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Abstract 

A Projection Method for Incompressible Viscous Flow on a Deformable Domain 
by 

David Paul Trebotich 

Doctor of Philosophy in Mechanical Engineering 
University of California, Berkeley 

Professor Phillip Colella, Chair 

1 

A second-order accurate finite difference method is presented for numerical solution of 

the incompressible Navier-Stokes equations on a deformable domain. The target problem is 

flow in a flexible tube. Fluid motion is forced by movement of the solid wall which requires 

special treatment of boundary conditions at inflow and outflow. The problem is formulated 

in terms of a moving, body-fitted coordinate system in (r, z). Mapped coordinates are 

used to smoothly transform in both time and space the moving domain onto a logically 

rectangular domain which is fixed in time. The velocity field is split into vortical and 

potential components. The splitting allows the incompressibility constraint to be enforced in 

the vortical part and the time-dependent boundary conditions to be carried in the potential 

component. 

The discretization method is based on a new predictor-corrector time discretization 

which generalizes the Bell-Colella-Glaz method for incompressible flow. Advection terms 

are obtained by an explicit, second-order Godunov scheme. A MAC projection ensures 

proper treatment of the pressure and enforcement of the constraint in the advection step. 

Crank-Nicolson discretization is used to obtain the viscous terms which contain higher-order 

boundary conditions. Pressure and divergence-free velocity are computed by the application 

of a Hodge projection. The algorithm is second-order accurate in space and time for a range 

of laminar flows and domain motions. 

Committee Chair 
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Chapter 1 

Introduction 

This thesis presents a numerical model of incompressible viscous flow on a deformable 

domain. The introductory chapter discusses the evolution of numerical methods that have 

led to the development of the method. Finite difference models for problems with irregular 

geometries are briefly described, and then followed by models of problems with deformable 

domains. Comparison to finite element methods is made, motivating the algorithm. 

1.1 Numerical Methods 

In numerical models of multidimensional problems in fluid dynamics, the frame of 

reference of the grid in relation to the fluid must be chosen [29]. Classically, the Lagrangian 

description of a continuum depicts a frame that moves with the continuum. This has led 

to the development of the finite element method for modeling problems primarily in solid 

mechanics. For a fluid, however, there is no distinguishable reference configuration for the 

continuum comparable to the reference configuration for a solid. The frame of reference can 

be chosen for numerical convenience to depict the motion of a fluid on a fixed domain. 

1.1.1 Finite Difference Methods 

Finite difference methods (FDM's) have been used to model fluid mechanics problems 

for the last half century. They are a natural choice for the Eulerian description of fluids 
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as they employ a fixed grid and allow the fluid to flow without a grid to follow it. FDM's 

are conceptually simple to implement: derivatives in the differential equations are replaced 

by finite difference approximations. FDM's are not limited to modeling only problems 

with rectangular geometries. Techniques have been employed to extend the use of FDM's 

to problems with irregular geometries. Efforts have been made in the area of deformable 

domains as welL Greater accuracy is now achieved using adaptive techniques in the more 

interesting regions of a flow domain. 

Projection Methods 

Chorin [13] developed the projection method for solving the incompressible Navier­

Stokes equations. The procedure is based on the Hodge decomposition of any vector field 

into a divergence-free part and a gradient of a scalar field. It is a fractional step method 

which first predicts an intermediate velocity that does not necessarily satisfy the incom­

pressibility constraint , then corrects this velocity so that it satisfies the constraint. 

The starting point for the present work is the second-order projection method of Bell, 

Colella and Glaz (BCG) [4]. They introduced a higher-order Godunov method to obtain a 

more robust convective derivative, especially in the presence of underresolved gradients, as 

well as a predictor-corrector method that approximates Crank-Nicolson. Bell, Colella and 

Howell [5] improved the BCG method by adding a MAC-type projection to the predictor in 

order to eliminate an instability for CFL numbers greater than 0.5. Bell and Marcus [7] ex­

tended the projection to variable density flows by incorporating a discrete density-weighted 

vector inner product into the definition of the discrete projection operator. Almgren, Bell 

and Szymczak [1] computed a velocity field which is not discretely divergence-free because 

their projection only approximately enforces the incompressibility constraint. Lai [39] also 

employed an approximate projection method with a filter for the persistent non-physical 

oscillatory modes of reacting flow in the zero Mach number limit. 
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Irregular Domains 

In the finite difference community, there are several approaches to fixed, irregular do­

mains. First, in a mapped grid approach [6, 17], a mapping transforms a fixed space of 

logically rectangular cells into a grid of arbitrary quadrilateral or hexahedral cells. The 

BCG algorithm was extended to mapped grids by Bell et al. [8]. Colella and Johansen did 

further work with an approximate projection on mapped grids for variable density [37]. 

In the Cartesian grid method [2] , an irregular boundary is embedded in a Cartesian 

mesh. At boundaries, where irregular cells result , a volume of fluid approach [33] is employed 

in order to conserve mass. At interior points, the method facilitates use of higher-order finite 

difference discretization procedures. Two dimensional problems can be extended to three 

dimensions in an obvious manner. 

Overset grids and multi block methods are also approaches to irregular domains. Overset 

grids are simply mapped grids that are allowed to overlap. Multiblock methods have been 

used to treat very complex configurations, particularly in aerodynamics applications [55, 59]. 

In this approach there are blocks of separately generated meshes which must be patched at 

block interfaces. An alternative to the structured grid methods for complicated irregular 

geometries is unstructured grids. In an unstructured mesh, the domain is subdivided into 

tetrahedra. In both cases, grid generation is a nontrivial issue. 

Deformable Domains 

For the case of a deformable domain as in the example of a fluid-solid interaction, 

the grid is not only irregular but also deformable. Arbitrary Lagrangian-Eulerian (ALE) 

schemes were originally developed in the finite difference format to handle such scenarios 

[50, 58]. The early work of Hirt , Amsden and Cook [32] is noteworthy in that it is applicable 

to arbitrary finite difference meshes and treats flows of all speeds. 

Much success in the area of FDM's and moving boundaries has been achieved in the 

area of cardiac fluid dynamics. Peskin initially extended Chorin's incompressible Navier-
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Stokes method to model flow patterns around heart valves using an immersed boundary 

method [51]. In a later model, a coupled fluid-fiber system is solved using a FDM on a fixed 

grid for the fluid while valve and muscle fiber points move freely about the lattice [52]. A 

smooth interpolation scheme accounts for the coupled motion. Fluid exists on both sides 

of the boundary in these models. 

More recently, Cortez used a method based on magnetization variables where the effect 

of boundary forces on an incompressible inviscid fluid is transmitted via vortex dipoles 

[19]. This work applies to potential flow where all the flow dynamics are occurring at the 

boundary. LeVeque developed a second-order accurate interface tracking method for steady 

Stokes flow with time-dependent forcing for moving interfaces on a uniform Cartesian grid 

[40]. Also, Johansen and Colella extended the Cartesian grid embedded boundary method 

to time-dependent domains as they apply to crystal growth [36]. 

The present work in regard to deformable domains in FDM's is based on the standard 

of moving, mapped grids [6]. In moving quadrilateral grids, a fixed rectangular domain 

is mapped into a moving frame which depicts the real motion of the problem. Discrete 

temporal derivatives must be performed in the fixed space because of the relative motion 

of the physical frame. Also, the typical accuracy studies reside on the fixed , rectangular 

space. Bell et al. [6] proposed moving quadrilateral grids for unsteady gas dynamics with 

the addition of adaptive mesh refinement (AMR). Colella's development of multidimensional 

unsplit, upwind methods for hyperbolic conservation laws also included extension to time­

dependent problems using quadrilateral meshes [17]. 

1.1.2 Finite Element Methods 

Finite element methods (FEM's) are also used to model time-dependent hyperbolic 

problems like fluid flows [26]. They have been extensively used where irregular moving 

boundaries are present [23, 44]. An advantage of FEM's is that they are amenable to 

inhomogeneous boundary conditions. However, the line between FEM's and FDM's becomes 
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blurred when attempting to use a finite element spatial discretization with a standard 

time-stepping procedure to model a hyperbolic problem (see Morton [46] for a comparison 

between the two methodologies). 

FEM's use an integral-type approach to develop a numerical equivalent of the flow 

equations. The most general approach is the method of weighted residuals. This technique 

forms an integral equation by multiplication of the flow equations by a weighting function 

and then integration over a prescribed interval [54]. Several methods have been developed 

from this approach. The classic method within this framework is the pure Galerkin method. 

FEM's are spatial discretizations; therefore, the Galerkin method must be coupled 

with standard time-stepping algorithms (Crank-Nicolson, backward Euler, Lax-Wendroff 

or Runge-Kutta, for example) to address time-dependent advection problems. Donea notes 

several disadvantages to this coupled approach: it suffers from a rapid fall off in accuracy 

as the time step is increased, and it has a reduced range of stability as compared to a 

corresponding FDM [24] . 

Deficiencies in the coupling of the classical Galerkin method with standard integrators 

for advection dominated problems motivated the development of generalized Galerkin meth­

ods [22 , 24,47]. In the generalized approach, the weights are integrated differently than the 

velocity and pressure. Also, most of these methods more properly account for the link be­

tween space and time via the direct or indirect use of characteristics. The Petrov-Galerkin 

method is an early upwind FEM used to model the one-dimensional linear wave equation 

where special weighting functions are used [30,48]. Streamline upwinding has been added to 

Petrov-Galerkin to modify the weighting function [11]. This yields a consistent formulation 

without the familiar spurious wiggles of the pure method [22]. Taylor-Galerkin methods are 

different in that the discretization in time is addressed before the spatial discretization in an 

attempt to achieve greater accuracy [21]. They are based on Taylor series expansions in the 

time step and do not account for characteristic behavior. Least-squares Galerkin methods 

add least-squares forms of residuals to the standard Galerkin approach in order to improve 
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stability and maintain accuracy. They are simple to implement like Taylor methods and 

unconditionally stable like characteristic-based methods, but lose accuracy rapidly when the 

CFL number exceeds unity [24, 34]. Stabilized space-time FEM's have been introduced to 

overcome limitations in the classical Galerkin approach when modeling the incompressible 

Navier-Stokes equations by FEM's [26, 27, 38, 34]. There is no confusion with FDM's in 

these methods as time is discretized by a finite element approximation. 

In the area of deformable domains, FEM discretizations lend themselves to implemen­

tation in ALE methods because of the fitting of mixed grids, fluid and solid for example 

[20]. These methods were developed in response to the need for versatile treatment of tran­

sient fluid-structure systems [9, 23, 35]. ALE finite element formulations have incorporated 

recent advances in FEM's to model incompressible viscous flow on moving domains [44]. 

Thesis Purpose and Overview 

The purpose of this thesis is to present a second-order accurate finite difference method 

to solve the incompressible N avier-Stokes equations on deformable domains. There are two 

primary issues to address: (1) inhomogeneous boundary conditions and deformable domains, 

and (2) a time-dependent incompressibility constraint. The first issue is addressed by a 

split-velocity formulation [15, 16, 18, 31] on moving, mapped grids [6]. This formulation is 

analogous to a vortex method [15, 57] where the velocity is defined such that there is no flux 

across a boundary for the divergence-free component. Inhomogeneous normal boundary 

conditions are automatically satisfied at all times through solution to the potential flow 

problem. Also, the need to evolve the divergence-free component of velocity remains and 

requires enforcement of a time-dependent incompressibility constraint and extraction of the 

pressure. 

