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AN EMBEDDED BOUNDARY METHOD
FOR THE NAVIER–STOKES EQUATIONS

ON A TIME-DEPENDENT DOMAIN

GREGORY H. MILLER AND DAVID TREBOTICH

We present a new conservative Cartesian grid embedded boundary method for
the solution of the incompressible Navier–Stokes equations in a time-dependent
domain. It is a Godunov-projection fractional step scheme in which hyperbolic
advection and a variety of implicit and explicit Helmholtz operations are per-
formed on time-stationary domains. The transfer of data from one fixed domain
to another uses third-order interpolation. The method is second order accurate
in L1 and first order in L∞. The algorithm is verified on flow geometries with
prescribed boundary motion.

1. Introduction

The incompressible Navier–Stokes equations on a time-dependent domain

∂u
∂t
+ u · ∇u =−∇P + ν1u (1.1a)

∇ · u = 0 (1.1b)

approximate fluid behavior in a range of important applications. Here u(x, t) is
the velocity of the fluid, whose density is assumed to be unity, x is the spatial
coordinate, t is time, P is pressure, and ν is the kinematic viscosity. We are partic-
ularly concerned with reaction-diffusion equations in porous media where reactive
transport can alter the subsurface pore structure due to precipitation or dissolution.
Other motivating applications include the dynamics of biological membranes and
lipid bilayer analogs, and modeling rod-climbing and die-swell behavior of certain
viscoelastic fluids. In these examples, the evolution of the fluid domain is coupled
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to the motion of the fluid. Prescribed domain motion occurs in pumps, stirred
vessels, and other mechanical systems.

There are two categories of approaches to discretizing moving domains: (i) grid-
ding schemes that conform to the domain boundary, e.g., unstructured grids obey-
ing Lagrangian dynamics; and (ii) structured, Cartesian grids where the domain
influences the solution through a forcing as in the immersed boundary method [30]
or the immersed interface method [19], or through cut cell methods where the finite
volume quadrature is modified on those Cartesian cells overlain by the domain
boundary, otherwise known as embedded boundary methods. Cut cell methods
are confronted by a small-cell stability problem: finite volume discretizations are
unstable on cells whose volume fraction vanishes. Approaches to this problem
include cell merging techniques (Noh’s “blending” [27]), the h-box technique that
references a cell of nonvanishing size [2], and hybridization — use of a stable but
nonconservative quadrature with subsequent reestablishment of conservation in a
neighborhood [4]. Our approach is an embedded boundary method, with cut-cell
stability through hybridization. This strategy has proven accurate, robust, and scal-
able in large scale simulations of reactive transport in fixed irregular domains [33].

Projection methods [7; 9; 8] use the unique Hodge decomposition of a vector
field to determine the divergence-free component, and the gradient of a potential
that can be associated with the pressure gradient. Godunov-projection methods
are fractional step methods that first compute an intermediate velocity with a high-
order Godunov approach, which is made discrete divergence-free by a Hodge pro-
jection. Other approaches can achieve high order without reference to the interme-
diate state, for example computation of u · ∇u via an Adams–Bashforth approach.
Our approach is based on the second-order projection method of Bell et al. [1],
with a second-order unsplit Godunov method for the intermediate velocity [11],
and using approximate projections after Lai [17]. For hyperbolic flow problems,
high-order Godunov methods do a superior job of resolving steep gradients. Min-
ion and Brown [3] compare a number of approaches to solving incompressible
Navier–Stokes. Their examples show that the Godunov-projection approach does
a good job of resolving incompressible Navier–Stokes flows with steep gradients
without introducing spurious high-frequency oscillations created by some other
approaches. This is a significant benefit for reacting flows where steep gradients
exist and reaction rates can be sensitive to high-frequency oscillation.

There have been many recent developments in projection methods for the mov-
ing domain Navier–Stokes problem. Pan and coworkers [28] use a Godunov-
projection method with multiblock structured ALE (arbitrary Lagrangian–Eulerian)
grids. Udaykumar et al. [39] use an Adams–Bashforth projection approach with
finite volume discretization. They locate the interface with Lagrangian marker
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particles, and address the small cell problem with cell merging. Marella et al. [22]
employ a similar method, with interface information derived from a discrete level
set. Tan et al. [36] also use level sets to represent the interface, and combine the
immersed interface method with an Adams–Bashforth projection method. Liau
et al. [20] combine an Adams–Bashforth projection method with the immersed
boundary method. Chiu et al. [5] use the immersed boundary method with a
different second-order projection discretization. All of these methods claim or
demonstrate second-order accuracy. Strict conservation is necessary to accurately
capture wave behavior [18], a property essential for combustion and reactive flows.
Such conservation is readily obtained with ALE and finite volume methods but is
a very delicate issue for immersed boundary methods [16].

In this work we present a new conservative Godunov-projection method on
Cartesian grids for the solution of the incompressible Navier–Stokes equations
(1.1a) on a time-dependent domain �(t), with boundary conditions

u = s(x, t) (1.2a)

on moving walls, where s is the velocity of the boundary;

u = uin(x, t) (1.2b)

on inflow boundaries; and

n · ∇u = 0 (1.2c)

on outflow boundaries where n is normal to the domain boundary. We represent
the domain boundary as the zero of a distance function level set, and derive all
geometric descriptions at the moving front from the discrete level set. In this work,
the boundary motion is prescribed.

We discretize space in uniform Cartesian cells which we label with index i , an
integer vector in D space dimensions. The center of cell i has spatial coordinate
x = h(i + 1

2 1) where h is the length of the cell, and 1 is the vector of ones in ZD .
Time is discretized in uniform increments 1t , and tn

= n1t is the time at step n.
un

i denotes the value of fluid velocity u at the center of cell i at time tn , and with
ed the d-th unit basis vector, un+1/2

i+1/2ed
denotes the fluid velocity at the half time step

tn+1/2 and the center of i’s cell face in direction +d. With this discretization, an
outline of the approach is:

(1) Extrapolate un
i to �n+1/2 , the fluid domain at time tn+1/2 . For those cells i in

�n+1/2 \�n (Figures 1 and 2), this extrapolation is based on the algorithm pro-
posed by McCorquodale et al. [25]: three cells, whose centers together with
i are collinear and approximately aligned with the interface normal, define a
quadratic interpolation function determining ui .
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Figure 1. Newly uncovered cells. Domain boundary δ�n is shown with a dashed curve;
�n is the enclosed volume, and domain boundary δ�n+1 is shown with the solid curve.
The region�n+1

\�n (shaded) contains fluid at tn+1 but not at tn ; it is a newly uncovered
region. If a cell contains a newly uncovered region, and also contains fluid at time tn ,
then the value of the field in �n+1 is copied from the same cell in �n . But, if a newly
uncovered region does not contain tn values, the values in the extended domain must be
estimated by extrapolation. Such cells are indicated with check marks.

Figure 2. Extrapolation to newly uncovered cells. δ�n is shown as a dashed curve, and
δ�n+1 is a solid curve. Symbol X indicates the cell center of a newly uncovered cell.
The arrow is aligned with the vector comprised of values 0 and ±1 that is most nearly
parallel the normal to δ�n+1. Points along that arrow (open circles) are used to construct
a quadratic, i.e., third-order, extrapolation polynomial.

