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a b s t r a c t

We present a method for solving Poisson and heat equations with discontinuous coeffi-
cients in two- and three-dimensions. It uses a Cartesian cut-cell/embedded boundary
method to represent the interface between materials, as described in Johansen and Colella
(1998). Matching conditions across the interface are enforced using an approximation to
fluxes at the boundary. Overall second order accuracy is achieved, as indicated by an array
of tests using non-trivial interface geometries. Both the elliptic and heat solvers are shown
to remain stable and efficient for material coefficient contrasts up to 106, thanks in part to
the use of geometric multigrid. A test of accuracy when adaptive mesh refinement capabil-
ities are utilized is also performed. An example problem relevant to nuclear reactor core
simulation is presented, demonstrating the ability of the method to solve problems with
realistic physical parameters.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

We consider elliptic and parabolic problems in regions with two materials, each of which occupies a bounded subset Xp,
p = +, �, of the overall domain X =

S
pX

p. One region usually encloses the other; in that case we refer to the inclusion, or inte-
rior region, by X� and the exterior region by X+. At the boundary dX± between materials, jump conditions on the solution u
and flux FB are specified

½uB� ¼ uB;þ �uB;� ¼ gDðx; tÞ;

FB � n̂B
h i

¼ FB;þ � n̂B � FB;� � n̂B ¼ gNðx; tÞ:
ð1Þ

Here n̂B is the normal to the boundary, and the functions gD and gN describe the magnitude of the jump at each point in time
and space. For many problems gD = gN = 0. However, this method can be used when more general jump conditions are re-
quired, for instance when sources are present at the interface. The method can handle material domains Xp that consist
of any number of spatially distinct sub-domains. It may be applied to domains consisting of more than two materials as well,
so long as the interfaces between materials remain spatially distinct. For the present work, we restrict the scope to two
materials.

Our method solves the heat equation in two materials,

@tu ¼ jpDuþ f on Xp; uðx;0Þ ¼ u0ðxÞ; ð2Þ
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subject to the above jump conditions at the interface. In this case, as well as in the elliptic equations to which the method is
applied, the flux FB is proportional to the material coefficient. While this coefficient is constant within each material, it is
discontinuous across the interface.

A number of schemes for handling elliptic and parabolic problems of this type exist in the literature. Finite difference
schemes for fixed boundaries, of the type pioneered by Shortley and Weller [1], have been greatly improved upon in the
intervening years. Most importantly in the context of this work, they have been extended to handle discontinuous jumps
in the form of Eq. (1). Immersed boundary methods, modifications of the method first presented by Peskin [2], discretize
a delta-function source term on the boundary, retaining the symmetric form of the linear system. Immersed interface meth-
ods [3] use analytic continuation of the solution across the interface to explicitly incorporate the jump condition into the
underlying finite difference stencil coefficients. This results in a scheme that more accurately represents the jump conditions,
at the expense of considerable additional complexity and the loss of symmetry in the underlying linear system for non-con-
stant coefficients. Finally in the context of finite difference schemes, ghost fluid methods [4] also use analytic continuation of
the solution. A ghost fluid, residing in the regions outside the solution domain, is used to explicitly enforce the matching
conditions. As originally formulated, the method was first order accurate. It has been extended to second order accuracy
for boundaries with continuous second derivatives [5]. They have the advantage of retaining a symmetric system, allowing
the use of a wider range of fast linear solvers. More recently, another symmetry-preserving method developed by Chen and
Strain [6] couple a polynomial reconstruction of the solution at the interface with a multigrid-preconditioned Krylov solver
that improves efficiency for large material coefficient contrasts.

Outside the realm of finite difference methods, integral methods recast the elliptic PDE via potential theory as integral
equations. Fast integral solvers can often be utilized against this class of problem; these generally fall into two categories.
One method involves the use of a fast Poisson solver on a simple (e.g. Cartesian) enclosing domain, plus the application
of a suitable correction at the boundary [7]. The second combines a fast (e.g. multipole or FFT) method and an iterative solver.
In either case, conditioning issues can arise in problems with large discontinuities in the material coefficient [8], necessitat-
ing a modification of the underlying integral equation representation. Nevertheless, these methods are efficient in a wide
variety of problems.

Our method is based on a finite volume approach to the spatial discretization of elliptic equations. The method is conser-
vative, a distinct advantage in certain classes of problems. For low-Mach flows with heat transfer, for instance, conservative
schemes avoid unphysical results arising in marginally resolved or under-resolved situations [9,10].

Finite volume methods for interface problems encompass a variety of approaches. In the context of conjugate heat trans-
fer in complex geometries, the overlapping grid method of Henshaw and Chand [11] decomposes the domain into a number
of sub-domains. The grid on each sub-domain is boundary fitting, an advantage that comes at the expense of the loss of con-
servation. Each sub-domain uses a solver specific to the relevant physics in it.

Oevermann et al. [12,13] present a hybrid finite volume method for variable and discontinuous coefficient elliptic prob-
lems in two- and three-dimensions. In 3-D, it relies on tri-linear approximations to the solution within each Cartesian control
volume to discretize the integral form of the divergence theorem in a finite element fashion. Small volume cells are handled
via an asymptotic approach. The method exhibits local and global second order accuracy on this class of problems.