The second issue is addressed by a new time discretization which generalizes the BCG 

method. The incompressibility constraint is always satisfied because the discretization 

requires application of only a succession of fixed time operators rather than solution to 
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problems resulting from differentiation of the constraint with respect to time. Second-order 

accuracy of the method is shown analytically and corroborated by the computational re­

sults. The issues addressed here are closely related to those that arise in discretization of 

differentialj algebraic equations. Petzold addressed systems of differential/algebraic equa­

tions which have the form of the model problem discussed in this thesis [53] . Plasticity with 

the yield condition is an example of a time-dependent constrained system where accuracy 

of models has been studied [25, 56]. 

This introduction has been a discussion of the background and motivation of a pro­

jection method for unsteady, incompressible viscous flows on deformable domains. The 

remainder of this thesis is devoted to mathematical and numerical development of the 

method. In chapter two, all the mathematical issues needed to develop an analytical model 

for the target problem of flow in a flexible tube are addressed: the Hodge projection, mov­

ing, mapped grids and a split-velocity formulation. The new time discretization based on 

the BeG method is then discussed in the context of a model problem in chapter three. 

The complete algorithm along with numerical tools is also described in that chapter. Fi­

nally, chapter four is a presentation and discussion of the results obtained by the algorithm. 

Direction for future work is also recommended. 
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Chapter 2 

Equations of Motion 

This chapter discusses the issues involved with modeling the equations of motion for 

a time-dependent constrained system as it applies to incompressible viscous flow on a de­

formable domain. It begins with a presentation of mathematical concepts needed to describe 

the time evolution of such a system while enforcing the incompressibility constraint. The 

restricted example of incompressible viscous flow in a rigid box is put forward as a refer­

ence for the more complicated problem of flow in a time-dependent domain. Deformable 

boundaries are then discussed in the context of flow in a flexible tube. The necessary 

mathematical tools to deal with a deformable domain are presented and applied within the 

framework of a constraint formulation. The importance of the special case of potential flow 

with time-dependent boundaries is noted as well. Problems with inhomogeneous boundary 

conditions are discussed in detail, and a remedy is proposed. 

2.1 Hodge Decomposition 

The focus of the mathematical model for an unsteady incompressible flow on any domain 

is the derivation of an evolution equation. This is no trivial task as the pressure has to 

be properly accounted for while enforcing the incompressibility constraint. The Hodge 

decomposition is a means of achieving this task. 
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Hodge Decomposition 

The Hodge decomposition [14] (derivable from the Helmholtz representation theorem in 

continuum mechanics [3 , 28]) is a splitting of any smooth vector field on a simply connected 

domain into two orthogonal components: a divergence-free part, and a gradient of a scalar 

field. If w = w(x) is vector field defined on a simply connected domain, n, then w can be 

orthogonally decomposed as follows: 

(2.1) 

such that 

(2.2) 

The divergence-free part, Wd, satisfies \7 . Wd = 0 with Wd . n = 0 on the boundary, an. 

The scalar field, <p, is defined by the Poisson's equation which it satisfies, fj.<p = \7 . W on 

n, with boundary conditions ~ = W . n on an. 

Hodge Projection 

The Hodge decomposition motivates the definition of a projection operator (see Chorin 

[12, 13, 14]). Let div be the divergence operator, div(w) = ~, and grad be the gradient 

operator, gradj(w) = g;. The relationship between normal boundary conditions and the 
J 

divergence operator is shown in the divergence theorem: 

r (\7 . w)dx = r (w· n)ds. 
ln lon 

(2.3) 

The divergence theorem requires w to be sufficiently smooth and the surface normal, n, to 

be uniquely defined at all points on an. 

Define P to be the projection operator which extracts the divergence-free part of a 

vector: P(w) = Wd. The gradient of the potential can be written in projection form as 

grad(<p) = (I - P)w. The projection is defined as 

P = (I - grad(divgrad) - ldiv) (2.4) 
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where I is an identity operator. Boundary conditions for the projection are specified in 

div and grad. Some properties of the projection operator are symmetry, P = pT, and 

idempotence, p2 = P. 

2.1.1 Incompressible Flow 

The equation of motion for any continuum as derived from momentum principles (see 

N aghdi [49]) is 

pUt = \7 . T + pb (2.5) 

where U is the continuum velocity, T is the symmetric stress tensor, p is density and b 

represents body forces. Consider the special case of a Newtonian fluid where the stress 

tensor is linearly dependent on the rate of deformation, ~~, with coefficients dependent on 

the density, p. It can be shown through invariance requirements that the stress tensor is 

comprised of invariant isotropic tensor functions [49]: 

T = -pI + ).\7 . U + 2J.l\7u (2.6) 

where ). and J.l are viscosity coefficients and p is a density-dependent scalar which acts 

normal to the surface of the fluid. This is the Navier-Poisson Law for a Newtonian fluid 

[43]. Substitution of (2.6) into (2.5) yields the Navier-Stokes equations: 

Ut + \7. (u lSi u) = -\7p + lI~U (2.7) 

where body forces have been neglected. To solve the Navier-Stokes equations (2.9), an 

additional equation for conservation of mass is needed: 

Pt + p\7 . u = O. (2.8) 

For the problems of interest in this thesis, it is assumed that density is constant. There­

fore , the equations of motion for an incompressible, linear viscous fluid, also known as the 

incompressible Navier-Stokes equations, are the Navier-Stokes equations 

Ut + U . \7 U = - \7 p + 1I ~ U (2.9) 
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plus the incompressibility constraint 

\7·u = O. (2.10) 

Flow in a Box 

Consider flow in a box with rigid walls (u· n = 0 on on) where there is initial vorticity 

(see Figure 2.1). In order to completely solve the system of equations (2.9) and (2.10), 

boundary conditions and a relation for the pressure must be obtained given an equation of 

motion. It is first noted that the incompressibility constraint (2.10) is applied to the velocity 

and the momentum equation (2.9) depends on the acceleration. For a fixed domain, the 

constraint, as well as boundary conditions, can be differentiated: 

(\7 . u)t = 0 -----+ \7. Ut = 0 

(u·n)t=O -----+ Ut·n=O. (2.11) 

(The constraint can always be differentiated due to commutativity of temporal and spatial 

operators which are referred to the same basis.) The differentiated constraint combined 

with the divergence of the Navier-Stokes equations (2.9) yields a relation for pressure: 

!J.p = \7 . (-u . \7u + v!J.u). (2.12) 

where the convective derivative has been simplified using conservation of mass (2.10). The 

pressure boundary condition follows from the normal component of the N avier-Stokes equa-

tions (2.9) using the differentiated boundary condition in (2.11): 

op 
on = n· (-u . \7u + v!J.u). (2.13) 

The problem can be reformulated by applying the Hodge projection directly to the Navier-

Stokes equations (2.9) and incorporating the incompressibility constraint (2.10): 

Ut P( -u . \7u + v!J.u) 

\7p (I - P) (-u . \7u + v!J.u). (2.14) 
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Rigid 
~ 

Boundary C) 
Figure 2.1: Flow in a rigid box. 

Remarks 

12 

The projection formulation provides a framework to solve the incompressible Navier-

Stokes equations (2.9) and (2.10) on a fixed domain. Normal boundary conditions are 

dealt with in a straightforward manner by differentiation (2.11) and application through 

the divergence theorem for the acceleration (2.3). The projection formulation also displays 

the character of the pressure gradient , V'p , as the piece which is stripped away from the 

right-hand side when incompressibly constraining the fluid by application of the projection 

operator. Finally, the projection formulation reduces the differential equations (2.9) and 

incompressibility constraint (2.10) to an initial value problem (IVP). Given initial conditions 

that satisfy the constraint, this is a well-posed problem. 

2.2 Deformable Boundaries 

The projection method provides a framework in which to deal with viscous flow in a 

rigid box. What if the geometry is irregular? Even more, what if the boundaries of a 

flow problem are not fixed, but, rather, time-dependent? This section presents the physical 

problem of flow in a flexible tube. Mathematical tools needed to obtain proper equations 

of motion are first described. Then the inviscid case of potential flow past a deformable 

boundary is discussed with particular attention given to boundary conditions. 
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f Outflow 

Axis Solid Wall 

z 

L r 

f Inflow 

Figure 2.2: Flow through a flexible tube. 

2.2.1 Flow in a Flexible Tube 

Consider viscous flow through a straight, flexible tube (see Figure 2.2). The dashed 

left boundary of the figure is the centerline, or axis of symmetry, of the tube where r = O. 

It does not bend, thus, making this a two-dimensional, axisymmetric flow. There is flow 

into the tube at the bottom boundary. At this inlet the classic Poiseuille velocity profile for 

viscous flow in pipes is prescribed. The wall of the tube is the right boundary, r = R(z, t). 

This infinitely thin solid wall boundary is allowed to move in the middle section of the tube 

with a prescribed velocity. The inlet and outlet remain fixed. It is of interest in this chapter 

of the thesis to derive equations of motion which mathematically model the physics of the 

fluid flow in response to the prescribed conditions. 
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Calculus Preliminaries 

Define a continuous mapping from an abstract fixed coordinate system, e = (~, 1]) , to 

real axisymmetric coordinates which are time-dependent, x(t) = (r(t) , z(t)): 

x = X(e, t). (2.15) 

A transformation matrix, F, and its inverse, F-l, can be defined from this mapping: 

(2.16) 

where J is the non-zero Jacobian of transformation 

(2.17) 

and 9 = 27fT is a factor referred to as the volume metric. The inverse transformation matrix, 

F-1 , is a significant quantity. It must be derived from the transformation matrix in three 

dimensions in order to account for proper volume weighting. 

The mapping (2.15) is applied to dependent variables of the Navier-Stokes equations 

as follows: 

u(x, t) = u(X(~, t) , t). (2.18) 

The chain rule is used to compute the relationship between the derivative utl~ with e held 

fixed and the derivative utl x with x held fixed: 

au ox 
Ut I = Ut I - - - = Ut I - s . \7 U 

x ~ ox at ~ 
(2.19) 

where s = ~~ is the relative velocity of the coordinate system x. Spatial operators in 

mapped coordinates are represented by direct application of the chain rule to the relative 

derivatives. Indicial notation in conjunction with the summation convention [49] is best 

suited for obtaining the correct direct representation as seen, for example, in the divergence: 

(2.20) 
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The gradient is expressed in a similar manner: 

(2.21 ) 

The Laplacian operator, ~, is defined as the divergence of the gradient: 

(2.22) 

Transformed Equations of Motion 

Application of the mapped coordinate definitions to (2.9) and (2.10) yields the incom-

pressible Navier-Stokes equations in generalized mapped coordinates: 

utl~ + J - l(ii - s) . V'~u 

V'c (JF-1u) o 

where velocities are transformed to the e basis as 

Boundary Conditions 

(2.23) 

(2.24) 

The kinematic boundary conditions are as follows (refer to Figure 2.2 for geometry): 

(1) axis of symmetry (no flow across centerline of tube) 

u·n=O, (2.25) 

(2) solid wall (prescribed boundary velocity) 

(2.26) 

(3) inflow (prescribed Poiseuille flow) 

u 0 

v(r) (2.27) 
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(4) outflow 

au = 0 az . 

16 

(2.28) 

Also, initial conditions must be prescribed, or known from restrictions of the physical model, 

for the problem to be a well-posed IVP. 

