Analysis of Parallel I/O for NERSC HPC Platforms:

Application Requirements, Benchmarks, and Delivered System Performance

Hongzhang Shan, John Shalf

Abstract

The degree of the concurrency on the HPC platforms is increasing in an amazing speed. The platforms with one million computational cores are expected to arrive in a few years. This concurrency increase poses a great challenge for the design and implementation of the I/O system to support such platforms efficiently. The HPC community is anxiously looking for an I/O benchmark to represent the current and future application requirements, measure the progress of the I/O system, and drive the design and progress of the I/O system. In this work, we first analyzed the I/O practices and requirements of current NERSC HPC applications and then use them as criteria to examine the existent I/O benchmarks. We argue that the IOR benchmark, a Purple Benchmark developed by LLNL, can be the candidate to satisfy this purpose. Our analysis is qualified by performing detailed analysis of several IO-intensive NERSC applications and demonstrating that the IOR benchmark sets appropriate performance expectations for these applications. We also show that users should expect parallel IO to a single file to meet or exceed the performance of writing one-file-per-processor and that advanced binary file formats such as parallelHDF5 and parallelNetCDF should be able to offer comparable performance to user-defined/custom binary file formats.

1. Introduction

The HPC community is building petascale platforms to attack larger and harder problems. These platforms will be built on top of over a million computational cores or processors. This unprecedented concurrency level will pose a great challenge for the I/O system to efficiently support the data movement between disks and distributed memories. Our ultimate goal is to identify the application requirements for parallel IO on these systems, select appropriate benchmarks to reflect those requirements, and finally to collect performance data on a number of HPC systems to determine how well each system is performing and to qualify the selection of IO benchmarks. In order to guide the design of the new underlying I/O system, we need to understand the application requirements first.

Last year, we conducted an I/O survey about the current practice and future requirements of I/O systems among NERSC user community. Based on the project descriptions, 50 I/O intensive projects were selected from the over 300 ones using the NERSC platforms. Each PI was asked to fill a detailed form regarding their current I/O practices and future requirements of their applications. We also performed some application drilldowns and performance studies (see Section 6) to provide a more detailed picture of application I/O requirements. The major results include:

· Random access is rare; the I/O access is dominated by sequential read/write.

· Write performance is more important than read performance due to following several reasons: 1) In most cases, users will move the result files to other machines for post-processing or visualization analysis and not on the same platforms on which the computation has been done. 2) Users frequently output data to files for checkpointing or restart purpose. Most of these files may never need to read back. 3) Input files to initialize the applications are often small.

· Many users still embrace the approach that each process uses its own file to store the results of its local computations. An immediate disadvantage of this approach is that after program failure or interruption, a restart must use the same number of processes. A more serious problem is that this approach does not scale. Tens or hundreds of thousands of files will be generated on petascale platforms. A practical example [18] is that a recent run on BG/L using 32K nodes for a FLASH code generated over 74 million files. Managing and maintaining these files itself will become a grand challenging problem regardless of the performance. Using a single or fewer shared files to reduce the total number of files is preferred on large-scale parallel systems.

· Most users still use the traditional POSIX interface to implement the I/O operations. The POSIX interface is not designed for the large-scale distributed memory systems. Each read/write operation is associated with only one memory buffer and cannot read/write a distributed array together. If the application has complex data structures, this simple interface may cause significant inconvenience to the users. We notice that some users assign one process in charge of all I/O operations. Therefore, this process has to be responsible for collecting the data from all other processes before it can write to the file and distributing the data to other processes after it has read the data from the file. This practice not only limits the data size to access (due to memory size limitation accessible to the responsible process) but also serialize the I/O operations and significantly hurt the I/O performance.

· Some users start to use the parallel I/O interface, such as MPi-IO, HDF5, and NETCDF.

· The data size of each I/O operations varies widely from small to very large (several KB to tens of MB).

We also examined dozens of the publicly available I/O benchmarks. We find that most of the benchmarks cannot represent the current I/O practice of HPC applications. The most closely related I/O benchmark is the IOR. IOR [1] is part of the ASCI Purple Benchmarks developed by LLNL to evaluate the IO performance. As most other I/O performance benchmarks, it can be used to measure the I/O performance under different access patterns, storage configurations, and file sizes. More importantly, it can also be used to evaluate the performance effect of different parallel I/O interfaces. However, the large amount of parameters provided by IOR make it extremely difficult, or even impossible, to examine the I/O performance under all kinds of cases, especially when used as performance benchmarks. In this work, we argue that we can select a limited number of parameters from IOR to represent the mainstream of HPC I/O practices and requirements.

2. Programming Interface for I/O

In this section, we are going to describe the most common interfaces used by current HPC applications. As the parallel I/O interfaces, such as MPI-IO, HDF5, and NETCDF, have started to gain more and more users, POSIX is still the dominant I/O interfaces, perhaps due to its long history and wide portability.