Our work follows in the steps of the work in [14–16] in using pure finite-volume schemes for elliptic and parabolic equa-
tions with embedded boundaries (EB). The first step in using Cartesian EB methods is grid generation, which has been stud-
ied extensively using a number of different representations of the geometry. Surface triangulations [17] are widely used,
particularly in engineering contexts involving extremely complex geometries. Our method uses an implicit function repre-
sentation [18] that provides discretizations of complex geometries accurate to arbitrary order in a straightforward manner.

The main shortcoming in previous Cartesian EB methods, insofar as their application to multi-material problems, lies in
their use of prescribed boundary conditions at the EB. A Neumann interface gave boundary fluxes directly, while Dirichlet
boundary conditions at the EB necessitated defining a stencil for calculating fluxes at the boundary using data at neighboring
cells. In the multi-material context boundary conditions at the interface are not directly prescribed, but instead constrained
by matching conditions on the jump in the solution and flux across it. The present work extends the EB methodology to han-
dle such jump conditions, and thereby solve multi-material Poisson and heat equations with a discontinuity in the material
coefficient at the interface between the two. Like previous work, it maintains global second order accuracy. By treating spe-
cial cases related to under-resolved geometries, like the presence of multiple interfaces within a single Cartesian control vol-
ume, we are able to use geometric multigrid methods for efficient solution of elliptic equations. Moreover, our use of the
Chombo software infrastructure provides important capabilities from a computational efficiency standpoint. The primary
one is adaptive mesh refinement, which is crucial in many problems involving widely separated spatial scales.

Our time discretization of this equation necessitates solving a set of elliptic equations during each step forward in time.
Specifically, we solve the Helmholtz equation

ap þ bpDð Þu ¼ q; ð3Þ

where ap and bp are the material coefficients, subject to jump conditions across the boundary dX±. We first describe the ellip-
tic algorithm, starting with the spatial discretization in Section 2. This is followed by a treatment of special considerations for
the use of geometric multigrid, in Section 3. The stability of the spatial discretization and time integration are explored in
Section 4. An outline of the overall algorithm is given in Section 5.
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Descriptions of the tests used to validate the method follow the algorithmic sections. These include two and three dimen-
sional solution error tests confirming second order accuracy for the Poisson equation in Section 6.1 and Section 6.3. Tests of
the efficiency of the multigrid solver in 2-D and 3-D are described in Section 6.2. The final set of tests are of accuracy for the
heat equation in 3-D, in Section 6.4. We conclude with results for a more realistic problem, showing heat conduction in a
nuclear reactor fuel assembly, in Section 6.5.

2. Spatial discretization of the Laplacian

The underlying discretization of space is given by rectangular control volumes on a Cartesian grid:
� i ¼ i� 1

2 u
� �

h; iþ 1
2 u

� �
h

� �
; i 2 Zd, where d is the dimensionality of the problem, h is the mesh spacing, and u is the vector

whose entries are all ones. Each material domain Xp and material interface dXpp0 is represented by its intersection with the
Cartesian grid. In general, a given Cartesian control volume �i may be intersected by one or more material interfaces. Con-
sequently, there may be multiple p-material control volumes associated with each �i; see Fig. 3. For simplicity we will delay
treatment of multi-cells until Section 3. In the case that there is only one p-material control volume in each Cartesian cell, we
denote them by Vp

i , and each face by Ap
i�1

2es
. The latter is defined as the intersection of Xp with d�i, the boundary of the control

volume �i given by the coordinate planes x : xs ¼ is � 1
2 ês

� �
h

� �
, where ês is the unit vector in the s direction. Finally, associ-

ated with each Cartesian control volume through which a material boundary passes is a boundary face, or interface,
AB;p

i ¼ dVp
i \ dVp0

i � dXpp0 with normal n̂B;p
i facing out of material p. We assume that each material interface connects a single

p-material control volume to a single p0-material control volume. In other words, each p-material interface must be con-
nected in a one-to-one fashion to another face in material p0 – p having the same area fraction, but opposite normal (i.e.

AB;p
i

��� ��� ¼ AB;p0

i

��� ��� and n̂B;p
i ¼ �n̂B;p0 ).

The construction of our finite-volume method follows McCorquodale et al. [15], with suitable modifications for multi-
material equations. Based on the description above, we construct geometric quantities:

� The dimensionless volumes/areas of each p-material control volume/face. Volume fractions mp
i ¼ jV

p
i jh
�d, face apertures

ap
iþ1

2es
¼ Ap

iþ1
2es

��� ���h�ðd�1Þ, and boundary apertures aB;p
i ¼ jA

B
i jh
�ðd�1Þ.

� The locations of volume, face, and boundary centroids; and average outward normal to the boundary

xp
i ¼

1
jVp

i j

Z
Vp

i

xdV ; ð4Þ

xp
iþ1

2es
¼ 1

Ap
iþ1

2es

��� ���
Z

Ap

iþ1
2es

xdA; ð5Þ

xB;pp0

i ¼ 1
jAB

i j

Z
AB

i

xdA; ð6Þ

n̂B;p
i ¼

1

jAB
i j

Z
AB

i

n̂B;p dA; ð7Þ

where n̂B;p is the normal, facing outward from phase p, to dXpp0 , defined at each point on dXpp0 .

