
Scalability Challenges for Massively Parallel AMR Applications

Brian Van Straalen⋆, John Shalf†, Terry Ligocki⋆, Noel Keen⋆†, Woo-Sun Yang†

⋆ ANAG, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
† NERSC, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Abstract

PDE solvers using Adaptive Mesh Refinement on

block structured grids are some of the most challeng-

ing applications to adapt to massively parallel com-

puting environments. We describe optimizations to the

Chombo AMR framework that enable it to scale effi-

ciently to thousands of processors on the Cray XT4. The

optimization process also uncovered OS-related perfor-

mance variations that were not explained by conven-

tional OS interference benchmarks. Ultimately the vari-

ability was traced back to complex interactions between

the application, system software, and the memory hier-

archy. Once identified, software modifications to con-

trol the variability improved performance by 20% and

decreased the variation in computation time across pro-

cessors by a factor of 3. These newly identified sources

of variation will impact many applications and suggest

new benchmarks for OS-services be developed.

1 Introduction

As processor clock rates have stalled, future perfor-

mance improvements for scientific applications increas-

ingly depends on scaling HPC systems to unprecedented

numbers of processors. The move from exponentially

improving clock rates towards exponential increases in

system parallelism puts stress on every aspect of HPC

system design and raises fundamental questions about

languages and application programming models. Since

future application performance scaling is increasingly

dependent on massive parallelism, it is critically impor-

tant that both applications and algorithms are reformu-

lated to utilize these dramatic increases in system con-

currency. Applications and algorithmic approaches that

fail to have good parallel scaling efficiency will be in-

creasingly marginalized as system parallelism will dou-

ble every 18 months for the foreseeable future.

PDE solvers using adaptive mesh refinement, AMR,

on block structured grids, e.g. [1,2], are among the most

challenging applications to adapt to massively parallel

computing environments. AMR is typically discounted

as being inherently unscalable due to complex load bal-

ancing demands and intense communication require-

ments. This paper counters such arguments by describ-

ing optimizations to the Chombo AMR framework [4]

that enable it to scale efficiently to thousands of pro-

cessors on the Cray XT4. A critical component of our

study was developing a highly instrumented implemen-

tation of the Chombo code and appropriate test problem

configurations that provide a basis for understanding the

advantages and disadvantages of our approach.

The instrumented version of Chombo, which was

used to analyze scaling bottlenecks, uncovered sources

of performance variation that were directly attributable

to changes in the OS rather than any aspect of the

hardware or application code. In particular, when one

Cray XT4 system used for testing was upgraded from

the Catamount micro-kernel to Compute Node Linux

(CNL), we observed a 10% drop in application perfor-

mance and an increase of the coefficient of variation

(CoV) of individual MPI task runtimes by a factor of

7, which was directly responsible for the drop in appli-

cation performance. However, the same sources of vari-

ation were not evident when measured by traditional OS

variation benchmarks, such as P-SNAP [5], which cast

doubt upon an OS-interference hypothesis. Ultimately,

we found the source of variability was complex interac-

tions between the Linux/GNU libc heap management al-

gorithm and the memory hierarchy that were extremely

difficult to detect using conventional means. Once iden-

tified, software modifications to control the source of

variability improved performance by 20% and decreased

the CoV of individual MPI task runtimes by a factor of

3.

In this study, we demonstrate that with appropri-

ate code instrumentation and code restructuring, AMR

codes can indeed be optimized to achieve scalable per-

formance on leading HPC systems. In so doing, we have

demonstrated scalable performance on up to 8192 pro-

cessors on the Cray XT4, which is the best performance

to date for an AMR hyperbolic gas dynamics solver, one



of the most demanding of our benchmark problems [3].

We also show that with increasing system concurrency,

sources of system variation have an increasingly sub-

stantial impact on the performance of a broad range of

bulk-synchronous parallel applications. A unique con-

tribution of this paper is the analysis of a novel source of

system variability that is related to the OS services such

as memory allocation management rather than the kernel

itself. The difficulty of diagnosing this problem and the

ineffectiveness of existing OS interference benchmarks

for diagnosing this problem suggests the need to develop

new benchmarks that capture this new class of variabil-

ity in OS services.

2 Experimental Testbed

These experiments were run on two Cray supercom-

puters over the period of 8 months: Franklin at LBNL

and Jaguar at ORNL. Franklin is a 9,660 node XT4

system operated by the National Energy Research Sci-

entific Computing Center (NERSC) with two cores per

node. Jaguar is as a hybrid Cray XT system consisting

of 5,294 dual-core XT4 nodes and 6,206 dual-core XT3

nodes, which is operated by the ORNL National Center

for Computational Sciences (NCCS).

2.1 Hardware: Cray XT4 and XT3

Each node of the Cray XT4 contains a dual-core

2.6 GHz AMD Opteron processor for a total of 19,320

compute processors on the entire Franklin system.

The memory subsystem uses DDR2-667MHz memory,

which offers nearly 7GB/s aggregate memory band-

width per core when measured by the STREAM Triad

memory bandwidth benchmark. The processors are

tightly integrated to the XT interconnect via a Cray

SeaStar 2.1 ASIC through a 6.4GB/s bidirectional Hy-

perTransport interface. All the SeaStar routing chips are

interconnected in a 3D torus topology, where each node

has a direct link to six of its nearest neighbors on the

torus with a peak bidirectional bandwidth of 7.6GB/s.

Both the processors and node architecture of Jaguar and

Franklin are nearly identical, giving us an opportunity

to compare the CNL operating system to the Catamount

micro-kernel.

