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Introduction 
Chip Multiprocessors containing hundreds or even thousands of cores will challenge current OS 
practices.  Many of the fundamental assumptions that underlie current OS technology are based 
on design assumptions that are no longer valid for a Chip Multiprocessor (CMP) containing 
thousands of cores. In the context of exascale system requirements, as machines grow in scale 
and complexity, techniques to make the most effective use of network, memory, and processor 
resources will also become increasingly important. The interaction of the OS with the application 
is closely intertwined with the execution model for parallel applications where parallel tasks 
interact. 
 
Thomas Sterlingʼs “four horsemen” analogy for the problems that will afflict exascale computing 
(Latency, Starvation, Contention, and Overhead) can be used to understand the impact of the OS 
on the execution model. Execution models that support more asynchrony will be necessary to 
hide latency. Such execution models will also require more carefully coordinated scheduling to 
balance resource utilization and minimize work starvation or resource contention. These 
execution models will also require extraordinarily low overhead fine-grained messaging.  
However, the attributes required by the execution model are nearly impossible to achieve when 
the OS intervenes for every operation that touches its privileged domain – it must intervene for 
inter-processor communication operations, has exclusive and privileged control of scheduling 
policy, and exclusive ownership of resource management policies. A baseline challenge for the 
exascale software stack is how to get the OS out of the way without compromising the need to 
protect hardware state from errant (or malicious) software.  Otherwise, it is highly unlikely that 
novel programming models can emerge that are capable of addressing the emerging constraints 
of extreme-scale systems. 

Hardware Evolution Direction 
We make the following assumptions about future system architecture as we move towards 
exascale systems. 

• Heterogeneous cores with potentially different ISAs (old systems would have just one ISA) 
• Hundreds to thousands of cores per chip (old systems would have just one) 
• Billions of cores on system (this is a radical departure from the past) 
• Less memory per core (after years of continued growth) 
• Not fully-connected topology between cores (even for SMPʼs a PRAM model has been 

assumed) 
• Component failures on order of seconds or minutes (formerly system-scale checkpoint-

restart to disk was sufficient) 
• Fault recovery creates load imbalances  
• Power is the leading design limiter, which puts more emphasis on power management 

capabilities  (power was not formerly a top-level issue) 

What is wrong with current Operating Systems 

Hardware is rapidly evolving away from the original design assumptions of modern operating 
systems.  However, they have evolved to be far too large to fix using an incremental path. Over 
time, Operating Systems have evolved into multifaceted and hugely complex software 
implementations that have accreted a broad range of capabilities. We refer to the challenge of 



breaking the OS apart based on separation of concerns as “deconstructing the OS.”  Below are a 
subset of leading issues that motivate the need to reexamine the underlying assumptions that are 
encoded in current OS implementations and fodder to imaging a re-implementation of the 
minimum necessary capabilities based around emerging realities of hardware design. 

Time Sharing 
Time-sharing OSʼs are built around the assumption that the CPU is a precious resource that must 
be shared.  This is no longer true when you have a CMP with thousands of cores and constrained 
memory bandwidth. 
 Old Conventional Wisdom (CW): When CPUs are considered the most precious resource, 
you time-multiplex access to share access. However, when hundreds of CPUs are available, it no 
longer makes sense to suffer the overheads incurred by context switching.  Indeed, the cost of a 
context switch is not merely the time spent preserving registers because the associated cache 
pollution (and other shared resources) can substantially reduce CPU throughput.  Context 
switching makes inefficient use of the new precious resources, which are on-chip memory and 
off-chip bandwidth. 
 New CW: If cores are cheap, then you spatial partition the allocation of cores for function 
rather than offering timeslices of a single resource.  The spatial partitioning is analogous to 
Logical Partitioning (LPAR) from 1970ʼs era mainframe terminology.  
 Research in this area: MITOSYS (MIT/Berkeley), K42 

Device Drivers and Resource Sharing (Quality of Service) 
OSʼs play an important role in virtualizing finite hardware device interfaces – making it appear to 
each application that it is exclusive owner of a replicated copy of the device interface. In the 
parallel context current OSʼs assume workload of uncoordinated processes that stochastically vie 
for control of finite/virtualized devices. 
 Old CW: OSʼs currently implement a greedy allocation policy where first process acquires a 
lock to gain exclusive access device (or OS/driver interface) for each I/O transaction. This 
approach is sensible for stochastic access to the virtualized resource, but very bad for highly-
synchronous parallel algorithms.  Resource and lock contention hurts performance by flooding the 
inter-processor communication network with redundant/spinning lock acquisition requests.  Locks 
also serialize otherwise parallel processes when they attempt to access the same resource (the 
network interface for example), and subjects them to nondeterministic delays. 
 New CW: A new OS will need use a QoS management for symmetric device access by a 
large number of entities or put coordinated scheduling of device access in control of the 
application.  The development of novel mechanisms for coordinating parallel access to finite 
number of virtualized device interfaces is essential. (e.g.  Ncpus >1000 and the Ndevice=1). 
 Examples of Research: NOOKs, K42 