Finite volume methods are based on the divergence form of the underlying equation, which we now recast in terms of the
above defined geometric quantities. For the Poisson (heat) equation, the divergence form is r�F = q (r � F = @tu � f), with
Fp = jpru. Our conservative discretization for the divergence operator in each material control volume Vp

i is

ðr � FÞpi �
1

Vp
i

Z
Vp

i

r � FdV ¼ 1
Vp

i

Z
dVp

i

F � n̂dA ’ 1
mp

i h

X
�¼þ;�

Xd

s¼1

�ap
i	1

2es
Fs;p

i	1
2es
þ aB

i FB;p
i

" #
: ð8Þ

Here Fs;p
i	1

2es
is the flux into the p-material through the face with normal ±es, and FB;p

i is the corresponding flux through the

material boundary. So, for example, in the material control volume at top in Fig. 1, the divergence is

ðr � FÞ�i ¼
1

m�i h
a�i�1

2e0
F0;�

i�1
2e0
� a�iþ1

2e0
F0;�

iþ1
2e0
� a�iþ1

2e1
F1;�

iþ1
2e1
þ aB

i FB;�
i

h i
: ð9Þ

With the discretization in place, we need to calculate fluxes at all faces and boundaries in order to update the governing
equation.

2.1. Flux calculation and enforcing multi-material matching conditions

The Laplacian operator in the Poisson (heat) equation implies a flux Fp = jpru. Calculation of fluxes at faces Ap
iþ1

2es
is a

relatively straightforward matter of linearly interpolating fluxes at face centers to the face centroids xp
iþ1

2es
; an example is

given in [15], Eqs. (6) and (7). For interfaces AB, the process is more involved. Let us begin with the flux equations applicable
to the Poisson and Helmholtz equations,

R.K. Crockett et al. / Journal of Computational Physics 230 (2011) 2451–2469 2453
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n̂B;p � F ¼ n̂B;p � jpruð ÞB;p 
 jp@u
@n

B;p

: ð10Þ

In the single-material case [15,16], Neumann or Dirichlet boundary conditions are prescribed at the interface. In the former
case, the required interface flux FB can be calculated directly. In the Dirichlet case, the boundary condition at the interface uB

and the state at neighboring cells ui is used to approximate the normal derivative at the interface @u
@n. In the multi-material

case, neither Dirichlet nor Neumann boundary conditions at the interface are known a priori. Instead, we use the matching
conditions, Eq. (1), along with equations approximating the normal derivative in each material, in order to calculate the
boundary flux in Eq. (8).

We illustrate the flux determination for the case of the Poisson equation in two materials. The same procedure applies to
the Helmholtz equation solves done in the heat equation update. First, we rewrite the second (flux) jump condition of Eq. (1)
as

jþ
@u
@n

B;þ
� j�

@u
@n

B;�
¼ gN: ð11Þ

The states in either material at the interface, uB,p, and normal derivatives, @u
@n

B;p
, are not known. Our method for closing this

set of equations is to use an approximation to the normal derivative of the form

@u
@n

B;p

¼ wB;puB;p þ
X

i
i2Xp

wiui þ OðhqÞ; ð12Þ

where q is the order of approximation. The weight wB associated with the unknown boundary state and the weights wi asso-
ciated with the known states in neighboring cells both depend on the geometric quantities defined in Eqs. (4)–(7). (In much
of the remainder of this section we will drop the p superscript for simplicity; all quantities are understood to be calculated in
both materials.) In general, a second order approximation [14] to the normal derivative is used. In cases where there are
insufficient neighboring cells ui for a second order approximation (e.g. due to an under-resolved geometry, or proximity
to the domain boundary), a first order approximation [16] is used.

Fig. 1. A 2-D Cartesian control volume, and its associated material control volumes. In this case the volume is crossed by a single material interface. The top
region is in the p = � phase and the bottom region in phase p0 = +. Each material control volume is labeled by the Cartesian volume containing it, i, and its
phase, p, as Vp

i . The interface between material control volumes is shown as a solid, dark grey line whose area is labeled AB. Non-zero faces of the material
control volumes, lying on the boundary of the Cartesian control volume, are labeled Ap

i�1
2ês

. Fluxes are indicated for the upper material volume V�i .

2454 R.K. Crockett et al. / Journal of Computational Physics 230 (2011) 2451–2469



Author's personal copy

Since we are using two different approximation schemes it remains to show here that, independent of which combination
of approximation schemes is used on either side of the interface, the matching conditions can still be enforced. We do so by
showing that both can be recast in the form Eq. (12) given above. Clearly, given its linear dependence on uB, this allows a
simple direct solution of the four-by-four system for uB and @u

@n

B
on both sides of the material boundary.

First, consider the second-order stencil based on the quadratic interpolation of two values, u1 and u2, at distances d1 and
d2 along the normal to the interface,

@u
@n

B

¼ 1
d2 � d1

d2

d1
uB �u1

� �
� d1

d2
uB �u2

� �	 

: ð13Þ

This is the situation illustrated in the material at top-right in Fig. 2. The two state values u1 and u2 depend on geometric
quantities and the states in neighboring cells (the filled diamonds in Fig. 2), but not uB. Therefore, it is a simple matter to
rewrite this equation in the form above

@u
@n

B

¼ 1
d2 � d1

d2

d1
� d1

d2

	 

uB þ 1

d2 � d1

d1

d2
u2 �

d2

d1
u1

	 

ð14Þ

¼ wBuB þ
X
i2X1

wiui þ
X
i2X2

wiui; ð15Þ

where X1 and X2 correspond to the domain of dependence used in calculating u1 and u2. This is clearly in the form of Eq.
(12).