2.2.2 Potential Flow 

Consider the Euler momentum equation for an incompressible inviscid fluid: 

utlx + u· V'u = -V'p. (2.29) 

If the velocity is irrotational, then it can be written as a gradient of a scalar potential, 

u = V'i;[>. Substituting the potential velocity relation into (2.29) and transforming the 

coordinates yields Bernoulli's equation: 

a¢1 _ lul2 
- - S . V't,¢ + - + p = constant. at t, 2 

(2.30) 

The constant of integration is defined as the Bernoulli pressure: 

a¢1 _ lul 2 
1f = - - s . V't,¢ + - + p. at t, 2 

(2.31) 

Potential flow is the steady irrotational flow of an incompressible inviscid fluid. A 

potential function, i;[>, can be defined such that the potential velocity can be written as a 

pure gradient, up = V'i;[>. Potential flow is a boundary value problem (BVP). Given normal 

boundary conditions on the velocity, the solution is obtained at any time by solving the 

following Poisson equation: 

~i;[>=0. (2.32) 

The temporal dependence of this problem is found in the boundary conditions which are 

applied in the fluxes at their respective boundaries as defined by the divergence theorem: 

(2.33) 
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The divergence theorem demonstrates that the potential component of a flow is defined by 

normal boundary conditions [15, 57]. 

The normal boundary conditions for potential flow in a flexible tube are as follows (see 

Figure 2.2 for geometry): 

(1) axis of symmetry (no-flow) 

Up' n = 0, (2.34) 

(2) solid wall (prescribed boundary motion) 

Up' n = Ub' n, (2.35) 

(3) inflow (constant plug flow) 

(2.36) 

(4) outflow (conservation of mass, 1D flow) 

Up' n = Vout (2.37) 

where Vout is calculated from conservation of mass for flow in a flexible tube 

with fixed inlet and outlet: 

(Rout (Rin (Lwall 
Jo 27rr(up ' n)dr + Jo 27rr(up ' n)dr + Jo 27rR(I) (Up . n)dl = 0.(2.38) 

2.3 Problems with the Constraint Formulation 

For viscous flow on a fixed domain (flow in a rigid box, for example), the constraint 

formulation yields a well-posed IVP via differentiation of the incompressibility constraint 

and boundary conditions with respect to time. For deformable domains, this formulation 

runs into problems. Boundary conditions cannot be temporally differentiated as in the 

fixed case (2.11) without leading to an inhomogeneous term. Furthermore, the solid wall 
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boundary condition is inhomogeneous. Also, the outflow boundary condition is an issue 

because of the viscous flow, in general, and because it depends on the time-dependent 

solid wall condition. More fundamentally, however, the divergence constraint is both time-

dependent and inhomogeneous. 

2.3.1 Inhomogeneous Boundary Conditions 

In accordance with the definition of the transformation (2.15) and how it is applied to 

the time-dependent domain (2.19), it is proper to perform time-differentiation of quantities 

on a deformable domain holding the mapped coordinate, e, fixed- not x- since it is the 

computational space which is not time-dependent. Also, the relative motion term which 

appears in (2.19) will have to be accounted for in either case. In mapped coordinates, 

the velocity boundary condition at the wall, for example, is (JF-1u) I wall = 0, where the 

inhomogeneous part is omitted for the sake of seeing only the inhomogeneous contribution 

of the time-dependent domain. This condition is differentiated with respect to time in fixed 

e coordinates resulting in an inhomogeneous boundary condition for the acceleration: 

aU I ( as) 1 n~ . - = n~· - - (n . u) 
at~ a"7 J 'rJ 

(2.39) 

where the following relations have been used for the derivative of the Jacobian and the 

inverse transformation, respectively: 

aJ I 
at ~ 

aF~l l __ ~J_ 

at ~ 

J"V . s 

F-1 F-l 
= il Sl ,m mj' (2.40) 

(Indicial notation is employed to extract the component of the inverse transformation, F - 1 , 

which corresponds to the normal at the boundary of choice, the solid wall in this case.) 

The boundary condition for acceleration can be transformed to the real coordinate system 

through the relative convective derivative: 

au I ( as) 1 n· - = n~' - - (n . u) - n~ . (s . "V u). 
Ot x a"7 J 'rJ 

(2.41) 
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This expression is complicated by the appearance of the velocity itself, as well as the relative 

convective derivative. It is again noted that added terms would result from including the 

derivative of the inhomogeneous part of the velocity boundary condition at the solid walL 

2.3.2 Inhomogeneous Constraint 

For fixed domains, the incompressibility constraint can be differentiated with respect to 

time (2.11) leaving a homogeneous constraint for acceleration. Though this differentiation 

also holds true for time-dependent domains, there is an inhomogeneity in the divergence 

constraint created by differentiation of metric terms and applied through the divergence 

theorem (2.3) in fluxes at boundaries. The right-hand side of the constraint is, thus, no 

longer zero. Another term is added to the right-hand side when the velocity boundary 

condition itself is inhomogeneous, as is the case at deformable solid walls. 

The necessity for proper temporal differentiation in a numerical setting is foreseen at 

this point. However, in an attempt to correctly differentiate the incompressibility constraint 

in a temporally fixed coordinate system, the unavoidable differentiation of metric terms 

appears, 

(2.42) 

leading to yet more inhomogeneous terms. 

Remarks 

If the incompressibility constraint is differentiated, time-centering of the constraint (as 

well as boundary conditions) presents difficulties in the numerical implementation of this 

problem. Outstanding questions also remain in regard to numerical stability and overall 

second-order accuracy of a method built on this kind of theory. These issues are sufficient 

to motivate new formulations for unsteady incompressible flows on deformable domains. 
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2.4 Split-Velocity Formulation 
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The constraint formulation defines a well-posed IVP for unsteady, incompressible vis­

cous flow on a deformable domain. Analytically, the incompressibility constraint and bound­

ary conditions are well-behaved and known at this point, but numerical implementation is 

a formidable challenge. The interdependent relationship between boundary conditions and 

the constraint introduced by the necessity of time-differentiation behooves a decoupling of 

the two, if possible. There is also the issue of an inhomogeneous kinematic condition at solid 

walls and the question of what to do at outflow. The Hodge decomposition in conjunction 

with knowledge of potential flow provides the insight needed to separate the two issues, 

leading to a new formulation. The first task of the split-velocity (SV) formulation is to 

alleviate the problem of inhomogeneous and time-dependent velocity boundary conditions 

for flow through a flexible tube. It is concluded that the solution to problems with bound­

ary conditions in general is to split the velocity field into its divergence-free (vortical) and 

potential components (see [18 , 31]). 

2.4.1 Split Velocity Field 

Introduce a velocity field such that it is comprised of divergence-free and potential 

components, Ud and up , respectively: 

u 

Boundary Value Problem 

o 

\lCP· (2.43) 

The splitting leads to two important results. First, the potential velocity is given by 

(2.44) 
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and satisfies the well-posed BVP in mapped coordinates for all times 

(2.45) 

Boundary conditions for the potential flow solution are given in (2.34-2.38). 

Equation of Motion 

The second result of the splitting (2.43) is an equation of motion for the divergence-free 

component of velocity. Consider the equation of motion (2.9) while holding x fixed. The 

temporal derivative of velocity splits simply as 

(2.46) 

The derivative of the potential component is extracted as a pure gradient: 

(2.47) 

making use of the commutativity of spatial and temporal operators in the same basis. The 

convective derivative splits in the following manner: 

(2.48) 

A vector identity can be employed to simplify the purely potential convective derivative: 

_ lup l2 
up' \7up = \7-2- +w x up (2.49) 

recalling w = \7 x up = O. A Bernoulli pressure is then defined to consume all outstanding 

gradients: 

a¢1 lu 12 
IT == - + -p- + p = constant. at x 2 

(2.50) 

The resulting equation of motion for the divergence-free velocity field , Ud, in fixed x co or-

dinates is 

(2.51 ) 
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where 

(2.52) 

Application of the transformation (2.15) results in an equation of motion for Ud in mapped 

coordinates: 

(2.53) 

where the advection term has been redefined to include the relative convective derivative 

J-l(Ud' V'~up - ((u - s)· V'~Ud) 

a¢ 1 -J-ls.V'~(F-TV'~¢)+ IUp l2 +p. 
at ~ 2 

(2.54) 

Note that if the flow is frictionless and purely potential (u = V'¢), the equation of motion 

(2.53) reduces to Bernoulli's equation (2.30). 

Boundary Conditions 

Another result of the splitting is resolution of viscous boundary conditions. Boundary 

conditions for the vortical velocity, Ud, are obtained directly from the split-velocity relation 

Ud = U - up, where U is given in (2.25-2.28) and up in (2.34-2.38): 

(1) axis of symmetry 

Ud' n = 0, (2.55) 

(2) solid wall 

Ud' n = 0, (2.56) 
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(3) inflow 

(2.57) 

(4) outflow 

OUd = 0 oz . (2.58) 

The splitting is applied trivially to obtain a boundary condition at the axis (2.55). The 

inhomogeneous solid wall boundary condition is completely resolved in the BVP, yielding a 

desirable homogeneous relation for Ud (2.56). The inflow and outflow boundary conditions 

are derived in a more indirect way. At inflow, it is known that the velocity boundary 

condition is the classic parabolic profile of Poiseuille flow with mean flow of 1 (2.25). If 

the potential flow (constant plug flow of 1) is subtracted from the total flow, the result is a 

mean flow of 0 for the vortical component (2.57): 

r (Ud ' n)dr = O. 
lin 

(2.59) 

This concept is also applied at outflow (2.58) where the mean flow is obtained from conser-

vation of mass for a one-dimensional flow (2.38). 

Remarks on Splitting 

Hodge decomposition of the velocity splits the instationary incompressible N avier-

Stokes equations (2.23) into two problems which are simpler to model: a BVP for the 

potential velocity with normal boundary conditions at any given state (time), and a well-

posed IVP for the divergence-free component with homogeneous boundary conditions. The 

complication of a time-dependent incompressibility constraint remains an issue. 
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Chapter 3 

Discretization of SV Formulation 

The object of the SV formulation is to implement a discrete projection method for the 

incompressible Navier-Stokes equations where both the incompressibility constraint and 

boundary conditions are time-dependent . The split velocity allows use of the Hodge projec­

tion to enforce the constraint and compute the pressure- which is exactly what the projection 

is designed to do. It is desirable to discretize the equations of motion by the standard set 

in the second-order accurate BCG method. 

This chapter describes the details of an algorithm designed from the SV formulation. 

First , a new time discretization which generalizes the BCG method is described in the con­

text of a model problem. Second, there is a preliminary discussion of the discrete analogue 

of the analytical tools presented in the previous chapter needed to solve the problem. The 

problem domain is discretized based on moving, mapped grids for deformable boundaries. 

A discrete Hodge projection is the chosen method to evolve velocity and pressure while 

enforcing the incompressibility constraint. The bulk of the chapter is a detailed description 

of the time discretization of the SV algorithm. An SV version of the predictor-corrector 

method is outlined. Several issues involved in numerical implementation of the SV projec­

tion algorithm are also explained in detaiL 
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Equations of Motion 

In the previous chapter it was shown that a needed design criterion for the problem of 

flow in a flexible tube is a split velocity field which resolves the issue of inhomogeneous and 

time-dependent velocity boundary conditions. The potential flow solution is known at all 

times from the BVP which it satisfies 

with boundary conditions as specified in (2.34-2.38). The equations of motion for the 

divergence-free velocity are obtained by extracting the BVP for potential flow and defining 

a Bernoulli pressure: 

BUd I 
Bt € 

\7 € . (JF-1Ud) o (3.2) 

where boundary conditions for Ud are specified in (2.55-2.58). The differential equations 

and incompressibility constraint reduce to a well-posed IVP, but there is still a problem 

with enforcement of a time-dependent constraint. A suitable discretization is desired to 

achieve this task. 