(2) On �n+1/2 , use high-order Godunov methods to compute time- and edge-
centered values un+1/2

i+1/2e j
, j = 1, . . . , D [11], and make this field discrete

divergence-free with a MAC projection [15].

(3) Compute a nonconservative but stable flux difference, a conservative but un-
stable flux difference, and a stable hybrid flux difference for the hyperbolic
treatment of ut =−u · ∇u [4].
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(4) Modify the hybrid field u · ∇u so that it obeys global conservation, i.e., so
that ut + u · ∇u= 0 is equivalent to the mathematically identical conservation
form ut +∇ · (uu)= 0 in the weak sense.

(5) Extrapolate u · ∇u and lagged estimate ∇Pn− 1
2 to �n+1. On �n+1 solve the

heat equation ut = ν1u+ f with source term f =−∇P − u · ∇u;

ũ = LTGA
(
un, −(∇P)n−1/2 − (u · ∇u)n+1/2

)
, (1.3)

where LTGA is a particular discretization of the heat operator defined later by
(2.49).

(6) Make un+1 discrete divergence free with a cell-centered projection P (to be
defined by (2.6)). The projection computes ∇Pn+1/2 on �n+1:

u∗ = ũ+1t (∇P)n−1/2, (1.4a)

un+1
=P(u∗), (1.4b)

(∇P)n+1/2 =
1
1t
(I −P)(u∗). (1.4c)

In Section 2 additional details of the algorithm will be presented, with emphasis
on those aspects that are new to this work. We will emphasize the algorithm as
implemented on a single grid. The components of this algorithm have been shown
elsewhere to operate on a hierarchy of nested grids, enabling an adaptive mesh
capability. Our implementation includes this capability, and runs in 2D and 3D with
SIMD parallelism. A numerical demonstration of convergence rates is presented
in Section 3.

2. Algorithm details

In Section 2.1 the existence of a Hodge decomposition for the moving domain
problem is described. This discussion justifies the projections used in outline steps
(2) and (6). The implementation of the projection for cell-centered u has been
described in [37] and implementation details related to adaptive meshes are given
by [23; 24].

Next, in Section 2.2 the high-order Godunov approach to computing edge- and
time-centered values un+1/2

i+1/2ed
, outline step (2), is described.

In Section 2.3 the treatment of u · ∇u as a hyperbolic update is described. This
includes the stable and conservative forms mentioned in outline step (3), and the
conservation property enforced in outline step (4).

The moving domain heat problem employed in outline step (5) was first pub-
lished by McCorquodale et al. [25]. They demonstrate numerically that on a single
domain �n+1 one can discretize the heat problem on time interval [tn, tn+1

], using



6 GREGORY H. MILLER AND DAVID TREBOTICH

specially constructed boundary conditions and extrapolated source terms and initial
conditions. In Section 2.4 we present a theoretical justification for that method.

Finally, in Section 2.5 we present some details on the construction of geometric
terms used to define the quadratures underlying the solution to Poisson’s equa-
tion (projection), the Helmholtz equation (heat), and the treatment of u · ∇u as a
hyperbolic source term on a moving domain. We use an idea due to Ligocki et
al. [21] that derives geometric information using a hierarchical application of the
divergence theorem. Our implementation is entirely new and differs from theirs
by including some relevant inequality constraints. The specialization of that ap-
proach is described in the case that the primary source of geometric information is
a discretized distance function.

2.1. Hodge projection on a moving domain. To implement a projection method
on a moving domain, Trebotich and Colella [12; 37] decompose a vector field w
into three components:

w = v+∇θ︸ ︷︷ ︸
u

+∇φ, (2.1a)

1θ = 0, (2.1b)

∇ · v = 0. (2.1c)

In the context of incompressible Navier–Stokes, u is a divergence-free velocity
field, consisting of a vorticity-carrying component v and an incompressible poten-
tial flow ∇θ . ∇φ is the gradient of a potential, which can be used to determine
∇P . The boundary conditions for this decomposition are

(1) moving walls:

n · v = 0, (2.2a)

n · ∇θ = n · s, (2.2b)

n · ∇φ = n · (w− s); (2.2c)

(2) inflow boundaries:

v = 0, (2.3a)

n · ∇θ = u0(x, t) (prescribed), (2.3b)

n · ∇φ = n · (w− u0); (2.3c)

(3) outflow boundaries:

n · ∇v = 0, (2.4a)

n · ∇θ = ūout, (2.4b)

φ = 0. (2.4c)
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Here ūout is the average outflow velocity given by conservation over the entire
domain. These boundary conditions with u= v+∇θ are equivalent to the boundary
conditions (1.2) of our problem. The Trebotich–Colella decomposition is solvable:
the θ equation is well posed without null space, and w−∇θ has boundary condi-
tions compatible with the Hodge decomposition (e.g., [6]). Therefore, v, ∇θ and
∇φ can be determined uniquely. A projection in this framework is accomplished by

φ : 1φ =∇ · (w−∇θ), (2.5a)

v = (w−∇θ)−∇φ. (2.5b)

The existence of decomposition (2.1a) does not require explicit determination
of potential θ . Instead,

φ : 1φ =1(φ+ θ)=∇ ·w, (2.6a)

u = w−∇φ, (2.6b)

or
u =P(w), (2.6c)

follows directly by application of (2.1b) to (2.5). The boundary conditions for
projection (2.6) are

(1) moving walls:

n · u = n · s, (2.7a)

n · ∇φ = n · (w− s); (2.7b)

(2) inflow boundaries:

n · u = u0(x, t) (prescribed), (2.8a)

n · ∇φ = n · (w− u0); (2.8b)

(3) outflow boundaries:

n · ∇u = 0, (2.9a)

φ = 0. (2.9b)

These match (1.2) on u, and for φ are identical to (2.1a).
Trebotich and Colella raise two concerns regarding the application of the Hodge

decomposition to moving domains [12; 37]. The first is over boundary conditions,
but as shown above, the existence of their velocity decomposition makes a Hodge
decomposition with boundary conditions (2.7)–(2.9) viable. Second, they object
to the use of a discrete projection that does not commute with the discrete PDE
operators. While it is true that these discrete operators do not commute because of
the boundary conditions on the discrete divergence, that property is not essential
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to the success of the method. If we assume that the mixed derivative uxt exists
and is C0, then the differential operators ∇· and ∂/∂t commute [35] and, without
recourse to discretization, the governing PDE gives

1P =∇ · (ν1u− u · ∇u) (2.10)

with boundary condition

n · ∇P = n ·
(
ν1u− u · ∇u−

∂u
∂t

)
. (2.11)

This assumption on uxt is required as well in the fixed-domain case (e.g., [8, Equa-
tion (2′)]).

