Downloaded by [University of California, Berkeley] at 10:49 05 July 2011

Molecular Simulation
Vol. 37, No. 8, July 2011, 738-745

Taylor & Francis
Taylor & Francis Group

A higher-order accurate fluid-particle algorithm for polymer flows
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We present a new algorithm for the simulation of polymer-laden flows in microscale environments. Our algorithm is based
on a hybridisation of high-order accurate continuum and particle methods. The continuum algorithm provides the basic
framework for high-performance computations to resolve device length and time scales. It is coupled to a new particle
method with an optimised treatment of particle interactions such that the time step is on the level of the fluid continuum. We
demonstrate our simulation capability on the flow of polymers in a contraction microchannel used for single-molecule

detection.
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1. Introduction

Understanding complex biological flows through
advanced algorithmic modelling is critical to several
important biomedical applications such as targeted drug
delivery coupled with continuous monitoring and diag-
nostics. These applications will leverage miniaturised
technology based on the advancements in microfluidics
and nanofluidics. In order for this development to continue
towards the design of optimised trustworthy working
devices, advanced modelling and simulation tools are
needed to understand the fundamental physics and
chemistry of biological fluids at much smaller than normal
scales. This will enable shorter design and fabrication
cycles and ultimately get devices to market more quickly
and with less cost.

Modelling complex biological fluids is a challenge,
because their non-Newtonian constitutive behaviour is not
easily represented. The problem is further complicated
when the flow of biological fluids is restricted to the small
length scales of state-of-the-art biomedical devices. At
these scales, new fluid mechanical and modelling issues
arise, because (1) surface-to-volume ratios are extremely
large and (2) characteristic lengths of the macromolecules
or cells approach those of the flow geometry. For example,
a highly concentrated solution of suspended polymer
molecules may be represented at large, system-level scales
with a continuum viscoelastic constitutive model [1].
However, when the geometry length scales are comparable
to the inter-polymer spacing, a continuum approximation
is no longer appropriate and a discrete molecular
approximation is needed. In addition, when the length
scale of the geometry is comparable to the length of an

individual polymer macromolecule, new physical beha-
viour may be observed near surfaces where velocity and
concentration gradients tend to be large and macromol-
ecular shear degradation or scission can occur as a result.
This dynamic can be beneficial in a DNA-amplification
device, e.g., but detrimental in a drug-delivery system.
The discrete representation of particles suspended in a
fluid is needed in this case to predict the fate of individual
molecules.

In a previous work, we had first developed a hybrid
fluid-particle algorithm to model freely jointed polymers
coupled with a viscous solvent [2]. The algorithm captured
qualitatively the behaviour of a polymer molecule in a
microarray channel, namely stably enforcing the rod length
constraint and bead-surface collisions. We improved this
algorithm in regard to overall stability such that the particle
time step was on the order of the fluid time step by
implementing a velocity constraint (in addition to the
position constraint) on the particles [3]. This algorithm
was extended to include additional features like a rod
non-crossing constraint [4]. A new particle method was
developed by introducing an exponential integrator and
proved to be stable for long time (i.e. fluid dynamics time
scales as opposed to molecular dynamics timescales) in
Refs [5,6].

In this paper, we have coupled the new particle
method [6] with a high-performance and higher-order
accurate fluid dynamics solver for complex geometry [7].
We consider a canonical flow that occurs in microfluidic
detection devices: flow of individual DNA polymer
strands through an abrupt contraction microchannel.
In our flow demonstrations, we introduce two polymers
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in a pressure-driven flow through a sudden contraction
microchannel. Abrupt contractions in microchannels are
common for the purpose of flow control in a microfluidic
device [8]. Here, the abrupt contraction is intended to
mimic a single-molecule detection component in a larger
system [9], where the molecules are threaded through a
region for detection using fluid mechanical forces alone.
The goal of these simulations is to predict optimal
parameters for a flow-through device.

2. Model

We model a polymer as a collection of coupled point
masses, each subject to the Langevin equation of motion
[10] (as in [2-6,11]),
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subject to the constraint
IIx; = xit1ll, = a. (3)

Here, x;(#) is the position of the ith particle with mass m;, u
is the fluid velocity, f; is the interparticle force acting on
particle i, y > 0 is the friction coefficient and £(¢) is a
white noise representing stochastic thermal bombardment
by the solvent. This assumes that the fluid velocity is
decomposed into a smooth part u and a rapidly varying
component & The smooth part is influenced by stochastic
motion of the particles, however, and is therefore formally
a stochastic process. The constant o is given by

2vkgT
o= [T, @)
m;

where kg is the Boltzmann constant and 7T is the
temperature.

