
Autotuning: The Big Questions

John Shalf

Lawrence Berkeley National Laboratory

August 10, 2009

Times They are a Changing
(trends in computer architecture)

• Clock Frequency Scaling Has Ended

– Now we double cores every 18 months instead of doubling clock frequency

– Alternate trajectory is manycore (GPUs, etc.): start with hundreds of simpler cores

– Future “speed up” requires strong scaling from explicit parallelism

• Memory capacity per computational element will be decreasing

– Also forces us towards strong scaling, even if you don’t want it

– Requires constant memory footprint in face of exponential scaling

• Memory and communication bandwidth per peak FLOP decreasing

– Old optimization target was to reduce flops (increase communication)

– New optimization target is to reduce communication (increase FLOPs)

• Architectural diversity is increasing (architectural uncertainty)

– Current languages are mis-matched with emerging machine models

– Performance portability is more of a problem than ever

• Load imbalance is increasingly problematic with larger parallelism

• Reliability for largest-scale systems is likely going down

Role of Auto-Tuning
(hiding architectural complexity)

• Present higher level of abstraction to hide architectural diversity

– Abstraction of algorithm implementation is a shim for poorly understood (or broken)

abstract machine model

• Automate search through optimization space to achieve performance
portability and strong scaling

– Some focus on search through optimization parameters

– More aggressive schemes (with higher level abstractions) search through

alternate strategies (e.g. super-solvers)

• Automate insertion of memory movement directives (prefetch or DMA)

to economize on memory bandwidth

• Provides abstractions that decouple “cores” from data decomposition
– Currently abstract data layout

– Perhaps can also abstract heterogeneous code (functional partitioning of algorithms)

• Provides abstractions that enable easier hierarchical parallelism

• Could search through alternative balancing strategies?

• Could code generation hide reliability and fault detection methods into

algorithms?

• Could code generation hide energy/performance trade-offs?

Challenges for Existing Auto-

Tuning Infrastructure
• Coverage

– Can we cover enough ‘motifs’ using domain-specific frameworks approach?

– Can we offer a sufficient level of abstraction with a loop-oriented “autotuning

compiler” approach?

• Parallelization & communication strategy

– Current auto-tuning primarily focuses on scalar opt

– How will we incorporate more variation on parallel strategy?

• Search

– Minimizing search space (search pruning)

– Optimizing search strategy (machine learning, dynamic programming).

• Improving Interface to users (integrating with apps)

– Creating interfaces for library design experts (rapid re-tuning of libraries)

– Creating domain-optimized interfaces (F77 as a DSL)

– Integrating with existing frameworks (Cactus, Chombo)

– SEJITS (just-in-time specialization of runtime compiled scripting languages)

Generalized Stencil Auto-tuning

Framework

• Ability to tune many stencil-like kernels
– No need to write kernel-specific perl scripts

– Uses semantic information from existing Fortran

• Target multiple architectures
– Search over many optimizations for each architecture

– Currently supports multi/manycore, GPUs

• Better performance = Better energy efficiency

Multi-Targeted Auto-Tuning

Divergence Gradient Laplacian Gradient

Framework for Stencil Auto-Tuning

(F77 as domain-specific language)

• Framework can make code

maintenance easier

– Annotated kernels

– Integrated verification suites

(Cactus)

• Next: Wizard for reducing work

and maintaining kernels specs

• Integrate with existing Cactus/

Chombo frameworks

• Enables analysis of inter-kernel

dataflow to do

– schedule for communication

hiding,

– local store reuse

– functional partitioning

Automatic Search for Multigrid
(Cy Chan / Shoaib Kamil)

• Combines auto-tuning with strategy optimization

– Stencil auto-tuner for prolongation, restriction, relaxation operators

– Measure convergence rate for V-cycle vs. bottom solve (estimate at

every level of V-cycle)

– Measure performance of prolongation, restriction, repartitioning,

relaxation operators

• Uses dynamic programming to select optimal combination of V-

cycle, repartion, and bottom solve

• Keyed off of problem-specific numerical algorithm behavior

(not just cycle rate)

• Where else can auto-tuner observe convergence behavior to

auto-select runtime strategy? (supersolvers + autotuners)

Scheduling For Heterogeneity
(move towards global search for optimal schedule)

• Most autotuning focuses on standalone kernel

performance

• Heterogeneous systems with non-uniform memory

access need focus on data movement optimization
– This is likely a global (cross-kernel) optimization problem

– Combinatorial explosion of options (is it tractable even with search

optimizations?)

Power Efficiency Performance

When G80

communicates

with host
through PCIe,

performance

benefits are

greatly

reduced

Functional Partitioning
(different parallelization strategy for strong scaling without

domain decomposition)
• Need abstraction to decouple notion of “thread” from problem domain

decomposition

• When strong scaling, you eventually run out of ability to further

decompose domains (all ghost-cells in stencil case)

– Then what do you do?