If

w = u∗ ≈ un
+1t (ν1u− u · ∇u)n+1/2 (2.12a)

= un+1
+1t∇Pn+1/2 +O(1t3)+O(h2) (2.12b)

(see (1.4a)), then with φ ≈1t P and u = s on δ�, the linear problems

φ : 1φ =∇ ·w, (2.13a)

n · ∇φ =1tn · ∇Pn+1/2 on δ�n+1, (2.13b)

n ·w = n · [sn+1
+1t∇Pn+1/2] on δ�n+1 (2.13c)

and

φ : 1φ =∇ ·w, (2.14a)

n · ∇φ = 0 on δ�n+1, (2.14b)

n ·w = n · sn+1 on δ�n+1 (2.14c)

are equivalent to O(1t3)+ O(h2). The former (2.13) is the physical problem to
be solved; the latter (2.14) is the Hodge decomposition we implement, and whose
existence and uniqueness is addressed above. This approach amounts to placing the
inhomogeneous boundary condition due to the moving domain in the divergence of
velocity on the right-hand side of the Poisson’s equation and solving the homoge-
neous (Neumann) problem for the pressure. The same approach maps true inflow
conditions to n ·w = u0 and n · ∇φ = 0. For the outflow, conditions n · ∇w = 0
and φ = 0 are literal. This discussion has used the time centering corresponding to
the cell-centered projection of outline step (6). The MAC projection (outline step
(2)) is entirely analogous.

2.2. High-order Godunov advection. The computation of un+1/2
i+1/2ed

is based on an
adaptation of the embedded boundary method for hyperbolic PDEs [11]. It is a
three-step process:
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I. In the first step, cell-centered velocities un
i are averaged to edges un

i+1/2ed
, and

this velocity field is used to resolve Riemann problems in an advective calcu-
lation. First, the velocity is extrapolated to faces with upwind characteristics:

u±d
i = un

i ±
1
2

min
(

1∓ (ed · un
i )
1t
h
, 1
)
(δd un)i +

1t
2
(ν1un)i . (2.15)

This initial extrapolation does not include transverse derivatives or the pres-
sure gradient. δ is a difference operator using van Leer [40] limiting:

δd(u)=
{
δvL

d (u) if (u i+ed − u i )(u i − u i−ed ) > 0,
0 otherwise,

(2.16)

δvL
d (u)= sign(u i+ed − u i−ed )

×min
(
2
∣∣u i − u i−ed

∣∣ , 2
∣∣u i+ed − u i

∣∣ , 1
2

∣∣u i+ed − u i−ed

∣∣). (2.17)

Further, u+d
i is the value of velocity extrapolated to the right side of cell i

in direction d , and u−d
i+ed

is the value extrapolated to the same edge from cell
i + ed . A single-valued result is obtained by resolving the Riemann problem,
which amounts to upwinding:

ūn+1/2
i+1/2ed

=


u+d

i if (ed · u)ni+1/2ed
> 0,

u−d
i+ed

if (ed · u)ni+1/2ed
< 0,

1
2

(
u+d

i + u−d
i+ed

)
if (ed · u)ni+1/2ed

= 0.

(2.18)

The output of this Riemann problem is used to provide transverse flux cor-
rections. In 2D (see Figure 3),

u±d
i := u±d

i −
1t
2h

(
ūn+1/2

i+1/2ed′
− ūn+1/2

i−1/2ed′

)
(ed · un

i ), d ′ 6= d, (2.19)

followed by another Riemann solution. In 3D the transverse flux correction
is more complicated [32].

II. A discrete MAC projection is used to make the advected velocities divergence-
free:

8 : 18=∇ · ū; (∇ · ū)i =
1
h

∑
d

(
ūn+1/2

i+1/2ed
− ūn+1/2

i−1/2ed

)
, (2.20a)

ed · u = ed · ū−∇d8. (2.20b)

This projection only affects the normal component of the edge velocities.

III. The third step repeats step I, but the velocity used to judge upwind direction in
the Riemann problem is the divergence-free edge velocity computed in step II.
In this step the normal velocity components are not changed, but the transverse



10 GREGORY H. MILLER AND DAVID TREBOTICH

Figure 3. Transverse flux correction in 2D. Double-valued edge states u±d are indicated
by filled circles, and single-valued states ū are indicated by open circles. Differences in ū
across a given cell provide flux correction to the states u±d associated with that cell, but
in transverse directions.

ones are. Finally, these transverse components are corrected to account for the
pressure gradient computed in II. In 2D,

ed ′ · u
n+1/2
i+1/2ed

:= ed ′ · u
n+1/2
i+1/2ed

−
1
4

[
(∇d ′8)i+1/2ed′

+ (∇d ′8)i+ed+1/2ed′

+ (∇d ′8)i−1/2ed′
+ (∇d ′8)i+ed−1/2ed′

]
, (2.21)

where d ′ 6= d is the transverse direction. The generalization to 3D is straight-
forward.

The extension of this algorithm to embedded boundary geometries is described
in [11]. One change is to employ one-sided differences where the data does not
support centered stencils. Another concerns the determination of so-called covered-
edge values. Covered edges are those edges of irregular cells which are not in con-
tact with the fluid. For these edges, the upwind characteristic tracing step provides
a single edge value on the fluid side of the edge. The value on the side opposite the
fluid is obtained by extrapolation from edge values interior to the domain (Figure 4);
see [11, §5.2] for details.

2.3. Hyperbolic step. We are interested here in a formulation of u · ∇u that is
consistent with the hyperbolic split of the Navier–Stokes equations

∂u
∂t
+∇ · F = 0 (2.22)

with F ≡ uu, ∇ · F = u · ∇u when ∇ · u = 0. For this hyperbolic equation, one
has a discretization

un+1
nonconservative = un

−
1t
h
(DF)nc (2.23)
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Figure 4. Covered edge calculation, illustrated in 2D for the case of ŷ-side edges. Closed
circles indicate edge values calculated by the 1D advection algorithm described here,
though modified to use one-sided differences near boundaries. The open circle indicates
an exterior covered edge, in this case on the right side of an edge. This right-edge covered
value is extrapolated from right-edge uncovered values by interpolation (dashed line), and
extrapolation in the direction of the interface normal (arrow), using the cell-centered gra-
dient. When the uncovered values are modified to account for transverse flux correction,
this calculation is repeated so the covered edge value also includes transverse corrections.

with DF a flux difference which we approximate by

(DF)nc
i =

D∑
d

1
h

(
un+1/2

d,i+1/2ed
un+1/2

i+1/2ed
− un+1/2

d,i−1/2ed
un+1/2

i−1/2ed

)
. (2.24)

This discretization is second-order accurate in regular cells, but not consistent in
cut cells. It is stable in both cases.