Some of our experiments were conducted on XT3

nodes on the NCCS Jaguar system, which use the same

2.6 GHz AMD Opteron processor cores and intercon-

nect topology. However, the older-model XT3 nodes use

slower DDR1-266MHz memory, which offers about half

the effective memory bandwidth of the XT4’s DDR2

memory subsystem.

2.2 Operating Systems

Cray XT series systems have been offered with two

different operating systems; Catamount, which is a spe-

cialized micro-kernel OS, and Compute Node Linux

(CNL), which is based on a Linux kernel. During our

experiments, both systems initially ran Catamount and

subsequently migrated to CNL. This transition provided

us with a unique opportunity to directly assess the ef-

fect of the OS kernel on system variability and delivered

system performance for both the Catamount and CNL

operating environments.

The Catamount micro-kernel was developed by San-

dia National Laboratory for the Red Storm computing

system [6]. The simpler kernel design of Catamount

minimizes the memory footprint of the kernel and con-

trols for a wide range of sources of OS-induced varia-

tion. One deficiency of Catamount is that it does not

support symmetric access to the device interface, or

support shared memory for symmetric multiprocessing.

Another deficiency is that one of the two processors on

the socket must handle all I/O operations on behalf of

both processors, leading to a slight load imbalance. The

Catamount kernel does not currently support the quad-

core barcelona processor, which motivated NERSC and

ORNL to migrate to CNL.

CNL is a lightweight kernel based on the Linux OS.

The CNL design also pays special attention to mak-

ing many sources of OS interference quiescent, such

as cron jobs and other stochastically scheduled daemon

processes that exist in a full Linux OS implementation.

CNL provides many of the familiar OS services present

in a desktop Linux implementation, such as support for

symmetric multiprocessing, shared memory, and most

conventional system libraries. However, the compute

nodes of the XT4 offer a very restricted environment

that does not include dynamic linking, advanced script-

ing languages, or shell environment features. The shared

memory support will enable use of hybrid programming

models using OpenMP, and allow each of the cores sym-

metric access to the communication interface.

3 Application

Block-structured AMR, developed by Berger and

Oliger [1, 2] for computational gas dynamics, is a mul-

tiscale algorithm that achieves high spatial and temporal

resolution in localized regions of dynamic multidimen-

sional numerical simulations. A broad range of physi-

cal phenomena modeled by PDE exhibit multiscale be-

havior where variations in the solution occur over scales

that are much smaller than the overall problem domain.

Examples include flame fronts arising in the burning of



hydrocarbon fuels, nuclear burning in supernovae, ef-

fects of localized features in orography or bathymetry

on ocean currents, tracking of tropical cyclones, local-

ized kinetic effects for plasma physics problems, and, in

general, small scale effects due to nonlinear instabilities.

In each of these problems, the fundamental mathemati-

cal description is given in terms of various combinations

of PDE of classical type (elliptic, parabolic, hyperbolic).

The Berger and Oliger AMR algorithm organizes re-

fined regions into rectangular structured grids of several

hundred to several thousand grid points per grid. High-

resolution structured-grid methods (typically expressed

as stencils) are used to advance the solution in time. Fur-

thermore, the overhead of managing the irregular data

is amortized over a relatively large number of floating

point operations on the rectangular grids. For time-

dependent problems, refinement is performed in time as

well as space. Each level of spatial refinement has its

own stable time step, with the time steps on a level con-

strained to be integer multiples of the time steps on all

finer levels.

3.1 Chombo AMR Framework

AMR applications require a long-term sustained in-

vestment in software infrastructure to create scalable

solvers that are capable of utilizing the full capabilities

of the largest available HPC platforms. We have created

a framework for implementing scalable parallel AMR

calculations called Chombo [4] that provides an environ-

ment for rapidly assembling portable, high-performance

AMR applications for a broad variety of scientific disci-

plines.

Chombo is a fully instrumented C++ library. There

are a set of timer macros that can be used to time func-

tions or sections of code. These timers attempt to use

native instructions on the target architecture in order

to minimize the overhead of collecting detailed perfor-

mance data. In the case of the Cray XT, Chombo mea-

sures elapsed time using the rdtsc x86 assembly in-

struction. This returns a 64-bit unsigned integer rep-

resenting the number of clock cycles since last proces-

sor reset. On the AMD Opteron processor this instruc-

tion takes, on average, 13 cycles to execute, and for a

2.6GHz clock provides a 0.385 nanosecond timing reso-

lution. The timers collect information which is summa-

rized and output at the end of a run for each processor.

The output of the Chombo timing infrastructure is sim-

ilar in format to the GNU profiler (gprof) output but

only instrumented functions and sections of code are re-

ported. This information is then post-processed to pro-

duce various statistics, e.g., mean/min/max times, stan-

dard deviations, and correlations.

Additional analysis was performed using the

CrayPat performance analysis tools on the Cray XT

system. Specifically, certain sections of code were

manually instrumented with CrayPat calls.

4 Benchmarking Methodology

In many applications that use PDE solvers, the pri-

mary motivation for using large numbers of processors

is to achieve weak scaling. Even with AMR, many lead-

ing scientific problems remain out of reach due to in-

adequate grid resolution. In those cases, increasing the

number of processors is used to increase the spatial res-

olution of the grids using the minimum number of pro-

cessors necessary to fit the problem into the available

memory. Therefore, we focus on a methodology for con-

structing weak-scaled AMR benchmarks because this

methodology models the dominant use-case for scien-

tific problems that employ this computational method.

4.1 Replication Scaling Benchmarks

Classically, weak scaling studies of numerical meth-

ods for solving PDE on uniform grids have been per-

formed using mesh refinement, which involves scaling

the problem, refining the grid by an integer factor in

each direction and increasing the number of processors

so that the number of grid points per processor is fixed.