Interrupts and Asynchronous I/O 
Background task handling for asynchronous operations are currently handled by threads and 
signals in modern OSʼs and application designs.  In particular, devices must interrupt the CPU in 
order to invoke the device driver software to service their requests.  
 Old CW: Interrupts and threads (a side-effect of time-multiplexing access to a core) are 
used to implement asynchronous operations or system calls in user codes.  Even more 
fundamentally, device handling is implemented by interrupting the CPU for the time-critical top-
half of the device driver and then scheduling the bottom half of the driver to run on the next 
available time-slice of the CPU. The interrupt subjects processes to non-deterministic delays that 
can result in load-imbalances for parallel applications. 
 New CW: If CPUs are abundant, side-cores can be dedicated to asynchronous I/O and 
device handling.  For that matter, cores can be used to implement programmable DMA and async 
I/O rather than using dedicated hardware components for said operations.  Using a core or 



background thread to implement DMA eliminates the need to write to the device control interface 
for dedicated DMA engine, which require costly msync() operations by the requesting CPU. 
 Exampels of Research: Side-Cores 

Fault Isolation 
Another important role of operating systems on more robust systems is fault isolation. This is 
particularly difficult for large SMP systems as errors can propagate rapidly through the system 
and are extremely difficult to track down. With growing node concurrency, and increasing 
likelihood of soft errors, the ability to rapidly identify and isolate errors will be essential.  The total 
lack of a fault isolation strategy in modern OSʼs is arguably one of their weakest points moving 
forward. 
 Old Conventional Wisdom (CW): CPU failure on a chip multiprocessor (or SMP) will result 
in a Kernel Panic that takes down the system.  Such events will happen with increasing frequency 
in future silicon. 
 New CW: CPU failure should result in isolation of the partition containing the failure.  It 
would be better yet if the hardware supported integrated rollback mechanisms to support partition 
Restart.  There is existing work in the Singularity OS to consider how transactions between the 
application and device interfaces can be rolled-back to a known state to support restart of 
partitions containing the application.  
 Research Examples: VMM containers, Singularity 

Inter‐Processor Communication 
All device interfaces are at the OSʼs privilege level in a typical system.  Therefore, any access to 
virtualized device interfaces is mediated by the OS in order to protect the hardware interface from 
misbehaving (or malicious) programs.  However, the overhead of the privilege change and 
additional data buffer copies required for OS mediation has given way to a wide variety of “OS 
Bypass” and “user space messaging” implementations such as VIA, PORTALS, and DRI.  
However, these approaches expose the hardware to irrecoverable state corruption by errant 
software. Whereas current OS works in-band to protect the hardware state, it would be more 
efficient to employ extra cores or some other supervisory hardware to monitor application-to-
device transactions out-of-band to check for state corruption without adding additional overhead 
to the communication stream. 
 Old CW: invoked for ANY interprocessor communication or scheduling to protect hardware 
state from corruption. 
 New CW: direct HW access allowed by application, but hypervisor monitors for state 
corruption out-of-band from the transactions (perhaps using dedicated subset of cores as 
observers). 
 Research Examples: Singularity, MVIA/MVAPICH (very old example that is isolated to OS 
bypass for MPI) 
 

Serialized Interrupt Dispatch 
 Old CW: vectors interrupts to a handler code that starts at a given memory address. 
 New CW: vector should include both the handler code AND the ID of the CPU core that 
should vector to the interrupt address.  This will be even more critical for heterogeneous multicore 
systems.  Moreover, current interrupt controllers tend to serialize the interrupt stream.  We have 
not yet conceived of a hardware mechanism for dispatching event interrupts concurrently on a 
CMP, nor have we thought of how to implement a software infrastructure to manage such a 
concurrent event stream. 
 Examples: none to date. 
 
 



 
There are numerous other issues with current operating system designs that this paper will not 
cover in detail.  These include: 
 Global Resource Discovery and Global Addressing: Conventional TLB isnʼt designed 
with global memory in mind.  If we think global memory is important, then this problem must be 
addressed. 

Memory Hierarchy: Most operating systems depend entirely on conventional cache-
coherent memory hierarchy, while many new hardware platforms are evolving toward 
unconventional (not necessarily cache-coherent) memory hierarchies 
 Heterogeneity: Operating systems generally depend target single-ISA homogeneous 
systems.  An accelerated architecture will t 
 Power Management: Fine grained Power Management control is not directly accessible 
to user-space applications 
 Locality Management: The default policy for most operating systems is opportunistic 
allocation of resources, which can be overridden with explicitly set process affinity, which will not 
scale to larger more complicated chip multiprocessors. 
 