A conservative discretization of the conservation law on the irregular control
volume comes from the space-time integration over the fluid in an irregular cell:

0=
∫ tn+1

tn
dt
∫
�i (t)

dV
(
∂

∂t
,∇
)
· (u, F)

≈ κn+1
i hDun+1

i − κn
i hDun

i

+1thD−1
D∑
d

(
αi+1/2ed Fd,i+1/2ed−αi−1/2ed Fd,i−1/2ed

)
+Ai,EBni,E B ·(u, F)i,EB,

(2.25)

where

�i (t)=�(t)∩ [h i, h(i + 1)] (2.26)

is the fluid-occupied volume of cell i at time t . Subscript EB denotes that the object
is located on the embedded boundary, and EB will be used also as an abbreviation.
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Here κ denotes a volume fraction,

κn
i =

1
hD

∫
�i (tn)

dV ; (2.27)

α a space-time area fraction (also known as “aperture”),

αi−1/2ed =
1

hD−11t

∫ tn+1

tn
dt
∫
δ�i (t)∩{x|xd=hid }

d A; (2.28)

and AEB is the space-time area of the EB. nEB is the unit normal in RD+1. The
D+ 1 components of AEBnEB can be determined from the condition div(ei )= 0
for each of the D+ 1 directions i , giving

κn+1
i u

cent

n+1
i = κn

i u
cent

n
i −

1t
h

D∑
d

(αi+1/2ed Fd,i+1/2ed −αi−1/2ed Fd,i−1/2ed )

− (κn
i − κ

n+1
i )ui,EB−

1t
h

D∑
d

(αi−1/2ed −αi+1/2ed )Fd,i,EB. (2.29)

Here we have written u
cent

to emphasize that the centering is at the centroid x
cent

for
(2.29) to be consistent (Figure 5);

x
cent

n
i =

1
hDκn

i

∫
�i (tn)

xdV . (2.30)

However, the elliptic operators we use are based on a cell-centered discretization
u
cc

, which suggests the modification

u
cc

n+1
i − u

cc
n
i =−

1t
h
(DF)c, (2.31)

x

t

Figure 5. Centerings: centers (open circles) and centroids (crosses). In regular domains,
the discretization relies on centered quantities. A convergent stencil in irregular domains
uses centroid-centered quantities.
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(DF)c=
1

κn+1
i

[
h
1t

(
κn

i (xcc
−x

cent
)ni ·(∇u)ni −κ

n+1
i (x

cc
−x

cent
)n+1

i ·(∇u)ni +(κ
n+1
i −κn

i )ucc
n
i

)
+

D∑
d

(αi+1/2ed Fd,i+1/2ed −αi−1/2ed Fd,i−1/2ed )

+
h
1t
(κn

i−κ
n+1
i )ui,EB+

D∑
d

(αi−1/2ed−αi+1/2ed )Fd,i,EB

]
. (2.32)

Equation (2.31) has O(h) discretization error in irregular cells (when κ < 1), and
is second-order in regular cells. The velocity at the centroid of the EB is s(x, t),
the prescribed boundary condition (1.2a). Fluxes at the centroids of cell faces are
calculated by interpolating the velocity field to the centroid

x
cent i−1/2ed =

1
hD−11tαi−1/2ed

∫ tn+1

tn
dt
∫
δ�i (t)∩{x|xd=hid }

x d A, (2.33a)

t
cent i−1/2ed =

1
hD−11tαi−1/2ed

∫ tn+1

tn
tdt
∫
δ�i (t)∩{x|xd=hid }

d Ak. (2.33b)

The data interpolated is taken from all available data in a 5D-cell region centered
at the point where F is required. This makes F on an irregular edge, say i + 1/2ed

independent of the cell, i or i + ed , that shares it. Interpolation is second order
in space and time, and implemented by solving an overdetermined set of linear
equations with Householder decomposition.

To make the method stable we employ the hybridized flux difference

un+1
= un

−
1t
h

(
κn+1(DF)c+ (1− κn+1)(DF)nc) . (2.34)

In the limit that cells become regular on [tn, tn+1
] the conservative, nonconserva-

tive, and hybrid flux differences are all equivalent to the stable second-order result,
and (2.34) reduces to (2.31).

The generalized mass difference is redistributed. The mass excess is

δm = hDκn+1(un+1
− un+1

unstable)

=1thD−1κn+1(1− κn+1)
(
(DF)c− (DF)nc) . (2.35)

The negative of this quantity is to be distributed in a volume-weighted sense to
neighboring cells [4; 29; 26]. Let ũ be un+1 evaluated by (2.34), then modified
by redistribution. Then (un

− ũ)/1t is what we refer to in outline step (4) as a
conservation-preserving calculation of u · ∇u.
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2.4. The time-dependent heat problem. For the problem

ut = K1u+ f x ∈�(t), (2.36a)

u(x, tn)= u0(x) x ∈�(tn), (2.36b)

u(x, t)= ubc(x, t) x on δ�(t), (2.36c)

McCorquodale et al. [25] propose the following algorithm:

(1) Interpolate the boundary conditions ubc(x, tn) to the boundary δ�n+1 with

uinterp
bc (x′)= ubc(x, tn)+ (x′− x) · ∇u0(x′, tn), (2.37)

where x′ on δ�n+1, x on 1�n , and |x− x′| is O(h). Specifically, let i be the
cell containing x, and let i ′ be the cell containing x′. For a given i , cell i ′ is
chosen to be the neighbor of i with greatest boundary area (Figure 6).

(2) On δ�n+1, boundary conditions for any time in [tn, tn+1
] are obtained by

linear interpolation of uinterp
bc (x) and ubc(x, tn+1).

(3) Extrapolate u0 to �n+1 using the approach described in outline step (1).

(4) Extrapolate f (x, tn+1/2) from �n+1/2 to �n+1 with this same procedure.

(5) On �n+1, solve the heat equation by the method of Twizell et al. [38]:

un+1
= (I −µ11t1h

1)
−1(I −µ21t1h

2)
−1

×
(
(I +µ31t1h

3)u
n,extrap

+ (I +µ41t1h
4)1t f n+1/2,extrap), (2.38)

with µ1 = µ2 = 1− 1/
√

2, µ3 =
√

2− 1, and µ4 =
√

2− 3/2. Here un,extrap

is the field u centered at time tn , but extrapolated from �n to �n+1, and

Figure 6. Extrapolation of boundary conditions. The dashed curve is δ�n , and boundary
conditions are known at the centroid of EB segments in each cell. The solid curve is
δ�n+1, and boundary conditions are needed at the centroids of this EB in each cell. For
each tn+1 centroid (e.g., the open circle), the neighboring cell with the greatest boundary
area is chosen. In this picture there are two candidates (closed circles). The boundary
condition is then extrapolated using the inner product of the cell-centered gradient in the
tn cell and the relative coordinates (arrow).
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likewise f n+1/2,extrap is the source term f centered at tn+1/2 and extrapolated
from �n+1/2 to �n+1. 1h

1 is the discrete Laplacian on �n+1 with boundary
conditions at tn+1; 1h

2 has boundary conditions at tn+1
−µ11t (by interpola-

tion); and 1h
3 has boundary conditions at tn . The boundary conditions on 1h

4
are homogeneous Dirichlet.

