Multicore Autotuning for Stencil-based PDE Solvers

Cy Chan

NERSC (in collaboration with HPCRD: Future Technologies Group) Lawrence Berkeley National Laboratory

August 21, 2008

Introduction

- High Performance Computing is heading towards a highly parallel future
 - We need to adapt existing scientific programs to properly utilize the new hardware
- Two goals that are seemingly at odds in HPC:
 - Optimize program for many parallel hardware platforms
 - Preserve a maintainable (and human readable) code base
- Possible approaches to autotuning scientific code:
 - Current solution: for each scientific program, write a perl script that generates many tuned versions
 - Our approach: create a framework that will work automatically for many different programs

Autotuning Stencil Kernels

- Our framework is targeted to stencil kernels
- Advantages of working with stencils:
 - Large amount of computational work that is data independent
 - Data access pattern is fixed, so optimizations can be made during array indexing
- Data independence is key:
 - Compilers spend lots of computation doing dependency analysis, affine transformations, etc.
 - We can avoid this step because we know we have a stencil

Our Stencil Autotuner

- Work presented here leverages previous work (Shoaib Kamil) that parses Fortran to produce an abstract syntax tree (AST)
 - Fortran has a clear multidimensional array representation and is commonly used in scientific codes
- Workflow:
 - Parser (Fortran Loop \Rightarrow AST)
 - AST Transformations (AST \Rightarrow AST)
 - Code Generation (AST ⇒ Fortan/C/CUDA code)
- Languages used:
 - Parser is written in lex and yacc
 - Outputs Lisp data structure through interface to C supported by Embedded Common Lisp
 - AST Transformations and Code Generation are written in Lisp

Input: Fortran Loop

• Input: Fortran stencil loop:

Output: C Loop (1)

• Output C array indexing (pointer chasing):

}

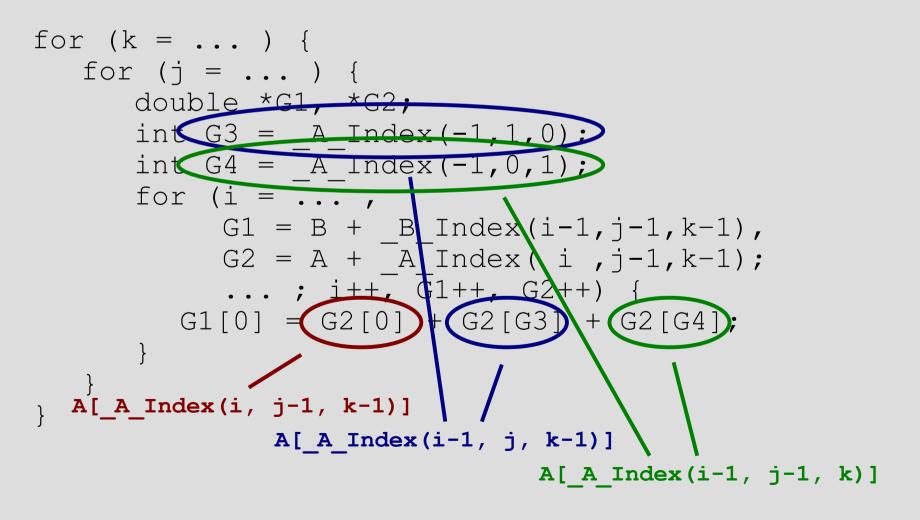
Output: C Loop (2)

• Output C preprocessor indexing:

#define _A_Index(G1,G2,G3) ((G3)*ny+(G2))*nx+(G1)
#define _B_Index(G1,G2,G3) ((G3)*ny+(G2))*nx+(G1)

Output: C Loop (3)

