

Breakthrough Computing in Petascale Applications and Petascale System Examples at NERSC

John Shalf / Harvey Wasserman NERSC

Lawrence Berkeley National Laboratory

HPC User Forum April, 2009

Intro to NERSC

- National Energy Research Scientific Computing Center
- Mission: Accelerate the pace of scientific discovery by providing high performance computing, information, data, and communications services for all DOE Office of Science (SC) research.
- The production computing facility for DOE SC.
- Berkeley Lab Computing Sciences Directorate
 - Computational Research Division (CRD), ESnet

ASCR* Computing Facilities

NERSC LBNL

- High end computing
- Production computing
- DOE/SC needs
- In 2010 controlled by:
 - 5-30% ASCR
 - 60-85% other offices
 - 10% NERSC reserve
- Hundreds of projects

LCFs

ORNL and ANL

- Highest end computing
- Leading edge systems
- All Science, not just DOE
- In 2010 controlled by:
 - 60-85% ANL / ORNL process
 - 5-30% ASCR (in 2010)
 - 10% LCF reserve
- Tens of Projects

PetaScale System Examples at NERSC

Click to add text

S. DEPARTMENT OF

NERSC-6 Project Overview

- Acquire the next major NERSC computing system
 - Goal: 70-100 <u>Sustained</u> TF/s on representative applications (NERSC-6 SSP)
 - Fully-functional machine accepted in FY10
 - 70 TB/s IOR I/O bandwidth

Office of

Science

- RFP release September 4, 2008.
- Today: 13-25 TF SSP on NERSC-5 (Cray XT4, ~20k-40k cores)

stable production environment

5

PetaScale Applications Performance Metric

- Sustained System Performance (SSP)
 - Aggregate, un-weighted measure of sustained computational capability relevant to NERSC workload.
 - Geometric Mean of the processing rates of 7 applications multiplied by N, # of cores in the system. SSP in TFLOPS = $\frac{N*\sqrt{\prod_i P_i}}{1000}$
 - Key ingredient: detailed workload analysis

Source of Workload Information

- Documents
 - 2005 DOE Greenbook
 - 2006-2010 NERSC Plan
 - LCF Studies and Reports
 - Workshop Reports
 - 2008 NERSC assessment
- Allocations analysis
- User discussion

7

New Model for Collecting Requirements

- Joint DOE Program Office / NERSC Workshops
- Modeled after ESnet method
 - Two workshops per year
 - Describe science-based needs over 3-5 years
- Case study narratives

DOE View of NERSC Workload

•NERSC serves a large population

3000 users, 400 projects, 500 code instances

- Allocations in 2009
 - -10% INCITE program
 - Open to any area, not just DOE/SC
 - Peer review process run by ASCR
 - -70% Production (ERCAP) awards:
 - From 10K hour (startup) to 5M hour
 - Controlled by DOE program offices
 - -10% each NERSC and DOE/SC reserve
 - Includes NEH and NOAA, JBEI, other Climate
- Focus is high end computing, data

services (not mid-range) [^]

9

Imi

2009 Allocations

Science View of Workload

- Materials Sciences
- Climate
- Fusion Energy
- Lattice Gauge Theory
- Chemistry
- Combustion
- Accelerator Physics
- Astrophysics
- Life Sciences
- Applied Math
- Nuclear Physics
- Geosciences
- Computer Sciences
- Env Sciences
- Engineering
- High Energy Physics

NERSC Serves Broad DOE Science Priorities

DOE Science Priorities Vary

Workload Examples

- Materials Sciences
- Climate
- Fusion Energy
 - Lattice Gauge Theory
- Chemistry
- Combustion
- Accelerator Physics
- Astrophysics
- Life Sciences
- Applied Math
- Nuclear Physics
- Geosciences
 - **Computer Sciences**
 - Env Sciences
 - Engineering
 - **High Energy Physics**

Example: Climate Modeling

- CAM dominates CCSM3 computational requirements.
- FV-CAM increasingly replacing Spectral-CAM in future CCSM runs.
- Drivers:
 - Critical support of U.S. submission to the Intergovernmental Panel on Climate Change (IPCC).
 - V & V for CCSM-4
- 0.5 deg resolution tending to 0.25
- Focus on ensemble runs 10 simulations per ensemble, 5-25 ensembles per scenario, relatively small concurrencies.