A justification of this algorithm follows.
The ODE

u′ = A(t)u+ f (t) (2.39)

has solution

un+1
= R(1t)un

+ R(1t)
∫ 1t

0
R−1(s) f (s) ds, (2.40)

where R is an integrating factor:

R(1t)= exp
(∫ tn

+1t

tn
A(τ ) dτ

)
. (2.41)

Expanding A in a Taylor series,

A(tn
+ s)=

∞∑
i=0

Ai si , (2.42)

facilitates constructing an approximation to R:

R(1t)≈
1+µ3α31t

(1−µ1α11t)(1−µ2α21t)
, (2.43)

where

µ1 = µ2 = 1− 1/
√

2, (2.44a)

µ3 =
√

2− 1. (2.44b)

These coefficients µi minimize the discretization error of this approximation in the
case that A is independent of time, which is the case described by Twizell et al. [38].
(Those authors introduce a factor ε of order machine precision to lift the degeneracy
of (2.44a) and enable a partial fraction representation of (2.43). McCorquodale et
al. [25] include this ε factor but do not use partial fractions.) The factors αi are
different time centerings of A(t):

α1 = A0+ A1c11t, (2.45a)

α2 = A0+ A1c21t, (2.45b)

α3 = A0+ A1c31t, (2.45c)
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with coefficients ci to be determined. When A is time-varying, the approximation
to R(1t) differs from (2.41) by O(1t3) provided

(c1+ c2)(2−
√

2)+ 2c3(
√

2− 1)= 1. (2.46)

The solution (see [25])

c1 = 1, (2.47a)

c2 = 1/
√

2, (2.47b)

c3 = 0 (2.47c)

satisfies this consistency requirement, but not uniquely. Expanding f (t) in a Taylor
series about tn+1/2 leads to a discretization of that source term. Combined,

un+1
= (1−µ1α11t)−1(1−µ2α21t)−1

×
(
(1+µ3α31t)un

+ (1+µ4α41t)1t f n+1/2) , (2.48)

where µ4 =
√

2− 3/2, and α4 is an arbitrary centering of A.
The choice c1 = 1 is optimal in that the final implicit solve will satisfy its given

boundary conditions exactly. An interpretation of this result is that the α3 operation
carries un to un+µ3 , then the α2 operation carries the solution to un+1−µ1 , with the
final operation α1 terminating at un+1. This suggests that 0≤ c3 ≤ µ3/2 in order
that µ3 ≤ c2 ≤ µ3+µ2, i.e., that the boundary conditions lie within the interval of
the associated operation.

Connecting ODE (2.39) to the heat PDE by the method of lines, this analysis
suggests

un+1
= (I −µ1L11t)−1(I −µ2L21t)−1

×
(
(I +µ3L31t)un

+ (I +µ4L41t)1t f n+1/2
)
, (2.49a)

which we abbreviate as

un+1
= LTGA

(
un, f n+1/2

)
: (2.49b)

the solution at tn+1 to ut = Lu+ f . When L is a negative definite operator, this
discretization is L0 stable and second-order accurate in time. Since

µ1+µ2+µ3 = 1,

the principle of superposition requires that boundary conditions on L4 be homo-
geneous. It remains to be shown that all operators Li can be discretized on the
domain �n+1 to O(h2). The operators Li must be centered correctly, as given by
(2.45) and (2.47), to second-order in time, except for L4, which may be first-order
in time.
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Consider the heat equation

ut = K1u+ f, (2.50)

u(x, 0)= u0(x),
u(x, t)= ubc(x, t) on δ�.

Let x0 be a point on δ�, and let x1 be an arbitrary point O(h) away from x0. Then
a Taylor series expansion gives

u(x1, t)= u(x0, t)+ (x1
− x0) · ∇u(x0, 0)+O(h2)+O(h1t). (2.51)

Therefore, if �n+1 and �(t) are close (in the sense that for any point x on
δ�n+1 there is a point x′ on δ�(t) with |x− x′| = O(h)), and if one uses Dirichlet
boundary conditions on �n+1 given by

ubc(xn+1, t) := ubc(x(t), t)+ (xn+1
− x(t)) · ∇u0,

and if 1t ∝ h, then the solution at x(t) on δ�(t) will be obtained to second order
in h.

The solution on the interior of a domain � is a linear functional of its boundary
conditions, initial conditions, and forcing. For example,

u(x, t)=
∫
�

dV ′G(x | x′, t)u0(x′)+
∫ t

0
dt ′
∫
�

dV ′G(x | x′, t−t ′) f (x′, t ′)

+

∫ t

0
dt ′
∫
δ�

d S′n′ · ∇ ′G(x′ | x, t − t ′)ubc(x′, t ′) (2.52)

solves (2.50), where G is the Green’s function solving

G t = K1G+ δ(x− x′), (2.53)

G(x | x′, 0)= 0,

G(x | x′, t)= 0 for all x on δ�.

Therefore, on a domain � differing from �n+1 by O(h), where u0 and f are con-
tinued by high-order interpolation, and where ubc is second-order accurate, the
solution interior to � will be second-order accurate. Solved by a discrete method,
the error will be the lower of the order of the method or h2, in the present case
O(h2)+O(1t) for the solution by forward or backward Euler, and O(h2)+O(1t2)

embedded in the Twizell et al. framework (2.49a).
The discretization of this heat solver is based on the conservative but unstable

discretization of the Laplacian for time-stationary geometries

1u =∇ · F, F =∇u, (2.54a)

un+1
= un
+Li (u), (2.54b)
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Li (u)=
ν1t
κi h

D∑
d

((
αi+1/2ed Fn+1/2

i+1/2ed
−αi−1/2ed Fn+1/2

i−1/2ed

)
+
(
αi−1/2ed−αi+1/2ed

)
Fd,i,EB

)
.

(2.54c)

Note that while Li is unstable in the limit κi → 0, κi Li is stable. The overall
sequence can be written in a stable manner as follows:

ψ1
= κ(I +µ4L) f n+1/2, (2.55a)

ψ2
= κ(I +µ3L)un, (2.55b)

ψ3
=1tψ1

+ψ2, (2.55c)

ψ4
= [κ(I −µ2L)]−1 ψ3, (2.55d)

ψ5
= κψ4, (2.55e)

un+1
= [κ(I −µ1L)]−1 ψ5. (2.55f)

2.5. Computation of space-time geometry. We base our geometry calculation on
a hierarchical application of the divergence theorem proposed by Ligocki et al. [21],
here specialized to the case where geometric information is to be determined from
cell- and time-centered discrete values of a level set function ψ . This method as-
sumes only that ψ is a sufficiently differentiable level set, not necessarily a distance
function.

2.5.1. Governing equations. In D dimensions use the multiindex convention

x p
= x p1

1 x p2
2 · · · x

pD
D , (2.56a)

p! = p1!p2! · · · pD! , (2.56b)

∇
r
=
∂r1

∂xr1
1

∂r2

∂xr2
2
· · ·

∂rD

∂xrD
D
, (2.56c)

and in this application all components of a multiindex are nonnegative. We will
say multiindex integer p is even if all pi are even, and for the magnitude, P =
| p| =

∑
pi , etc.

Consider the volume integral of ∇ · (x ped)= pd x p−ed with the divergence the-
orem:

pd

∫
V

x p−ed dV =
∫

A+d

x pd A−
∫

A−d

x pd A+
∫

AEB

x pn · edd A (2.57)

where EB denotes the embedded boundary, and n is the unit normal vector. With
the boundary having curvature, n is spatially varying. Account for this spatial
variance with a truncated Taylor series:
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pd

∫
V

x p−ed dV − nd

∫
AEB

x pd A

=

∫
A+d

x pd A−
∫

A−d

x pd A+
∑

1≤|r|≤R

∇
rnd

r!