• Functional partitioning

– Have multigrid solver running concurrently with physics in climate code

– Or have subset of cores handle communication or load balancing

• For every machine, you need a different problem partitioning

– Auto-tuners can hide the partitioning strategy (automate search through different

partitioning conformations)

– Need code specification that explicitly identifies concurrent heterogeneous

“functionality” to run concurrently (or use dataflow analysis)

– Load imbalance is not bad if the tail on the imbalance is bounded

• Partitioning search can be extended to heterogeneous

hardware (not just heterogeneous partitioning of code)

• Dataflow scheduling is NOT a problem for humans to solve!

Search for Optimal

Communication Strategy

• Most auto-tuning focuses on serial

optimization (parallel optimization is separate

step)

• Examples of parallel optimization of

collectives (Rajesh), but still distinct from

serial optimizations

– runtime adaptive tuning (rather than offline tuning)

• Optimize inter-processor communication

strategy (requires more substantial algorithm

reorganization to identify legal strategies)

– Not sure if compiler based auto-tuners can do this or

not (challenge)

Runtime Adaptive Search for

Communication Strategy

• Most auto-tuning is founded on offline

performance analysis

• Consider runtime adaptive auto-tuning

rather than offline search

Large Scale Physics Calculation:

For accuracy need more resolution than

memory of one machine can provide

Runtime Adaptive Distributed Computation

(with Argonne/U.Chicago)

SDSC IBM SP
1024 procs
5x12x17 =1020

NCSA Origin Array
256+128+128

5x12x(4+2+2) =480

OC-12 line
(But only 2.5MB/sec)

GigE:100MB/sec

17

12

5

4 2

12

5

2

This experiment:

Einstein Equations (but could be any Cactus application)

Achieved:

First runs: 15% scaling

With new techniques: 70-85% scaling, ~ 250GF

Dynamic Runtime Adaptation

Adapt:

2 ghosts

3 ghosts Compress on!

• Automatically adapt to
bandwidth latency issues

• Application has NO
KNOWLEDGE of machines(s)
it is on, networks, etc

• Adaptive techniques make
NO assumptions about
network

• Adaptive MPI unigrid driver
required NO changes to the
physics components of the
application!! (plug-n-play!)

• Issues:

– More intellegent adaption
algorithm

– Eg if network conditions
change faster than
adaption…

Fault Resilience and Load Balance

• There are many strategies for load balancing

• Difficult problem for users to solve

– Want pervasive instrumentation for fault resilience

– But resulting code is messy and tedious

• Perhaps auto-tuners can play a role to insert hooks

for state migration and hide machine-specific load-

balancing strategies

– depends on communication characteristics of system

• Extension of search for optimal problem partitioning

for heterogeneous architectures

Load Imbalances and Resilience
(is managing load-balance a subset of runtime autotuning?)

• Adaptive Algorithms result in load imbalances

• Fine grained power management & hard fault mgmt. makes

even homogeneous resources look heterogeneous

• Fault resilience introduces inhomogeneity in execution rates

(error correction is not instantaneous)

• Most load balancers are build on poorly understood
heuristics

– Can we automate the search for optimal load-balancing strategy?

– Can we use auto-tuning to hide fault tedious resilience instrumentation?

Uncertainty Quantification and

Extended Precision

• Automate insertion of software

extended precision arithmetic for UQ

• Automate insertion of software

extended precision, or optimize all-

reduce collectives (runtime tuning)

Now the Negative Part of This Presentation

• Which problem are we trying to solve?

– Autotuning is becoming a heavily overloaded term (and we are

rapidly layering on additional requirements)

– Require more disambiguation to move forward productively

• Our Machine Model is Fundamentally Broken

– Is auto-tuning the right way to hide this, or are more fundamental
changes required

Autotuning Disambiguation

• Which problem are we trying to solve?

– Automate tuning libraries for expert library designers?

– Create simpler/convenient interfaces for novice scientists?

– Are we trying to create higher-level abstraction for broken

machine model?