We use the Navier—Stokes equations to model the
solvent as a continuum on domain ():
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These equations describe an incompressible fluid of
density p, pressure p, velocity u and Newtonian viscosity
v, subject to an additional body force f, which will
account for fluid-particle coupling. On the domain
boundary 6(), we have the no-slip boundary condition
u=0.

We consider the Navier—Stokes equations to be
applicable to length scales that are large enough that
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thermal perturbations are averaged out, so u is smooth.
Thus, in our analysis, the stochastic dependence of u
in the Langevin equations is through the particle
position x only: u = u(#,x(¢)). In the Navier—Stokes
equations, f is

f(x,1) = Zmiv(vi(t) = u(x(n),n)dx(®) = x,(1)), (7)

where the sum is over all particles. This force is stochastic
through the position and velocities of the particles.

3. Numerical method
3.1 Particle solver
The numerical method for the integration of Equation (2)
for particles was given in detail by Kallemov and Miller
[6]. Here, we summarise the algorithm.

The rearrangement

z=ve”, (3a)
az,- "
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permits the velocity solution

t

z;(t) = 2;(0) + J (ya(xi(s), 5) + f; + o&i(s))e”ds.  (9)
0

An implicit function for the constraints is obtained
by the method of Lagrange multipliers. The Lagrange
multipliers A are obtained as solutions of linear system [6]

AXdt =D (10)

derived from the constraint condition (3). The matrix A
depends only on x permitting the implicit function
formulation

dz; = ye"udi + 0e"dW, + |(A-0A L — (AwA, |
X e [e (M) - (Az)di+y (Ajx) - (Au)dt
—y(Ajx) - (Ajw)dr + o (Ax) - (A dW)],
(11)

or, in integral form,

h h
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(12)
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With time step &, these equations are discretised after
the expansion of Wagner and Platen [12],

*‘yl’l
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Arabic subscripts denote the index of a bead in a polymer
chain, from 1 to M; and Greek superscripts on the bead
indices denote directional components, from 1 to D, the
spatial dimension. It0 integrals are given by

1) = Wia(0), (162)

NS J e” dW,«(s0), (16b)
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and the three integrals f are to be interpreted in the sense
that the integrands are to be expanded as a collection of
terms multiplying exponentials exp(nvysy), for some
integer n. The coefficients of these exponentials are
evaluated at so = 0, so the integration really applies only
to these exponential factors.

Each step of the stochastic ordinary differential
equation (ODE) integration involves evaluating (13) and
(14), then projecting the resulting parameters {x,v} to
obey the constraints ||A;x|| = a and (A;x) - (A)v = 0.

By itself, assuming a prescribed fluid motion wu, this
stochastic Langevin algorithm is second-order accurate in
the weak and strong senses [6].

3.2 Fluid solver
3.2.1 Corrector

If we consider a two-dimensional (2D) cell-centred
velocity, u;; = (u,); ;, it would be ideal (for second-
order temporal accuracy) to advance the solution to times
(n+ 1)At as follows:

un+1 =u'+ AI(_[(U-V)U]HJF(I/Z) _ lvanr(l/Z)
p

1
+VAlln+(l/2) + pfn+(1/2)> . (17)

The implicit nature of the velocity and time centring of
the pressure gradient are issues in this discretisation.
We treat the viscous source term implicitly and estimate
an intermediate velocity that is not necessarily divergence
free based on a lagged pressure gradient. This temporal
integration is performed using a second-order Runge—
Kutta method [13] that is known to be stable in L for our
finite volume approach to geometry. For parabolic partial
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differential equations (PDEs)

d
So= Lo+ po) ()

it takes the form

- mOA~ mL)e" = T+ usL)e"
+ (L4 waL)p(e™ /)
(19)
with ;= uo = (1 — 1/v/2)At, 3 = (2 — 1At and

ws = (v/2 — 3/2)Ar. This leads to the following dis-
cretisation for the momentum equation:

(1= i vA) ([= pavd)u” = (T4 psvA)u” + (T4 pyvh)
X (—[(u . V)u]l1+(l/2) — le”‘“/Z) + lfn—t-(l/Z)) 7
p p
(20)

where £ = vA. A projection method [14] is then used to
advance the velocity and pressure gradient in pressure
formulation form (as opposed to pressure correction)
while enforcing incompressibility

yH = P(u* +%Vp"“/2)>, @1
vt/ — ﬁQ (u* n %Vpn—(l/m) (22)
where
Q=GL'D, (23a)
P—1-0. (23b)

D, G and L are the discrete divergence operator, discrete
gradient operator and discrete Laplacian, respectively. In
our approach, P is an approximate projection operator and
L # DG [15].