∫
AEB

x r+ pd A+O(hD+R+P). (2.58)

Here V designates a generalized volume, and A designates a codimension-1 sub-
space — a generalized area. In (2.58), n is the normal to the EB in the space
of volume V . This equation expresses moments on [−h/2, h/2]D and on the
codimension-1 EB in terms of higher moments on lower-dimensional spaces. Each
of these lower-dimensional spaces can be analyzed with a similar specialization of
(2.58). For example, if the area Ad+ is bounded by subspaces L (lines), we have

pd ′

∫
Ad+

x p−ed′d A− nd ′

∫
LEB

x pd L

=

∫
L+d′

x pd L −
∫

L−d′
x pd L +

∑
1≤|r|≤R

∇
rnd ′

r!

∫
LEB

x r+ pd L +O(hD′+R+P), (2.59)

where n is the interface normal in the subspace Ad+ , and D′= D−1 if we consider
pd (the component of p in the dimension orthogonal to space Ad+) to be zero. (This
assumption can be made without loss of generality. If M( p) is a given moment on
surface Ad± with pd = 0, then M( p+ ked) = (±h/2)k M( p): the generation of
moments for which pd 6= 0 is trivial.) Equation (2.58) can be applied as many times
as needed until the subspaces contain trivial normal vectors n: when the space V
of (2.58) is 1D, the normal vector is ±1 and has no derivative.

To interpret the order D′+ R+ P , begin by specifying S as the desired order of
accuracy. On the original space R = S− 1, and P = 0, 1 is required at a minimum
to obtain the centroid of the EB. However, with R = 1 and P = 1, EB moments
with P = 2 are required on the right hand sides. This causes the maximum P , Pmax,
to depend on S and D′ in a systematic way:

Pmax(D′)= S− 1+ [D−max(D′, 2)] D ≥ 2, (2.60)

and, for each magnitude P = 0, . . . , Pmax,

R =max(S− 1− P, 0). (2.61)

Table 1 displays some convergence results in multiple dimensions for the case
S = 2.

2.5.2. Order of operations. For each dimension, the system of equations implied
by (2.58) is overdetermined and nonsingular. Ligocki et al. propose evaluating this
hierarchical system in a particular way, grouping equations on a common subspace
and with common P . This makes each overdetermined set small, minimizing the
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2D
1/h error rate

16 –8.143 · 10−4

32 –2.226 · 10−4 1.87
64 –5.409 · 10−5 2.04

128 –1.378 · 10−5 1.97

(2+1)D
1/h error rate

16 –6.705 · 10−5

32 –1.796 · 10−5 1.90
64 –4.416 · 10−6 2.02

128 –1.115 · 10−6 1.98

3D
1/h error rate

16 –3.108 · 10−3

32 –7.873 · 10−4 1.98
64 –1.958 · 10−4 2.01

128 –4.898 · 10−5 2.00

(3+1)D
1/h error rate

16 –2.107 · 10−4

32 –5.330 · 10−5 1.98
64 –1.327 · 10−5 2.01

128 –3.315 · 10−6 2.00

Table 1. Convergence of EB area for sections of a hypersphere for order S = 2. In 2D
the area of a unit circle is computed on one quadrant. In 3D, the area of a unit sphere
in one octant. In 2+1D, a section of the unit sphere from the midplane to x2 = 1/16. In
3+1D, the area of a unit hypersphere from the midplane to x3 = 1/16. Calculations used
cell-centered values of the signed distance function to derive all quantities.

cumulative cost of the associated linear algebra. Here, we first describe the order of
operation as described by Ligocki et al., then discuss constraints and modifications
to the operation order that are made to accommodate them.

To illustrate these ideas, consider the 2D case. Let us write as a subscript [··]
to indicate that the volume being integrated over is [−h/2, h/2] × [−h/2, h/2],
and [+·] to indicate the +x0 edge on which the integral runs [−h/2, h/2] in the
x1 direction (Figure 7). We will write (p0 p1) to represent a given moment. Thus,

a

b c

df

e
[··][-·]

[·-]

[·+]

[+·]

{·
·}

Figure 7. Notation for 2D example. The fluid region abcde is denoted [··]; the EB {··},
e f , separates the fluid from the shaded exterior region de f . The 1D subregion [+.] is the
line segment cd, etc. The calculation begins with P = 0 moments on the 1D subregions,
e.g., (00)[·−]= a f , then the P = 1 moments; e.g., (10)[·−]= x2

f /2−h2/8, and (01)[·−]=
−(a f )h/2 which is simply (00)[·−] multiplied by the x1 coordinate of the edge, −h/2.
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(10)[·−] is the first x moment of the bottom edge of the cell.
In support of the 2D computation, we need the P = 0 and P = 1 moments over

each edge (each of the four 1D bounding spaces). These quantities are determined
by interpolation of the discrete level set data using stencils and methods described
below (Section 2.5.4).

Once these 1D moments are known, one can proceed to evaluate the moments
in 2D. In volume [··] we are interested in the P = 0 moment (00)[··] which gives
the volume fraction. We are also interested in the P = 0 and P = 1 moments over
the EB, which together specify the centroid. The EB in volume [··] will be written
{··}. The first block of equations come from (2.58) with P = 1. In order, these are
from p = (1, 0) with d = 0, then d = 1, followed by p = (0, 1) with d = 0, then
d = 1:

1(00)[··]− n0[··](10){··} = (10)[+·]− (10)[−·],

−n1[··](10){··} = (10)[·+]− (10)[·−],

−n0[··](01){··} = (01)[+·]− (01)[−·],

1(00)[··]− n1[··](01){··} = (01)[·+]− (01)[·−].

(2.62)

With the unknowns on the left hand side, there are 4 equations to determine 3
variables. The next set of equations come from (2.58) with P = 0, p= (0, 0), with
d = 0 followed by d = 1:

−n0[··](00){··} = (00)[+·]− (00)[−·]+ n(10)
0[··](10){··}+ n(01)

0[··](01){··},

−n1[··](00){··} = (00)[·+]− (00)[·−]+ n(10)
1[··](10){··}+ n(01)

1[··](01){··};
(2.63)

two equations in one unknown. This system requires the normal and its gradient,
which may be constructed from a degree-2 Taylor series expansion of the level set.

From these computations, volume fraction, centroids and apertures are, e.g.,

κ =
(00)[··]

h2 , (2.64)

xcent
[−·]
=

1
(00)[−·]

(
(10)[−·]
(01)[−·]

)
, (2.65)

xcent
{··}
=

1
(00){··}

(
(10){··}
(01){··}

)
, (2.66)

α[−·] =
(00)[−·]

h
; (2.67)

see (2.27), (2.33a), (2.28). While an EB area is calculated by this method, finite
volume discretizations use the projected area and the normal that come from the
requirement that ∇ · (ei )= 0 [29].
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Figure 8. Recentering to improve accuracy. When the 1D edges of a given volume are
evaluated, the intersections of the edges with ψ = 0 are discovered (filled circles). In the
evaluation of higher-dimensional volumes, here a 2D face, the mean of the intersection
points of those edges associated with this face gives a centering point (open circle) which
approximates the centroid of the EB.