– Solution target points to radically different approaches

Segmenting Developer Roles

(and not calling it ALL auto-tuning)

Developer Roles Domain

Expertise

CS/Coding

Expertise

Hardware

Expertise

Application: Assemble solver

modules to solve science

problems. (eg. combine hydro+GR
+elliptic solver w/MPI driver for

Neutron Star simulation)

Einstein Elvis Mort

Solver: Write solver modules to

implement algorithms. Solvers use

driver layer to implement “idiom for
parallelism”. (e.g. an elliptic solver

or hydrodynamics solver)

Elvis Einstein Elvis

Driver: Write low-level data

allocation/placement,

communication and scheduling to
implement “idiom for parallelism”

for a given “dwarf”. (e.g. PUGH)

Mort Elvis Einstein

Strategies

• Automating process of library tuning for minor architectural variants

– The compiler approach with loop annotations is a great approach

– Bad for domain scientists (who don’t even know what the params mean), but

great for experts

– Works fine if machine model is just a preturbation of norm

• Making convenient interface for domain scientists
– Novices should not be exposed to hardware-based tuning

– Even writing “loop nests” is against productivity (go to higher-level abstractions)

– Provide “wizard” interfaces to reduce keystrokes to specify solution

– Limited coverage, but can we cover enough?

– Can we create framework to make it faster to create such application-specific wizards

• Hiding radical machine model differences

– Fortran or C are too imperative (overly specify solution)

– Have to infer “intent” of code or do a lot of work to expose constraints to enable

legal transformations

– Perhaps C/Fortran are wrong level of abstraction to enable the required

transformations (bigger arch differences force us to higher-level of abstraction to

achieve unity)

Broken Machine Model

Broken Machine Model
(is “explicit search” the right approach?)

• Our Machine Model is Fundamentally Broken

– Is auto-tuning the right way to hide this, or are more fundamental

advances required

– Are compiler-based auto-tuners operating at wrong level of
abstraction to hide fundamental differences in machine model?

• Critique of auto-tuning on serial machines: hides the

fact that we no longer understand what HW is doing

• Is “explicit search” the correct alternative to fixing a

fundamentally broken machine model (and
commensurate fixes to our programming model?)

Evidence Machine Model is Broken

(memory)

• Machine model doesn’t reflect characteristics of emerging

machines

– PRAM model (presumes equal communication costs)

– But on-chip communication is 100x lower latency and 10x higher

bandwidth than off-chip!

– Ignoring these differences results in huge inefficiencies!

• Evidence: Cache-dependent programming model obfuscates

memory locality

– Cache virtualizes main memory addresses

– But difference in cost of data transfer between on-chip vs. off-chip

memory is HUGE

– Wrong to pretend they are the same (and that is what cache forces us

to do)

– Local-store explicitly differentiates between on-chip and off chip memory

addresses, but no abstraction to program it

Evidence of Broken Machine Model

• Are emerging machine models even commensurable?

• OpenCL does not (and fundamentally cannot) target

performance portability

– Its not even on the design targets

– Current evidence suggests that lack of performance portability will

not be fixed by more mature code-generation back end (requires

more fundamental re-write of kernels)

– Means that OpenCL is good as output target for auto-tuners, but

inappropriate level of abstraction for input target for directive

guided compiler-based auto-tuners

• Can we as a community have more than one

programming model (result of incommensurable

abstract machine models)?

• Can auto-tuning forestall this undesirable outcome?

More Evidence of Broken

Machine Model

• Domain Decomposition is the primary approach to

parallel speed-up

– Formula is relatively well understood

• Feed-forward pipelines are not very easy to express

– Unbounded side-effects make this complicated

• If we think functional-partitioning and feed-forward

pipelines are important, then there is something

wrong with a pmodel that makes it hard to express

Using Functional/Dataflow Approach

• Make cost of data movement first-class citizen

• Requires understanding of scope of side-effects

– Make code that is more analyzable (functional programming)

– Use strong typed constructs to make analysis easier for

runtime (Ct single-assignment arrays/TStructs)

– Annotate code to identify data (IVY)

• Goal: know what memory is touched by unit of code

– Runtime as dataflow work scheduler

– auto-tuning search to optimize logistics of data movement

• Side-benefit: easier to identify minimal state to

preserve for checkpoint/rollback

– If you know what data is modified when, then can do fine-

grained recovery of state if unit of execution fails

• Use as foundation for autotuning infrastructure

• Fine grained power management makes even

homogeneous cores look heterogeneous

• Nonuniformities in process technology creates

non-uniform operating characteristics for cores

on a CMP

• To improve chip yield, disable cores with hard

errors (impacts locality of chip-level

interconnects)

• Fault resilience introduces inhomogeneity in

execution rates (error correction is not

instantaneous)

Source of Load Imbalances
(is managing load-balance a subset of runtime autotuning?)

Source of Load Imbalances
(is managing load-balance a subset of runtime autotuning?)

• Fine grained power management makes even

homogeneous cores look heterogeneous

• Nonuniformities in process technology creates

non-uniform operating characteristics for cores

on a CMP

• To improve chip yield, disable cores with hard

errors (impacts locality of chip-level

interconnects)

• Fault resilience introduces inhomogeneity in

execution rates (error correction is not

instantaneous)

Heterogeneity is going to be pervasive problem for

programmers even if not intentional design!