2.1 POSIX

POSIX is the IEEE Portable Operating System Interface for computing environments. The POSIX I/O interface is perhaps the most common used I/O interface and supported on almost all current operating systems. Its main I/O operations include create, open, read, write, close, and seek. It defines how to move data between a single memory space and a streaming device [4]. While it is relatively easier to understand, directing using the POSIX interface for HPC application developers may not be so convenient since in typical HPC applications, the data are often partitioned among the processes and these processes will be mapped to different nodes. In order to apply the POSIX interface, each process has to work on its own file. This may dramatically increase the number of files on large parallel systems [18]. Moreover, once a file is lost or damaged, the entire file set for this application will become useless. Another approach is to use a master process to collect all the output data from other processes first and then write the data to the file. The problem of this approach is that it could not take advantage of the parallel I/O infrastructure and may result in highly inefficient I/O operations. The third approach is to let each process compute the data offsets in a shared file first before it can access the file. For complex, dynamic data structures, computing the offsets directly may cause a lot of programming inconvenience.

Furthermore, each POSIX I/O call can only access one memory buffer and does not allow accessing a vector of described memory regions. Later (in Chombo application) we will find that this may cause an extra memory copy and seriously hurt the application performance. Some people are working on these problems by relaxing the POSIX semantics or changing the POSIX interface [4] while others are developing new parallel I/O interface to address these problems, including MPI-IO, HDF5, and NETCDF.

2.2 MPI-IO

MPI-IO was originally developed in 1994 in the IBM’s Waston Laboratory in order to provide parallel I/O support for MPI and incorporated into MPI-2. The purpose is to provide a high-level interface supporting partitioning of file data among processes and a collective interface supporting complete transfers of global data structures between process memories and files [6]. Writing and reading files is very similar in spirit and style to sending/receiving messages. There are three orthogonal aspects to data access: positioning (explicit offset vs. implicit file pointer), synchronism (blocking vs. nonblocking and split collective), and coordination (noncollective vs. collective). These aspects are supported by different function names and interfaces.

As in POSIX, MPI-IO supports the explicit offset concept, which is defined in terms of the number of bytes. Moreover, MPI-IO also embraces the versatility and flexibility of MPI data types and takes this concept one step further in defining the so called MPI file views. A view defines the current set of data visible and accessible from an open file as an ordered set of etypes. Each process has its own view of the file, defined by three quantities: a displacement, an etype, and a filetype. A file displacement is an absolute byte position relative to the beginning of a file. An etype (elementary datatype) is the unit of data access and positioning. It can be any MPI predefined or derived datatypes. A filetype defines the way to partition a file among processes and defines a template for accessing the file. Further details can be found in [6].

2.3 HDF5

HDF5 [7] is a library of functions providing a parallel I/O interface to enable the users to structure their data hierarchically inside the file instead of using a flat file. It is designed and developed by NCSA. Unlike the flat files used by POSIX and MPI-IO, HDF5 files are organized in a hierarchical structure, with two primary structures: groups and datasets. The HDF5 dataset is a multidimensional array of data elements, which could be distributed among the processors. The HDF5 group is a grouping structure containing instances of zero or more groups or datasets. Both dataset and groups can be associated with their own attributes. Working with groups and group members is similar in many ways to working with directories and files in UNIX.

Using a hierarchical structure helps the users to name the data, understand the data relations, and access a specified dataset or a portion of a dataset (selection) in one read/write operation. Currently selections could be hyperslabs, their unions, and the lists of independent points, providing a great flexibility to enable the users to access the data in different logical layouts regardless the physical layouts of the data. Another most important feature is that reading and writing data by specifying a dataset or an id makes data access independent of how many other datasets are in the file, making programs immune to file structure changes and also allow the library implementers to optimize the library performance freely. HDF5 is implemented in both serial and parallel versions. The parallel HDF5 currently binds to MPI-IO therefore can be directly used in MPI programs.

2.4 NETCDF

NetCDF (network Common Data Form) is another interface for array-oriented data access and a library that provides an implementation of the interface [8,9]. It defines a data format as well as a set of programming interfaces for accessing the data in NETCDF files. The goal is also to improve the I/O performance and relieve the users from the burden of managing the data. It also has both serial and parallel versions. The serial version is currently hosted by the Unidata program at the University Corporation for Atmospheric Research (UCAR), while the parallel version is hosted at http://www.mcs.anl.gov/parallel-netcdf. Similar to HDF5, it reads and writes data by specifying a variable, instead of a position in a file, freeing the users from taking care of the details of the physical layouts of the data files.

However, NETCDF differs from HDF5 in two important ways [9]. First, the organization of the file is very different. The HDF5 file contains super block, header blocks, data blocks, extended header blocks, and extended data blocks, which are organized by a tree-like structure. The relations between the datasets can be easily expressed using such hierarchical structures. Also, changing or adding datasets or attributes under such hierarchical structure will be very efficient. The NETCDF file contains two parts, the header and the data. The header contains all metadata, such as array dimensions, attributes, and variables except for the variable data itself, which is contained in the data part. Different arrays are laid out in the data part in linear order. Once the file has been created, adding new attributes or arrays will be expensive, requiring a lot of data movements. However, this regular data layout may be more efficient if the data written to the file are stable and not dynamically changing.

Secondly, the NETDCF file has only one header block containing all metadata information. Once this header is cached in local memory, each process can directly obtain all the information needed to access a single array. The inter-process synchronization is only needed when defining new dataset. On the other hand, in HDF5, the metadata information is dispersed in different header blocks or extended header blocks. In order to access a dataset, it may have to go through the entire namespace to get the necessary information to access this dataset. It could be expensive for parallel access, particularly because parallel HDF5 defines the open/close of each object to be a collective operation forcing all participating processes to communicate. However, if the amount of data to access is large, the time spent on accessing the metadata may become insignificant.