3.1 A Model Problem 

A model problem is discussed to address the issue of time-differentiation of the in-

compressibility constraint. The BCG method is a second-order accurate scheme for fixed 

domains where there is no complication with differentiation of the constraint. For a de-

formable domain, if the constraint is differentiated, the result is a complicated expression 

comprised of both the constrained quantity and its derivatives. Furthermore, it is diffi-

cult to implement the projection in the time-dependent case, and second-order accuracy is 

not known. The goal of the SV method is to extend the BCG method to time-dependent 

domains. 
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A Model Problem 

The model problem is a general form of the equation of motion (2.53). Let I, u E nn, 

1f E nm , A = nXm matrix where u , A , 1= u(t) , I(t), A(t) are smooth functions in time. The 

constrained system is comprised of an equation of motion and a constraint, respectively: 

du 
dt 

Au o. (3.3) 

u is representative of velocity, in general. I contains advection and viscosity terms in the 

case of an incompressible flow. A and AT are adjoint matrix operators that correspond to 

divergence and gradient, for example, and include boundary conditions. 

The constraint can be used to obtain an equation for 1f in order to evolve the system 

exactly. To obtain this "pressure-Poisson" type equation, the constraint is differentiated 

and substituted into the divergence of the equation of motion: 

d dA du dA T 
-(Au) = 0 ===} -u + -A = -u + AI - AA 1f. 
dt dt dt dt 

(3.4) 

The resulting equation for 1f is 

(3.5) 

where L == AAT. Solvability is assumed for (3.5). In the case of an incompressible fluid, 

either L is invertible, or it has a null-space that is independent of time. 

3.1.1 Predictor-Corrector Discretization 

BeG Method 

First, consider A independent of time. Define operators Q = AT L - 1 A and P = I - Q. 

These operators can be used to eliminate the constraint: 

~~ = PI· (3.6) 
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In that case, the BeG discretization reduces to 

(3.7) 

where tlt is the discrete time step. This discretization is inherently second-order due to use 

of the midpoint rule for f. Also, P(un+1) = un+1 if P(un) = un. 

The BeG discretization can be written in predictor-corrector form: 

u* 

P(u*) 

(3.8) 

SV Method 

The SV method generalizes BeG for the model problem with time-dependent A. The 

corresponding discretization is 

(3.9) 

(3.10) 

(3.11) 

where all terms are evaluated at the discrete time, t = tn+!, unless otherwise indicated. 

Accuracy of SV Method 

Let w new , qnew be solutions approximated by the predictor-corrector scheme: 

1 1 T 
P(w + tlt(fn+"2 + (An+"2) q)) 

q + ~t (Ln+1)-1 An+! (w + tlt(fn+ ~ + (An+~)T q) . (3.12) 

n + l 1 
Define u~ = u(tn), 7re 2 = 7r(tn+"2) where u , 7r are solutions to the model problem (3.3). If 

n - 1 
W = u~ and q = 7re 2 + O(tlt), then 
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(1) the method is second-order accurate: 

(3.13) 

and, 

(2) 

(3.14) 

Proof of (1) 

In order to prove the consistency of the predictor-corrector discretization, the solution 

wnew is compared to the standard of a Crank-Nicolson solution which employs the midpoint 

rule. It is noted that the midpoint rule for ordinary differential equations yields global 

second-order accuracy. 

Proof of (2) 

W mid + O(.6.t3 ) 

.6.tpn+l(An+tf(7r~+ t - q) + O(.6.t3 ) 

(
A n+ 1 - AnI 1 ) 

7rnew q + (Ln+l)-l .6.t U~ + An+l jn+"2 + An+l(An+"2f q 

(Ln+1) - 1 ( An+~~ An u~ + An+l r+t) + An+l(An+t _ An+1f q 

(3.15) 

n+l 
7re 2 + O(.6.t). (3.16) 

Note that (2) depends only on q being bounded independent of time, i.e. , the proof begins 

with a statement of the truncation error and ends with the same statement. 
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Remarks 

The predictor-corrector discretization requires the application of only a succession of 

fixed time operators rather than solution to problems resulting from differentiation of the 

constraint with respect to time. In this fashion, the solution always satisfies the constraint. 

3.2 Discretization of Problem Domain 

Discretization of the SV formulation for incompressible viscous flow on a deformable 

domain contains two main components: discretization of the problem domain which is 

the mechanism by which a deformable domain is modeled; and a time discretization for 

the projection formulation. The latter will be discussed in the next section. This section 

describes a finite difference approach to discretization of the problem domain using a moving 

quadrilateral grid. 

Finite Differences 

In order to approximate the derivatives, boundary conditions and the incompressibility 

constraint in the equations of motion, the spatial and temporal domains are discretized by 

finite differences. For spatial discretization, a grid is layed out over the spatial domain such 

that the center of each cell carries the integer indices (i,j). Edges of cells are denoted by 

(i + ~,j) and (i, j + ~). The indices of a cell vertex are (i + ~,j + ~). The discrete difference 

between two cells is either tlr or tlz, depending on the direction of the gradient. 

Time-centering is indicated by a superscript, n, corresponding to time t = tn. Given 

a discrete solution at a time t = tn, the solution is evolved to time t = tn+1. The discrete 

difference in the evolved time is called a time step, tlt = tn+1 - tn. The object of the 

numerical algorithm is to successively obtain a solution updated from the previous time 

increment until the desired final time is reached. 

Discrete velocity is a cell-centered quantity and is represented as Ui~j' The vortical 
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B 
Figure 3.1: Averaging operators. 

component of velocity is also cell-centered, U:J i J" The potential velocity is a MAC, or edge-, , 

centered, velocity, un, 1 " at a constant ~ edge, for example, Pressure is a cell-centered 
P '~+2,J 

1 

term, 7r~:2, which is centered at the half step in time, t = tn + ~t. Averaging from cell-

centers to cell-edges, and vice versa, is accomplished by operators AvC --+ E and AvE --+ C , 

demonstrated graphically in Figure 3,1. 

Discrete Mapping 

The transformation of coordinates (2.15) is used to model irregular domains which 

result from movement of the solid wall boundary. A mesh composed of quadrilaterals is 

placed on the real domain of the problem. A logically rectangular, computational space, e, 
is mapped onto the physical space, x (see Figure 3.2). It is in the former space where the 

time-differencing and undivided spatial differencing take place. 

Let the edge of each quadrilateral cell represent a tangent vector along a coordinate 

line (see Figure 3.3): 

(3.17) 

Note that the partial derivatives in computational coordinates are undivided differences. 

Normal vectors can be defined from the tangents 

(3.18) 
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X x, '"2tf''' 
~-1I2J-1I2 l+ 1I2J- 1I2 

X(~,t) 
EO 

~-1 /2J+1I2 ~+1 /2J+l /2 

D 
~- 1I2J- 1I2 ~+1 /2J - l /2 

Figure 3.2: Discrete mapping. Time-dependent quadrilateral grid mapped into a fixed, rectangular grid. 

and averaged to cell centers when needed: 

The volume metrics are similarly defined at cell edges: 

'f/ 
g . '+1 2,J 2' 

21fT '+ 1 Z,J 2' 

(3.19) 

(3.20) 

These quantities can be averaged to cell centers in the same fashion as normals. Also, 

normals can be redefined to include the volume metrics at the respective edges on which 

they live, n9 = gn. 

A discrete definition of the Jacobian of transformation, or cell volume, follows from the 

tangent equations and is used to calculate the quantity at the half step in time: 

n+! _ n+! (1 I ~ 'f/ I 1 I ~ 'f/ I) n+! 
CTiJ' - giJ' -2 t, '+1. X t .+1. ' + -2 t, '_1. x t ._1. ' , , 2,J 2 2 2 ,J 2,J 2 2 2 ,J 

The analytical form of the Jacobian is seen in its representation at a cell edge 

g?J' + 1. (rf '+ 1 Z'f/ , '+ 1 - T'f/, '+ 1 Z~, '+ 1 ) ., 2 t , ) '2 t,) '2 t ,) '2 t,) '2 

where metrics at other edges are obtained from the four "nearest neighbors": 

X~'+l ' 
l 2 ,3 

X'f/, ,+1 
t,) '2 

(3.21 ) 

(3.22) 

(3.23) 
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Figure 3.3: Cell volume, edge normals and indices. 

The discrete Jacobian is evolved to a new time by conservation of volume [6]: 

n+l _ n n+ ~ n+ ~ n+~ n+ ~ 
(1i)' - (1i j + 6(1,+ 1 ,- 6(1, 1 ,+ 6(1, '+ 1 - 6(1" 1 

, , t 2 ') t- 2 ,) t,) 2 t')-2 

where Jt = 'V . s , and 

n+~ n n n+l n+l 
g'+1 ,2:(X+1' 1,X'+1 '+ 1, X'+ 1 '+1,X'+ 1' 1) t 2') t 2') - 2 t 2') 2 t 2 ') 2 t 2')-2 

n+~ n n n+l n+l 
9 '+12:(X+1 '+1, X. 1 '+1, X, 1 '+1,X'+ 1 '+1) t ,) 2 t 2') 2 t- 2 ,) 2 t- 2 ,) 2 t 2') 2 

are the partial cell volumes for a moving quadrilateral element (see Figure 3.4). 
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(3.24) 

(3.25) 

The inverse transformation matrix, F - 1, is a matrix whose rows are made up of the 

components of the normals, n~ and n1): 

(3.26) 

The appropriate volume weighting of the inverse transformation is derived from the un-

restricted three dimensional definition of the transformation matrix. To understand this 

quantity discretely, it must be placed into the correct context-namely, transformation of 

a vector in real coordinates to that in computational coordinates. Also, spatial centering 

of the inverse transformation is not trivial. These issues are addressed as needed in the 

discretization of the projection and in the details of the algorithm. 
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1I2j 

Figure 3.4: Representation of the time-dependence of J . Cell at tn moves to tn +1 showing partial cell 

volumes. 

Remarks 

It has been noted at several points in the discussion that the spatial differencing is 

undivided. Since the computational domain is an abstract space, a spatial difference in e 
has no physical meaning. However, if divided differencing were employed in transformation 

of the equations of motion, the same equations would be obtained due to cancellation of 

terms with the Jacobian. Therefore, undivided differencing is also chosen as a means to 

maintain simplicity in the discrete representation. 

Equations of Motion 

The equations of motion (3.1-3.2) are discretized in mapped coordinates as defined by 

the mapping (2.15). The equation of motion for the discrete divergence-free component of 

velocity is 

(3.27) 

with the incompressibility constraint 

(3.28) 

where 

(3.29) 
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The relative advection term and Bernoulli pressure are defined as follows: 

(3.30) 

where tJ = JF-TU, tJd = JF-TUd and S = JF-T S are transformed velocities. The 

boundary conditions for the discrete vortical velocity are given in (2.55-2.58). 

The potential flow solution, Up = \7 cp, is obtained from the BVP which it satisfies: 

(3.31) 

where the inhomogeneous normal boundary conditions of the problem are specified in (2.34-

2.38). 

3.3 Time Discretization 

This section discusses the time-stepping procedure used in the SV projection method. 

Any time step in the SV algorithm begins with the knowledge of a cell-centered velocity, 
1 

U:J i J" at time tn, and a cell-centered Bernoulli pressure, 7r ;J-:- 2, at the lagged time, tn- t . 
" , 

Also, the potential velocity, Up, is known at all times from the discrete Dirichlet problem 

which it satisfies; therefore, the entire velocity is known prior to each time step. Evolution 

of the dependent variables is predicated upon a known initial solution which satisfies the 

boundary conditions and the incompressibility constraint. 