In the alternative case, when a suitable second order approximation is not available, we use the Schwartz et al. prescrip-
tion for calculating the normal derivative based on least squares estimation. This is the situation illustrated in the bottom-
left material of Fig. 2. The method involves choosing a suitable set of neighboring points – three in the case of 2-D, and seven
in 3-D – for performing least squares estimation. A matrix of displacements of these points from the material interface is
defined, ðAÞsl ¼ dxl

s , where l indexes the points and s indexes direction. Next define a vector of differences between the
state at each point, ul, and the state at the boundary, uB: (du)l = (u)l � uB. The algorithm solves Aru ¼ du in order to
obtain an estimate for @u

@n ¼ n̂ � ru. The least squares estimate can be rewritten as

ru � ðATAÞ�1
ATdu ¼ ðATAÞ�1

ATðu�uBuÞ ¼ ðATAÞ�1
AT u

� �
uB þ ðATAÞ�1

ATu: ð16Þ

An expression for the normal derivative can then be constructed

@u
@n
¼ n̂ � ru ¼ � n̂TðATAÞ�1

AT u
� �

uB þ n̂TðATAÞ�1
ATu ¼ wBuB þ

X
i

wiui: ð17Þ

The last step follows from the association of the components of the vector u with the neighboring state values, ui, and the
matrix product n̂TðATAÞ�1

AT u with the scalar wB.
We therefore have two formulae for approximating the normal derivative, both of which are linear in the uB. We have

only to choose either quadratic Johansen or least squares stencil on both sides of the interface. By combining the two stencil
approximation equations with the two jump conditions, we have a system that can be directly solved for the boundary states

Fig. 2. Illustration of stencil calculation for multi-material case. The boundary is shown as a solid grey line, and the inward-facing normal in each material,
n̂B;� , as a dotted grey line. In this case, in the p = �material (lower-left) least squares is used to determine a stencil approximation to the normal derivative
at the boundary, @u

@n

B;�
. Three neighboring points (open diamonds) are chosen, each of which is assigned a stencil weight based on the least squares

algorithm. In the p = + material, at upper-right, a quadratic approximation to the solution along the dotted lines gives a seven point stencil (interface state
plus six filled diamonds) for the normal derivative. The stencil weights depend only on geometric quantities. By combining the two stencils on either side of
the interface with the two jump conditions, Eq. (1), we are able to calculate fluxes at the interface.
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and normal derivatives. From these we calculate boundary fluxes FB, which are used in performing Gauss–Seidel relaxation
in each phase. In order that the matching conditions are always satisfied, boundary fluxes are recalculated before each relax-
ation step of the multi-material elliptic solve.

3. Multigrid solver considerations

In order to speed the elliptic equation solver, the relaxation step is embedded in a multigrid solver. This also has the
advantage of being highly compatible with adaptive mesh refinement. Use of a multigrid solver involves progressive coars-
ening of the problem domain, and the geometry along with it. Generally, the further one coarsens in multigrid, the larger the
benefit in terms of solver efficiency. The extent to which one can coarsen is limited, however, by the need for an adequate
number of cells with which to create a stencil for estimating the flux. This domain coarsening can lead to pathological cases,
which we describe and outline our approach to below.

3.1. Multicells

The most important issue for multigrid solvers is the case where there is more than one interface in a Cartesian control
volume. One very simple example is an inclined ellipsoid with a large axis ratio. With enough coarsening, the minor axis of
the ellipsoid becomes smaller than the grid spacing, leading to a situation like that pictured in Fig. 4. Such multi-interface
cells we term multi-cells. Instead of the usual single sub-volume of a given material in each Cartesian cell, multi-cells contain
more than one sub-volume for at least one of the materials. In order to unambiguously identify each sub-volume, we index
them by c = 0,1, . . . The volume of each is denoted by Vp

i;c, and each face by Ap
i�1

2es ;c
. The area of the interface between sub-

volume c in material p and sub-volume c0 in material p0 – p is denoted by AB;p
i Vp

i;c;V
p0

i;c0

� �
, with associated area fraction

aB;pp0

i;cc0 . The normal facing out of material p is denoted n̂B;pp0

i;cc0 .

The divergence form of the equations in the presence of multi-cells is

ðr � FÞpi;c �
1

mp
i;ch

X
�¼þ;�

Xd

s¼1

�ap
i	1

2es ;c
Fs;p

i	1
2es ;c
þ
X
p0–p
c0

aB;pp0

i;cc0 FB;pp0

i;cc0

2
664

3
775:

So, for example, in the sub-volume at upper-left in Fig. 3, the divergence is

ðr � FÞþi;0 ¼
1

mþi;0h
aþi�1

2e0 ;0
F0;þ

i�1
2e0 ;0
� aþiþ1

2e1 ;0
F1;þ

iþ1
2e1 ;0
þ aB;þ�

i;00 FB;þ�
i;00

h i
: ð18Þ

Fluxes, and therefore normal derivatives, must be calculated for each sub-volume of a multi-cell separately. These are used to
calculate boundary fluxes for the VoF. For the sake of efficiency and simplicity, however, we do not store all values of the
boundary flux FB;pp0

i;cc0 for a given VoF. Instead, we store a single boundary flux, corresponding to the sum over c0 term in Eq.
(18), from which the update can be calculated. This total boundary flux is calculated from an area-weighted average of
the normal derivatives at each interface in the cell:

Fig. 3. A 2-D Cartesian control volume in the case where multiple interfaces cross the cell. Here, two interfaces divide the cell into three sub-volumes, or
VoFs, one in the p = � material and two in the p0 = + material. Each material control volume is labeled by the Cartesian volume containing it, i, its phase p,
and the index c, as Vp

i;c . Interfaces between material control volumes are shown as solid grey lines, whose areas are labeled AB Vp
i;c;V

p0

i;c0

� �
. Non-zero faces of

the material control volumes, lying on the boundary of the Cartesian control volume, are labeled Ap
i�1

2ês ;c
.
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@u
@n

B;p

i;c
¼ 1

�aB
i;c

X
p0–p
c0

aB;pp0

i;cc0
@u
@n

B;pp0

i;cc0
: ð19Þ

Here the denominator �aB
i;c is the average material face aperture. The total flux into the VoF is

FB;p
i;c ¼ jp@u

@n

B;p

i;c
ð20Þ

giving the correct total flux into the VoF.

3.2. Failure of the least squares stencil

In this case, we use least squares, but instead of including only those nearest neighbors within the same quadrant (octant
in 3D) as the normal vector as was done in [16], we include all nearest neighbors to which there exists a monotone path from
the VoF in question.

We find that this method allows coarsening to levels not possible using the least squares stencil as described previously.
Moreover, it is useful in preserving symmetry in cases where the boundary normal is along a cardinal direction. It has little
effect on the overall accuracy of the scheme, which remains second order in our tests.

3.3. VoFs missing one or more stencils

Occasionally, at some level in the coarsening, no stencil is available on one or both sides of the interface, and we are left
with a choice. One option is to stop coarsening and back up to a finer lever at which stencils are available. Another is to fash-
ion a suitable approximation for these under-resolved cases.

In the case that one side of an interface is without a stencil, we are unable to solve the matching conditions in the manner
outlined in Section 2.1. Therefore, we approximate the gradient on the side with the stencil directly, taking a simple finite
difference using the available cells in that material,

ðruÞs ¼ �
ui�ês

�ui

h
; ð21Þ

where ês is the unit vector in the s direction, and either the backward- or forward-difference is used based on the availability
of data u. We arrive at an estimate of the flux in material p by using the normal to the interface, @u

@n

B;p ¼ n̂B;p � ru. Using this
estimate of the flux in phase p, we then calculate the jump in phase p0:

@u
@n

B;p0

¼ 1
jp0

jp@u
@n

B;p

þ gN

 !
: ð22Þ

This avoids the need for a value of uB in calculating the normal derivative. Effectively, we are using a first-order accurate
approximation to the gradient at the cell-center to approximate the gradient at the interface.

Cases where there is no available stencil on either side of a material interface are rare, even when the geometry is quite
under-resolved. In practice, we avoid them by limiting the degree of coarsening the multigrid solver performs, which in turn
limits the extent of under-resolution of the geometry. This has the potential to make multigrid less efficient. However, we
show in Section 6.2 that it remains efficient across a range of resolutions, even for quite complex geometries.

Fig. 4. Example of a coarsening resulting in multiple VoFs in a single rectangular control volume. On the left, the cells in black contain a single VoF of each
material. After coarsening, the grid is as on the right, with the cell outlined in black having two VoFs of one material, and a single VoF of the other material.
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4. Stability analysis

The choice of spatial discretization above raises two questions. The first is whether it is stable. The second is the stability
of the TGA time integration scheme for the heat equation under this spatial discretization. The first is difficult to prove math-
ematically. The approach of Li and Ito [19] was to use an optimization technique to ensure that the stencil coefficients satisfy
the discrete maximum principle. Our more empirical approach relies on numerical experiments that test robustness under a
variety of conditions. We use the condition number of the matrix representation of the spatial discretization as an indicator
of stability. Specifically, for a series of one- and two-dimensional test problems with different geometries we constructed
this matrix representation. By calculating the eigenvalues of these matrices we were able to discern how the matrix condi-
tion number (which we estimate by the ratio of largest to smallest eigenvalue magnitude) and stability function for the TGA
scheme vary with volume fraction, grid resolution, and geometry.

For embedded boundary methods in a single material, previous authors [14] found that, in grid-aligned, planar geome-
tries, the condition number of the spatial discretization is essentially constant as very small volume fractions are reached.
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The good conditioning of the linear problem is owed to the volume-weighting of the matrix, which prevents a m�1 scaling of
the largest eigenvalues. We find that grid-aligned planar geometries show similar conditioning in the multi-material case.
Our test places the planar interface at two hundred positions within a single cell, calculating the condition number at each.
Fig. 5 shows, at top, a plot of condition number versus position of the interface within the cell; black lines represent the grid-
aligned planar geometries for a variety of coefficient ratios r = j�/j+. Note that for the case where the plane intersects a cell
face, producing a zero volume cell in one material, there is no associated increase in the condition number.

