
Multicore Autotuning for
Stencil-based PDE Solvers

Cy Chan

NERSC
(in collaboration with

HPCRD: Future Technologies Group)
Lawrence Berkeley National Laboratory

August 21, 2008

Introduction
● High Performance Computing is heading towards a

highly parallel future
– We need to adapt existing scientific programs to properly

utilize the new hardware
● Two goals that are seemingly at odds in HPC:

– Optimize program for many parallel hardware platforms
– Preserve a maintainable (and human readable) code

base
● Possible approaches to autotuning scientific code:

– Current solution: for each scientific program, write a perl
script that generates many tuned versions

– Our approach: create a framework that will work
automatically for many different programs

Autotuning Stencil Kernels
● Our framework is targeted to stencil kernels
● Advantages of working with stencils:

– Large amount of computational work that is data
independent

– Data access pattern is fixed, so optimizations
can be made during array indexing

● Data independence is key:
– Compilers spend lots of computation doing

dependency analysis, affine transformations, etc.
– We can avoid this step because we know we

have a stencil

Our Stencil Autotuner
● Work presented here leverages previous work (Shoaib

Kamil) that parses Fortran to produce an abstract
syntax tree (AST)
– Fortran has a clear multidimensional array representation

and is commonly used in scientific codes
● Workflow:

– Parser (Fortran Loop ⇒ AST)
– AST Transformations (AST ⇒ AST)
– Code Generation (AST ⇒ Fortan/C/CUDA code)

● Languages used:
– Parser is written in lex and yacc

● Outputs Lisp data structure through interface to C
supported by Embedded Common Lisp

– AST Transformations and Code Generation are written in
Lisp

Input: Fortran Loop

● Input: Fortran stencil loop:

do k = ...
do j = ...

do i = ...
B(i,j,k) = A(i+1, j , k)
 + A(i ,j+1, k)
 + A(i , j ,k+1)

enddo
enddo

enddo

Output: C Loop (1)
● Output C array indexing (pointer chasing):

for (k = ...) {
for (j = ...) {

for (i = ...) {
B[k-1][j-1][i-1] =
 A[k-1][j–1][i]
 + A[k-1][j][i–1]
 + A[k][j-1][i-1];

}
}

}

Output: C Loop (2)
● Output C preprocessor indexing:
#define _A_Index(G1,G2,G3) ((G3)*ny+(G2))*nx+(G1)
#define _B_Index(G1,G2,G3) ((G3)*ny+(G2))*nx+(G1)

for (k = ...) {
for (j = ...) {

for (i = ...) {
B[_B_Index(i-1,j-1,k-1)] =
 A[_A_Index(i ,j-1,k–1)]
 + A[_A_Index(i-1, j ,k–1)]
 + A[_A_Index(i-1,j-1, k)];

}
}

}

Output: C Loop (3)
● Output C pointer/offset indexing:
for (k = ...) {

for (j = ...) {
double *G1, *G2;
int G3 = _A_Index(-1,1,0);
int G4 = _A_Index(-1,0,1);
for (i = ... ,
 G1 = B + _B_Index(i-1,j-1,k–1),
 G2 = A + _A_Index(i ,j-1,k–1);
 ... ; i++, G1++, G2++) {

G1[0] = G2[0] + G2[G3] + G2[G4];
}

}
} A[_A_Index(i, j-1, k-1)]

A[_A_Index(i-1, j, k-1)]
A[_A_Index(i-1, j-1, k)]

C Loop Test Framework
● We can now generate C stencil loops

– Need to incorporate them into a program
● A template program #includes an auto-

generated loop
● To test performance, we generated a bunch

of loops
– Applied AST transformations to vary cache

blocking strategy
● We ran the template program for each loop

to get timing data
● Testbed: NERSC Jacquard

– 2.2 GHz AMD Opteron

C Loop Performance
7-Point Stencil Probe (N = 128)