The analogous scaling method for AMR would refine

the coarsest grid by an integer factor and decrease the

error tolerance so that the resolution at each level is in-

creased by the same integer factor. In practice, such an

approach leads to scaling behavior that is difficult to in-

terpret. Under such a refinement scheme, the size of the

refined regions at each level can change significantly,

which often decreases the physical size of the refined

region at a given level. Therefore, the data-dependent

behavior of the AMR refinement heuristics can cause

changes in AMR scaling performance that are difficult to

distinguish from loss in scaling due to other causes. For

this reason, we have developed benchmarking methods

based on replication scaling which take a grid hierarchy

and data for a fixed number of processors and scale it

to higher concurrencies by making identical copies of

the hierarchy and the data, see Figure 1. The full AMR

code (processor assignment, problem setup, etc.) is run

without any modifications to guarantee it is not directly

aware of the replicated grid structure. Replication scal-

ing tests most aspects of weak scalability, is simple to

define, and provides results that are easy to interpret.

Thus, it is a very useful tool for understanding and cor-

recting impediments to efficient scaling in an AMR con-

text. Furthermore, it is a good proxy for the scaling be-

havior of real applications. For example, a large part of



(a) (b)

Figure 1. (a) Grids at the finest AMR level used in the hyperbolic gas dynamics benchmark – these grids cover

the shock front of a spherical explosion in 3D. (b) Replicated grids at the finest AMR level used in the weak

scaling performance study of the hyperbolic gas dynamics benchmark.

the simulation of a gas turbine will be the simulation of

multiple identical burners arranged in a ring.

Replication scaling does not rigorously test load bal-

ancing. Load imbalances that are inherent at smaller

scales tend to remain the same as regions are replicated

to scale the problem. Thus, the results obtained using

replication scaling need to be supplemented with other

measurements to obtain definitive scaling behavior, such

as showing that the twall × Nproc divided by the num-

ber of grid points (“grind time”) is bounded in the weak

scaling limit using a more traditional AMR mesh refine-

ment study [10, 13]. This work follows very closely the

approach taken in [12].

4.2 Hyperbolic Gas Dynamics Bench-
mark

We benchmarked an explicit method for unsteady in-

viscid gas dynamics in three dimensions that is based

on an unsplit PPM algorithm [7, 14]. This algorithm re-

quires approximately 6000 flops/grid point. Since it is

an explicit method, communication between processors

is required only once per time step. We used the im-

plementation of this method from the Chombo software

distribution without significant modification. The oper-

ator peak performance for this method on the Cray XT4

was 530 Mflops/processor. The initial grids used for

the replication benchmark came from a 3D, spherical-

shock problem with the finest grids covering the spheri-

cal shock, see Figure 1.

The benchmark used three levels of AMR with a fac-

tor of 4 refinement between levels and with refinement in

time proportional to refinement in space. We use fixed-

sized 163 grids and a total of 6.2 × 107 grid points and

five unknowns per grid point, with 109 grid point up-

dates performed for the single coarse-level time step.

None of the grids at any level were changed during any

of the time steps, i.e., there was no grid adaptation in

time which is sometimes called “regridding”. In the re-

sults given here, we are only timing the cost of comput-

ing a single coarse-level time step, which includes all

intermediate and fine time steps on all AMR levels but

excludes the problem setup and initialization times.

5 Optimizing AMR for Scalability

Load balancing and communication volume are of-

ten blamed as the leading impediments to AMR per-

formance scalability, but careful profiling and analysis

of the code performance showed such concerns to be

the lowest priority relative to other scalability bottle-

necks that were identified. Indeed, many of the scaling

problems related to early design decisions for the grid

management infrastructure that had an inconsequential

performance impact at low concurrencies became major

bottlenecks as the code was scaled to thousands of pro-

cessors. We begin by describing the code optimization

strategies and then discuss new sources of OS/system

variability and its impact on AMR performance.



5.1 Baseline Code Optimizations

The code optimizations that improved our AMR scal-

ing behavior fall into three major categories: improving

communication locality, converting to metadata man-

agement algorithms with O(N) computational complex-

ity, and optimizing coarse-fine boundary value compu-

tations.

5.1.1 Minimizing Communications Costs

We found it necessary to distribute patches in a way

that minimizes communications costs using space-filling

curves. If D is the spatial dimension of the problem,

Morton ordering [8] is a 1-1 mapping of Z
D onto Z with

good locality, i.e., the fraction of nearest neighbors in

Z
D of the inverse image of an interval I ⊂ Z of length

M whose Morton indices are not in I is O(M−1/D).
Load balancing is done by sorting the patches according

to the Morton indices of their low corners, and divid-

ing the linearly-ordered patches into intervals with equal

workloads.

Morton ordering was chosen because it can be com-

puted very efficiently and guarantees good locality

within a single level of refinement, i.e., intra-level. The

partitioning onto processors obtained using Morton or-

dering shows uniform distributions with only a small

fraction of the patches having neighbors that are off-

processor. This is in contrast to a recursive bisection ap-

proach that was used previously, in which it is possible

to have long thin partitions with all the patches requiring

boundary data from off-processor.

In practice, Morton ordering also produced good lo-

cality between levels of refinement, i.e., inter-level, for

our AMR computations. Also, Morton ordering makes

it advantageous, especially at high concurrencies (4096+

processors), to overlap the local copying of data from

neighbors that are on the same processor with the remote

copying of data from neighbors that are on other proces-

sors using asynchronous MPI calls. Other self-similar,

space-filling curves should have similar advantages.