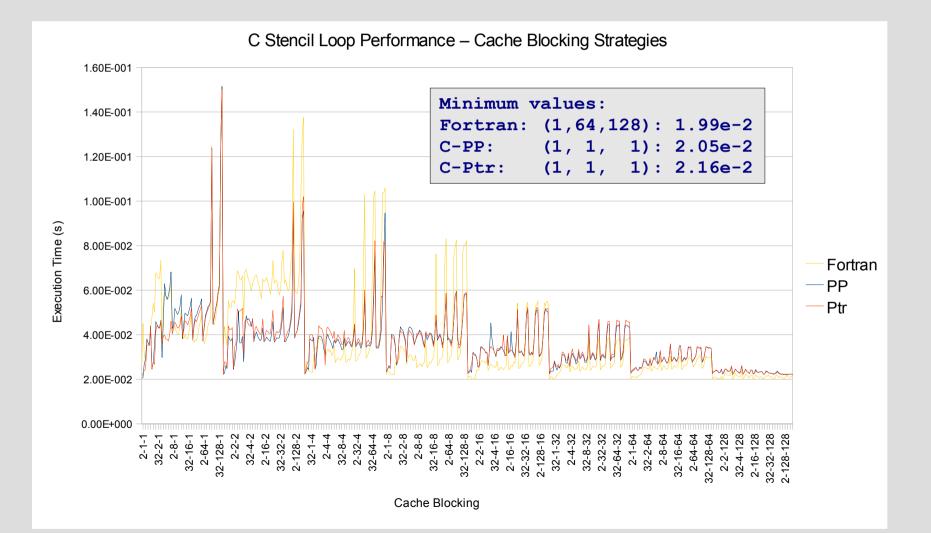
Output C pointer/offset indexing:



C Loop Test Framework

- We can now generate C stencil loops
 - Need to incorporate them into a program
- A template program #includes an autogenerated loop
- To test performance, we generated a bunch of loops
 - Applied AST transformations to vary cache blocking strategy
- We ran the template program for each loop to get timing data
- Testbed: NERSC Jacquard
 - 2.2 GHz AMD Opteron

C Loop Performance 7-Point Stencil Probe (N = 128)



C Loop Test: Lessons Learned

- Fortran still competitive with optimized C code
 - Best case Fortran code is 8% faster than best case C code
- Performance sensitive to initialization values
 - Initializing values of data block to 1 resulted in early completion of a division in kernel
 - Computed 0 divided by 1
 - Computing 0 divided by X or Y divided by 1 also fast
 - Should initialize data to random numbers!

Stencil Parallelization with CUDA: Domain Decomposition

- Nested for loop specifies an index block to be iterated over
- Parallelize by splitting index block into subblocks
- Assign sub-blocks to different thread blocks on GPU
- Each thread block uses multiple threads to iterate over its sub-block

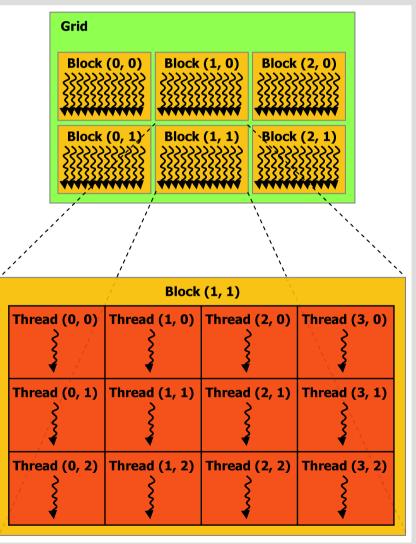


Image: NVIDIA

Stencil Parallelization with CUDA: Memory Hierarchy

- NVIDIA GPUs have a memory hierarchy
- Global memory is
 uncached
- Shared memory is on chip but small and inaccessible from host
- Two versions:

 global memory only
 use shared memory as local store (still under development)

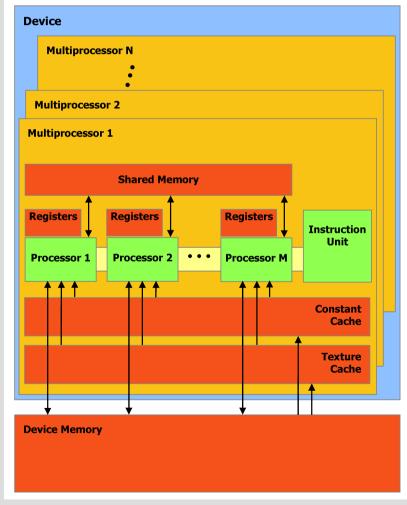


Image: NVIDIA

Requirements for Our CUDA Framework

- Fortran loop must be contained within a time step
 - All calculations in the loop are independent
- Arrays must use loop index variables consistently, e.g.:
 - If A(i,j) appears, then A(j,i) cannot
- Index expressions are limited to the form:
 - var + const
 - necessary to compute extents in each array dimension

CUDA Output

- As with the C code generator, we take a Fortran loop as the input
- Produces two functions:
 - 1) Direct function runs the stencil kernel on data already residing in device memory
 - 2) Wrapper function copies an array from host to device, calls the direct function for a user-specified number of iterations, and copies the result back to the host
- Both functions allow the user to specify at runtime:
 - the problem size
 - data and thread blocking strategies