2-
1-

1
32

-2
-1

2-
8-

1
32

-1
6-

1
2-

64
-1

32
-1

28
-1

2-
2-

2
32

-4
-2

2-
16

-2
32

-3
2-

2
2-

12
8-

2
32

-1
-4

2-
4-

4
32

-8
-4

2-
32

-4
32

-6
4-

4
2-

1-
8

32
-2

-8
2-

8-
8

32
-1

6-
8

2-
64

-8
32

-1
28

-8
2-

2-
16

32
-4

-1
6

2-
16

-1
6

32
-3

2-
16

2-
12

8-
16

32
-1

-3
2

2-
4-

32
32

-8
-3

2
2-

32
-3

2
32

-6
4-

32
2-

1-
64

32
-2

-6
4

2-
8-

64
32

-1
6-

64
2-

64
-6

4
32

-1
28

-6
4

2-
2-

12
8

32
-4

-1
28

2-
16

-1
28

32
-3

2-
12

8
2-

12
8-

12
8

0.00E+000

2.00E-002

4.00E-002

6.00E-002

8.00E-002

1.00E-001

1.20E-001

1.40E-001

1.60E-001

C Stencil Loop Performance – Cache Blocking Strategies

Fortran
PP
Ptr

Cache Blocking

E
xe

cu
tio

n
Ti

m
e

(s
)

Minimum values:
Fortran: (1,64,128): 1.99e-2
C-PP: (1, 1, 1): 2.05e-2
C-Ptr: (1, 1, 1): 2.16e-2

C Loop Test: Lessons Learned

● Fortran still competitive with optimized C
code
– Best case Fortran code is 8% faster than best

case C code
● Performance sensitive to initialization values

– Initializing values of data block to 1 resulted in
early completion of a division in kernel

● Computed 0 divided by 1
● Computing 0 divided by X or Y divided by 1 also fast

– Should initialize data to random numbers!

Stencil Parallelization with
CUDA: Domain Decomposition

● Nested for loop specifies
an index block to be
iterated over

● Parallelize by splitting
index block into sub-
blocks

● Assign sub-blocks to
different thread blocks on
GPU

● Each thread block uses
multiple threads to iterate
over its sub-block

Image: NVIDIA

Stencil Parallelization with
CUDA: Memory Hierarchy

● NVIDIA GPUs have a
memory hierarchy

● Global memory is
uncached

● Shared memory is on
chip but small and
inaccessible from host

● Two versions:
1) global memory only
2) use shared memory as

local store (still under
development)

Image: NVIDIA

 Requirements for Our CUDA
Framework

● Fortran loop must be contained within a time
step
– All calculations in the loop are independent

● Arrays must use loop index variables
consistently, e.g.:
– If A(i,j)appears, then A(j,i)cannot

● Index expressions are limited to the form:
– var + const
– necessary to compute extents in each array

dimension

CUDA Output
● As with the C code generator, we take a Fortran

loop as the input
● Produces two functions:

– 1) Direct function – runs the stencil kernel on data
already residing in device memory

– 2) Wrapper function – copies an array from host to
device, calls the direct function for a user-specified
number of iterations, and copies the result back to
the host

● Both functions allow the user to specify at runtime:
– the problem size
– data and thread blocking strategies

CUDA Code Generation
Mechanics

● CUDA language: C with some extensions for GPU
– Leverage our work with C

● In addition to generating the stencil loop, we need
multiple auxiliary code snippets, including:
– Indexing macros
– Function definitions and calls
– Memory management (allocations and copies):

● host memory ⇔ device global memory ⇔ device
shared memory

● Generic functions in template do heavy lifting:
– Allocations (byte-alignment, dimension data)
– Copies (coalesced memory access)

void cudaStencilWrapper(...) {

#include "kernelSpecific/allocations.c" // allocate device memory for arrays
#include "kernelSpecific/copyIn.c" // copy in arrays to device

 if (copyFlag) {
#include "kernelSpecific/copyToOutput.c" // copy input array to output array
 }

 for (int i = 0; i < numIterations; i++) {
 if (i > 0) {
#include "kernelSpecific/swapArrayPointers.c" // swap input & output ptrs
 }
 cudaStencil(
#include "kernelSpecific/hostFuncCallArgs.c"// call direct stencil function
 indexDim, indexBlockDim, threads);
 }

#include "kernelSpecific/copyOut.c" // copy out arrays from device
#include "kernelSpecific/frees.c" // free device memory

}

Example: Template Wrapper Function

CUDA Testbed Specifications

● NVIDIA GeForce GTX280 GPU
– Vector Cores: 30

● Each core has 8 lane SP MAD and one DP MAD
– Clock: 1.3 GHz
– Peak: 624 Gflops SP, 78 Gflops DP
– Device memory: 1 GB GDDR3
– Memory bandwidth: 141.7 GB/s, 127 GB/s sustained
– Host interface (PCIe 2.0): 6GB/s sustained