Redesigning the OS to Meet NEW Requirements 
An incremental approach to modifying Linux to address the divergence of hardware design 
constraints from fundamental OS design assumptions is unlikely to make sufficient progress in 
the 10 year timeframe we have for exascale systems. OSʼs must be refactored (deconstructed) to 
offer more flexible resource management and runtime support for parallel execution models with 
the focus on exposing system resource usage policies to the various level of the programming 
stack. The overall goal of a deconstructed OS would be to allow the application to compose the 
best resource usage policies for its particular needs and to adapt to system scale and load. Policy 
control should be hierarchical, with different levels of abstraction depending on their consumer. 
For example, a hypothetical communication scheduling mechanisms exposes to the 
libraries/compilers explicit control over message sizes and ordering, while exposing to the 
application level/programmer only abstract policies like “long routes first”. Adaptation can take 
form of Quality of Service mechanisms or migration for communication locality.  
 
Previous experience with compiler and runtime optimizations for parallel applications indicates 
that lightweight control over OS mechanisms is not sufficient for good performance and additional 
control over the policies that guide the management of these mechanisms is required. Looking 
beyond existing languages and execution models, even more control of resource management 
will be necessary to support the kind of novel execution strategies required for Exascale 
applications. Current OS designs favor generic policies, e.g. preemptive thread scheduling or 
Least Recently Used page replacement, which have been selected as being the least common 
denominator for commercial workloads. The execution models required for structured parallel 
algorithms in the scientific computing applications are less diverse, usually require cooperation 
between computing entities and exhibit a relatively ordered execution imposed by data/task 
dependence. When developing performance-critical parallel applications developers are willing to 
trade time to market for more effort to fine-tune the performance of their application. Compilers for 
parallel languages are also well suited to take advantage of such functionality. The challenge is of 
course to offer some level of control over resource usage policies while still meeting the 
productivity goals of the development environment.  
 
Exascale hardware technology is also envisioned to be highly memory constrained.  Therefore, 
rather than a full OS model, there may be substantial benefit from an Exokernel model where 
applications are bundled with only the necessary OS functions linked in to the application that run 
in their own partition, relying on a partition manager for defining protection, resource sharing, and 
management of Quality of Service (QoS) guarantees without interposing itself on every resource 



request.  We will refer to these protection mechanisms as a “partition” because there are a 
number of technologies including hypervisors, VMMs, and runtime environments such as 
Singularity that can implement this kind of isolation in a spatially partitioned CMP. The primary 
roles of the application container are to manage partitioning of hardware resources, including 
physical processors, physical memory, and memory and interconnect bandwidths, while the 
runtime layer above the application container will have complete control over scheduling and 
virtualization, if any. For example, in an SPMD execution layer used in UPC, there is no need for 
processor virtualization, while for dynamic threading used in the DARPA HPCS languages, a 
lightweight user-space thread scheduler that can be directly controlled by the application or 
runtime would be beneficial. 
 
Minimalism/Modularity: A very thin protection layer should resident on the CMP to prevent 
hardware state corruption, but otherwise offer bare-metal access to the underlying hardware 
wherever possible. Many system facilities will be linked at user level as a set of optional systems 
libraries. Hardware protection mechanisms will allow direct, user-level access to facilities such as 
networking and I/O through the lightweight protected messaging layer. Parallel applications will 
be given bare metal partitions of processors that are dedicated to the given application for 
sufficiently long to provide performance predictability. The primary roles of the the protection layer 
are to manage partitioning of hardware resources, including physical processors, physical 
memory, and memory and interconnect bandwidths, while the runtime layer above the protection 
layer will have complete control over scheduling and virtualization, if any. There are many lessons 
to be learned from K42 [1], the MIT Exokernel [2], and embedded operating systems such as 
VxWorks [3] regarding approaches to efficient and modular system services. The thin protection 
layer (possibly a hypervisor or VMM-based application container) will play a role in mediating 
concurrent access to devices to ensure fair share of resources. Although software functions can 
be virtualized through replication, hardware devices are finite and access to them by multiple 
hardware components must be managed. This will include Quality Of Service guarantees for 
access to certain rationed resources such as memory or network bandwidth.  
 
This approach to modularity was also employed by microkernels. The implementation of channel-
based modularity was the Achilles heel of microkernels because you had to cross protection 
boundaries for any inter-module communication, which incurred a substantial cost due to the 
context-switch overhead.  There are a number of demonstrations by the K42, Tesselation, and 
Plan-9 operating systems that indicate that the overheads for such an approach are very well 
controlled right now.  
 