3.3.1 Predictor-Corrector Discretization 

The discrete vortical velocity is evolved by a predictor-corrector type scheme. A ve-

locity is predicted from advection and viscosity terms, then updated, or corrected, by the 

projection operator to enforce incompressibility and to obtain the pressure. This procedure 

follows the temporal discretization discovered in the model problem. 
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Predictor 

The predictor part of the method is motivated by the desire to avoid solution to an 

implicit equation for Ud which results from Crank-Nicolson differencing of the discrete 

equation of motion (3.27): 

U;+1- UJ 
b.t 

(3.32) 

Instead, Crank-Nicolson differencing is applied to the Navier-Stokes equations for the entire 

1 
velocity field in order to first approximate the viscous forces at tn +2: 

where U* is an intermediate velocity approximating Un +1 and is not necessarily divergence-

free. U* is obtained by solving a form of the heat equation: 

(3.34) 

The right-hand side, RHS, to this diffusion equation is given from (3.33): 

(3.35) 

A predicted vortical component of velocity, which is not necessarily divergence-free, is then 

obtained from (3.33) , given U*: 

U** . = U*· - Un+1 
d,t,J t ,J p,t ,J . (3.36) 

1 

It is also noted that the pressure lags in time at tn - 2 in the predictor; however, the gradient 

1 

operating on the lagged pressure is centered at the appropriate half time tn+2. 

Corrector 

From analysis of discretization of the model problem earlier in this chapter, the discrete 

form of the vortical corrector for Ud is a projection centered at time t n+1 of the predicted 

vortical velocity, Ud*: 

(3.37) 
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The projection form of this equation suggests solution to the following Poisson's equation 

in pressure correction form: 

(3.38) 

1 1 
where the pressure correction is 0 = 7rn +"2 - 7rn -"2. Once the pressure correction is obtained, 

the cell-centered gradient is computed and used to update the divergence-free velocity: 

un+1 Ud*': , - GnO+lOi J' 
d,i,j ,2,J ' 

(3.39) 

Finally, the entire updated velocity field is calculated by adding the updated divergence-free 

component to the potential velocity at tn+l which has been averaged to cell centers: 

(3.40) 

Outline of Discretization Issues 

An outline of the issues involved in discretizing each piece of the projection formulation 

is as follows: 

(1) Discretization of projection operator. 

(2) Potential flow solution. 

(3) Convective discretization. 

(4) Solvers. 

3.3.2 Discretization of Projection Operator 

The discrete Hodge projection operator, P, is defined in the same manner as the con-

tinuous projection. The goal is to resolve a vector into its divergence-free and gradient 

parts: 

o (3.41 ) 
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where G and D represent the finite difference approximations to gradient and divergence, 

respectively. The projection is applied by the following procedure: 

(1) Solve 

L¢=DW (3.42) 

(2) Compute 

(3.43) 

where L = DG is the discrete Laplacian operator. 

The choice of D and G determine the strength of the projection. If they are chosen as 

discrete adjoints, D = -GT , then P = p T . Also, the discrete Hodge projection operator is 

idempotent: P = p2 . The two previous statements about P imply its boundedness: 

IIP(W)II ~ IIWII (3.44) 

where IIII is the discrete L2 norm derived from the vector inner product 

(U,V) ~. ·(U· . . Vi ·)~x~y Z,J Z,J Z,J 

IIQII 
1 

(Q,Q)"2. (3.45) 

Some drawbacks of discrete projections for co-located discretizations of the velocity field 

are documented in [1 , 39]. 

BCG-MAC Discretization of P 

MAC, or "marker and cell", discretization of the projection operator is an idempotent, 

discrete representation of the projection. Idempotence of the projection is shown by the 

relation, p 2 = P , or more specifically, by the invertibility of the Laplacian operator, L: 

L (3.46) 
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~j+l /2 

~+1 /2j 

~j.1I2 

Figure 3.5: Finite volume description of divergence. F = U· fig is the flux at an edge of a cell . 

The MAC projection is a cell-edge based discretization. The divergence operator, 

n M AC, is discretized based on a finite volume approach for calculation of conservation 

of mass within a cell (see Figure 3.5): 

where ng = gn is the volume normaL Another perspective of the MAC discretization of 

divergence can be seen by rigorous application of the mapping 

or, 

(\7 . U)i J' = (U+1 . - U _ 1 . + V '+1 - v _ 1)/ai J' 
, t 2 ,J t 2 ,J t,J 2 t ,J 2 ' 

where the transformed velocity is specially defined at edges as 

U'+l . 
t 2 ,J 

V· '+1 t ,J 2 

(3.48) 

(3.49) 

(3.50) 

An undivided difference in the e gradient has been dotted into a transformed velocity 

whose two components are defined at edges which are described by a constant e or a 

constant "7 line, respectively (refer again to Figure 3.3) . The spatial centering of the inverse 
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transformation matrix is seen in this relation where the rows of F-1 are made up of the 

normals at corresponding edges. 

The MAC gradient follows from \l¢ = F - T\lf,¢: 

gTJ [ zTJ 

(J -rTJ 

Boundary conditions are applied to L when the stencil for the MAC gradient extends beyond 

the problem domain. At edges coming out from boundaries, ¢ is extrapolated into a "ghost" 

cell to calculate the transverse component of \l f,¢' For example, at the i = ~ edge, 

¢O,j = 3(¢1,j - ¢2,j) + ¢3,j (3.52) 

where the subscript 0 denotes the ghost cell value. 

Approximate Projection Operator 

An approximate projection was developed to remove the drawbacks of discrete projec-

tions pertaining to complications which result from centering and linear algebra (see [1 , 39] 

for details). In an approximate projection, the discrete divergence of velocity does not 

exactly satisfy incompressibility: DU = O(h2). The approximate projection operator, P, 

involves cell-centered discretizations of D and G. The choice of cell-centered discretization 

of P leads to a non-idempotent projection, p2 :/= P , where P = (I - GoL -lDo). The 

exact Laplacian operator as defined in the MAC discretization is not invertible with P, 

Therefore, the incompressibility constraint is only approximately satisfied. 

The cell-centered divergence operator, Do, is a MAC divergence operator that is simply 

applied to a cell-centered velocity which has been averaged to edges by the operator A v C ---+ E , 

making the cell-centered velocity a MAC velocity. However, the cell-centered gradient 
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operator, Go, is a more complicated discretization. The procedure for computing GO¢i,j, 

which involves application of the averaging operator A v E ---+ C , is as follows: 

(1) Compute the MAC gradients, GMAC¢i+~,j and GMAC¢i,j+~ ' on interior edges. 

(2) Extrapolate the vectors GMAC¢i+~ ,j' GMAC¢i,j+~ linearly to boundaries. 

(3) Compute n . G M AC ¢ at all edges. 

(4) Compute GO¢i,j by solving the following equations: 

n~,· GO¢iJ' 2,J ' [(n· G MAC ¢) '+1 ' + (n· G MAC ¢) _1 ,]/2 = a~ , 
2 2 ,J 2 2 ,J 2,J 

n'TI, . GO¢i J' '1,,] , 

(3.53) 

where the normals do not carry volume implications. 

Boundary conditions for MAC gradients in the cell-centered calculation are a linear extrap-

olation of G M AC ¢ from interior edges: 

(3.54) 

for example, at the axis of symmetry boundary edge, i = ~. 

Discrete Laplacian Operator 

The Laplacian operator is based upon a nine-point stencil for quadrilateral grids. The 

stencil is the same throughout the algorithm with the only variation being boundary condi-

tions on \7 ¢. If the Laplacian of ¢ at cell (i, j) is written as the sum of coefficients multiplied 

by ¢i ,j and its nearest neighbors, 

(3.55) 
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then the stencil coefficients, as, are as follows: 

aO ,l 

(-(G~S)i+ ! ,j - (G1)S)i,H!)/4 

((G1)S) , '+1 - (G1)S) , '_1)/4+ (G~l1))'_ 1 ' 
Z,J 2 Z,J 2 Z 2 ,J 

ao ,o 

aO,- l 

(3.56) 

where 

G~ 
g~ 

r~z1) - r1)z~ 

G1) 
g1) 

r~z1) - r1)z~ 

l~ r2 + z2 
~ ~ 

l1) r2 + z2 1) 1) 

S r~r1) + z~z1)" (3.57) 

Viscosity Operator 

The viscosity operator, Lv , possesses the same stencil as the discrete Laplacian operator, 

L, on the interior, but differs at the boundaries where physical boundary conditions are 

applied: 

(1) axis of symmetry 

u* 0 

uv* 
uz 0, (3.58) 
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(2) solid wall (higher-order extrapolation with prescribed wall velocity) 

U*lwall 

U* ae + be + c 

oU* I 
oe wall 

b - 3U* lU* 8un+1 
- - Nr + 3 Nr-l + 3 b 

ou~+1 

O'fJ 
(3.59) oU* I 

O'fJ wall 

(3) inflow (Poiseuille flow applied with higher order extrapolation) 

u* 0 

v* 2(1 - r2), (3.60) 

(4) outflow 

oU* 
OZ = O. (3.61) 

At the axis of symmetry, there is no flow across the axis in the normal direction; the 

transverse component takes a homogeneous Neumann boundary condition (3.58). At the 

moving solid wall, a higher-order boundary condition is chosen which is exact for Poiseuille 

flow in an initially fixed, straight tube (3.59). The inflow boundary condition is Poiseuille 

flow (3.60). At outflow, a homogeneous Neumann condition is set on U* in the z-direction-

the normal direction at the outlet since the grid is orthogonal (3.61). 

3.3.3 Potential Flow Solution 

The first application of the discrete projection operator is the potential flow problem. 

The potential flow solution is critical to the SV method for it is this component of the total 

velocity which carries the burden of time-dependent boundary conditions. The potential 

velocity, Up = \7 ¢, can be obtained at any time, tn, given the special boundary conditions 

for un at inflow and outflow, and the prescribed velocity of the solid walL The solution is 
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obtained by solution to the Poisson's equation 

(3.62) 

where the operator, L , has a homogeneous Neumann boundary condition at all boundaries 

n·\7¢=O (3.63) 

and the boundary conditions for the solution are given in (2.34-2.38). 

Once the solution to Poisson's equation is found, the MAC gradient is applied to the 

potential to obtain the MAC potential velocity: 

(3.64) 

The MAC velocities can be averaged to cell-centers when needed using the previously de-

scribed averaging operator. Boundary conditions for the MAC gradients are extrapolated 

as in the cell-centered gradient calculation discussed earlier in this chapter. 

3.3.4 Convective Discretization 

The nonlinear, convective derivative, As(Ud, Up)n+~, in (3.27) is calculated using a 

second-order Godunov method with a MAC projection [4, 39]. First, the cell-centered 

velocity, U~i,j ' is extrapolated to cell edges and to the half step in time by Taylor series 

expansion, omitting the effect of pressure. A MAC projection is then used to enforce the 
1 

incompressibility constraint on U;+2. Nonconservative differencing is used to approximate 

1 
As(Ud, Up)n+2. There is a time step restriction for the entire algorithm because of the 

explicit convective discretization. 