5.1.2 Scalable Computation of Patch Metadata

There were a number of bottlenecks that were related to

data management algorithms of O(N2) complexity that

were insignificant at small concurrencies, but rapidly

grew into major scaling bottlenecks for thousands of

processors. Our study uncovered numerous examples

where expedient programming choices early in the de-

velopment of the framework revealed themselves at

higher concurrencies. One such example is the manage-

ment of patch metadata in the complex and dynamically

changing grid hierarchies.

In our current implementations of AMR, every pro-

cessor has a copy of the metadata which consists of all

the patch outlines and processor assignments. These

are used to compute intersection lists, e.g. which

patches/processors contain neighbor data, which must

be periodically copied. When using thousands of pro-

cessors, it is essential to use O(log(Npatch)) sorts and

searches to compute these intersection lists. Otherwise,

there is a catastrophic failure to scale due to perform-

ing O(Npatch) computations on every processor. Even

using fast methods, the cost of these computations are

not negligible, so significant performance improvements

were obtained by caching intersection lists.

5.1.3 Optimizing Coarse-Fine Boundary Condition

Calculations

Coarse-fine boundary conditions involve parallel com-

munication and irregular computation. While these cal-

culations are scalable, they can substantially impact the

variability of code runtimes and are difficult to account

for accurately in the load balancing. The approach we

used was to highly optimize the irregular computations

and thus minimize their overall impact. We make ag-

gressive use of residual-correction forms of the PDE to

minimize how often the coarse-fine boundary conditions

are computed. For interpolation stencils that are regular,

we call Fortran implementations of these stencils. Al-

though we have not done so here, we could also have

taken advantage of fixed-size patches to make nearly all

such calculations regular or develop fast irregular stencil

operations.

5.1.4 Load Imbalances

The hyperbolic gas dynamics benchmark highlighted

several anomalies in the timing results that initially ap-

peared to be load imbalances in the core computational

kernel. This core computational kernel was a discretiza-

tion of a hyperbolic PDE, which can be broken down

into three broadly-defined phases of computation; pre-

advance, time advance, and post-advance. The time ad-

vance phase is of primary interest because it contains

no communication or I/O but does perform most of the

computation. This phase executes once at the coarsest

AMR level, four times at the intermediate level, and six-

teen times at the finest level. It was straightforward to

monitor sources of variability by inserting barriers be-

tween individual phases of computation. Timing the en-

try and exit to these barriers enabled direct measurement

of any load imbalances and the isolation of sections of

code that contributed to the imbalance.

The resulting measurements showed that nearly all

the significant load imbalances were in the time advance



phase, which was unexpected because all the grids on

all levels were the same size, 163 elements, each proces-

sor had almost the same number of grids, and the work

done on each grid should have been insensitive to the

data. For example, at the finest level, each processor

had 232 or 233 grids, which should have resulted in a

maximum 0.4% imbalance. Separately conducted sensi-

tivity experiments found that there could be a maximum

3.5% worst-case variation in runtime per grid depend-

ing on the data present, but this could only occur under

conditions that were unlikely to be found in actual com-

putations and did not occur during our benchmarks.

Further comparisons between the Jaguar system run-

ning Catamount (Jaguar/Catamount) and the Franklin

system running CNL (Franklin/CNL) led us to be-

lieve OS interference was at fault. Specifically, on

Jaguar/Catamount the maximum runtime on a few pro-

cessors for the time advance phase was much greater

than all the other processors, well above the mean

by several standard deviations. Moreover, this be-

havior occurred much more frequently on large runs.

On Franklin/CNL, and later on Jaguar/CNL, the mean

runtime was consistently higher, by about 10%, and

the CoV was 7 times greater than typical runtimes on

Jaguar/Catamount. Uncovering the source of variation

became the subject of a much deeper analysis of the

AMR code’s interaction with the software and OS en-

vironment on the Cray XT4 systems.

5.2 Sources of Runtime Variability

In our attempts to correct load imbalances that were

discovered in the Chombo code, we uncovered sources

of variability that were originally mis-attributed to algo-

rithm characteristics. This section traces our approach to

isolating sources of runtime variability on the Franklin

and Jaguar systems.

5.2.1 Jaguar Runtime Variability

Runtime variability caused by stochastic sources of

interference can substantially impact the runtime of

bulk synchronous parallel applications such as Chombo.

Figure 2(a) shows comparative runtimes for each

MPI processor rank for identical code running on

Jaguar/Catamount XT3/XT4 and Franklin/CNL. Al-

though each processor was given a nearly identical

workload, the Franklin/CNL nodes exhibited consider-

able variability in runtime performance as shown by the

very broad (noisy) red line. The Jaguar/Catamount per-

formance for both XT3 and XT4 systems, shown by the

blue and green lines, is much less noisy, but shows small

spikes in the graph where individual MPI ranks were

delayed substantially compared to their peers. Given

the bulk-synchronous nature of this code, the worst-

case delays end up determining the overall runtime on

Jaguar/Catamount. So, although the average perfor-

mance of the Jaguar/Catamount XT4 system was sub-

stantially better than Franklin/CNL, the delivered per-

formance was no better.

A closer inspection of the data showed that the spikes

were always two processors on the same node, leading to

an initial theory that XT3 nodes were allocated by mis-

take. However, the XT3 runs also showed anomalous

spikes in node performance, shown by the blue spikes in

Figure 2(a), that were proportionally higher than those

of the nominal XT3 nodes. An examination of the batch

logs showed that no XT3 nodes participated in the XT4

jobs. The ultimate cause of the problem was tracked

down to the overhead of the ECC correction of single-

bit errors in the memories of the affected nodes, lead-

ing to measurable load imbalances. Both ORNL and

NERSC were able to correct the problem by increas-

ing the voltage of the memory subsystems to the point

that the memory errors were all but eliminated. Sub-

sequently, the spikes observed in Figure 2(a) no longer

occurred.