Ligocki (personal communication) noted that the quality of the least squares
solutions can be dramatically improved by recentering the calculation from the
center of a given [−h/2, h/2]D volume to a point close to the centroid of the EB.
Specifically, we recenter the linear equation systems and the constraint equations
prior to solution of the over-determined data fitting equations by Householder re-
duction, then recenter the computed result to the center of the given volume. The
estimated centroid is the average of the intersections of ψ = 0 with the 1D edges
of the volume being evaluated (Figure 8).

2.5.3. Incorporation of constraints. The moments appearing in this expansion are
subject to certain inequality constraints. If p̄ is even, then the corresponding vol-
ume integral is nonnegative and, if not on the EB, can be bounded from above:

0≤
∫

V
x p̄dV ≤

h P+D p!
2P( p+ 1)!

. (2.68)

If p differs from an even multiindex p̄ by addition of a unit basis vector e j , then

min
V
(x j )

∫
V

x p̄dV ≤
∫

V
x p̄+e j dV ≤max

V
(x j )

∫
V

x p̄dV, (2.69)

by the mean value theorem.
In the second-order 2D example above, simple positivity constraints are

(00)[··] ≥ 0, (2.70a)

(00){··} ≥ 0, (2.70b)

and there is a physical constraint

(00)[··] ≤ h2
; (2.70c)
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volume fraction is positive but less than or equal to one, and the EB area is positive.
Constraints of the second type are

−
h
2
(00){··} ≤ (10){··} ≤+

h
2
(00){··}, (2.71a)

−
h
2
(00){··} ≤ (01){··} ≤+

h
2
(00){··}. (2.71b)

Constraints of type (2.68) can be implemented with any organization of the
divergence theorem hierarchy. However, to incorporate those derived from the
mean value theorem (2.69) while minimizing the overall least squares problem, it
is necessary to solve for all necessary moments of a given volume simultaneously.
This can be seen by noting that constraints (2.71) combine EB area values (00){··}
and EB moment values (10){··} and (01){··} which are determined in different blocks
(2.63) and (2.62), respectively, of the Ligocki et al. algorithm.

Incorporation of constraints in that setting means that the first linear system
is solved without constraints, then constraints may be incorporated in subsequent
solves. This would be analogous to weighing system (2.62) in preference to (2.63).
This relative priority cannot be justified. To correct this weighting problem we
solve simultaneously for all moments of a given subspace: (i) 1D moments as
above, (ii) solve system (2.62), (2.63) together. We explicitly weigh each equation
by h−P so that, unconstrained, they carry similar weights as in the Ligocki et
al. method.

All linear systems are solved with Householder Q R reduction. The constrained
least squares problem is equivalent to the constrained positive definite quadratic
programming problem solved by Goldfarb and Idnani [13; 14]: minimize

(Ax− b)T (Ax− b)

with respect to x subject to linear inequality constraints. Their method begins
with the Cholesky LLT decomposition of the Hessian ATA, and with Q unitary
the setup phase of their method is trivial: L = RT , the transpose of R from the
Householder decomposition. The quadratic form (Ax− b)T (Ax− b) never need
be explicitly constructed.

2.5.4. Stencils. Here algorithms are described that determine the moments on 1D
subspaces, and derivatives of the normal vector, from cell- and time-centered level
set discretizations.

Nominally, we assume that the EB ψ = 0 will intersect each 1D edge at most
once. If this is true, then interpolated values of ψ at the corners of a cell determine
which edges are intersected by the EB, which are covered (by the wall), and which
are regular. It is important to the robustness of the method that these corner values
be accurate, and that each edge’s notion of the corner be identical: the corner
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(a) (b) (c)

(a) (b) (c)

Figure 9. Stencils for the construction of 1D moments for the case where all dimensions
are spatial, illustrated in 2D for the case of order S = 3 or 4. To achieve a final order S,
stencils of half width K = dS/2e are constructed. (a) To compute the moments on the left
edge of the center cell (bold line), a stencil consists of 2K points transverse to the edge,
and 2K +1 points in the direction of the edge (open circles). The first step is to interpolate
to the line in the transverse direction. The points being interpolated lie on the dashed lines,
and the resulting interpolants are given by crosses. The calculation of the derivatives of
n for the center cell is based on a least squares fit of all (2K + 1)D cells (the squares) to
determine Taylor coefficients in a centered expansion of ψ . (b) The top 2K interpolants
are interpolated to deduce the value at the top end of the bold line segment (filled circle).
The polynomial given by this filled circle and the bottom 2K crosses is identical to the
polynomial given by all crosses alone, so the top cross may be dropped when the filled
circle is added to the list of support points. Similarly, the bottom 2K points are used to
interpolate the value at the bottom of the line segment. The result is that the corner values
of the cell are computed from a symmetric (2K )D set of points, and for all cells that share
a given corner the stencil is identical (e.g., the value at the corner indicated by the filled
circle is determined by the set of points in the bold square, regardless of the edge under
consideration). (c) The resulting 2K + 1 interpolation points — equivalently, the 2K + 1
crosses of part (a) — define an interpolation polynomial whose roots are the intersection
of ψ = 0 with the given edge.

x

t

n+1

n

x

t

n+1

n

(a) (b)

Figure 10. Stencils for the case where one dimension is temporal, illustrated in 1D+1D
for the case of order S= 4. Let K =dS/2e. Because data is centered at time levels, stencils
for time and space edges are different. (a) To find moments on a temporal edge (bold
line segment) S time levels are interpolated (crosses) each from 2K spatial interpolations
(circles on dashed lines). (b) For a spatial edge, data on a single time level is treated by
the stencil described in Figure 9. To evaluate derivatives of ψ at the center of a space-time
volume, the stencil uses 2K + 1 points in each spatial direction and S+ 1 time levels.
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values must be cell- and edge-invariant. In order that quantities like the aperture α
be invariant, it is also important that the intersection point of ψ = 0 with a given
edge be cell-invariant. These symmetry considerations impact the interpolation
algorithms by rounding up the stencil width in some cases.

To compute the moments on 1D edges, one finds the intersection of the edge
with ψ = 0 (say a point ζ ), then constructs the moments explicitly. In a frame
where the cell center is at the origin, one has, for example,

(p0 p1)[−·] =

(
−

h
2

)p0

×

{∫ ζ
−h/2 y p1dy if ny =−1,∫ h/2
ζ

y p1dy if ny =+1,
(2.72)

The intersection point ζ is determined by constructing an interpolating poly-
nomial using data interpolated to the line coincident with the edge. We seek its
roots with bisection until Smale’s criterion [34] indicates that Newton–Raphson
will converge quadratically. Roots are then refined with Newton–Raphson.

For the general case of arbitrary dimension D and arbitrary order S, O(hS) ac-
curacy on the 1-dimensional subspaces requires an interpolation polynomial with
S support points. The symmetry invariance requirement of the method modifies
this stencil. If K = dS/2e, then 2K support points are required in the transverse
direction and 2K + 1 in the normal direction (Figure 9).