A reasonable next step is to use non-aligned planar geometries, following Oevermann and Klein [12]. A plane whose nor-
mal is inclined at an angle of either 45� or 22.5� to the horizontal is moved across a single cell. As above, condition numbers
are calculated for 200 positions of the interface. We found that a simple volume fraction weighting of the equations does not
suffice to produce good conditioning. Rather, the smallest eigenvalues scale with the surface area of the cell and can cause
unbounded condition numbers. In order to address this issue, we use a modified scaling, which we give here for the case of
the Poisson equation:
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The original volume fraction scaling is now divided by the total surface area fraction of the sub-volume. In practice, we find
that this scaling has little effect on the either the asymptotic convergence rate of point relaxation, or the overall convergence
rate of geometric multigrid. This is due to the diagonal scaling performed in relaxation schemes. We also note that for solving
the Helmholtz equation, Eq. (3), this scaling will generally be unnecessary due to the effect of the ap term in that equation on
the diagonal entries.

Using the modified scaling, we calculated condition numbers for coefficient ratios in the range 100 � 104, plotted versus
interface position as blue and green lines in the top plot of Fig. 5. Note that, once again, pathological cases are handled cor-
rectly. When the material boundary intersects a cell corner, producing a cell with volume fraction m = 0, there is little effect
on the condition number. We find the dependence of condition number on volume fraction is very similar to that of Oever-
mann et al. Also note that, in using two hundred positions for the interface, we cover a range in volume fraction down to
�10�5. Through further tests using the non-aligned geometry, we show that the condition number exhibits identical behav-
ior down to volume fractions of 10�14, as shown in the bottom plot of Fig. 5.

The stability of our scheme for solution of the heat equation depends on the eigenvalues of the Laplacian residing in the
left half-plane, owing to the L0-stability of the TGA time integrator. In all planar geometry cases above this was observed to
be the case. We have also extended the eigenvalue analysis to a more complex geometry. The rhodonea geometry, pictured
in Fig. 7, is also used for solution error testing of the scheme in Section 6.1. Here, we use it to show how the eigenvalue spec-
trum varies with coefficient ratio. In the top plot of Fig. 6, the spectrum is plotted for three values of the ratio, r = 10�4, 100,
and 104, at the very coarse resolution of four cells per linear dimension. The real part of the eigenvalues remain negative,
scaling linearly with the coefficient ratio. Furthermore, by observing the dependence of the real part of the eigenvalues
on coefficient ratio at multiple resolutions, as in the bottom plot of Fig. 6, we show that the increase of max(Re(k)) with res-
olution is relatively weak. Together, these results indicate that the multigrid solver used here will, even in the presence of
large coefficient ratios, produce well conditioned problems despite under-resolving complex geometries.

5. Time discretization and algorithm outline

We follow [15] in using a second order in time Runge–Kutta solver [20] in solving the heat equation. The time discreti-
zation is

Tnþ1 ¼ I� l1L
� ��1

I� l2L
� ��1

Iþ l3L
� �

Tn þ Iþ l4L
� �

f nþ1
2

h i
ð24Þ

with the l parameters chosen so as to simultaneously achieve second order accuracy and L0 stability.
The heat equation algorithm proceeds as follows, omitting details of the multigrid operations:

1. Grid generation
(a) Calculation of geometric quantities
(b) Calculation of stencil weights

Fig. 7. Rhodonea geometry, outlined in white, showing the solution to Poisson’s equation inside and outside, with j� = 100 and j+ = 101.
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2. Heat equation update step solve
(a) Calculate source term at half-timestep, f nþ1

2

(b) Apply l4 operator
(c) Apply l3 operator
(d) Solve elliptic problem for l2 operator

i. Calculate boundary fluxes
ii. Single relaxation step in each material

iii. Repeat (i) and (ii) to convergence
(e) Solve elliptic problem for l1 operator (repeating steps i–iii above)

Elliptic solver operations form the bulk of the computational work. In order to speed convergence, we plan to investigate
the need for performing step (i) before every relaxation step. We leave this investigation for future work, however.
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Fig. 8. Solution error convergence for the rhodonea example, following Oevermann et al. Top: L1 norm of the error in the solution. Note that L1 and L2

norms also converge at second order. Bottom: L1 norm of the error in the magnitude of the gradient of the solution. Here again, the L1 and L2 norms also
converges at second order.
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6. Numerical results

6.1. 2-D tests of solution error for Poisson’s equation on fixed and adaptive meshes

As a 2-D test of the elliptic solver with a non-trivial geometry, we solve the Poisson equation jDu = q on a single grid,
with two materials whose boundary is a rhodonea curve, originally due to Li [21] and also used by Oevermann and Klein [12].
The equation for this curve in polar coordinates is

r ¼ r0 þ r1 sinðxhÞ; ð25Þ

where r0 and r1 are the inner- and outer-radii, respectively, and x the number of lobes of the rhodonea (see Fig. 7). Our tests
use r0 = 0.5, r1 = 0.1, and x = 5, as in previous work. Note that the rhodonea is slightly offset from the origin of the domain,
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Fig. 9. Top: Plot of the log of the magnitude of the error for the AMR test with rhodonea geometry. The rectangle with a thin bounding line shows the extent
of the single level two grid. The rectangles with thick bounding lines show the extent of the level three grids. Bottom: L1 norm of the error for three level
AMR (red), and single level (blue) calculations versus the inverse of the finest grid spacing. The black line is a reference showing second order convergence.