5.2.2 Franklin Runtime Variability

The primary source of variability was corrected

on Jaguar/Catamount XT3/XT4, but persisted on

Franklin/CNL. Franklin/CNL was now 8.7% slower

than the Jaguar/Catamount XT4 and had a CoV that

was 7 times larger. Figure 2(b) shows node completion

times plotted as a histogram. Unlike Figure 2(a), this

representation shows a clear structure in the variation on

Franklin/CNL as three distinct Gaussian distributions,

i.e., a tri-normal distribution. Given the Franklin/CNL

and Jaguar/Catamount systems were nearly identical

in architecture, any differences in behavior were most

likely due to differences in the software environment.

One early hypothesis was that we had uncovered a

classic case of OS interference that was analyzed in

detail on the ASCI White and ASCI Q systems [9].

Therefore, we obtained an operating system benchmark

developed at LANL named P-SNAP, which uses one

method of quantifying interference or noise in oper-

ating systems. P-SNAP uses a Fixed Work Quantity

(FWQ) approach consisting of a simple loop of con-

stant integer additions. All processors perform the exact

same operations and measure the time (by default, us-

ing MPI Wtime()). On a system with no interference,

each processor would report the same measured time.

P-SNAP was run on 8192 processors of

Franklin/CNL using the default input parameters.

The results shown in Figure 3(a) demonstrate modest

OS noise. However, the variation in runtime measured



0 2000 4000 6000 8000

Processor Number

125

150

175

200

225
R

u
n
ti

m
e 

(s
ec

o
n
d
s)

Jaguar/Catamount XT4

Jaguar/Catamount XT3

Franklin/CNL XT4

(a)

150 160 170 180

Runtime (seconds)

0

200

400

600

800

1000

1200

1400

1600

N
u
m

b
er

  
o
f 

 P
ro

ce
ss

o
rs

Jaguar/Catamount XT4

Jaguar/Catamount XT3

Jaguar/CNL XT4

Franklin/CNL XT4

(b)

Figure 2. (a) Runtime of each MPI process rank on Jaguar/Catamount and Franklin/CNL. The spikes in the

Jaguar/Catamount runtimes were attributed to ECC memory correction overhead on nodes experiencing high

memory error rates. (b) Histogram of runtime variability for the AMR hyperbolic gas dynamics runs on the

evaluated systems.

(a)

130 140 150 160 170 180

Runtime (seconds)

0

400

800

1200

1600

2000

2400
N

u
m

b
er

  
o
f 

 P
ro

ce
ss

o
rs

Jaguar/Catamount XT4

Jaguar/Catamount XT3

Franklin/CNL XT4 - Nominal
Franklin/CNL XT4 - Environment Variables
Franklin/CNL XT4 - Local Memory Management

(b)

Figure 3. (a) 8192-way P-SNAP results on Franklin/CNL. (b) Histogram of AMR hyperbolic gas dynamics

runtime with memory optimizations.

3.360e+05 3.365e+05 3.370e+05 3.375e+05 3.380e+05

Number of calls to BArena:alloc()

160

165

170

175

180

185

R
u

n
ti

m
e 

(s
ec

o
n

d
s)

(a)

2 4 6 8 10 12 14

Accumulated Time in BArena:alloc()

160

165

170

175

180

185

R
u

n
ti

m
e 

(s
ec

o
n

d
s)

(b)

Figure 4. Scatterplot (a) shows no correlation between the run time variation and the number of memory

allocations performed. Scatterplot (b) shows a clear anti-correlation between the time spent in the memory

allocation routines and the runtime variation – meaning that processors that showed the slowest runtime spent

the least time in performing memory allocation, despite a balanced workload.



by P-SNAP is three orders of magnitude smaller than

the variation measured by our AMR benchmark, and

does not exhibit the distinctive tri-normal distribution

observed in Figure 2(b). Therefore, classic OS in-

terference is unlikely to be the cause of the observed

variation in application performance. At least, if it was

OS interference, a clean and straightforward benchmark

like P-SNAP was not exposing this source of variation.

In addition to Franklin/CNL, NERSC also maintains

a smaller 128 processor XT4 machine named Silence

running CNL (Silence/CNL). Silence/CNL provided a

dedicated controlled environment and allowed for direct

comparisons between the two XT4 machines at a con-

currency of 128. Similar behavior was observed run-

ning the hyperbolic benchmark on Franklin/CNL and Si-

lence/CNL, which eliminated systematic effects caused

by hardware configuration of Franklin. Additionally, af-

ter Jaguar was upgraded from Catamount to CNL, re-

sults nearly identical to Franklin/CNL were produced.

This eliminated theories that the variations were unique

to the Franklin hardware.

Other experiments that were tried include compiling

with PGI and GNU compilers, using various compiler

optimization flags, and running with one processor per

node. In all cases the tri-normal distribution of runtimes

persisted although the average runtimes were reduced

with compiler optimizations and running with one pro-

cessor per node.

5.2.3 Sources of Variation in Heap Management

More detailed CrayPat instrumentation of the memory

allocation algorithm was performed which showed per-

formance variations between 3 and 14 seconds. More

importantly, there seemed to be three distinct categories

of memory allocation across the processors as shown in

Figure 4(a). Although the time variation in memory al-

location would not account for the entire observed vari-

ation, this was compelling.

Figure 4(a) shows that the number of calls to the

memory allocation routines had no correlation to the

overall runtime variation. However, the total time spent

in memory allocation correlated strongly to overall run-

time variation, Figure 4(b), but it was a negative correla-

tion: the faster the overall memory allocation, the slower

the overall runtime. Looking at the data in more detail

revealed that the time spent in several Fortran 77 rou-

tines, which contained no memory allocation or complex

logic, was inversely correlated to the amount of time

spent in the allocation and accounted for the overall run-

time variation. Note that since calloc() was used, the is-

sue could not be related to the time spent mapping TLB

pages since calloc() (unlike malloc()) forces the pages

to be mapped. Therefore, when the memory allocator

spent less time in a memory allocation operation, the

performance of the Fortran numerical kernels that used

the allocated memory suffered dramatically lower per-

formance.