3. I/O Synthetic Benchmark Examination

Based on our above analysis, we believe that the following parameters will largely affect the application performance and should be included in the future I/O benchmarks: the supported API, the file size, I/O buffer size, concurrency, file usages (use a single shared file or one file per process), and the type of I/O operations. In this section, we are going to examine some of the existent synthetic benchmarks that are publicly available since synthetic results are often much more general than application benchmarks. Applications benchmarks are good to indicate the performance of their represented areas, but difficult to relate their performance to other areas. We will examine some application benchmarks (MADbench, Flash, etc.) in Section 6.

3.1 Iozone

Iozone [10] is one of the traditional file system benchmarks. It has been constantly changed to reflect the progress of the file systems. It is mainly designed to measure the performance of variety of file operations, including sequential/random read/write, re-read/re-write, read backwards, pread/pwrite, readv/writev, mmap, sync/async. This is the most comprehensive benchmark I have ever seen. It uses tons of command parameters to try to cover all possible cases. On one hand, these parameters make this benchmark widely applicable. On the other hand, the users may have difficulty to figure out how to set the parameters for their interests though Iozone do provide some test cases to run automatically. It works for both serial and multithread or multi-process configurations. However, the parallel case is implemented using POSIX I/O only without any explicit parallel I/O interfaces provided. It also does not support shared file access.

3.2 Bonnie

Bonnie is designed for a specific purpose in mind to measure the real transfer rate between memory and file systems. It has several designated cases to measure: the speed to read/write a character from/to a file, the speed using sequential read/write operation, and the speed for multi processes to access a file in random mode. Using multi processes to test the random access performance is to guarantee that there is always a seek operation queued up. Most of the operations are read operation; only 10% of the data will be dirtied and written back. Compared with Iozone, it is much simpler. The only interested measurement for HPC users is the sequential read/write speed. However, this measurement is only done under serial conditions. This benchmark does not have the parallel features required by HPC I/O applications.

3.3 Self-Scaling Benchmark

Self-scaling I/O benchmark [12] is a benchmark that can adjust itself to adapt to system changes so that it can be widely used and last longer. Without a good scaling strategy, benchmarks can quickly become obsolete while system evolves. The workloads are characterized into the following five orthogonal parameters:

· uniqueBytes : total amount of data accessed

· sizeMean : I/O request size following binomial distribution with mean sizeMean

· readFrac : the fraction of read requests, others are write requests

· seqFrac : the fraction of requests that sequentially follow the prior request

· processNum : the number of processors working on I/O simultaneously

It believes the system performance can be represented by a set of graphs, one for each parameter. While graphing one parameter, all other parameters remain fixed. The value at which a parameter is fixed while graphing other parameters is called the focal point for that parameter. The vector of all focal points is called focal vector. The default focal point of each parameter is selected to be in the middle of its range for general applicability. For both readFrac and seqFrac, the focal point is 0.5 since their range is [0,1]. For sizeMean and processNum, the focal point is the value that yields performance half-way between the minimum and maximum. For the last parameter uniqueBytes, the focal point is set at the middle of each performance region. Therefore, it can scales the workload automatically to remain relevant and provides insights to understand the system performance.

[image: image1..pict](09) spsINso199

10

e

S0

S

30

&
Ve
S0

BOX DYIfY 2IS6

A N)
Qo Wy R, Vo, W

DI2fLIPN{IOU O} BOX DYFY 216

[image: image2..pict]
Fig. 1. The approach to predict performance for arbitrary workloads using measured performance at focal vector in Self-Scaling Benchmark.

However, this self-scaling solution complicates the problem to compare the performance of two different platforms since the benchmark may choose different workloads. Further, it needs to develop a method to predict the performance for arbitrary workloads using the sets of reported results. Self-scaling benchmark assumes that the shape of the performance curve for one parameter is independent of the values of other parameters. Throughput (X ,Y ,Z...) = f (X) *f (Y) * f (Z) . . . , where X, Y, Z, ... are the parameters. Pictorially, Fig. 1 shows the approach to estimate the performance for unmeasured workloads with two parameters, processNum and meanSize. The solid lines are measured throughput via focal points Sf and Pf. In order to predict the performance for TH(P, S1), we assume the shape of the performance lines for processNum under different sizeMean is same. Therefore, we can use the following formula to predict the performance for TH(P, S1): TH(P , S1) = TH(P , Sf) * TH(Pf , S1) / TH(Pf , Sf). Experimental results show that the performance accuracy is within 10 – 15%.

However, this approach does not cause much attention and has not been widely used. The possible reason could be that collecting the set of graphs is not straightforward and the predicted model is only validated on several small platforms. Also, it only provides the POSIX interface.

3.4 SDSC Input/Output Benchmark

This is a simple I/O benchmark used at SDSC based from the HPCMO instrumental IO_bench [13]. It measures the data transfer rate between memory and files using read and write I/O operations. The access pattern includes sequential, random, and backward accesses. It is implemented in serial version and could not be run under parallel conditions. Therefore, it can not be used to measure the performance for the whole I/O system. Also, it is implemented using POSIX functions, and does not support any parallel I/O interfaces, such as MPI-IO, HDF5, or NETCDF. Further, it does not support shared file access either.