2462 R.K. Crockett et al. / Journal of Computational Physics 230 (2011) 2451–2469



Author's personal copy

being centered at x ¼ y ¼ 0:2=
ffiffiffiffiffiffi
20
p

. We label quantities on the interior of the rhodonea, the inclusion region, with a minus,
such as j�. Similarly for the exterior, using j+.

This example is a good test of the EB methodology due to the high curvature near the inner radius. For the purposes of
comparison, we reproduce Example 2 of Oevermann et al. Here, as there, a range of coefficient ratios, j�/j+ = 10�3, 10�1, and
103 was run. The exact solution is given by

uex;þ ¼ r4 þ c0 logð2rÞ
jþ

; ð26Þ

uex;� ¼ r2

j�
; ð27Þ

from which we calculate the solution error ei ¼ jiðui �uex
i Þ. Plots of the norm of the solution error and the error in the mag-

nitude of the gradient of the solution (again weighted by volume fraction) are shown in Fig. 8. Both are second order accurate
in 1-, 2-, and max-norm. Especially noteworthy is the second order convergence of the gradient error, which compares favor-
ably with [12].

A test with even more challenging geometries have also been run, though we omit details for the sake of brevity. A car-
dioid, which is difficult due to a lack of Lipschitz continuity, was used in a previous investigation [5]. We find second-order
convergence for this geometry, as well.
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The second test uses the same rhodonea geometry, and targets the adaptive mesh refinement (AMR) capabilities of Chom-
bo in the multi-material context. It involves a quadratic source in the center of the rhodonea

q ¼ jp a� a2� �4
; ð28Þ

uex ¼

r2
0 a6 c4a4 þ c3a3 þ c2a2 þ c1aþ c0

� ��
� c4 þ c3 þ c2 þ c1 þ c0ð Þ
þc logðr0Þ� if a < 1;

r2
0 c logðrÞð Þ otherwise;

8>>><
>>>:

ð29Þ

a problem adapted from [15]. Here a = r/r0 and we use a value of r0 = 0.2. The constants are
c ¼ 1

10� 4
9þ 6

8� 4
7þ 1

6 ; c0 ¼ 1
36 ; c1 ¼ � 4

49 ; c2 ¼ 6
64 ; c3 ¼ � 4

81, and c4 ¼ 1
100. We use a modest ratio of j�/j+ = 1/10. The matching

conditions at the boundary are homogeneous.
Our strategy is to use a single level run to verify the results from an AMR run, in this case with two levels of refinement.

With effective gridding, normed errors in the AMR case should be very similar to those of the single grid case with equivalent
resolution. We found it simplest to cover the inner (r < r0) region of the rhodonea entirely with the level two and three grids
in order to ensure that the region with the largest solution gradient is at the highest resolution. Level two and level three
grids also cover the boundary, which is the other large error region. (An alternate strategy for controlling grid placement,
Richardson error extrapolation, is more algorithmically complex, and is left for future work.)

Successive AMR runs increase the base level resolution while keeping the number of levels fixed. By comparing the error
from these runs with that of single grid runs with equivalent effective resolution, we are able to verify that AMR is not intro-
ducing spurious errors. A plot of the error for a R128 base grid (effective resolution R512) is shown in Fig. 9, at top. At bottom is
shown the L1 norm of the error versus the effective (finest) grid size. Both single grid and AMR results are second order. Just
as importantly, the magnitude of the normed AMR errors are only marginally higher than those of the single grid
calculations.

6.2. 2-D and 3-D tests of multigrid solver efficiency

We have tested the performance of the multigrid solver for a range of grid sizes and coefficient ratios. An ellipsoid geom-
etry in two and three dimensions is used. There is no refinement of the domain using AMR. We measured the number of
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multigrid iterations required to reduce the L2 norm of the error by ten orders of magnitude. Optimally, the iteration count is
independent of the grid size. In Fig. 10 we plot the iteration count versus grid size for resolutions in the range R32 to R1024 in
the 2-D case, and R16 to R256 in the 3-D case. The figure shows results for coefficient ratios from r = j�/j+ = 10�3 to 103.
Though the iteration count increases somewhat with increasing grid size, there is a stronger dependence on coefficient ratio,
particularly when the latter is greater than one. Solvability issues associated with large j inclusions is well documented in
the literature; see [12,8]. We have explored this issue further by measuring the asymptotic convergence rate for point relax-
ation over a larger range in coefficient ratios, at a single resolution – R128 in 2-D and R64 in 3-D. As expected, Fig. 11 shows
that the asymptotic rate decreases as r increases above unity. However, the rate reaches an asymptotic value at a ratio of 102

(103 in 3-D). We also observe this behavior in the multigrid solver, which performs better than might naively be expected as
the coefficient ratio increases above 102.
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6.3. 3-D test of solution error for Poisson’s equation

Our test of solution error convergence in three dimensions uses a sphere of radius R = 0.392, and a source and exact solu-
tion proportional to an eigenfunction of the Laplacian in spherical coordinates:

qðrÞ ¼ �k2 sin krð Þ
r

; ð30Þ

uex;pðrÞ ¼ 1
jp

sinðkrÞ
r
þ cp: ð31Þ

The constant cp is chosen such that [uex] = 0, giving homogeneous matching conditions at the material boundary. Results for
solution error are shown in Fig. 12 and Fig. 13. Convergence is second order, independent of the norm and coefficient ratio
chosen.