Taylor Extrapolation 

The discrete divergence-free velocity, U~i ,j' is expanded to the half step in time, tn + ~t , 

and to cell edges in a Taylor series (see Figure 3.6): 

(3.65) 
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~ I ~ (without the pressure gradient) is then substituted from (3.27) into (3.65). The 

velocities at constant e edges are extrapolated from cell-centered values to the left (denoted 

by L) and to the right (R) of an edge: 

[ ~Ud] n 

Or] i,j 

[Oud]n 
Or] i+1,j 

(3.66) 

Velocities are computed in a similar manner at constant r] edges where the directions Land 

R are referred to the subscript j: 

[Oud]n 
oe i,j+1 

(3.67) 

A transformed "upwind" velocity is used for the convective velocity in the extrapolated 

velocity calculations to ensure that only known information about the convecting velocity 

has been called upon: 

u~PW max(u - s,O) 

max(iJ, 0). (3.68) 

where the subscript s indicates inclusion of the relative motion due to the grid movement. 
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t=t n+112 r---~-----r--++-~--------T 

, , 
~---------------- -----~------------ -----------
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iJ i+1 /2J i+1J 

Figure 3.6: Godunov box depicting extrapolation of cell-centered velocities to edges and to the half step 

in time. 

Slopes 

The slopes in the normal direction of the spatial expansion in the Taylor extrapolation 

are approximated by centered differences with one-sided differences at the boundary: 

Ud,i+l,j - Ud,i- l,j 
2 

Ud,i,j+l - Ud,i,j-l 
2 

(3.69) 

A second-order van Leer method could be used to limit the normal slopes. This technique 

has not been employed here in order to obtain clean convergence results [31]. 

The slopes in the tranverse direction are given by 

[OUdr { (;:1- - (;:1- 1 if (un - sn .) > 0 
~ 

,t ,) ,t- ,) t ,) t ,)-

O~ i,j 
~ 

(;:1- 1 . - (;:1 . if (un. - sn .) < 0 
,t+ ,) ,t,) t ,) t,) 

[OUdr { (;:1 .. - (;:1 .. 1 if vn . > 0 
~ 

,t ,) ,t,)- t,) - (3.70) 
Or] i,j (;:1 . 1 - (;:1 . if v~· < 0 ,t ,) + ,t ,) t,) 

with an instability correction for the diffusive, viscous term pointed out by Minion [45]: 

'n n l/~t A n Ud · . = Ud . + -uU '. ,t ,) ,t ,) 2 t,) (3.71) 

The slopes of the potential velocity are calculated from MAC quantities: 

au n 
--p ~ U· l' -U, 1· Oi: . . P'Z+2') P,Z-2') 

<, t,) 

au n 
-_P ~ U .. 1 - U .. 1. an . . P,t')+2 P,t') - 2 

'/ t,) 

(3.72) 
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Riemann Problem 

At each cell edge, a Riemann problem exists where there is a left and right state from 

which to choose based on the upwind, convective velocity: 

UL if uupw,l uupw,r > 0 
d s 's 

'n+" { UR if uupw ,l uupw,r < 0 U .21 . = 
d,Z+2') d s 's 

u;+u/f if uupw,luupw,r < 0 
2 s s -

UL if fjupw ,l , fjupw,r > 0 
d 

' n+' { UR if fjupw ,l fjupw ,r < 0 U .21 = 
d,Z')+2 d , 

u;+u/f if fjupw ,lfjupw,r ::; 0 
2 

where these upwind, convective velocities are defined as 

uupw ,l 
s 

uupw ,r 
s 

n n+ ~ ~n+~ 
(Uij - S'+1 .). n'+ 1 . 

, Z 2 ') Z 2 ') 

n n+ ~ ~n+~ 
(Ui +1 j - S'+ 1 .). n'+ 1 . 

, Z 2 ') Z 2 ') 

n n+~ 1)n+ ~ 
(Ui j - S.. 1)' n.. 1 

, Z')+2 Z')+2 

n n+~ 1)n+~ 
(Uij+1 - S ,+1)' n. '+1' 

, Z,) 2 Z,) 2 

(3.73) 

(3.74) 

(3.75) 

The boundary conditions for the upwinded, extrapolated MAC velocities are the prescribed 

conditions for Ud (2 .55-2.58). At boundaries where the condition is of Neumann form, the 

extrapolated left or right state-whichever is on the interior side of the boundary edge-is 

used. 

MAC Projection 

The MAC velocities are projected in order to account for the effect of the pressure 

1 
gradient at tn+2 which was omitted in the Taylor extrapolation: 

(3.76) 

The MAC velocities are corrected by MAC gradients accordingly: 

(3.77) 
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Boundary conditions for the MAC gradients are homogeneous Neumann, n· 'V tP = 0, at all 

boundaries except outflow where the boundary condition is homogeneous Dirichlet. This is 

discretized by setting the ghost cell value, tPo = -tPl' 

N onconservative Differencing 

The nonlinear, convective derivative, As = (U - S)· 'VUd + Ud' 'VUp , is calculated using 

nonconservative differencing: 

where 

The solid wall boundary condition is u~+~ I = ° because U· nl wall = S· nl wall ' 
wall 

The part of As due to the potential velocity is similarly calculated: 

where 

_n+ ~ 
Ud,i,j 

_n+ ~ 
Vd,i ,j 

(3.78) 

(3.79) 

(3.80) 

(3.81) 
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Time Step Restriction 

The second-order Godunov method is an explicit scheme. The time step of the entire 

algorithm is dependent upon the Courant-Friedrichs-Lewy (CFL) condition for stability: 

(3.82) 

where the transformed velocity, fj = JF- 1U, is centered component-wise as follows: 

iJ 0 Z,J gi JO( -ZCUi JO + rco oVi J). 
, 4...'1-,)' 4...1.,)' 

(3.83) 

3.3.5 Solvers 

Multigrid 

Each time step of the SV method requires solution to five Poisson's equations: two 

1 
potential flow solutions, one at time tn+'i and the other at time tn+l ; a MAC projection 

1 
at time tn+z; solution to the heat equation for the viscous terms; and an approximate 

projection at time tn+l. Solution to Poisson's equation throughout the algorithm is obtained 

by multigrid iterations. The multigrid method is a technique used to solve a linear system 

like L¢ = f without the expense of inverting the linear operator L. (See [10] for an 

introduction to this method and [37, 36, 39] for details concerning projection methods.) 

In the SV algorithm the primary issue concerning multigrid is coarsening of the quadri-

lateral grid and metrics. Quadrilateral elements are maintained in coarsening of the grid as 

demonstrated in Figure 3.7. The rand Z coordinates at coarser levels are the correct values, 

but loss of detail in the geometry at domain boundaries is evident. Also, the cell volume, 

acoarse, is computed on coarser levels by averaging the values of aJine from contributing fine 

grid cells as opposed to a calculation of volume from coarse coordinates; thus, conservation 

of volume of the mesh is preserved: 

acoarse = L:aJine. (3.84) 
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Figure 3.7: Grid coarsening. Solid lines indicate fine grid cells and dotted lines indicate coarse grid cell. 

A veraging of the residual, n, to coarser levels is done in the following manner: 

Rcoarse = ~(R(J")fine . 
(J"coarse 

(3.85) 

The iteration scheme on any level is Gauss-Seidel with red-black ordering. For iteration 

l this means 

(3.86) 

where the relaxation parameter, Ai ,j, is defined to be the diagonal coefficients of the linear 

operator Li,j. The algorithm features a full multigrid V -Cycle for accelerated convergence 

and maximum coarsening [10]. At the coarsest level, an optimal number of Gauss-Seidel 

iterations with red-black ordering are performed. 

Implementation of Projection 

Consider the following Poisson's equation and its graphic representation in Figure 3.8: 

(3.87) 

In general, the potential, <p, is composed of a homogeneous part, <PH, and an inhomogeneous 

part, <PB: 

(3.88) 
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Solve: 

LH<PH = DF 
GZ<PH F 

G,<PH D 0 F D~xlrap 
GZ<PH F 

i.)L1<PB 0 

GZ<PB 0 

G, <PB D 0 0 D 0 

GZ<PB 0 

ii .) LH<PB 0 

GZ<PB 0 

G, <PB D 0 0 D 0 

GZ<PB 0 

Figure 3.8: Discrete representation of solution to Poisson's equation. 

cPH is the solution to the homogeneous problem 

\l·F 

o (3.89) 

with homogeneous boundary conditions for LH and extrapolated boundary conditions for 

the flux of F in the divergence. The other part, cPB, satisfies the inhomogeneous problem 

o 

1i 

1i n·F (3.90) 

where 1i is an inhomogeneous boundary condition which contains the normal component of 

the extrapolated piece of F from the divergence flux at the boundary in the homogeneous 

step. The inhomogeneous problem is rewritten into an equivalent one for the homogeneous 

operator by transferring the inhomogeneity in LJ to the right-hand side of the equation (see 
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Figure 3.8): 

V'. (-H) 

o. (3.91 ) 

The homogeneous problem and the equivalent inhomogeneous problem can now be added 

into one discrete equation since the same operator, LH, is used in both: 

D(.r -H). (3.92) 

Remarks 

A key observation in the numerical implementation of the projection is that the ex­

trapolated boundary condition for the divergence of j: is consumed in the pressure and is 

never seen in the actual discretization. Also, desirable homogeneous boundary conditions 

are applied to fluxes of j: in the divergence at boundaries since the pressure is carrying the 

extrapolated piece. See also Lai [39] for a slightly different discussion on this topic. 
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Chapter 4 

Results and Conclusions 

The final chapter presents the results obtained by the SV algorithm for unsteady in­

compressible flows in a flexible tube. First, results for the inviscid case of potential flow are 

presented and explained. Treatment of time-dependent boundary conditions described in 

previous chapters is made clear. Next, laminar flow scenarios are presented for an incom­

pressible viscous fluid in a flexible tube with inlet Reynolds numbers of 8, 16, 200, 400 and 

800. Relevant physics is discussed for simple boundary motions. The chapter concludes with 

details of the robustness of the model by explanation of features which can be represented 

in other flow scenarios. Future applications of the model are also brought forward. 

Grid Generation 

Grid generation is a concern when modeling a deformable domain by the method of 

moving, mapped grids. The grid has to be regenerated each time step in the SV algorithm 

for a moving solid wall boundary. This is accomplished by linear interpolation between the 

axis of symmetry at r- = 0 and the solid wall at r- = R(z). The grid does not move in 

the z-direction for any of the prescribed boundary movements that test the algorithm- all 

deformation of the grid occurs radially. 

There is a local loss in accuracy of the velocity at the axis, mostly seen in the radial 

component, attributed to the linear interpolation used in regridding the mesh. The trend 
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is that the radial component of velocity loses an order of accuracy locally at the axis of 

symmetry without affecting the overall convergence rate. The loss in accuracy is seen at 

locations in z along the axis where deformation has occurred in the solid wall across the 

flow; the more the solid wall deforms, the more the error approaches first-order in terms of 

the computational mesh spacing h (see Figures 4.2 and 4.3 ). The degree of loss in accuracy 

also varies somewhat with the Reynolds number, but no definite conclusions can be made. 

4.1 Accuracy 

Results for the various flow scenarios are discussed in terms of known exact solutions, 

qualitative features from the physics of the flow and numerical accuracy. The SV method 

presented is designed to capture the details of flow dynamics in time, especially near bound-

aries. Both spatial and temporal numerical accuracy is to be maintained at second-order 

while modeling the proper physics of the flow. Numerical accuracy is measured in terms of 

the decrease in error with refinement of grid spacing. Exact solutions are known in certain 

cases and can be used in the validation process in the absence of empirical data. 