Isolation: Groups of processors can be combined into protected partitions. Boundaries will be 
enforced through hardware mechanisms restricting, among other things cross-partition shared 
memory. Messaging between partitions can be restricted based on a flexible, tag-based access 
control mechanism. OS functionality such as device drivers and file systems will be both spatially 
distributed and than time-multiplexed; we refer to this as spatial partitioning. This approach works 
in synergy with the sidecore techniques [4], which allow an application to vector OS or driver 
functions to free cores rather than forcing a context-switch on the core running the application.  
 
Safe User-Level Messaging (not cache-coherent shared memory): Messages will be 
used to cross protection domains rather than more traditional trap-based mechanisms. Through 
hardware mechanism and/or static analysis, applications will have direct, user-level access to 
network interfaces and DMA. Further, fast exception handling and hardware dispatch of active 
message handlers will permit low overhead communication without polling. Most traditional 
system-calls will translate into messages to remote cores (other system-calls will be to linked 
system libraries) [4].  



Related Work 
Operating system and programming language development is a work intensive process with a 
long initial development time. Traditional operating systems have a monolithic design with little or 
no control over the internals exposed to the application or user level. Novel programming models 
need to demonstrate clear performance and productivity advantages over the established 
paradigms in order to have a chance for widespread adoption. Their efficiency can be greatly 
improved when having access to fine application level control over functionality provided by the 
system software stack (OS). The same fine-level of control is beneficial to established execution 
models of existing parallel runtime environments.  
 
There are several DOE sponsored ongoing research projects related to operating systems 
design. The ZeptoOS [5] project distinguishes between service node and compute node kernels 
and provides tool for OS instrumentation and understanding of the interaction between the OS 
and the application layer. The Plan-9/Right-Weight Kernels [6] project focuses on a judicious 
selection of OS level services in order to diminish OS interference. The K42 research project 
focuses in parallelizing the OS itself and providing abstractions for overall system adaptation at 
scale. A common characteristic of these projects is the focus on improving overall system 
behavior and reducing OS interference [7] and putting more resources under the application and 
user space control while maintaining fault isolation and security. The mostly explore the 
opportunities offered by lightweight kernels and focus on kernel level mechanisms for resource 
control: CPU, memory, and network.  
 
Hypervisors, VMM-based application containers, and various code-rewriting systems offer a very 
thin protection layer that promises to offer the following capabilities for massively parallel CMP-
based systems. One approach to both operating systems and runtimes for parallel execution is to 
deconstruct conventional functionality into primitive mechanisms that software can compose to 
meet application needs. A traditional OS is designed to multiplex a large number of sequential 
jobs onto a small number of processors, with virtual machine monitors (VMMs) adding another 
layer of virtualization. One alternative approach is to explore the usage of a very thin partition 
management layer that exports spatial hardware partitions to application-level software. The 
partition management layer sets up protection to prevent interaction between in order to isolate 
errors and faults on chip.  The partition manager is responsible for setting up communication 
between partitions that enable safe inter-partition communication and interaction. Lastly, the 
partition manager can grant far more control to the runtime system to support advanced 
programming models, while maintaining security. 
 
This approach allows the program within each partition to use custom processor schedulers 
without fighting fixed policies in OS/VMM stacks. The hypervisor supports hierarchical 
partitioning, with mechanisms to allow parent partitions to swap child partitions to memory, and 
partitions can communicate either through protected shared memory or messaging. Traditional 
OS functions are provided as unprivileged libraries or in separate partitions.  
 
For example, device drivers run in separate partitions for robustness, and to isolate parallel 
program performance from I/O service events. An alternative “deconstructed” architecture would 
enable partitioning not only of cores and on-chip/off-chip memory but also of the communication 
bandwidth between these components, with QoS guarantees for the system interconnect. The 
resulting performance predictability improves parallel program performance, simplifies code 
(auto)tuning and dynamic load balancing, and supports real-time applications. 
 
Finally, the Berkeley ROS and Tesselation projects represent a ground-up rewrite of current 
operating systems with the manycore design point in mind.  These operating systems partition 
resources in both time and space.  ROS, in particular creates an abstraction for a manycore 
process, which is absent in current mainstream OS implementations, which gives control over 



scheduling policy to the code that runs within the manycore process (a two-level OS).  
Tesselation provides similar capabilities, but packages this management solution as Cells, which 
can package multiple address spaces to support embedded multi-level OSʼs.  The design goals 
for both OS implementations are to provide finer grained control over resources to provide better 
QoS guarantees and more control over resource management to applications and runtime 
systems.  

Risks 
Most OS research and development efforts tend to be an all-or-nothing proposition, with software 
deliverables reaching the large user community very late in the project life cycle. It has therefore 
been very difficult to bring radical new OS ideas into mainstream usage – making this kind of 
research a very high-risk activity. 
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