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Introduction
● High Performance Computing is heading towards a 

highly parallel future
– We need to adapt existing scientific programs to properly 

utilize the new hardware
● Two goals that are seemingly at odds in HPC:

– Optimize program for many parallel hardware platforms
– Preserve a maintainable (and human readable) code 

base
● Possible approaches to autotuning scientific code:

– Current solution: for each scientific program, write a perl 
script that generates many tuned versions

– Our approach: create a framework that will work 
automatically for many different programs



Autotuning Stencil Kernels
● Our framework is targeted to stencil kernels
● Advantages of working with stencils:

– Large amount of computational work that is data 
independent

– Data access pattern is fixed, so optimizations 
can be made during array indexing

● Data independence is key:
– Compilers spend lots of computation doing 

dependency analysis, affine transformations, etc.
– We can avoid this step because we know we 

have a stencil



Our Stencil Autotuner
● Work presented here leverages previous work (Shoaib 

Kamil) that parses Fortran to produce an abstract 
syntax tree (AST)
– Fortran has a clear multidimensional array representation 

and is commonly used in scientific codes
● Workflow:

– Parser (Fortran Loop ⇒ AST)
– AST Transformations (AST ⇒ AST)
– Code Generation (AST ⇒ Fortan/C/CUDA code)

● Languages used:
– Parser is written in lex and yacc

● Outputs Lisp data structure through interface to C 
supported by Embedded Common Lisp

– AST Transformations and Code Generation are written in 
Lisp



Input: Fortran Loop

● Input: Fortran stencil loop:

do k = ...
do j = ...

do i = ...
B(i,j,k) = A(i+1, j , k )
         + A( i ,j+1, k )
         + A( i , j ,k+1)

enddo
enddo

enddo



Output: C Loop (1)
● Output C array indexing (pointer chasing):

for (k = ... ) {
for (j = ... ) {

for (i = ... ) {
B[k-1][j-1][i-1] = 
    A[k-1][j–1][ i ]
  + A[k-1][ j ][i–1]
  + A[ k ][j-1][i-1];

}
}

}



Output: C Loop (2)
● Output C preprocessor indexing:
#define _A_Index(G1,G2,G3) ((G3)*ny+(G2))*nx+(G1)
#define _B_Index(G1,G2,G3) ((G3)*ny+(G2))*nx+(G1)

for (k = ... ) {
for (j = ... ) {

for (i = ... ) {
B[_B_Index(i-1,j-1,k-1)] = 
    A[_A_Index( i ,j-1,k–1)]
  + A[_A_Index(i-1, j ,k–1)]
  + A[_A_Index(i-1,j-1, k )];

}
}

}



Output: C Loop (3)
● Output C pointer/offset indexing:
for (k = ... ) {

for (j = ... ) {
double *G1, *G2;
int G3 = _A_Index(-1,1,0);
int G4 = _A_Index(-1,0,1);
for (i = ... , 
     G1 = B + _B_Index(i-1,j-1,k–1),
     G2 = A + _A_Index( i ,j-1,k–1);
     ... ; i++, G1++, G2++) {

G1[0] = G2[0] + G2[G3] + G2[G4];
}

}
} A[_A_Index(i, j-1, k-1)]

A[_A_Index(i-1, j, k-1)]
A[_A_Index(i-1, j-1, k)]



C Loop Test Framework
● We can now generate C stencil loops

– Need to incorporate them into a program
● A template program #includes an auto-

generated loop
● To test performance, we generated a bunch 

of loops
– Applied AST transformations to vary cache 

blocking strategy
● We ran the template program for each loop 

to get timing data
● Testbed: NERSC Jacquard

– 2.2 GHz AMD Opteron



C Loop Performance
7-Point Stencil Probe (N = 128)
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C Stencil Loop Performance – Cache Blocking Strategies
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Minimum values:
Fortran: (1,64,128): 1.99e-2
C-PP:    (1, 1,  1): 2.05e-2
C-Ptr:   (1, 1,  1): 2.16e-2



C Loop Test: Lessons Learned

● Fortran still competitive with optimized C 
code
– Best case Fortran code is 8% faster than best 

case C code
● Performance sensitive to initialization values

– Initializing values of data block to 1 resulted in 
early completion of a division in kernel

● Computed 0 divided by 1
● Computing 0 divided by X or Y divided by 1 also fast

– Should initialize data to random numbers!