Convergence Rate 

A convergence rate for the algorithm is calculated by estimating the error on successively 

refined grids: 

(4.1) 

Superscripts refer to the mesh spacing of the grid. The norm, 1111 , is represented by the 

discrete L 1, L2 or Loo norm: 

II \[IIILl 

II \[IIIL2 

11\[IIILoo 

~. ·(cr· ·1\[1· ·1) t ,) t ,) t ,) (4.2) 

( 2 ) 1/2 ~ . . (cr· ·1 \[I . ·1 ) t,) t,) t,) (4.3) 

maXi,j I \[I i ,j I· (4.4) 
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The averaging operator is defined with volume weighting: 

h h h h h h h h 
( h) . . _ IJ2i,2j'hi,2j + IJ2i+l,2j'hi+l,2j + IJ2i,2j+1 'P2i,2j+l + IJ2i+1,2j+1 'P2i+l,2j+l 

avg 'P t,J - h h h h 
IJ2i,2j + IJ2i+l,2j + IJ2i,2j+1 + IJ2i+1,2j+1 

(4.5) 

The convergence rate (order of accuracy), a, of the method is determined by the formula 

109(:2~) 
a= . 

log2 
(4.6) 

4.2 Incompressible Flow in a Flexible Tube 

The SV method has been designed to model unsteady incompressible flows in a flexible 

tube. Results from models of inviscid and viscous flows are presented for a range of laminar 

Reynolds numbers and a variety of solid wall boundary motions. All calculations have been 

performed with the precision of 64 bit arithmetic. The convergence tolerance of the solvers 

in the algorithm is (Nr x N z )10-14 times the initial error of the residual. 

4.2.1 Potential Flow 

The inviscid flow case described in chapter two has revealed much information about 

incompressible viscous flows with time-dependent boundaries, especially outflow. It is the 

potential velocity that carries the normal boundary conditions for these unsteady flows on 

deformable domains in the SV method. The potential flow solution is known at all times 

given prescribed conditions at inflow and solid walls. Furthermore, potential flow has no 

time history, but with time-dependent boundary conditions and without introduction of 

vorticity, the potential flow solution is the solution to the incompressible Euler equations. 

Inward/Outward Hump 

Consider a potential flow where the boundary moves from an inward to an outward 

Gaussian hump: 

R(t) = Ro(l - E(l - sin 1f(.5 + t)))exp(-4(z-zc)2). (4.7) 
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Case e1/ 16 Rate e1/ 32 Rate e1/ 64 

u 9.56e-4 1.97 2.43e-4 1.98 6.15e-5 

v 8.31e-4 1.98 2. lle-4 2.00 5.28e-5 

Table 4.1: Convergence rates in L2 norm for potential flow in flexible tube with inward and outward 

moving hump. 

At times when the boundary is not moving (t = 0 and t = 1.0), symmetry in the radial 

component is shown (see top diagrams in Figure 4.4). In the axial component, due to 

expansion in the tube, negative velocity is calculated at outflow (see bottom diagrams 

in Figure 4.4 at t = 0.5). Conservation is held from start to finish where acceleration 

and deceleration of the potential flow are depicted at the beginning and end, respectively. 

Numerically, the velocity is second-order accurate in all norms (see Table 4.1, for example) 

with the exception of a first-order loss in accuracy in the Loo norm at the axis due to grid 

generation. 

4.2.2 Viscous Flow 

This section discusses results obtained from the robust capabilities of the SV method 

for incompressible viscous flow in a flexible tube. Two flow regimes are featured: a low 

speed (high viscosity) flow, and a high speed (low viscosity) flow for Reynolds number well 

into the laminar regime. The Reynolds number is defined as Re = vvd where v is the mean 

velocity, d is the diameter of the tube (d = 2 in all cases) and 1/ is the kinematic viscosity. 

The flow is initialized to the Poiseuille flow in a fixed tube: 

u 

v 

p -8vl/z. 

( 4.8) 

(4.9) 

(4.10) 

The boundary movement depicted for these flows is a periodically, inward moving hump 

from a straight tube at time t = 0 to a fully pinched (25 percent radial reduction) tube at 
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Figure 4.1: Periodic cycle for solid wall boundary velocity (not the grid movement itself) . Boundary 

velocity is initially 0 at t = 0, reaches a maximum at t = .5 and returns to 0 at t = 1. 

t = 1.0 (see Figure 4.1). 

For the Re = 8 flow, the mean inlet velocity, v, is 1 and the kinematic viscosity, 1/, is .25; 

for Re = 200, inlet velocity is the same and the kinematic viscosity is .01. For cases where 

the hump is moved outward (Re = 16,400), v is increased to 2 which doubles the Reynolds 

number. This is done to ensure that there is no backflow at outflow. For the Re = 800 case, 

v = 2 and 1/ = .005. The SV method yields a total velocity which is second-order accurate 

in time and space (see Tables 4.2 and 4.3, for example). 

Inward Moving Hump 

For low Reynolds number, smooth features of the flow dynamics are maintained through-

out the inward movement portion of the cycle (see Figures 4.5, 4.6, 4.7). As the boundary 

reaches its fullest extent inward, separation of the flow is noted beyond the hump at times 

t = .9 and t = 1.0. The flow reattaches downstream before the fluid exits the tube. 
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Case e1/ 16 Rate e1/ 32 Rate e1/ 64 

u 4.93e-3 1.60 1.63e-3 1.84 4.54e-4 

v 3.66e-2 2.39 7.02e-3 2.27 2.70e-3 

Table 4.2: Convergence rates in L2 norm for unsteady, incompressible viscous flow. Results obtained for 

inlet Re = 8 at t = .5 when tube has been pinched to .875 of original radius. 

Case e1/ 16 Rate e1/ 32 Rate e1/ 64 

u 1.97e-l 2.29 4.03e-2 1.93 1.06e-2 

v 3.22e-l 1.87 8.81e-2 1.86 2.43e-2 

Table 4.3: Convergence rates in L2 norm for unsteady, incompressible viscous flow. Results obtained for 

inlet Re = 200 at t = 1 when tube is fully pinched, or .75 of original radius. 

Snapshots in time of vorticity depict this flow phenomenon clearly (see Figure 4.5). The 

axial component does become negative along the boundary past the hump demonstrat­

ing detached flow, but reattachment is not seen as clearly due to the scaling (see Figure 

4.6). Downstream, the axial velocity becomes positive again which signals reattachment. 

Second-order convergence of the numerical error for this flow is shown in Figure 4.2. 

For higher Reynolds number, smooth features are maintained as well, but the velocity 

gradients are much steeper. Plot of vorticity does not seem to demonstrate much at early 

time, particularly due to the scaling (see Figure 4.8). At later time, however, flow separation 

is seen and eventually there exists complete detachment out the tube. Furthermore, a 

recirculation zone curls up just beyond the hump within the layer of separation. This 

phenomenon is seen more clearly in the axial component of velocity at late time (see Figure 

4.9). The colormap of the figures depicts steep gradients in the axial velocity near the wall, 

especially at late time. This will be discussed further for the expanding tube. Second-order 

convergence of the numerical error for this flow is depicted in Figure 4.3. 
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Outward Moving Hump 

For the tube to expand back to its straight position, the Reynolds number must be 

doubled to eliminate total backflow at outflow. For the lower Reynolds number case, Re = 

16, the flow separates and reattaches for the first part of expansion. It completely reattaches 

with no separation by the time it stops, nearly returning to Poiseuille flow (see Figure 4.l1a). 

Remnants of the grid movement are blown out the end of the tube if the flow is allowed 

to achieve the viscous steady state by halting the grid movement. For the higher Reynolds 

number case, where there is separation and recirculation at t = 1.0, more violent vortical 

structures remain in the flow after expansion of the tube (see Figure 4.l1b). 

The interesting feature for all flow cases is the effect of vortical and potential compo­

nents of velocity on the total velocity. The axial velocity is the most revealing parameter for 

this analysis because of familiarity with the classic parabolic Poiseuille profile for viscous 

flow in a pipe. Furthermore, it is of interest to see the effect of boundary conditions applied 

through the potential velocity compared to the vorticity-bearing divergence-free component 

of velocity. Figures 4.12,4.13 are a breakdown of the total axial velocity and its vortical and 

potential parts at critical times in the pinching and expansion of the tube for low Reynolds 

number. At t = .5, the velocity profile is close to the classic Poiseuille parabola. The effects 

of the inward moving hump on the vortical component are clearly seen at the hump and 

downstream near the wall. Also, the increase in average axial velocity past the hump is 

shown in the potential component. At t = 1.0, the velocity profile becomes steeper near 

the wall and flatter over the top. The gradient of velocity has increased due to higher shear 

stress at the wall. Separation and reattachment occur just downstream from the hump 

midpoint. The boundary has come to rest at this time. The potential component depicts 

this well as the flow rate into the tube is the flow rate out of the tube with no added flux 

at the wall. 

At time t = 1.5, the reverse effect from t = .5 seems to be occurring (see Figure 4.13). 
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The potential flow demonstrates a slowing down of the fluid past the hump because of tube 

expansion. This is seen in the average axial velocity as well. At this snapshot in time the 

viscous effects are being felt primarily before the hump. At the final time t = 2.0, the flow 

nearly returns to the steady viscous flow as it started. It is worth noting the plug flow 

contribution of potential flow to total velocity at t = 2.0. 

In the higher Reynolds number case, the effects of vortical and potential velocity are 

unmistakable (see Figures 4.14, 4.15). At t = .5, the flow is highly vortical near the wall; 

away from the wall the flow is driven by potential flow. The velocity profile is much steeper 

near the wall than in the lower Reynolds number case. At the later time t = 1.0, the 

profile takes on a "top-hat" shape- nearly flat at the top, then it dips down and back up 

in an overshoot before it falls sharply at the boundary. (The "top-hat" profile is a design 

standard used in experiments to achieve stable behavior in jets [41, 42].) It is also worth 

noting that the vortical velocity shows a void in the center part of the tube. This is also 

seen (but only slightly due to scaling) at t = 1.0 for Re = 8 in Figure 4.6. 

As the tube expands back outward for the higher Reynolds number flow , more interest­

ing dynamics are depicted (see Figure 4.15). At t = 1.5, the void seen at t = 1.0 remains. 

Also, a shear layer forms. The divergence-free component reveals a separate vortical struc­

ture from the concentrated area at the hump. The recirculation zone lingers and extends out 

the tube. The velocity profile dips into the negative regime which is indicative of separation 

that has occurred before the hump. When the tube returns to the fixed, straight position 

at t = 2.0, the vortical component demonstrates that the flow is far from a viscous steady 

state even though the total axial velocity looks nearly like Poiseuille flow due to scaling. 

An artifact of the void noted before and what remains of a shear layer are also depicted. 

Finally, a complete cycle of the movement of the hump is seen in Figure 4.16. The most 

notable feature in this flow scenario is a very sharp gradient which is captured in the axial 

component of the velocity at time t = 3.5, when the hump is moving back inward from its 

fully expanded outward position. The strong gradient, which indicates the presence of a 
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shear layer, exists in the axial direction as well as the familiar radial direction. Another 

observation is movement ofthe point of separation which is indicated in the axial component 

by a change in sign from positive to negative. As the hump expands outward from the flat 

position at time t = 2.0, the separation point marches from a location before the midpoint of 

the hump toward the inlet. In general, the combined effect of potential flow in an expanding 

tube and a high Reynolds number has been demonstrated to provide for interesting fluid 

dynamics. 