3.5 Effective I/O Bandwidth

The purpose of this benchmark [14] is to characterize the system’s I/O capability by running a set of predefined configurations in a short period of time, saying 10-15 minutes on a platform if dumping all memory data into disks could be done within 10 minutes. In addition, this benchmark also reports the performance for each individual access patterns. The benchmark will be run using following configurations: partition, access method, access pattern, chunk type, and chunk size. The partition can be defined using the number of processors participating in the I/O operations simultaneously. Three partitions are selected: small, medium, and large. The access method could be initial write, rewrite, or read. The access pattern is divided into five categories: i) strided, individual pointer, collective calls, ii) strided, shared pointer, collective calls, iii) individual files, non-collective calls, iv) segmented files, individual pointer, non-collective calls, and v) segmented files, individual pointer, collective calls. The chunk type is wellformed or non-wellformed. Wellformed means the data size is a power of two. The chunk size is defined to be 1KB, 32KB, 1MB, and Max(2MB, 1/128*memory size of a node). Combined the access pattern with chunk type, chunk size, and memory buffer type (continuous or not), Effective I/O benchmark uses total 42 patterns. The performance of each pattern is measured by repeatedly running this pattern in a given amount of time. However, not all the patterns are treated equally. Each pattern is assigned a time weight in advance to control the running time of this pattern. The effective bandwidth is computed based on the performance of all patterns. It is implemented with MPI-IO. However, it does not support the most popular programming interface, POSIX, or other parallel programming interfaces. Since the final result is a combination of 42 access patterns, it is difficult to digest the result and translate the measured effective I/O performance to interested application performance.

3.6 IOR

IOR [1] is part of the ASCI Purple Benchmarks developed by LLNL to evaluate the IO performance. It focuses on measuring the performance of sequential read and write operations and does not include random access patterns. The memory buffer size, file size, and file types (shared or unique) could be set by command line parameters. These parameters enable us to predict the application performance. More importantly, it distinguishes itself from other benchmarks by providing different implementations for the same algorithm using different parallel programming interfaces, including POSIX, MPI-IO, HDF5, and NETCDF, which have become more and more popular in HPC community. In the next section, we will discuss more detain about its implementation. What could be improved with this benchmark is that its current data structures only use simple, one-dimensional array and do not include any complex multi-dimensional data accesses. Actually, none of the synthetic benchmarks we discussed uses complex multidimensional arrays.

Table 1. Some characteristics of the synthetic benchmarks (Blank means No, Y means Yes, S means sequential access, R means random access, U means each process uses a unique file, Sh means all processes use one shared file)

	Bench mark
	Par
	Interface
	Access Pattern
	Buffer Size
	File Size
	File Type

	
	
	POSIX
	MPI-IO
	HDF5
	NETCDF
	
	
	
	

	Iozone
	Y
	Y
	
	
	
	S,R
	Y
	Y
	U

	Bonnie
	
	Y
	
	
	
	S,R
	
	
	U

	Self-Scaling
	Y
	Y
	
	
	
	S,R
	Y
	Y
	U

	SDSC
	
	Y
	
	
	
	S,R
	Y
	Y
	U

	Effective I/O
	
	
	Y
	
	
	S,R
	Fix
	Fix
	U, Sh

	IOR
	Y
	Y
	Y
	Y
	Y
	S
	Y
	Y
	U,Sh

Some of the features of these synthetic benchmarks are summarized in Table 1. Only IOR includes most of the features we request. There are many other synthetic benchmarks, such as Andrew File Systems benchmarks, SPEC SFC, File Bench, TPC-C, etc. Though they are also widely used in academic research and industries, they are not closely related with HPC applications and therefore will not be discussed here. For example, the Andrew File System benchmark represents a typical workload for software development, including operations of moving/copying directories, editing programs, and compiling. The TPC-C benchmark measures the transaction execution rate.

4. IOR Benchmark

 In this section, we are going to describe the design of the IOR and its parameters. Fig. 2. Illustrates the file structure.

[image: image3..pict]
Fig. 2. The data file structure of the IOR benchmark.

The file is composed of several segments. Each segment is divided evenly among the processors who share this data file. The process with rank 0 gets the first block and the process with rank 1 gets the second block and so on. The physical file layout is corresponding to the application data resident in the distributed memories. Each block is further divided into many transfer units called TransferSize, which is the data transferred for a process between memory and file for each I/O function call. The memory buffer size is equal to the TransferSize. (If strided access is enabled, several memory buffers of size TransferSize maybe transferred together. However, strided access is not supported now.). Table 2 displays the command parameters of IOR benchamrk. We divide the IOR parameters into two categories: necessary (we think these represent the application characteristics) and optional (these are either not critical to performance or some parameters specific for some platforms or interfaces.) These necessary parameters will be used as the tractable set of parameters for procurement benchmark.