FV-CAM Characteristics

- Unusual interprocessor communication topology – stresses interconnect.
- Relatively low computational intensity – stresses memory subsystem.
- MPI messages in bandwidthlimited regime.
- Limited parallelism.

Example: Material Science

- 62 codes, 65 users.
- Drivers: nanoscience, ceramic xtals, novel materials, quantum dots...
- DFT dominates, usually PW
- VASP, PARATEC, PETOT, QBox
- Libraries: SCALAPACK / FFTW / MPI
- Dominant phases of PW DFT algorithm:
 - 3-D FFT
 - Real / reciprocal space transform via 1-D FFTs
 - O(Natoms2) complexity
 - Subspace Diagonalization
 - O(Natoms3) complexity
 - Orthogonalization
 - dominated by BLAS3
 - ~O(Natoms3) complexity
 - Compute Non-local pseudopotential
 - O(Natoms3) complexity

PARATEC Characteristics

- Strong scaling emphasizes small MPI messages.
- Overall rate dominated by FFT speed and BLAS.
- Achieves high per-core efficiency on most systems.
- Good system discrimination.
- Also used for NSF Trac-I/II benchmarking.

*

20

50

110

3.04

buffor size (bytes)

LOOK

110

NERSC-6 Application Benchmarks

SCIENTIFIC COMPUTING CENTER

Benchmark	Science Area	Algorithm Space	Base Case Concurrency	Problem Description	Lang	Libraries
CAM	Climate (BER)	Navier Stokes CFD	56, 240 Strong scaling	D Grid, (~.5 deg resolution); 240 timesteps	F90	netCDF
GAMESS	Quantum Chem (BES)	Dense linear algebra	256, 1024 (Same as Ti-09)	DFT gradient, MP2 gradient	F77	DDI, BLAS
GTC	Fusion (FES)	PIC, finite difference	512, 2048 Weak scaling	100 particles per cell	F90	
IMPACT-T	Accelerator Physics (HEP)	PIC, FFT component	256,1024 Strong scaling	50 particles per cell	F90	FFTW
MAESTRO	-Astrophysics (HEP)	Low Mach Hydro; block structured- grid multiphysics	-512, 2048 Weak scaling	16 32^3 boxes per proc; 10 timesteps	. F90	Boxlib
MILC	Lattice Gauge Physics (NP)	Conjugate gradient, sparse matrix; FFT	256, 1024, 8192 Weak scaling	8x8x8x9 Local Grid, ~70,000 iters	C, assem.	
PARATEC	Material Science (BES)	DFT; FFT, BLAS3	256, 1024 Strong scaling	686 Atoms, 1372 bands, 20 iters	F90	Scalapack, FFTW

Challenges for Computing Centers

- Power density is the problem, parallelism is the solution
 - (unless you're content with 2008 application speed).
- Little consensus on parallel programming model.
- Fault tolerance at scale
- Efficient algorithms vs. efficient parallelism
- Balancing systems for broad workload, including data-rich computing

Source: "The Landscape of Parallel Computing Research: A View From Berkeley," http://view.eecs.berkeley.edu/

What Does it Mean for NERSC?

- Short term:
 - Immediate need to select best future machine.
 - Anticipate some bids with accelerators, limited memory
 - 3.5 MW power limit for Oakland Scientific Facility
- Longer term:
 - Need to support existing production user base.
 - Optimizing performance-per-watt necessarily includes consideration of programmability.

What Does it Mean for NERSC?

- Longer term: Can we program multicore / manycore?
 - 2 cores for video, 1 for MS Word, 1 for browser, 76 for virus / spam check? *

- Opportunity: Leverage local research in
 - Efficient Algorithms
 - Programming models / languages
 - Tuning methods
 - Power efficient architecture
 - Measurement standards and better quantitative understanding of power issues

*Source: J. Kubiatowicz, 2-day short course on parallel computing," http://parlab.eecs.berkeley.edu

Efficient Algorithms

- Astrophysics/Combustion: AMR in MAESTRO
 – S. Woosley (UCSC), J. Bell (LBNL)
- Chemistry/Materials Science: O(n)-scaling codes such as LS3DF
 - L-W. Wang (LBNL)
- Climate: icosohedral-grid atmospheric codes
 - D. Randal (Colo.State)

Low-Swirl Burner Simulation

- Low-Swirl Burners invented in 1991 at LBNL.
- Now being developed for near-zero-emission gas turbines (2007 R&D 100 Award)
- Could dramatically reduce pollutants by using special "lean premixed" fuels in power generation and transportation.
- But combustion with these fuels can be highly unstable, making robust systems hard to design.