CUDA Performance
7-Point Heat Equation (N = 256)

NVIDIA GTX280 – Global Memory Only
1-

1-
2-

1-
1-

2
1-

1-
32

-1
-1

-2
1-

1-
12

8-
1-

1-
4

2-
2-

2-
2-

2-
1

2-
2-

8-
2-

2-
4

2-
2-

32
-2

-1
-4

2-
2-

64
-2

-1
-1

6
2-

2-
12

8-
2-

1-
16

2-
2-

25
6-

2-
1-

16
4-

4-
4-

4-
2-

2
4-

4-
8-

4-
4-

2
4-

4-
16

-4
-4

-2
4-

4-
32

-4
-2

-1
6

4-
4-

64
-4

-2
-1

4-
4-

12
8-

4-
1-

8
4-

4-
12

8-
4-

4-
16

4-
4-

25
6-

4-
4-

1
8-

8-
8-

8-
4-

2
8-

8-
16

-8
-2

-8
8-

8-
32

-8
-1

-3
2

8-
8-

64
-8

-1
-2

8-
8-

64
-8

-8
-1

8-
8-

12
8-

8-
4-

1
8-

8-
25

6-
8-

2-
2

16
-1

6-
16

-1
6-

1-
8

16
-1

6-
32

-1
6-

1-
4

16
-1

6-
64

-1
6-

1-
2

16
-1

6-
12

8-
16

-1
-1

16
-1

6-
12

8-
16

-1
6-

1
16

-1
6-

25
6-

16
-8

-2
32

-3
2-

32
-1

6-
8-

1
32

-3
2-

64
-1

6-
1-

2
32

-3
2-

64
-3

2-
1-

1
32

-3
2-

12
8-

16
-1

-1
6

32
-3

2-
12

8-
32

-1
-8

32
-3

2-
25

6-
16

-2
-4

32
-3

2-
25

6-
32

-2
-4

64
-6

4-
64

-1
6-

4-
2

64
-6

4-
64

-3
2-

8-
1

64
-6

4-
12

8-
16

-2
-4

64
-6

4-
12

8-
32

-2
-4

64
-6

4-
25

6-
16

-1
-1

6
64

-6
4-

25
6-

32
-1

-8
12

8-
12

8-
12

8-
16

-1
-2

12
8-

12
8-

12
8-

32
-1

-1
12

8-
12

8-
12

8-
64

-2
-2

12
8-

12
8-

25
6-

16
-4

-1
12

8-
12

8-
25

6-
32

-4
-2

25
6-

25
6-

25
6-

16
-1

-8
25

6-
25

6-
25

6-
32

-1
-4

25
6-

25
6-

25
6-

12
8-

1-
1

0

5

10

15

20

25

30

CUDA Stencil Loop Performance

Single
Double

Blocking Strategy

G
flo

ps

Maximum values:
Single:(32,32,32,32, 8,1):
 25.1 Gflops
Double:(32,32,64,16,16,1):
 12.9 Gflops

Comparison Vs. Hand-Tuned
7-Point Heat Equation Code

● Hand-tuned code with hard-coded data and thread
block sizes achieves 76 Gflops single precision and
27 Gflops double precision

● Hand-tuned code leverages non-generalizable
heuristics for maximum performance
– Some data are kept in registers instead of shared

memory
– Circular queue is only one plane wide, so no circular

addressing required
● Our framework must work for generalized stencils

– One possible solution: try to recognize special cases
and implement applicable heuristics

– Can default to general case

Future Work

● Finish shared memory version of CUDA code
– Reduce global device memory communication
– Increase computational overhead

● Extend code generation framework to support
pthreads on SMPs and chip multiprocessors
– Can use same domain decomposition as CUDA

● Identify cases where we can exploit heuristics
used in the hand-tuned version

● Reproduce all capabilities of the autotuning
strategies previously presented by our group

Summary

● We have built a framework that takes
maintainable Fortran code and produces
tuned versions of that code in C and CUDA

● This work generalizes existing work (that
uses perl scripts) to accommodate a broader
range of stencil kernels

● Performance is already reasonably good
given the generality of framework

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