Table 2. The parameters of IOR benchmark

	Option
	Usage
	Meaning

	Necessary:
	
	

	API
	 -a S
	POSIX, MPIIO, HDF5, NCMPI

	BlockSize
	 -b N
	Continuous bytes to write per task, decide file size

	FilePerProc
	 -F
	file-per-process or share a single file

	ReadFile
	 -r
	read existing file

	TransferSize
	 -t N
	size of transfer buffer

	WriteFile
	 -w
	write file

	Numtasks
	 -N N
	number of tasks that should participate in the tests

	Showhelp
	 -h
	display options and helps

	SegmentCount
	 -s N
	segment count, the number of Blocks

	Optional:
	
	

	TestFile
	 -o S
	full test filename (read/write)

	KeepFile
	 -k
	keep file on exits

	UniqueDir
	 -u
	have each task in file-per-process use unique directory

	CheckRead
	 -R
	check correctness after read operation

	CheckWrite
	 -W
	check correctness after write operation

	Repititions
	 -I N
	number of repetitions of test

	IntertestDelay
	 -d N
	delay between repitions in seconds

	IntraTestbarriers
	 -g
	use barrier between open, read, write, close

	ReorderTasks
	 -C
	change task ordering

	MaxTimeDuration
	 -T
	max time in minutes to run tests

	MultiFile
	 -m
	Each iteration use a new file name

	KeepFileWIthError
	 -K
	keep error-filled files after data-checking

	QuitOnError
	 -q
	quit when error occurs

	ScriptFile
	 -f S
	test script name

	TimeStampsignature
	 -G
	set value for time stamp signature

	StoreFileoffset
	 -l
	use file offsets as stored signature

	UseExistingFile
	 -E
	do not remove test file before access

	Verbose
	 -v
	output information

	
	
	

	POSIX Only:
	
	

	Use O_DIRECT
	 -B
	Use O_DIRECT for poisx, bypassing I/O buffer

	Singlexferattempt
	 -x
	do not try transfer if incomplete

	Fsync
	 -e
	perform fsync after POSIX write close

	HDF5 Only:
	
	

	IndividualDatasets
	 -I
	Datasets are not shared by all procs

	NoFill
	 -n
	no pre-filling in HDF5 file creator

	MPIIO-Only:
	
	

	Preallocate
	 -p
	preallcoate entire file size before writing

	UseFileView
	 -V
	use an MPI datatype for setting the file view option to use individual file pointer

	UseStrideDataType
	 -S
	Careate a datatype for strided access

	UseSharedFilePointer
	 -P
	Use a shared file pointer

	Non-POSIX Only:
	
	

	Collective
	 -c
	Use collective operation

	HintsFile
	 -U
	hints file name

	Showhints
	 -H
	show hints

	Lustre Only:
	
	

	LustreStripeCount
	
	Lustre stripe count

	LustreStripeSize
	
	Lustre stripe size

	LustreStartOST
	
	Lustre starting OST

	LustreIgnoreLocks
	
	Disable luster range locking

4.1 The essential parameters of IOR

By analyzing our I/O survey results and some I/O intensive applications, we figured out that the following parameters of IOR are essential: API, SegmentCount, BlockSize, FilePerProc, ReadFile, WriteFile, TransferSize, NumTasks, ShowHelp. The API will decide which I/O interface to use. Currently, it supports POSIX, MPI-IO, HDF5, and NETCDF. The ReadFile and WriteFile indicate whether the read operation or write operation will be measured. The SegmentCount decides the number of datasets in the data file. The BlockSize represents the data size of each dataset belong to a processor. The TransferSize is the data transferred between memory and file for each function call for each process. The NumTasks is the number of processors participated in the I/O operations. The ShowHelp is used to display the parameter and usage information.

5. IOR performance Analysis

Now let’s take a look of the I/O performance on Bassi (IBM power5) using IOR.

5.1 The effect of concurrency

Fig. 3 displays the aggregate read/write performance for different concurrencies in terms of MB/s using POSIX interface. At first, the aggregate performance scales very well with the increase of the number of nodes (every node has 8 processors). After the number of processors reaches 64 (8 nodes), the improvement of performance starts to slow down and reaches its top when using 128 processors. The results also show that there is still a big gap between the achieved performance and the derived peak performance from hardware descriptions. The performances of read and write are close to each other and show the same pattern. The above results are obtained using POSIX programming interface, 2MB transferSize, 2GB blockSize. [image: image4..pict]
[image: image5..pict]Fig. 3. The I/O performance on Bassi for different number of processors under POSIX Interface

Fig. 4. The I/O performance on Bassi for different number of processors under POSIX, MPI-IO, and HDF5 interfaces.

5.2 The effect of programming interfaces

Fig. 4 shows the results for other two programming interfaces, MPI-IO and parallel HDF5. For the parallel NETCDF, since the size for each variable/dimension is still limited to 2GB now and only the interface is reserved for 64-bit future extension (Jianwei Li, jianwei@ece.northwestern.edu), the IOR have some difficulty to run with big datasets (2GB data per process). Therefore, we have not been able to collect results for this test. However, we plan to collect results for smaller datasets soon. From Fig. 4, we can see that the performance difference under these three programming interfaces is very small. Further, their results exhibit very consistent performance patterns, indicating that on this platform, using different interfaces will not cause much performance variation. However, this may not be true on other platforms. It depends on the implementation details.
5.3 The Effect of transferSize and file types (shared/unique)

[image: image6..pict]
Fig. 5. The effect transferSize and file types.

In the earlier section, we have discussed the advantage of using less number of files on large parallel platforms. Now, let’s look at the performance difference (in Fig. 5) between using a single shared file by all processes and using a unique file by each process. For larger transferSize (transferSize > 4KB), writing to one shared file performs as well as each process writes to its own file. However, for small memory buffer size, using a unique file for each process delivers much better performance. The possible reason is that the overhead to handle the metadata cannot be amortized well. Both MPI-IO and HDF5 perform very close to POSIX when it uses a single shared file, only falling a little behind when transferSize is relatively large.

