for Fine-grained hardware synchronization
– Message Queues: direct hardware support for messages
– Transactions: Protect against incorrect reasoning about concurrency

Application Code Complexity

• Application Complexity has Grown
– Big Science is a multi-disciplinary, multi-

institutional, multi-national efforts! (and we
are not just talking about particle
accelerators and Tokamaks

– Looking more like science on atom-
smashers

• Advanced Parallel Languages
Necessary, but NOT Sufficient!
– Need higher-level organizing constructs for

teams of programmers

Application Code Complexity

• QBox: Gordon Bell Paper title page
– Its just like particle physics papers!
– Looks like discovery of the Top Quark!

Community Codes & Frameworks
(hiding complexity using good SW engineering)

• Frameworks (eg. Chombo, Cactus, SIERRA, UPIC, etc…)
– Clearly separate roles and responsibilities of your expert programmers from that of the domain

experts/scientist/users (productivity layer vs. performance layer)

– Define a social contract between the expert programmers and the domain scientists

– Enforces and facilitates SW engineering style/discipline to ensure correctness

– Hides complex domain-specific parallel abstractions from scientist/users to enable performance
(hence, most effective when applied to community codes)

– Allow scientists/users to code nominally serial plug-ins that are invoked by a parallel “driver”
(either as DAG or constraint-based scheduler) to enable productivity

• Properties of the “plug-ins” for successful frameworks (CSE07)
– Relinquish control of main(): invoke user module when framework thinks it is best

– Module must be stateless

– Module only operates on the data it is handed (no side-effects)

• Frameworks can be thought of as driver for coarse-grained dataflow
– Very much like classic static dataflow, except coarse-grained objects written in declarative

language (dataflow without the functional languages)

– Broad flexibility to schedule Directed Graph of dataflow constraints

– See also Jack Dongarra & Parry Husbands’ work on DAG-based scheduling

Density Functional Theory
(DFT) Algorithm

• Kohn-Sham formalism for computing electronic structure
from first principles (DFT Method)
– Most common implementation is based on expanding the quantum

wavefunction into plane-wave (fourier) components
– This is the method employed by VASP, PARATEC, and Qbox

• Dominant phases of planewave DFT algorithm
– 3D FFT

• transforming between real space
 and reciprocal space
• O(Natoms2) complexity

– Subspace Diagonalization
• O(Natoms3) complexity

– Orthogonalization
• dominated by BLAS3
• ~O(Natoms3) complexity

– Compute Non-local pseudopotential
• O(Natoms3) complexity

Andrew Canning

GW+BSE
7%

Quantum MC
7%

Classical MD
6%

Classical MC
3%

Other PDE
5%

Density Functional
Theory (DFT)

72%

Ramifications of DFT
Algorithm Characteristics

• For smaller atomic systems (~600-1000 atoms)
– BLAS dominates at lower concurrencies

– 3D FFT tends to dominate the computation at high concurrency
• Due to low computational intensity and small message size (NSF Track-2 bench)

• Message size can be increased by expending more memory/processor

• For larger atomic systems (>1k atoms), the O(N3) complexity of
orthogonalization and computing non-local pseudopotential will dominate

• For O(N3) complexity, moving from teraflops to petaflops only gets you from
1k atoms to 4k atoms.
– not very impressive given the amount of hardware!

– Good news is that FLOP rates will be very impressive given increased domination of
highly localized BLAS3 operations (eg QBox example)

• For this reason, we argue that DFT will be gradually supplanted by O(N)
methods as we move into Petaflop scale calculations!

Anatomy of an O(N) DFT method
(LS3DF as an example)

• Total energy of a system can be decomposed into two parts
– Quantum mechanical part:

• wavefunction kinetic energy and exchange correlation energy
• Highly localized
• Computationally expensive part to compute

– Classical electrostatic part:
• Coulomb energy
• Involves long-range interactions
• Solved efficiently using poisson equation even for million atom systems

– LS3DF takes advantage of localization of quantum mechanical part of calculation
• Divide computational domain into discrete tiles and solve quantum mechanical part
• Solve global electrostatic part (no decomposition)
• Very little interprocessor communication required! (almost embarrassingly parallel)
• Result is O(Natoms) complexity algorithm: enables exploration of larger atomic systems as we

move to petaflop and beyond.

Lin-Wang Wang

Conclusion for Materials Science

• Density Functional Theory codes (particularly planewave
DFT) dominates material science workload

• Petaflop machines will only enable exploration of modestly
larger atomic systems
– due to O(N3) algorithmic complexity
– Move from teraflops to petaflops gets from 1k atoms to 4k atoms
– But with larger atomic systems, computational efficiency will look

fantastic due as calculation is increasingly dominated by highly
localized pBLAS3 operations (often hand-tuned vendor libraries)

• Exploration of 10k or greater atomic systems at petaflop
scale will ultimately require a move to new methods
offering O(N) complexity

• There will still be a use for conventional DFT for 1k atomic
systems for time-domain DFT:
– Explore same size system, but for longer timescales
– Will be extraordinarily demanding parallelization requirements for

the concurrencies presented by Petaflop-scale systems

Cloud System Resolving
Climate Simulation

• Computational Models Help answer question with multi-trillion
dollar ramifications!!!