One hypothesis for this effect is that the CNL

memory allocator has more sophisticated heuristics

for managing the heap than Catamount. Simplify-

ing the memory allocator could correct this behav-

ior. We tested this hypothesis by changing two of the

system environment variables, MALLOC MMAP MAX

and MALLOC TRIM THRESHOLD , to simplify the

memory allocation strategies. In particular the MAL-

LOC MMAP MAX option determines whether the

mmap() system call will be used for large allocations.

The default value is 64, but setting the value to zero

eliminated expensive mmap() system calls altogether.

The MALLOC TRIM THRESHOLD option determines

how much free space must be available on the heap (the

pool of dynamically allocatable memory) before mal-

loc() uses the brk()/sbrk() system calls to return that

memory to the OS. Given we are not sharing the node

with other processes, there is no good reason to return

memory to the OS until we relinquish the node. Setting

the MALLOC TRIM THRESHOLD to -1 ensures that

the heap only grows, and doesn’t waste CPU cycles re-

turning the memory to the OS. On the Silence/CNL test

system, the changes to the malloc environment variables

decreased the overall runtime and its variation dramati-

cally. This did cause the time spent in memory alloca-

tion to double to an average of 25 seconds but with a

variation of only one second.

The second hypothesis was that the order of mem-

ory allocation and free operations was reducing the effi-

ciency of the data layout in the heap. Having Chombo

manage its own heap could improve performance by re-

placing a stochastic sequence of malloc() and free() op-

erations with a single allocation. The default memory

allocation system in Chombo is BArena which simply

makes calls to the system malloc/free() while tracking

memory usage for memory usage diagnostics. Another

Chombo memory allocation system, CArena, maintains

several large-granularity queues of fixed sized blocks of

memory in addition to tracking memory usage. When a

request for new memory is made, CArena first checks if

there is a large enough memory chunk in one of its ex-

isting queues. If so, it returns that to the user, otherwise

it invokes the system malloc(). Freed memory is added

to the queue with largest chunk-size that fits the freed

memory size. The memory is never returned to the gen-

eral heap. The system was originally developed for older

Cray systems that behaved poorly with dynamic mem-

ory applications. Using CArena, the overall runtime and

its variation decreased significantly and the time spent

in memory allocation at any level did not increase.



Thus both hypotheses were true and both approaches

appeared to be successful. The experiments were scaled

up to duplicate the size of the original benchmarks. The

results are shown in the two leftmost histograms in Fig-

ure 3(b), labeled “Franklin/CNL, XT4 - Environment

Variables” (purple) and “Franklin/CNL, XT4 - Local

Memory Management” (light blue). Clearly, the tri-

normal distribution disappeared when either of these op-

timizations were employed. The overall performance in-

creased significantly, 15% to 20%, while the CoV de-

creased by a factor of three. These performance results

were even better than the original Catamount results al-

though the CoV was still greater by a factor of two.

In order to examine the performance effect of the

memory allocation strategies in more detail, we mea-

sured hardware counter data using CrayPat. Table 1

shows a summary of the counter data of these runs col-

lected for the PAPI TLB DM (Data translation looka-

side buffer misses), PAPI L1 DCA (Level 1 data cache

accesses), PAPI FP OPS (Floating point operations) and

DATA CACHE MISSES (Data Cache Misses) events as

well as the times spent in functions.

As noted above, when the CNL malloc environment

variables were set to non-default values, the Chombo

memory allocation in BArena was about three times

more expensive. However, this extra time was counter-

balanced by the gains in most of the time-consuming

functions, making the overall runtime shorter. This

was a result of a more effective memory alloca-

tion/deallocation strategy which resulted in a large re-

duction in TLB misses in many key functions. For ex-

ample, altering the heap allocation environment vari-

ables reduced the time spend in getadwdxf , a Fortran

77 routine, from 29 to 24 seconds, mostly due to TLB

misses dropping from 10.9×106 to 5.3×106. A similar

effect occurred in riemannf , another Fortran 77 routine.

An even more dramatic effect was observed for FArray-

Box::performCopy, in which TLB misses dropped from

8.1×106 to 2.4×106 and performance improved from 12

to 7 seconds. Also note that setting the Linux malloc en-

vironment variables to implement a more efficient mem-

ory allocation strategy significantly reduced the runtime

variability of MPI processes. When Chombo’s CArena

memory management strategy was used for memory al-

location and deallocation, the hardware counter statis-

tics were similar to the statistics when the malloc envi-

ronment variables were set to non-default values. As a

result, the benchmark runtime was reduced and the vari-

ability of MPI processes was smaller than with the de-

fault BArena strategy. Therefore, we conclude that the

variation was due to the more sophisticated heap man-

agement routines employed by the CNL memory man-

agement compared to the Catamount memory manage-

ment. The memory allocator effects were exacerbated

by the relatively small memory page sizes (4 KB) em-

ployed by CNL combined with the lack of sequential

ordering preference that was provided by Catamount for

page mapping.

6 Scaling Results

In this section, we describe the experiments per-

formed on the Cray XT4 system at NCCS running Cata-

mount, Jaguar/Catamount. All timing results were mea-

sured using Chombo’s integral instrumentation as de-

scribed in section 3.1.