5.4 The Effect of FileSize (blockSize*numTasks*segmentCount)

As we know, when we measure the I/O performance, memory buffers (commonly referred to as the Unix “block buffer cache”) may create distinct performance regions based on the capacity used by a program, so benchmarks likewise should measure these different performance regions or at least report the performance when large data files are used. In order to avoid caching effect on IO performance, many benchmarks measure the performance using large files, two or three times larger than node memory size. On bassi, the memory size is 32GB/node, i.e., 4GB/processor. Fig. 6 shows the measured results under different file sizes (by changing the blockSize in IOR, the transferSize is fixed at [image: image7..pict]2MB and there is only one segment).

[image: image8..pict]Fig. 6. The performance under different file sizes on bassi using POSIX.

Fig. 7. The performance under different file sizes on Davinci using POSIX.

When the file size is small, memory buffer caching casts a big effect on the performance. When the ratio of file size to memory size per processor is 1/256, all the data reside in the memory caches. At this time, the read performance is actually the memory cache read performance with an amazing value of 97 GB/s. With the increase of blockSize, the data will no longer be held in the cache and stay in the memory. The read performance degrades and gradually becomes stable. To our surprise, the performance becomes stable when the ratio becomes 1/16, not 1. As we guess, 1/16 (256MB * 8 processor) is perhaps the buffer cache size on a node. The write performance is different. It is poor for smaller blockSize. This is perhaps due to write overhead. With the increase [image: image9..pict]of file sizes, the write performance also becomes stable.

Fig. 8. The performance under different file sizes on Jacquard using POSIX.

Davinci and Jacquard are other two NERSC platforms. Jacquard is an Opteron cluster running a Linux operating system. Each node has two CPUs inside. The nodes are connected together with high-speed interconnect Infiniband. Each node has 6GB physical memory. The file storage is provided by the GPFS file system. Davinci is an SGI Altix 350 server running the SGI ProPack 4 64-bit Linux operating system. It consists of 32 intel itanium-2 processors with 192GB of shared memory total. The average memory size per processor is 6GB. Fig. 7 and 8 show the performance under different file sizes using POSIX interface. On Davinci, the performance falls into two main regions, the higher performance region due to buffer caching and the lower performance region. Similarly, the performance on jacquard also falls into such two regions. However, the point at which the caching effect starts to disappear and the performance becomes stable is very different from each other on these three platforms. In terms of the ratio between the blockSize and the average memory size per processor, the points are 1/16, 2/3, and 2/3 on Bassi, Davinci, and Jacquard individually. In terms of blockSize, they are 0.25GB, 4GB, and 2GB individually. By examining the results on these three platforms, we can notice that buffer cache effects can be significant. However, there is no a prior rule of thumb what file size to use to avoid the caching effect. To find such file size, we have to calibrate using exhaustive search for performance asymptotic.

6 Application studies

In this section, we are going to examine the I/O requirements of HPC applications and relate the IOR performance to their performance.

6.1 CMB Analysis Requirements (MADBENCH, MPI-IO)

MadBench (16) is derived directly from the analysis of very massive Cosmic Microwave Background (CMB) datasets. Using a scientific-application derived approach, allows us to study the architectural system performance under realistic I/O demands and communication patterns. The parameters that are closely related with I/O are:

· The size of the pseudo-data, nPixel. All the matrices have the size of nPixel*nPixel. Each matrix element is a double float variable.

· The number of the pseudo-data sets, nBin. There are total nBin matrices that are evenly distributed among all the participated processors (when nGang=1) or the subsets of the participants (when nGang > 1).

· The number of processor groups, Ngang. The processors are divided into Ngang groups so that each group is responsible to compute nBin/nGang matrix multiplications in the last phase of Madbench. The performance effect is a tradeoff between computation and communication.



Each matrix is written to the disk or read back independently. We assume nGang is 1 in our analysis. In this case, the memory buffer size on each processor is nPixel*nPixel*sizeof(double)/P. Madbench uses weak scaling strategy. Therefore, the data set size on a processor keeps constant. The typical memory buffer size used on a processor is 75Mb/s. The main I/O characteristic of this code is for all the processes to read/write their personalized data sequentially using large I/O buffer at the same time. Therefore, its behavior can be easily simulated by IOR benchmarks. Following table shows the performance results for 64 processors using MPI-IO interface measured by IOR (transferSize=2MB, segmentCount=1, blockSize=76MB) and MadBench individually. We can find that the performance of these two (MB/s) very close to each other. (Characteristics: sequential read/write in large memory buffer size, all processes simultaneously)

Table 2. The Measured results for both MadBench and IOR

	
	Read Unique
	Read Shared
	Write Unique
	Write Shared

	Madbench I/O
	2542
	2497
	3460
	3257

	IOR (MB/s)
	2592
	2591
	3404
	3222

6.2 AMR Astrophysics Hydrodynamics (FLASH, HDF5)

FLASH (15) is a modular, parallel adaptive mesh hydrodynamics code developed by University of Chicago’s center for astrophysical thermonuclear applications. The communication is basically ghost cell exchange, which requires nearest-neighbor communication. However, some random communication pattern may also be needed for adaptive meshes in order to balance the work among processors. The simulation produces four types of output files: 1) ASCII log files to log the progress and record some integrated quantities, 2) checkpoint files to record the full-resolution snapshot, used for restarting, 3) plotfiles to contain a subset of the grid variables and are written more frequently than checkpoint files, 4) particle plotfiles which contain the relevant particle data. The resolution for the plotfiles is coarsened down by a factor of two.