1" burner (5 kW, 17 KBtu/hr)

28" burner (44 MW, 150 MBtu/hr)

http://eetd.lbl.gov/aet/combustion/LSC-info/

Low-Swirl Burner Simulation

- Numerical simulation of a lean premixed hydrogen flame in a laboratory-scale low-swirl burner. Uses a low Mach number formulation (LMC code), adaptive mesh refinement (AMR) and detailed chemistry and transport.
- PI: John Bell, LBNL

Science Result:

 Simulations capture cellular structure of lean hydrogen flames and provide a quantitative characterization of enhanced local burning structure

NERSC Results:

- LMC dramatically reduces time and memory.
- Scales to 4K cores, typically run at 2K
- Used 2.2M hours on Franklin in 2007, allocated 3.4M hours in 2008

J B Bell, R K Cheng, M S Day, V E Beckner and M J Lijewski, Journal of Physics: Conference Series 125 (2008) 012027

Scalable Nanoscience Algorithms

- Calculation: Linear Scaling 3D Fragment (LS3DF). Density Functional Theory (DFT) calculation numerically equivalent to more common algorithm, but scales with O(n) in number of atoms rather than O(n³)
- Lin-Wang Wang, Zhengji. Zhao, LBNL

Science Results

• Calculation of 3500 atom ZnTeO alloy to predict efficiency of a new solar cell material.

Scaling Results

- 36k 160k cores, XT4, XT5, BG/P
- Took 1 hour vs ~months (est.) for previous O(n³) algorithm
- Good efficiency (40% of peak)
- Gordon Bell Prize at SC08

U.S. DEPARTMENT OF Office of Science

New Approach for Climate Modeling

- Goal: 1-km cloud-resolving model, 1000X real time
- Existing Lat.-long. grid, advection algorithm breaks down before 1km
 - Grid cell aspect ratio at the pole is 10000; time step is problematic at this scale
- Requires new discretization for atmosphere model
 - Partner with Dave Randall (CSU) to use the Icosahedral grid code
 - Uniform cell aspect ratio across globe
 - ~2 million horizontal subdomains, ~20 million total
 - ~5 MB memory per subdomain, ~100 TB total
 - Requires ~10PF sustained, 200 PF peak
- New approach: Green Flash

Science

Green Flash Overview

- Research effort, feasibility study
 - Target: 100x better power efficiency; reject Opteron, BG/P approach
- Elements of the approach
 - Choose science target first (climate, now), design machine for it
 - Design (simplified) hardware, software, scientific algorithms together using hardware emulation and auto-tuning
- What is new about this approach
 - Investigate commodity processes used to design power-efficient embedded devices (redirect the tools to benefit scientific computing!)
 - Auto-tuning to map algorithm to complex hardware
 - RAMP: Fast hardware-accelerated emulation of new chip designs

M. Wehner, L. Oliker, and J. Shalf, "Towards Ultra-High Resolution Models of Climate and Weather," Int. J. High Perf. Comp. App, May 2008, 22, No. 2

Current Status: SC08 Demo

- BEE3 board emulating Tensilica Xtensa processor running CSU code
 - 1km scale SubDomain
- Autotuning framework for Tensilica architecture
 - Stencil autotuner can apply
 ~dozen optimizations

- Moving on multi-core emulation, to explore CMP design trade-offs
 - pack fewer cores in socket to minimize memory bandwidth
 - maximize cores in socket to minimize surface-to-volume ratio

Summary

- GF -> TF highly disruptive (vector to MPI)
- TF -> PF not as disruptive (Fortran/MPI)
- PF -> EF going to very disruptive
 - Uncertain programming model
 - Million-way parallelism
 - Much less memory and lower memory BW
 - Accelerators, unconventional memory hierarchies
 - Must ensure a migration path from current programming approaches to new ones
 - More efficient algorithms, HW, approaches to writing

Scientific Grand Challenges in Fusion Energy Sciences and the Role of Computing at the Extreme Scale March 18-20, 2009 · Washington D.C.

Questions?

- Please visit
 - the NERSC Website http://www.nersc.gov
 - Green Flash: <u>http://www.lbl.gov/CS/html/greenflash.html</u>
 - O(N) electronic structure: <u>https://hpcrd.lbl.gov/~linwang/</u>
 - NERSC Science Driven System Architecture <u>http://www.nersc.gov/projects/SDSA</u>