6.4. 3-D tests of solution error for the heat equation

In order to test the accuracy of our multi-material method for the heat equation, we once again use the method of man-
ufactured solutions. For the desired exact solution uex of Eq. (2) in material p we again choose for the spatial component the
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Fig. 14. Convergence of the L1 norm of the solution error for the heat equation. Top: homogeneous Dirichlet embedded boundary. Bottom: Homogeneous
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trigonometric eigenfunction of the spherical Laplacian from Section 6.3. Time dependence is added via an exponential decay
term. The source term fp is chosen such the heat equation is satisfied. The exact solution and source are of the form

uex;p ¼ cp
0

sinðkrÞ
r

e�ct þ cp
1; ð32Þ

f p ¼ cp
0ðjpk2 � cÞ sinðkrÞ

r
e�ct : ð33Þ

In all cases we choose k = 2p. The interface between materials is also a sphere of radius R = 0.392.
Due to the difficulty of choosing solutions such that the matching conditions Eq. (1) are simultaneously zero, we test each

in turn. In other words, we perform one test with a homogeneous Dirichlet boundary, where the solution in each phase is the
same while the jump in the flux varies in both time and space. The other test uses a homogeneous Neumann boundary,
where j+u+ = j�u� so that the flux is continuous across the boundary.

For the homogeneous Dirichlet case we use c�0 ¼ cþ0 ¼ 10, c�1 ¼ cþ1 ¼ 100, and c = max(j+,j�). All simulations were run for
the same number of timesteps, to a final time such that ctfinal = 0.2. For the homogeneous Neumann case we use c�0 ¼ 10=j�,
with all other parameters the same as in the homogeneous Dirichlet case. Results for solution error convergence are shown
in Fig. 14, and confirm second order accuracy for both cases.

Table 1
Table of parameters used in fuel bundle test.

Name Value Source

Horizontal domain size 12 None
Pin radius 0.800 [22]
Wire radius 0.103 [22]
Pin-wire separation 0.478 None
Pin length 3.000 None
Wire separation 20.0 [22]
Pin + wire thermal diffusivity 0.9007 [11]
Moderator density 0.852 [23]
Moderator specific heat 1.2768 
 107 [23]
Moderator thermal diffusivity 0.6251 [23]

Fig. 15. Temperature distribution at steady state for a 19-pin fuel bundle. The interfaces between fuel pin and moderator are represented by semi-
transparent surfaces. A slice of the solution inside the third row of pins is shown. The solution on the exterior is shown in a slice at the bottom of the
domain.
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6.5. Conjugate heat transfer in a nuclear reactor fuel bundle

Finally, we test the multi-material method on a more realistic example, inspired by nuclear reactor core simulation. The
geometry consists of a set of nineteen coaxial reactor fuel pins. Each pin is wrapped in a helical wire. Outside of the fuel pin is
a moderator, in this case a stationary material with thermal properties equivalent to liquid sodium. The geometric param-
eters used closely follow [22], and are listed in Table 1.1 All parameters are in CGS units. The source was a Gaussian that falls
off with distance from the pin axis,

~f ¼ f
qcP
¼ ~F exp �r2

pin=s2
� �

: ð34Þ

The source strength ~F ¼ 2:5
 103, and the width parameter s = 1/4. This choice provides a steady-state power density of
approximately 102 W/m2. Initially, the temperature is uniform at 600 K. The top and bottom domain boundaries were adi-
abatic @T

@z ¼ 0
� �

, while the others were kept constant at 600 K. The simulation was run using timesteps of dt = 0.1 to a final
time of t = 51.0, at which point the heat flux through the boundary had reached a steady state. Fig. 15 shows the temperature
distribution at this final time.

7. Conclusions

We have presented an approach to solving elliptic and parabolic equations using Cartesian grid embedded boundary
methods which is second order accurate and computationally efficient. The former was achieved using the usual five-point
stencil in cells not intersected by the boundary, and a quadratic approximation to the state at the interface otherwise. The
discretization results in a non-symmetric matrix whose eigenvalues satisfy the stability criterion for the time integration
scheme for all tested geometries. Stability of the spatial discretization, as measured by the condition number of the operator,
was verified using numerical experiments using both simple and complex geometries, small (10�14) volume fraction cells,
and a range of resolutions.

In order to efficiently solve elliptic equations, we use geometric multigrid. This necessitated treatment of a number of
special cases that arise when the geometry is under-resolved. The solver was found to be efficient for all geometries tested.
Moreover, the method was also shown not to suffer from condition-based solver convergence issues. It remains stable for
ratios up to 106. Moreover, we find that the rate of convergence improved at very high material contrast ratios, a good indi-
cator that it will remain stable and efficient beyond those tested.

The method was tested on a complex nuclear reactor fuel bundle geometry that underscored the flexibility of the grid
generation approach. This, along with the parallel computing and AMR capabilities leveraged from Chombo, are essential
to approaching large scale problems. In the future, higher order extensions of the underlying method will be explored using
both the existing capabilities for high order geometric representations [18] and by extending the stencil approximations to
higher order.

Parallel scaling of the algorithm will also be explored in future work. Preliminary results suggest that the algorithm will
be scalable to thousands of processors. This is due to the similarities with the single material algorithm, whose scaling was
explored by Trebotich et al. [24].
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