The FLASH I/O benchmark routine measures the performance of the FLASH parallel HDF5 output. It recreates the primary data structures in FLASH and produces a checkpoint file, a plotfile with centered data, and a plotfile with corner data. The routines used to generate these files are exactly the same to those used in FLASH applications. Therefore, the performance of FALSH I//O benchmark should reflect the I/O performance of FLASH applications. In the benchmark, the computational domain is divided into blocks, which are distributed across the processors. A block typically contains 8 zones in each coordinate direction and a perimeter of guardcells to hold information from neighbors
. The zone is the basic unit of the mesh structure. FLALSH I/O also runs in weak scaling mode. Therefore, the number of blocks on a processor keeps around 100. Each zone typically carries 24 variables. However, each variable is output independently. The buffer size for a variable on a processor is sizeof(double)*8*8*8*100 = 400KB. The guardcells are stripped from output. The checkpoint file size is around 400KB*P*24. For plotfiles, only 4 variables will be output in single-precision, one containing cell-centered data and the other containing corner data. Due to the data processing, all 4 variables will be put in a single buffer and output together. Therefore the buffer size closes to 400KB*4/2 = 800KB (need to understand how the number of data points in these two plotfiles will change). But, the plotfile size is considerably smaller than the checkpoint file. According the I/O pattern, we believe that its performance can be predicted with IOR results. For the checkpoint file, the parameters could be segmentCount = 1, blockSize = 26*400KB, transferSize = 400KB. For plotfiles, segmentCount = 1, blockSize = 1, transferSize = 800KB.
6.3 AMR Applications (CHOMBO, HDF5)

The Chombo [17] package provides a set of tools for implementing finite difference methods for the solution of partial differential equations on block-structured adaptively refined rectangular grids. The I/O operation is used to write/read the hierarchical grid structure at the end of a specified time step. The boxes that form the grids are distributed among the processors. Each processor is responsible to output those boxes assigned to it.

Fig. 9. The I/O access pattern in current implementation (Individual-Random):

In the current implementation (individual-random), each box is written to the output file individually as shown in Fig. 9. In the output file, the boxes are organized in lexicographic order based on the rank of the box. However, in the memory, due to adaptive mesh refinement and load balancing, the ranks of the boxes belong to a processor may not be continuous. The positions of the boxes belong to a processor may scatter all over around in the file. Therefore, the write operations may exhibit random characteristic. Furthermore, due to the adaptive hierarchical block structure, the box size could vary substantially from each other and results in quite different write block sizes. For a benchmark run with a two dimensional domain with size 1200*1200, the data for a block size varies from 1.5KB to 22MB. The data size distribution is shown in Fig. 10. We can notice the long tail of the size distribution. The average box data size is 1MB. The developers found that the code did not scale well. Its poor scaling behavior is shown in Fig. 11. Using small buffer to output data into a file in scattered mode is very difficult to achieve high I/O performance due to the high overhead in each write operation. We believe that this individual-random approach could be improved.

Fig. 10. The distribution of box data sizes for Chombo

Fig. 11. The write performance of Chombo on Seaborg for various implementations.

One way to improve the I/O performance is not to maintain the lexicographic order of the boxes. Instead, we write the box data into the file in the same order as they are kept in the memory and output the box rank at the same time so that the box data can still be correctly accessed later. In this way, each processor just need one big write operation to output all its box data into the file. Additionally, we also need to save the box order and their corresponding offsets into the file so that we can access the box data later. The data amount of offsets is dramatically smaller than the data itself. The cost of saving the offsets can be ignored. We call this approach aggregate-sequential.

Fig. 12. The new approach for CHOMBO implementation.

However, a few I/O function interfaces in the current Box class is not efficient to support this approach when the element of the box has multiple variables. Each variable is stored independently in the file. Therefore, the values of the same variable for different boxes have to be stored together in memory also. But for different variables, they have to be separated. Using the current I/O interface, it is difficult to implement this directly. We have to resort to an extra memory copy, causing extra overhead. But the interface can be easily modified. We call the approach to use the modified interfaces to avoid extra memory copy aggregate-sequential-interface approach. We can find that their performances scale much better.

For performance comparison purpose, we also developed several other ways to implement the I/O operations. One is called individual-sequential. The difference with aggregate-sequential is that in this approach, each box is also written to the file individually not together. The motivation is to examine the overhead of small writes versus big writes. The final approach is called exchange-aggregate-sequential. In this approach, we keep the order of the boxes in the output file. However, the boxes should be repartitioned and the box data have to be exchanged among the processors before they can be written to the output file. These two approach also improve the I/O performance, but not as good as the aggregate-sequential approach due to the cost to exchange the data among the processors. The results are obtained for a two dimensional domain with domainsize =1200 in each direction and the file size is around 4GB.

Fig. 13. The performance of different implementations for CHOMBO on Jaguar.