The scaling experiments performed consisted of a set

of runs where the number of processors was a power

of two ranging from 128 to 8192. All the runs were

performed with 2 levels of AMR refinement (3 levels

total) and a refinement ratio of 4 between levels. The

unreplicated domain was 163 at the coarsest level and

2563 at the finest level. The computation was run for

one coarse-level time step which, in this case, implies

there were 16 time steps at the finest level. The 128 pro-

cessor runs had a replication factor of 2 in the x direc-

tion and 1 in the y/z directions. Thus, the finest domain

was 512×256×256. As the number of processors in

a run doubled, we doubled the replication in the least

replicated direction starting with x then y then z. Thus,

the 8192 processor runs had a replication factor of 8 in

the x direction and 4 in the y/z directions and the finest

domain was 2048×1024×1024.

Each experiment consisted of seven runs so that we

could always compute weak scaling information for

each experiment. In addition, it allowed us to determine

if there were anomalous or unexpected behavior at dif-

ferent run sizes.

6.1 Benchmark Performance

Figure 5 shows plots of normalized wall clock time

for the total calculation on the Jaguar/Catamount, “To-

tal” (red), and for the portion of the computation con-

taining no communications, “Kernel” (blue). The verti-

cal axis of the plots is normalized by the time required

to solve the smallest problem on 128 processors. We ob-

serve 96% efficient scaled speedup over a range of 128

to 8192 processors, corresponding to a wall clock time

of 177±4 seconds to compute 2×109 - 1.28×1011 grid-

point updates. The FLOP rate for these calculations was

approximately 450 Mflops/processor, which is compar-

atively low as a percentage of the peak processor FLOP

rate, but is 85% of the peak achievable performance for

the serial case using a non-adaptive computational ker-

nel. The finest grids cover about 6.3% of the finest do-

main. This represents an order of magnitude improve-



Events
BArena BArena + env vars CArena

avg CoV (%) avg CoV (%) avg CoV (%)

getadwdxf

Time 29 2.09 24 0.71 26 1.65

PAPI TLB DM 10,943,900 9.67 5,304,520 1.30 6,681,630 2.92

PAPI L1 DCA 27,707,000,000 0.17 27,573,100,000 0.16 27,579,600,000 0.16

PAPI FP OPS 1,836 1.99 1,908 1.87 1,776 2.21

DATA CACHE MISSES 1,021,830,000 0.72 987,418,000 0.21 989,721,000 0.20

riemannf

Time 29 1.25 24 0.95 24 0.97

PAPI TLB DM 6,922,770 11.53 1,350,350 2.64 2,809,500 1.99

PAPI L1 DCA 10,922,100,000 0.51 10,851,900,000 0.51 10,856,100,000 0.51

PAPI FP OPS 865 2.08 883 1.93 876 2.02

DATA CACHE MISSES 399,837,000 0.81 405,767,000 0.75 406,493,000 0.78

FArrayBox:operator +=()

Time 17 0.99 16 0.61 17 0.75

PAPI TLB DM 3,335,420 10.82 2,674,980 4.09 3,237,070 3.19

PAPI L1 DCA 20,223,700,000 0.23 20,208,700,000 0.28 20,165,200,000 0.12

PAPI FP OPS 261 2.32 263 2.49 254 2.42

DATA CACHE MISSES 973,626,000 0.21 971,004,000 0.18 970,407,000 0.17

secondslopediffsf

Time 14 6.05 4 1.47 7 1.42

PAPI TLB DM 5,928,940 15.59 1,328,920 1.42 2,659,650 3.01

PAPI L1 DCA 4,525,960,000 2.14 3,486,850,000 0.16 3,488,510,000 0.16

PAPI FP OPS 169 5.51 408 5.64 226 3.99

DATA CACHE MISSES 581,476,000 6.00 204,598,000 0.16 204,569,000 0.16

FArrayBox:performCopy()

Time 12 4.36 7 2.14 8 1.54

PAPI TLB DM 8,064,020 13.23 2,385,110 1.30 2,911,920 2.11

PAPI L1 DCA 5,902,970,000 0.18 5,846,700,000 0.18 5,868,130,000 0.21

PAPI FP OPS 0 0.00 0 0.00 0 0.00

DATA CACHE MISSES 321,141,000 0.43 333,987,000 0.16 334,268,000 0.16

BArena:alloc() CArena:alloc()

Time 9 36.38 27 1.62 3 1.53

PAPI TLB DM 3,709,400 26.27 9,690,860 2.97 2,880,100 10.06

PAPI L1 DCA 2,998,400,000 38.47 9,860,940,000 0.16 1,738,590,000 0.32

PAPI FP OPS 0 63.56 0 2.49 0 0.00

DATA CACHE MISSES 273,451,000 56.78 1,163,740,000 0.17 74,493,400 2.62

GodunovPhysics:computeUpdate()

Time 6 32.39 1 0.81 5 2.02

PAPI TLB DM 3,929,470 42.76 309,207 5.54 1,956,370 1.16

PAPI L1 DCA 1,218,480,000 0.28 1,212,140,000 0.17 1,214,380,000 0.17

PAPI FP OPS 0 34.34 0 8.64 0 6.38

DATA CACHE MISSES 166,742,000 2.64 155,399,000 0.21 156,721,000 0.29

BArena:free() CArena:free()

Time 5 14.67 1 1.70 1 1.60

PAPI TLB DM 4,619,490 14.55 321,497 8.41 816,420 14.07

PAPI L1 DCA 389,883,000 0.55 399,047,000 0.22 545,853,000 0.32

PAPI FP OPS 0 0.00 0 0.00 0 26.02

DATA CACHE MISSES 7,349,520 3.36 5,654,840 3.37 16,148,800 3.62

Table 1. CrayPat dump of Chombo AMR code performance

ment over previous scaling demonstrations for this class

of AMR algorithms [12].