Stencil Parallelization with 
CUDA: Domain Decomposition

● Nested for loop specifies 
an index block to be 
iterated over

● Parallelize by splitting 
index block into sub-
blocks

● Assign sub-blocks to 
different thread blocks on 
GPU

● Each thread block uses 
multiple threads to iterate 
over its sub-block

Image: NVIDIA



Stencil Parallelization with 
CUDA: Memory Hierarchy

● NVIDIA GPUs have a 
memory hierarchy

● Global memory is 
uncached

● Shared memory is on 
chip but small and 
inaccessible from host

● Two versions:
1) global memory only
2) use shared memory as 

local store (still under 
development)

Image: NVIDIA



 Requirements for Our CUDA 
Framework

● Fortran loop must be contained within a time 
step
– All calculations in the loop are independent

● Arrays must use loop index variables 
consistently, e.g.:
– If A(i,j)appears, then A(j,i)cannot

● Index expressions are limited to the form:
– var + const
– necessary to compute extents in each array 

dimension



CUDA Output
● As with the C code generator, we take a Fortran 

loop as the input
● Produces two functions:

– 1) Direct function – runs the stencil kernel on data 
already residing in device memory

– 2) Wrapper function – copies an array from host to 
device, calls the direct function for a user-specified 
number of iterations, and copies the result back to 
the host

● Both functions allow the user to specify at runtime:
– the problem size
– data and thread blocking strategies



CUDA Code Generation 
Mechanics

● CUDA language: C with some extensions for GPU
– Leverage our work with C

● In addition to generating the stencil loop, we need 
multiple auxiliary code snippets, including:
– Indexing macros
– Function definitions and calls
– Memory management (allocations and copies): 

● host memory ⇔ device global memory  ⇔ device 
shared memory

● Generic functions in template do heavy lifting:
– Allocations (byte-alignment, dimension data)
– Copies (coalesced memory access)



void cudaStencilWrapper( ... ) {

#include "kernelSpecific/allocations.c" // allocate device memory for arrays
#include "kernelSpecific/copyIn.c" // copy in arrays to device

    if (copyFlag) {
#include "kernelSpecific/copyToOutput.c" // copy input array to output array
    }

    for (int i = 0; i < numIterations; i++) {
        if (i > 0) {
#include "kernelSpecific/swapArrayPointers.c" // swap input & output ptrs
        }
        cudaStencil(
#include "kernelSpecific/hostFuncCallArgs.c"// call direct stencil function
            indexDim, indexBlockDim, threads);
    }

#include "kernelSpecific/copyOut.c" // copy out arrays from device
#include "kernelSpecific/frees.c" // free device memory

}

Example: Template Wrapper Function



CUDA Testbed Specifications

● NVIDIA GeForce GTX280 GPU
– Vector Cores: 30

● Each core has 8 lane SP MAD and one DP MAD
– Clock: 1.3 GHz
– Peak: 624 Gflops SP, 78 Gflops DP
– Device memory: 1 GB GDDR3
– Memory bandwidth: 141.7 GB/s, 127 GB/s sustained
– Host interface (PCIe 2.0): 6GB/s sustained



CUDA Performance
7-Point Heat Equation (N = 256)

NVIDIA GTX280 – Global Memory Only
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CUDA Stencil Loop Performance

Single
Double

Blocking Strategy

G
flo

ps

Maximum values:
Single:(32,32,32,32, 8,1):
          25.1 Gflops
Double:(32,32,64,16,16,1):
          12.9 Gflops



Comparison Vs. Hand-Tuned
7-Point Heat Equation Code

● Hand-tuned code with hard-coded data and thread 
block sizes achieves 76 Gflops single precision and 
27 Gflops double precision

● Hand-tuned code leverages non-generalizable 
heuristics for maximum performance
– Some data are kept in registers instead of shared 

memory
– Circular queue is only one plane wide, so no circular 

addressing required
● Our framework must work for generalized stencils

– One possible solution: try to recognize special cases 
and implement applicable heuristics

– Can default to general case



Future Work

● Finish shared memory version of CUDA code
– Reduce global device memory communication
– Increase computational overhead

● Extend code generation framework to support 
pthreads on SMPs and chip multiprocessors
– Can use same domain decomposition as CUDA

● Identify cases where we can exploit heuristics 
used in the hand-tuned version

● Reproduce all capabilities of the autotuning 
strategies previously presented by our group



Summary

● We have built a framework that takes 
maintainable Fortran code and produces 
tuned versions of that code in C and CUDA

● This work generalizes existing work (that 
uses perl scripts) to accommodate a broader 
range of stencil kernels

● Performance is already reasonably good 
given the generality of framework
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