• A major source of errors in climate models is poor cloud simulation

• At ~1 km horizontal resolution, cloud systems can be resolved

• Requires, new discretizations, significant algorithm work and
unprecedented concurrencies to maintain 1000x faster than
realtime performance!

Petascale Architectural
Exploration

2.7

2.8

5.6

Peak/
Core
(Gflops)

51.2

5.5

6.4

Mem/
BW
(GB/s)

34.5

2.2

4.5

Network
BW
(GB/s)

32

2

2

Cores/
Socket

Power
(based on
current
generation
technology)

SocketsClockProcessor

3 MW120K650MHzSemicustom
Embedded

27 MW1.8M700MHzIBM BG/L

179 MW890K2.8GHzAMD Opteron

Software challenges (at all levels) are a tremendous obstacle for any of these
approaches.

Unprecedented levels of concurrency are required.
Unprecedented levels of power are required if we adopt conventional route
Embedded route offers tractable power, but daunting concurrency!

 This only gets us to 10 Petaflops peak -
200PF system to meet application sustained performance requirements
thus cost and power are likely to be 10x-20x more.

It’s the MATH Stupid!!!

• The broader industry is concerned about
architecture and programming model

• HPC applications may also need to
reformulate the numerical model at
petaflop scale
– This takes more time than the other stuff!
– It is more labor intensive than the other stuff!
– The outcome even less predictable than the other

stuff!
– V&V isn’t getting any easier!!!

Conclusions

• Enormous transition is underway that affects all
sectors of computing industry
– Motivated by power limits

– Proceeding before emergence of the parallel programming
model

• Will lead to new era of architectural exploration
given uncertainties about programming and
execution model (and we MUST explore!)

• Need to get involved now
– 3-5 years for new hardware designs to emerge

– 3-5 years lead for new software ideas necessary to support
new hardware to emerge

– 5+ MORE years to general adoption of new software

More Info

• The Berkeley View
– http://view.eecs.berkeley.edu

• NERSC Science Driven System
Architecture Group
– http://www.nersc.gov/projects/SDSA

Extra Material

Landscape of Parallel
Computing Architecture

http://view.eecs.berkeley.edu/

Reliable System Design

• The future is unreliable
– Silicon Lithography pushes towards the atomic scale, the opportunity for

spurious hardware errors will increase dramatically

• Reliability of a system is not necessarily proportional to the
number of cores in the system
– Reliability is proportional to # of sockets in system (not #cores/chip)
– At LLNL, BG/L has longer MTBF than Purple despite having 12x more

processor cores
– Integrating more peripheral devices onto a single chip (e.g. caches, memory

controller, interconnect) can further reduce chip count and increase
reliability (System-on-Chip/SOC)

• A key limiting factor is software infrastructure
– Software was designed assuming perfect data integrity (but that is not a

multicore issue)
– Software written with implicit assumption of smaller concurrency (1M cores

not part of original design assumptions)
– Requires fundamental re-thinking of OS and math library design

assumptions

New Design Constraint: POWER

• Transistors still getting smaller
– Moore’s Law is alive and well

• But Denard scaling is dead!

– No power efficiency improvements with smaller transistors

– No clock frequency scaling with smaller transistors

– All “magical improvement of silicon goodness” has ended

• Traditional methods for extracting more performance are
well-mined

– Cannot expect exotic architectures to save us from the “power
wall”

– As daunting as it is, we know more about how to program
multicore than we do many of the exotic technologies!

– Even resources of DARPA can only accelerate existing
research prototypes (not “magic” new technology)!

How Small is “Small”

• Power5 (Server)
– 389mm^2
– 120W@1900MHz

• Intel Core2 sc (laptop)
– 130mm^2
– 15W@1000MHz

• ARM Cortex A8 (automobiles)
– 5mm^2
– 0.8W@800MHz

• Tensilica DP (cell phones / printers)
– 0.8mm^2
– 0.09W@600MHz

• Tensilica Xtensa (Cisco router)
– 0.32mm^2 for 3!
– 0.05W@600MHz

Intel Core2

ARM

TensilicaDP
Xtensa x 3

Power 5

Each core operates at 1/3 to 1/10th efficiency of largest chip, but you
can pack 100x more cores onto a chip and consume 1/20 the power

Parallel Computing Everywhere
Cisco CRS-1 Terabit Router

• 188+4 Xtensa general purpose processor
cores per Silicon Packet Processor

• Up to 400,000 processors per system
• (this is not just about HPC!!!)

16 PPE

16 Clusters of
12 cores each
(192 cores!)

Replaces ASIC using 188 GP cores!
Emulates ASIC at nearly same power/performance

Better power/performance than FPGA!
New Definition for “Custom” in SoC