3.2.2  Velocity predictor

The heat equation (20) contains as a source term the
nonlinear convective derivative u- Vu"*(!/2_ To approxi-
mate this term, we follow finite volume discretisations of
hyperbolic systems based on high-order Godunov methods
for advection [16]. We expand the cell-centred velocity to
a cell edge and to the half step in time in a Taylor series,
for example, in the x-direction,

wiaj _ () Axow | Argu®
Yir1/2,) = (u+ 2ox 21 o 24

Using the PDE to substitute the time derivative, we
extrapolate from cell centres to cell edges in the plus and
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minus directions, omitting the pressure gradient:
. I At
u{jf = ul’.fj + 3 mm(l x u”ﬁ’ 1)8xuzj
At 1
+ > (vAuj'J + ;f:’,) . (25)

The normal slopes are calculated as follows, e.g.

()™ if @y, — ol ) — ) >0,
qu ro= . n n n n .
(Oxt);; 0 if Gy, — ), — ' ) =0,
(26)
where [17]
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2
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27)

with one-sided differences at boundaries. We can now
solve a Riemann problem at each cell edge, where there
exist two states, having extrapolated from cell centres on
both sides of a cell edge, to obtain the state at the edge. For
the incompressible Navier—Stokes equations, the Riemann
problem solution is simple upwinding:

X,+ :
Ui, i Wiy~ 0
X, — : n
Ant(1/2) _ w if ul <0
i+(1/2),j o FA/DG T (28)
S : —
2 (“i,j + “i+1‘j) if w2, =0,
where

n 1 n n
Uit(1/2,j = 5 (“z ;T ”i+1,j>~ (29)

The solution to the Riemann problem is used as the flux for
the transverse correction of the plus and minus states:

v AT na) )
W =W~ TAy( ij+(1/2) i.,j*(l/Z))' (30)

The Riemann problem (28) is then solved again based on
plus and minus states that include the transverse flux
difference.

An intermediate projection is applied to make up for
the omitted pressure gradient in the extrapolation (25) in
order to be consistent with the constraint V-u = 0:

n+(1/2) _ and(1/2) MAC A~ 70+(1/2)
s = ), — QY@ GD
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Here, MAC denotes the marker-and-cell centring. The
subscript x indicates the direction of the gradient to
correspond to the x-component of velocity, for example.

The final step in the predictor is a repeat of the
Godunov extrapolation with two exceptions: the velocity
used to solve the Riemann problems is the projected
normal velocity at a cell edge, e.g. ufﬂ(ll/zz)) P not u;‘+(1 27
and the intermediate projection is not performed, but,
rather, the previous solution to the Poisson’s equation is
used, since the normal velocities comprising the right-
hand side have not changed. Thus, this step only affects
the transverse velocities at cell edges, which are
corrected with transverse gradients obtained from nearest
neighbour normal gradients from the previous projection
according to

n+(1/2) _ ant(1/2)  _ [yMAC Ay 17F(1/2)
/g = gy~ QU@ s (D)

resulting in a second-order estimate of u:’_:'((ll//zz)) ., which
J

can be used to construct the convective derivative.

3.3 Coupling strategy

To couple the second-order strong polymer solver with a
solver for the Navier—Stokes equations, while retaining
second-order accuracy in the strong sense, we use a
predictor—corrector strategy. The algorithm is split as
follows.

3.3.1 Step 1: Fluid predictor

To advance the fluid solution with second-order accuracy,
the force must be centred at #"+(!/?) and accurate to second
order. With particle positions initially known only at ¢",
this accuracy cannot be achieved. Instead, we use f” (7) —
the lower-order ¢" centring. With this source, discrete
divergence-free edge-centred — and time-centred —
estimates of the fluid velocity, u:'j((ll/zz))yj, are computed
with the predictor component of the Navier—Stokes
method (see Section 3.2.2).