7 Summary and Conclusions

The computing industry trend toward massive paral-

lelism requires scientific application developers to dra-

matically improve the scalability of algorithms to stay

ahead of the technology curve. In this work, we have

described our experience re-architecting a production

AMR application to achieve scalable performance. To

help isolate scaling bottlenecks in the Chombo AMR in-

frastructure, we created benchmarks for an AMR hyper-

bolic gas dynamics computation. In so doing, we have

demonstrated scalable performance with up to 8192 pro-

cessors on the Cray XT4, which is the best performance

to date for this class of AMR problems.

The investigation showed that the traditional con-

cerns over load imbalance and communication volume

were not as critical to application performance as iden-

tifying and isolating subtle use of non-scalable algo-

rithms in the grid management infrastructure of the

AMR framework. The investigation also revealed that

variability in the system software was an equally im-

portant source of performance loss; when our AMR

benchmark was run on a Cray XT4 system with CNL,

it showed no performance improvement over a much

slower Cray XT3 system with Catamount. However,

the performance variability seen in our computations

was not identified by existing OS interference diagnos-

tics such as FWQ benchmarks and Fixed Time Quan-

tum (FTQ) benchmarks [11]. Although the source of

variability was eventually tracked down to differences

in the heap management algorithm and implementation

on these XT systems, it demonstrates that many sources

of system variability are much more subtle than kernel

interference and are consequently more difficult to iso-

late.

This work represents the first steps toward a scal-

able AMR code infrastructure. In the future, we will

focus more attention on additional optimization, such as

finer-grained load-balancing, where we see opportuni-

ties to improve scalability by another one to two orders

of magnitude. Other parts of the AMR infrastructure

to be studied for scalability include problem setup, re-

gridding, data output, and checkpoint/restart of compu-

tations.

AMR offers a much more algorithmically efficient

approach to scientific computing that applies computing

power only where it is needed. We have demonstrated

that traditional assumptions regarding the inability of

AMR algorithms to scale on highly parallel computer



100 1000 10000

Processors

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o
rm

al
iz

ed
 R

u
n
ti

m
e

Total
Perfect
Kernel

AMR Gas Dynamics Benchmark Weak Scaling
Cray XT4

8 billion 124 million

Figure 5. Hyperbolic gas dynamics weak scaling results where the y-axis is normalized to the total time for the

128 processor computation.

systems are unfounded. Ultimately, AMR frameworks

such as Chombo are well poised to fully utilize petascale

HPC resources that will be available in the near future.

8 Acknowledgments

We would like to individually thank: Patrick Worley

for access to Jaguar via the PEAC INCITE grant, He-

len He for her help on Franklin during all phases of this

work, and Steve Luzmoor for his part in gathering de-

tailed information on Silence and brainstorming about

the results. The authors were supported by the Office of

Advanced Scientific Computing Research in the Depart-

ment of Energy under Contract DE-AC02-05CH11231.

References

[1] M. Berger and P. Collela. Local adaptive mesh re-

finement for shock hydrodynamics. J. Computa-

tional Physics, 82:64–84, May 1989.

[2] M. Berger and J. Oliger. Adaptive mesh refinement

for hyperbolic partial differential equations. Jour-

nal of Computational Physics, 53:484–512, 1984.

[3] P. Colella, J. Bell, N. Keen, T. Ligocki, M. Lijew-

ski, and B. V. Straalen. Performance and scaling

of locally-structured grid methods for partial dif-

ferential equations. SciDAC, 2007.

[4] P. Colella, D. Graves, T. Ligocki, D. Mar-

tin, D. Modiano, D. Serafini, and B. V.

Straalen. Chombo software package for

AMR applications: design document.

http://davis.lbl.gov/apdec/

designdocuments/chombodesign.pdf.

[5] G. Johnson. P-SNAP: a system benchmark

for quantifying operating system interference or

noise. http://www.c3.lanl.gov/pal/

software/psnap/.

[6] A. B. Maccabe, P. G. Bridges, R. Brightwell,

R. Riesen, and T. B. Hudson. Highly config-

urable operating systems for ultrascale systems. In

First International Workshop on Operating Sys-

tems, Programming Environments and Manage-

ment Tools for High-Performance Computing on

Clusters, St. Malo, France, 2004.

[7] G. Miller and P. Colella. A conservative three-

dimensional Eulerian method for coupled solid-

fluid shock capturing. 183:26–82, 2002.

[8] G. M. Morton. A computer oriented geodetic data

base and a new technique in file sequencing. IBM,

1966.

[9] F. Petrini, D. Kerbyson, and S. Pakin. The case

of missing supercomputer performance: achieving

optimal performance on the 8,192 processors of

ASCI Q. In Supercomputing, 2003.

[10] C. Rendleman, V. Beckner, M. Lijewski,

W. Crutchfield, and J. Bell. Parallelization

of structured, hierarchical adaptive mesh refine-

ment algorithms. Computing and Visualization in

Science, 3:147–157, 2000.



[11] M. Sottile and R. Minnich. Analysis of mi-

crobenchmarks for performance tuning of clusters.

In Cluster 2004.

[12] T. Wen, J. Su, P. Colella, K. Yelick, and N. Keen.

An adaptive mesh refinement benchmark for mod-

ern parallel programming languages. In Supercom-

puting, 2007.

[13] A. M. Wissink, D. Hysom, and R. D. Hornung.

Enhancing scalability of parallel structured AMR

calculations. LLNL Technical Report UCRL-JC-

151791, 2003.

[14] P. R. Woodward and P. Colella. The numerical sim-

ulation of two-dimensional fluid flow with strong

shocks. 54:115–173, 1984.