CUDA Code Generation Mechanics

- CUDA language: C with some extensions for GPU
 - Leverage our work with C
- In addition to generating the stencil loop, we need multiple auxiliary code snippets, including:
 - Indexing macros
 - Function definitions and calls
 - Memory management (allocations and copies):
 - host memory ⇔ device global memory ⇔ device shared memory
- Generic functions in template do heavy lifting:
 - Allocations (byte-alignment, dimension data)
 - Copies (coalesced memory access)

Example: Template Wrapper Function

```
void cudaStencilWrapper( ... ) {
```

}

#include "kernelSpecific/allocations.c" // allocate device memory for arrays
#include "kernelSpecific/copyIn.c" // copy in arrays to device

```
if (copyFlag) {
#include "kernelSpecific/copyToOutput.c" // copy input array to output array
}
for (int i = 0; i < numIterations; i++) {
    if (i > 0) {
#include "kernelSpecific/swapArrayPointers.c" // swap input & output ptrs
    }
    cudaStencil(
#include "kernelSpecific/hostFuncCallArgs.c"// call direct stencil function
    indexDim, indexBlockDim, threads);
}
```

#include "kernelSpecific/copyOut.c" // copy out arrays from device
#include "kernelSpecific/frees.c" // free device memory

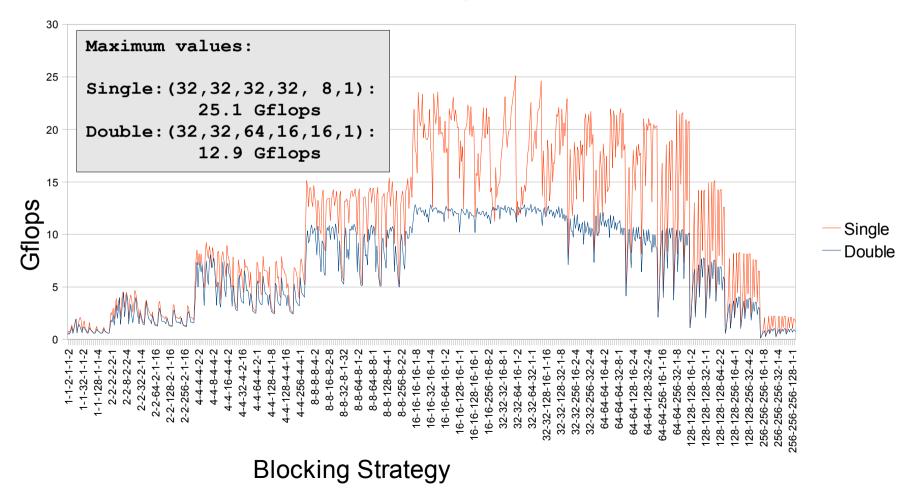
CUDA Testbed Specifications

NVIDIA GeForce GTX280 GPU

- Vector Cores: 30
 - Each core has 8 lane SP MAD and one DP MAD
- Clock: 1.3 GHz
- Peak: 624 Gflops SP, 78 Gflops DP
- Device memory: 1 GB GDDR3
- Memory bandwidth: 141.7 GB/s, 127 GB/s sustained
- Host interface (PCIe 2.0): 6GB/s sustained

CUDA Performance 7-Point Heat Equation (N = 256) NVIDIA GTX280 – Global Memory Only

CUDA Stencil Loop Performance



Comparison Vs. Hand-Tuned 7-Point Heat Equation Code

- Hand-tuned code with hard-coded data and thread block sizes achieves 76 Gflops single precision and 27 Gflops double precision
- Hand-tuned code leverages non-generalizable heuristics for maximum performance
 - Some data are kept in registers instead of shared memory
 - Circular queue is only one plane wide, so no circular addressing required
- Our framework must work for generalized stencils
 - One possible solution: try to recognize special cases and implement applicable heuristics
 - Can default to general case

Future Work

- Finish shared memory version of CUDA code
 - Reduce global device memory communication
 - Increase computational overhead
- Extend code generation framework to support pthreads on SMPs and chip multiprocessors
 - Can use same domain decomposition as CUDA
- Identify cases where we can exploit heuristics used in the hand-tuned version
- Reproduce all capabilities of the autotuning strategies previously presented by our group

Summary

- We have built a framework that takes maintainable Fortran code and produces tuned versions of that code in C and CUDA
- This work generalizes existing work (that uses perl scripts) to accommodate a broader range of stencil kernels
- Performance is already reasonably good given the generality of framework