4.3 Concluding Remarks 

Thesis Summary 

A numerical method is presented that solves incompressible viscous flow in a tube with 

a deformable boundary. Chapter one gave the background of methods and problems which 

have led to the development of the SV algorithm. Specifically, it is Chorin's projection 

method with the second-order accurate predictor-corrector of Bell, Colella and Glaz upon 

which this work is built. It was noted that projection methods have been particularly suc­

cessful at modeling the incompressible Navier-Stokes equations. The introductory chapter 

goes on to say that finite difference methods have worked well on irregular domains by the 

use of both immersed boundaries and mapped grids, as well as other methods. 

In chapter two, the mathematical modeling issues for an incompressible viscous flow 

on a deformable domain are discussed. The incompressible Navier-Stokes equations were 

presented for the physical problem of flow through a flexible tube. The physical model was 

then transformed into a mathematical model via several mathematical tools. The Hodge 

decomposition was described and its concepts extended to the projection operator which 

yielded an evolution equation for the equations of motion. The fixed domain problem 

was briefly described and proposed to be well-posed because of the ability to differentiate 

the boundary conditions. Then the technique of moving, mapped grids was put forth for 
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handling a deformable domain. The inability to differentiate time-dependent boundary 

conditions was noted as the main issue for flow on deformable domains. This would lead to 

problems with enforcement of the incompressibility constraint . 

The chapter continued as model of flow in a flexible tube was constructed. The in­

viscid case was explored in order to discover a solution to an unsolvable outflow boundary 

condition in the viscous case. The boundary value problem of potential flow was discussed 

as a special case. The Hodge decomposition, in conjunction with findings from the in­

viscid case- particularly, the restriction of a flat outlet section which yields a solution to 

the outflow problem- led to a split-velocity formulation where the velocity field is split into 

two components: the vortical component and the potential component. The vortical com­

ponent of velocity enforces the incompressibility constraint in time by definition since it 

is divergence-free. The potential component is the solution to a BVP defined by normal 

boundary conditions and is known at all times. The splitting fits well into the framework 

of the projection. However, application of the constraint remained an issue. 

In chapter three, a new time discretization which generalizes the BCG method was 

described. A model problem was explained, and a predictor-corrector method was shown 

to be second-order accurate. The SV method does not differentiate the incompressibility 

constraint, but, rather, applies only a succession of fixed time operators. In this fashion, 

the solution always satisfies the constraint. Also, the new discretization projects velocity, 

not acceleration. 

The details of the SV algorithm discretization were completely offered in chapter three. 

Various numerical tools were first presented. With a discrete mapping it was shown how the 

transformation behaves in time. Discretizations for the projection operator were then put 

forward noting the exactness of the edge-based MAC projection and the approximate, but 

stable, cell-centered projection. Solution to the special case of potential flow was described 

as it is part of the flow that is to be known at all times. 

Chapter three continued with the actual discretization of the algorithm. First, the sec-
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ond order Godunov method with a MAC projection was described to obtain the nonlinear 

convective derivative. The viscous terms were then predicted by solving a diffusion equa­

tion based on the convective derivative and gradient of a lagged Bernoulli pressure with 

Crank-Nicholson differencing. The vortical velocity was then predicted and corrected by a 

cell-centered approximate projection using pressure correction formulation. The Bernoulli 

pressure was updated to the proper time centering as well. Finally, the total velocity was 

computed by adding the cell-centered potential part to the vortical part. Discrete im­

plementation was outlined where solution to an inhomogeneous boundary value problem is 

broken down into a homogeneous interior problem and an equivalent inhomogeneous bound­

ary problem, but solved as one. The multigrid iterative method was briefly described as a 

solver for Poisson's equation, with special attention given to grid coarsening. 

The thesis has concluded with chapter four- a presentation and discussion of results 

obtained by the SV method. First, grid generation was described. A way of studying ac­

curacy was then given with a note on loss of accuracy in the radial component of velocity 

at the axis of symmetry. Potential flow was shown and validated based on knowledge of 

exact solutions. The main results presented were the viscous flow simulations for an inward 

and outward moving hump in a tube. Numerical accuracy was shown to be second-order 

and several identifying characteristics of the modeled physics were captured. Separation 

and reattachment were shown for lower Reynolds number regimes. Separation and recir­

culation were demonstrated for higher Reynolds numbers. The balance between vortical 

and potential components of velocity was seen near and away from the boundary. The 

"top-hat" velocity profile of an internal laminar jet was also computed by the algorithm. 

Strong gradients resulting from shear layers were captured in the interior of the flow for 

expansion of the tube which validated the use of a compressible flow advection scheme. 
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Future Work 

The initial goal of this thesis was to develop a numerical model of a true fluid-solid 

interaction. The fluid dynamics side of the model has been achieved in the SV algorithm 

where a fluids model has been obtained which can handle a deformable boundary. What 

remains is the addition of a real constitutive response at the solid wall boundary via a finite 

element structural model so that the wall can respond to fluid pressure and the fluid can 

respond to a physically displaced wall. Time scales of the coupling of the two models into a 

hybrid model remains a question. Numerical accuracy is also an unknown for this problem. 

Projection methods are currently used to solve a variety of problems. The technology 

of the SV method can be applied to existing projection methods in order to accommodate 

other deformable domains. It is also of interest to extend the target problem in this thesis 

to three dimensions. The best way to deal with a three dimensional model would be to 

employ a Cartesian grid embedded boundary method. The method is based on a finite 

volume approach to handle irregular cells near boundaries. The time-dependent techniques 

of the SV method should adapt quite nicely to such an environment. 

There are several physical applications for the model of flow in a flexible tube. Hemo­

dynamic flow is an obvious one where the fluid is coupled to a responsive walL Stenosis in 

arteries is a problem that could be analyzed, especially in regions behind lumps in vessels 

where the flow is extremely vortical such that it causes small emboli to break off which clog 

smaller vessels. Outside of biological applications there are industrial flows like slugging 

flow in oil pipelines. This problem would require a multiphase flow modeL 
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I 

(a) 

(b) 

Figure 4.2: Numerical error of SV method for incompressible flow in a flexible tube with inward moving 

hump at time t = .5 (inlet Re = 8). (a) el/16 , el/32 and el/64 in radial component, u (scale: -.0069 to .0115). 

(b) el/16 , el/32 and el/64 in axial component, v (scale: -.0125 to .0036). 
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(a) 

(b) 

Figure 4.3: Numerical error of SV method for incompressible flow in a flexible tube with inward moving 

hump at time t = .5 (Inlet Re = 8). (a) e1 / 16 , e1 / 32 and e1 / 64 in radial component, u (scale: -.0305 to .0346). 

(b) e1/ 16 , e1/ 32 and e1/ 64 in axial component, v (scale: -.1191 to .0414). 
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(a) 

(b) 

Figure 4.4: Potential velocity for outward moving hump. (a) Plots of radial component of potential 

velocity at times t = 0 (fixed) (scale: -.589 to .589), t = .5 (moving) (scale: 0 to .772) and t = 1 (fixed) 

(scale: -.293 to .293). (b) Plots of axial component of potential velocity at times t = 0 (fixed) (scale: .909 

to 2.207) , t = .5 (moving) (scale: -.512 to 1.12) and t = 1 (fixed) (scale: .428 to 1.05). 
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(a) 

(b) 

Figure 4.5: Vorticity for incompressible flow in a flexible tube with inward moving hump (inlet Re = 8). 

(a) Times t = .1, .2 , .3, .4, .5. (b) Times t = .6, .7, .8, .9, 1. Note separation and reattachment at t = .9 and 

t = 1. (Scale: -1.35 to 21). 
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(a) 

(b) 

Figure 4.6: Axial velocity for incompressible flow in a flexible tube with inward moving hump (inlet 

Re = 8). (a) Times t = .1, .2, .3,.4, .5. (b) Times t = .6, .7, .8, .9, 1. (Scale: -.0265 to 4.677). 
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(a) 

(b) 

Figure 4.7: Radial velocity for incompressible flow in a flexible tube with inward moving hump (inlet 

Re = 8). (a) Times t = .1, .2, .3,.4, .5. (b) Times t = .6, .7, .8, .9, 1. (Scale: -.860 to .2092). 
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(a) 

(b) 

Figure 4.8: Vorticity in tube with inward moving hump (inlet R e = 200). (a) Times t = .1, .2, .3, .4, .5. 

(b) Times t = .6, .7, .8, .9, 1. Note separation with no reattachment and a recirculation zone curling up at 

t = .9 and t = 1. (Scale: -61.11 to 86.05). 
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(a) 

(b) 

Figure 4.9: Axial velocity in tube with inward moving hump (inlet Re = 200). (a) Times 

t = .1, .2, .3,.4, .5 . (b) Times t = .6 , .7, .8, .9, 1. Note recirculation zone curling up at t = .9 and t = 1. 

(Scale: -1.41 to 3.466) . 
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(a) 

(b) 

Figure 4.10: Radial velocity in tube with inward moving hump (inlet Re 

t = .1 , .2 , .3, .4, .5. (b) Times t = .6, .7, .8, .9, 1. (Scale: -.868 to .265). 

72 

200) . (a) Times 
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(a) 

(b) 

Figure 4.11: Vorticity in expanding tube. (a) Inlet Re = 16. Times t = 1.0 (scale: -4.44 to 38.91), 

t = 1.5 (scale: -2.34 to 13.45), t = 2.0 (scale: .010 to 10.25). (b) Inlet Re = 400. Times t = 1.0 (scale: 

-67.41 to 87.15), t = 1.5 (scale: -28.65 to 27.52), t = 2.0 (scale: -1.56 to 18.73). 
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(b) 

Figure 4.12: Axial velocity in tube with inward moving hump (inlet Re = 16) . (a) Total axial velocity, 

vortical axial velocity and potential axial velocity at t=.5 (scale: -4.08 to 5.48) with radial profile of total 

axial velocity. (b) Total axial velocity, vortical axial velocity and potential axial velocity at t=l.O (scale: 

-4.36 to 6.24) with radial profile of total axial velocity. Note vortically driven flow near boundary and 

potentially driven flow away from boundary. 
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Figure 4.13: Axial velocity in tube with outward moving hump (inlet Re = 16) . (a) Total axial velocity, 

vortical axial velocity and potential axial velocity at t=1.5 (scale: -2.36 to 3.72) with radial profile of total 

axial velocity. (b) Total axial velocity, vortical axial velocity and potential axial velocity at t=2.0 (scale: 

-1.97 to 3.90) with radial profile of total axial velocity. Note plug flow potential component at t = 2 for a 

boundary at rest . 
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Figure 4.14: Axial velocity in tube with inward moving hump (inlet Re = 400). (a) Total axial velocity, 

vortical axial velocity and potential axial velocity at t=.5 (scale: -4.02 to 4.15) with radial profile of total 

axial velocity. Note steepness of profile near wall. (b) Total axial velocity, vortical axial velocity and potential 

axial velocity at t=l.O (scale: -4.31 to 4.44) with radial profile of total axial velocity. Note "top-hat" profile 

of an internal laminar jet with void in center of vortical component of flow. 
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Figure 4.15: Axial velocity in tube with outward moving hump (inlet Re = 400) . (a) Total axial velocity, 

vortical axial velocity and potential axial velocity at t=1.5 (scale: -2 .50 to 2.40) with radial profile of total 

axial velocity. (b) Total axial velocity, vortical axial velocity and potential axial velocity at t=2.0 (scale: 

-1.98 to 2.27) with radial profile of total axial velocity. 
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(a) 

(b) 

Figure 4.16: Axial velocity in tube with inward/outward moving hump (inlet Re = 800). (a) Times 

t = 0, .5, 1, 1.5, 2. (b) Times t = 2.5,3,3.5,4. (Scale: -2.113 to 3.781). 
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