The support requirements in the case of space-time interpolation are simpler
since data exists on the time edges so interpolation to integer time levels is not
required (Figure 10).

To achieve order S accuracy, S− 1 order derivatives of the normal vector are
required, which are based on S order derivatives of the discrete level set using

n( p)
=

d p

dx p
∇ψ

√
(∇ψ) · (∇ψ)

. (2.73)

These derivatives are based on a Taylor series centered at the center of the relevant
subspace, fit to data with stencil width S+ 1. Where possible the stencil is made
symmetric by rounding up to width 2K + 1.

2.5.5. Underresolved and nonconforming geometry. Underresolved geometries may
fail under the standard algorithm. The geometry in Figure 11 will fail because
the interpolated value of ψ at the corners of the square cell are all positive. The
algorithm therefore misses the fact that the EB crosses the left edge twice. One
way to detect these problems is to estimate the minimum and maximum values of
ψ on the cell. If these have different signs, then the cell is irregular even when the
corner values have uniform sign, and even if ψ is not a distance function.

An algorithm to estimate the range of values the differentiable function ψ takes
on the cell is given by Rivlin [31]. The basic idea is to sample the domain �i by
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Figure 11. Irregular cells whose interpolated corner values have uniform sign. In this
example, the cell is a square of length h and ψ = 0 is a circle centered 51/2h units to the
left of the cell center. The radius is chosen so the circle intersects the left cell boundary at
±h/4. The area to be measured is ≈ 2.08× 10−3h2.

overlaying it with a grid of length δ. If ψ(ξ) is an extremum in cell i , and xk is a
point on the δ-grid, then

ψ(xk)= ψ(ξ)+
∑
|r|=2

(xk− ξ)
r

r!
ψ r(χ), (2.74a)

max
x∈�i
|ψ(x)−ψ(ξ)| ≤1≡

δ2

4
max
χ

∑
|r|=2

1
r!
|ψ (r)(χ)| (2.74b)

for some χ ∈ [xk, ξ ], and so

min
x∈�i

ψ(x) >min
xk
ψ(xk)−1, (2.75a)

max
x∈�i

ψ(x) <min
xk
ψ(xk)+1. (2.75b)

We estimate 1 using the Taylor series, which we center at the center of cell �i :

ψ(x)=
∑

P

∑
| p|=P

x p

p!
ψ ( p)(0), (2.76a)

1=
δ2

4
max
χ

∑
|r|=2

1
r!

∣∣∣∣∑
P

∑
| p|=P

χ p−r

( p− r)!
ψ ( p)(0)

∣∣∣∣, (2.76b)

≤
δ2

4

∑
|r|=2

1
r!

∑
P

∑
| p|=P

( 1
2 h) p−r

( p− r)!
∣∣ψ ( p)(0)

∣∣ (2.76c)

where h is the vector cell edge lengths. In support of (2.73), derivatives of ψ
through order S are known. So, for any order S ≥ 2 sufficient information will be
available to employ Rivlin’s method. Given a desired tolerance 1, (i) approximate
the Taylor series by least squares, (ii) estimate δ from (2.76c), then compute the
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order S relative error

2 –0.595
3 –0.0281
4 –0.0304
5 0.00832
6 –0.000256

Table 2. Relative area error (Ah
− A)/A (where A is exact and Ah is computed) using

one level of bisection to resolve Figure 11. Without subdivision, the relative error is 1.

bounds by sampling the polynomial. If the product of bounds ψminψmax is negative,
then subdivision is applied. Otherwise, the cell is regular κ = 1 or covered κ = 0.

For the situation in Figure 11, a single bisection (in all directions) permits iden-
tification of the cell as an irregular one. The resulting volume calculations are
summarized in Table 2.

3. Results

We demonstrate the method and show its convergence by computing the flow past
a sphere in a bounded domain, Figure 12. In arbitrary units, the domain has length
4 and height 2. The top and bottom boundaries are stationary no-slip walls, the
right boundary is outflow, and the left domain boundary is inflow with velocity
having a Poiseuille profile with maximum velocity 1.5. Viscosity is 0.1. A sphere
centered at (1, 1) obstructs the flow. Its radius depends on time as

0.2+ 0.1 cosωt,

with ω = π/1.2. The finest discretization of the domain is 1024× 512, with 1t =
1.5× 10−3 fixed. To determine rates of convergence we also use coarser grids:
a 512× 256 grid with δt = 3.0× 10−3, etc., through the coarsest discretization

Figure 12. Flow past a shrinking sphere on 2:1 domain. Circles represent initial and final
sphere surface. Curves are streamlines. Color corresponds to |u| from 0 (blue) to 1.7 (red).
Note that the streamlines attach to the sphere because it is moving. Times are 0.6 and 1.2,
respectively.
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Nx ‖ux error‖∞ rate ‖ux error‖1 rate

64/128 5.28× 10−1 4.37× 10−3

128/256 2.24× 10−1 1.24 9.24× 10−4 2.24
256/512 8.76× 10−2 1.35 2.22× 10−4 2.06
512/1024 4.64× 10−2 0.92 5.36× 10−5 2.05

Nx ‖u y error‖∞ rate ‖u y error‖1 rate

64/128 4.01× 10−1 3.12× 10−3

128/256 1.86× 10−1 1.11 7.07× 10−4 2.14
256/512 8.28× 10−2 1.16 1.68× 10−4 2.07
512/1024 3.97× 10−2 1.06 3.95× 10−5 2.09

Table 3. Richardson error convergence study for flow past a shrinking sphere.

of 64× 32 with 1t = 2.4× 10−2. The maximum CFL over the course of this
simulation is 0.8.

Errors and rates of convergence are shown in Table 3 after 352 time steps on the
finest grid through 22 time steps on the coarsest. In L1 the velocity is second-order
accurate, while in L∞ it is first-order. The errors reported are Richardson estimates
obtained by comparing computations with different resolution:

‖u‖h,2h
1 =

1
V

∫
�

|uh
− u2h

|dV =
∑

i κi |uh
− u2h

|i∑
i κi

, (3.1a)

‖u‖h,2h
∞
=max

x∈�
|uh
− u2h

| =max
i
|uh
− u2h

|i . (3.1b)

In these expressions, i is a cell index in the 2h-grid, and

|uh
− u2h

|i =

∣∣∣∣u2h
i −

1
2D

∑
j

κh
j

κ2h
i

uh
j

∣∣∣∣ (3.2)

with the sum being over h-grid cells j that lie in the 2h-grid cell. The convergence
rate is given by

r =
1

ln 2
ln
‖u‖2h,4h

‖u‖h,2h . (3.3)

The first-order convergence in L∞ is expected because of the discretization error
of the quadrature formula (2.31) for the hyperbolic part of the governing equations.
As anticipated by Colella [10], the truncation error in irregularly shaped finite vol-
umes is lower order than regularly shaped volumes. Thus, any fully conservative
and consistent finite volume hyperbolic method based on a quadrature rule consist-
ing of one point per bounding surface will be first-order in L∞. This expectation
applies also to approaches like cell merging.
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