3.3.2  Step 2: Polymer evaluation at time t + (At/2)
n+1/2

We average u, | /2.

to cell centres, e.g. in 2D,

w12y _ L/ wrap2 n+(1/2) n+(1/2) n+(1/2)
wo =g ( i~(1/2,) T Wi/, T iy T i,j+<1/2>>’

(33)

then use a second-order particle-in-cell method to
approximate u"+(!/2(x?), the fluid velocity at the ¢"+(1/2)
predicted location of each particle. Using this, the material

time derivative u"(x/) is estimated by

+(1/2 —
u ) — u'(x)

1" n :2.
;) At

+ v -Vux!). (34)

Using the estimate of the fluid velocities and its derivatives

at time ¢, with the initial condition {x, v}, we can solve

the stochastic ODEs for the constrained particle motion

over the interval [r",¢t"t(/2].  This provides
n+(1/2) _n+(1/2) . .

{x; ,V; }, which permits the second-order

evaluation of £"t(1/2 from (7).

3.3.3 Step 3: Fluid corrector

Using the second-order estimate to the flux £**(1/2 known
to second order, the corrector steps of the fluid solver are
carried out. This consists of the heat solver (20) and final
projection (21). The fluid velocity u"*! is now updated to
the new time and is second-order accurate.

3.3.4 Step 4: Polymer evaluation at time t + At

In this final step, we advance the polymer equations from
1" 1/2) 1o "+1 now using velocity u”“(x?ﬂl/ ) to
compute derivative u*(1/ 2)(X?Jr(l/ ) in a manner analo-
gous to Step 2. The updated particle parameters
{x"*1 v"*1} may then be used to evaluate f"*! to second
order.

4. Results

We apply this hybrid fluid-particle algorithm to the
simulation of polymers that are represented by a chain of
beads and rods coupled to an incompressible viscous
solvent. We perform 2D simulations of two polymers, 150
and 80 nodes, respectively, flowing in an abrupt
contraction microchannel at three different Reynolds
numbers. This geometry is chosen so as to simulate the
transport of a polymer like a DNA molecule into a smaller,
confined channel where a sensor might be located. The
channel section is 10 wm long and the inlet is 3.75 um
wide. The contraction ratio is 4:1. We choose the
interparticle spacing, or constraint length, to be the Kuhn
length for DNA, a = 100 nm, which is a measure of the
flexibility in the polymer chain; other parameters are the
particle mass, m = le-19 g, relaxation time, y = le + 12s
and o = 5e + 08 cm/s>? (see [2,11] for definitions).

In Figure 1, the Reynolds number at the inlet of the
channel is 0.000375. The polymers are in an initially
coiled state. The convective forces are not strong enough
to stretch them out as they proceed through the abrupt
contraction where the flow accelerates, which is a typical
behaviour in experimental DNA flows [8]. The low
resolution of these simulations is such that the viscous
forces, which dominate inertial forces at this very low



Downloaded by [University of California, Berkeley] at 10:49 05 July 2011

Figure 1. Polymer locations at times 0.00199, 0.01999,
0.03499, 0.03699 and 0.03989s for Re = 0.000375.
Background colour is velocity: blue (high) and red (low).
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Figure 2. Polymer locations at times 3.3e-06, 0.00017, 0.00034,
0.00038 and 0.00042s for Re = 0.0375. Background colour is
velocity: blue (high) and red (low).
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Figure 3. Polymer locations at times 3.4e-07, 2.7e-06, 3.4e-06,
3.8e-06, 4.0e-06 s for Re = 3.75. Background colour is velocity:
blue (high) and red (low).

Reynolds number, are not resolved, and, therefore, do not
manipulate the polymer, either. This flow scenario is likely
not ideal for single-molecule detection to occur in the
smaller contracted channel.

In Figure 2, the Reynolds number is 0.0375. The
stronger inertial flow along with velocity gradients due to
viscous forces uncoils the polymers and stretches them out
in the accelerated region as if threading the polymers
through the contracted channel. These dynamics seem to
be ideal for the design of a sensor.

In Figure 3, the Reynolds number is 3.75. The polymer
transport is faster and the polymers are stretched out.
These could be acceptable parameters for sensor design
in this channel, but the flow might be too fast for capture
and detection of the molecule to occur. This finding
is consistent with detection systems that rely on DNA
capture techniques before amplification to ensure a signal
[9]. In such systems, the typical operating Reynolds
number is on the order of 1, so that individual DNA
molecules are not transported too rapidly to avoid capture.

A careful numerical convergence study of this coupled
system is underway to verify the accuracy claims that
are made in this paper on the basis of theoretical analysis.
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