The performance on the jaguar (XT3) is somewhat different. Similar to Seaborg, the original individual-random approach performs worst and does not scale at well (strong scaling). However, this time it is the exchange-aggregate-sequential approach delivers the best performance. Exchanging data among the processors is not so expensive on this platform. Currently, we are not sure why the aggregate-sequential-interface does not work well on 64 processors.

Though complex, the chombo performance can still be simulated with IOR with parameters segmentCount, blockSize, and transferSize in HDF5 interface. For the aggregate-sequential approach, let segmentCount = number of variables, blockSize = variable data / P, and transferSize = blockSize. For those approaches using individual box writes, we need to use various transferSize to measure the performance.

We are investigating other applications, including Climate Modeling, V3D, Cactus, and GTC.

7 Suggested Benchmarking Procedure for IOR

IOR can be used as two purposes, predicting the application performance and serving as an I/O benchmark to evaluate the I/O system. In the earlier section, we have defined the essential parameters for IOR: API, segmentCount, blockSize, transferSize, readFIle, writeFile, filePerProc, and numTasks. In order to use IOR to predict the application performance, we need to examine the application characteristics, figure out the values for the above parameters.

The procedure to use IOR as an I/O benchmark will be a little more complex. In most of the cases, we are interested in the stable performance without caching effects. Therefore, we have to find a suitable file size (blockSize) to use. However, our results on Bassi, Jacquard, and Davinci indicate that there is no rule of thumb to find such size for all platforms. An exhaustive search or smart guess is needed. Once the blockSize has been found, the transferSize can be set as 1MB since most of HPC applications we have examined use such size or larger. The segmentCount can be set as 1. The numTasks can be set as 64 since our experience indicate that at this concurrency level, the I/O performance should be very close to the peak on most current HPC platforms. The test results should include all I/O interfaces.

An alternative approach is to use two transferSize, one is 1MB, the other is 2KB since we do notice that some applications use very small transferSize. In the end, we uses a weighted combination of these two results.

8 Conclusions

In this work, we summarized the I/O requirements of HPC applications and using these requirements to analyze a series of synthetic I/O benchmarks and application benchmarks. We believe that the I/O benchmark inherits most of these requirements and can be used as HPC I/O benchmark to evaluate the HPC I/O systems. A shortcoming of this benchmark is that it does not support complex multi-dimensional array access.

References

[1] http://www.llnl.gov/asci/purple/benchmarks/limited/ior/.

[2] http://www.iostone.org
[3] Effective I/O Benchmark, http://www.hlrs.de/organization/par/services/models/mpi/b_eff_io/
[4] http://www.opengroup.org/platform/hecewg/uploads/40/10894/POSIX-extensions-some-goals.pdf
[5] PRIOmark

[6] MPI-2: Extensions to the Message Passing Interface. http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html
[7] HDF5

[8] NETCDF, http://www.unidata.ucar.edu/software/netcdf/
[9] J. Li, W.K. Liao, R. Ross, R. Thakur, W. Gropp, R. Latham, A. Siegel, B. Gallagher, and M. Zingale, “Parallel netCDF: A High-Performance Scientific I/O Interface”, SC2003.

[10] Iozone, http://www.iozone.org
[11] Bonnie, http://textuality.com/bonnie
[12] Peter M. Chen, David A. Patterson, “A new approach to I/O Performance Evaluation Self-Scaling Benchmarks, Predicted I/O Performance”, Proceedings of the 1993 ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems.

[13] Input/Output IObench, http://www.sdsc.edu/pmac/Benchmark/iobench/
[14] Effective I/O Bandwidth Benchmark, http://www.hlrs.de/organization/par/services/models/mpi/b_eff_io/
[15] ASC/Alliance Center for Astrophysical Thermonuclear Flashes, http://flash.uchicago.edu/website/home/
[16] MADbench2, https://crd.lbl.gov/~borrill/MADbench2/
[17] Chombo, http://seesar.lbl.gov/ANAG/chombo/

[18] K. Antypas, A.C.Calder, A. Dubey, R. Fisher, M.K. Ganapathy, J.B. Gallagher, L.B. Reid, K. Reid, K. Riley, D. Sheeler, N. Taylor, “Scientific Applications on the Massively Parallel BG/L Machines”, http://ww1.ucmss.com/books/LFS/CSREA2006/PDP4125.pdf

In Memory:

In File:

 P0 P1 P2

8

9

7

6

5

4

3

2

1

8

9

2

6

5

1

8

9

2

6

5

1

7

4

3

8

9

2

6

5

1

7

4

3

9

8

2

6

5

1

7

4

3

9

8

2

6

5

1

7

4

3

9

8

2

6

5

1

7

4

3

9

8

7

6

5

4

3

2

1

9

8

7

6

5

4

3

2

1

7

TH(Pf , Sf)

TH(Pf , S)

TH(P,S1) = ?

TH(P, Sf)

Sf

S1

sizeMean

ProcessNum

Pf

Throughput

TransferSize

…

…

TransferSize

…

TransferSize

…

TransferSize

Segment

Segment

Block for P0

Block for P1

Block for P0

Block for P1

4

3

In File:

Aggregate-Sequential

In Memory:

Individual-Sequential

In File:

In Memory:

Exchange-Aggregate-Sequential

In File:

In Memory:

In Memory:

� Get the information from the FLASH README file

