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ABSTRACT

Performing a stable, long duration simulation of driven MHD turbulence with a high thermal Mach
number and a strong initial magnetic field is a challenge to high-order Godunov ideal MHD schemes
because of the difficulty in guaranteeing positivity of the density and pressure. We have implemented a
robust combination of reconstruction schemes, Riemann solvers, limiters, and Constrained Transport
EMF averaging schemes that can meet this challenge, and using this strategy, we have developed a new
Adaptive Mesh Refinement (AMR) MHD module of the ORION2 code. We investigate the effects of
AMR on several statistical properties of a turbulent ideal MHD system with a thermal Mach number
of 10 and a plasma β0 of 0.1 as initial conditions; our code is shown to be stable for simulations with
higher Mach numbers (Mrms = 17.3) and smaller plasma beta (β0 = 0.0067) as well. Our results show
that the quality of the turbulence simulation is generally related to the volume-averaged refinement.
Our AMR simulations show that the turbulent dissipation coefficient for supersonic MHD turbulence
is about 0.5, in agreement with unigrid simulations.

Subject headings: Magnetic fields—MHD—ISM: magnetic fields—ISM: kinematics and dynamics—
stars:formation—methods: numerical—turbulence

1. INTRODUCTION

Eulerian codes are commonly used in star formation
studies in order to model the complex physical processes
involved, including turbulence, magnetic fields, gravita-
tional collapse, and radiation feedback. The dynamic
ranges of density and size scales involved in star forma-
tion are enormous, ranging from more than 10 pc in giant
molecular clouds (GMCs) of density ∼ 5 AU protostellar
cores with densities & 1013 cm−3 (Masunaga et al. 1998).
This poses a significant challenge to numerical simula-
tions using a uniform computational mesh. For example,
using the unigrid code ZEUS-MP (Hayes et al. 2006), a
simulation of ideal MHD turbulence with a 10243 grid re-
quires ∼ 50, 000 cpu hours. When gravitational collapse
begins, dense cores will reach the numerical resolution
limit (Truelove et al. 1997) in just a small fraction of
the global free-fall time, tff . For a high-order Godunov
scheme, the computing time will be ∼ 5 times that for
ZEUS-MP, which uses a low-order scheme. The comput-
ing time is further increased by a factor of at least 16
whenever the resolution of the 3D grid is doubled be-
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cause maximum Alfvén speed will be increased at lower
density regions as the result of higher resolution. It is
computationally inefficient to simply increase the grid
resolution for star formation simulations because only a
small fraction of the simulated region has collapsed to
sufficiently high density to violate numerical resolution
requirements; most of the simulated volume is in low
density voids where such fine resolution is unnecessary.
Therefore, adaptive mesh refinement (AMR) becomes an
important tool for simulation of star formation using Eu-
lerian codes. With AMR, the computational mesh is re-
fined only in the localized regions where high resolution
is required, and as a result computational resources are
concentrated in the regions where they are needed most.

Stars form in molecular clouds, which are cold (T ∼
10 K), supersonically turbulent (sonic Mach numbers
∼ 10 on scales ∼ 10 pc), and magnetized (B & 10µG);
the Alfvén Mach number is observed to be of order unity
and the plasma β parameter is small (. 0.1; Crutcher
1999). There are several MHD codes with AMR ca-
pability, including the publicly available codes Ramses
(Teyssier 2002), PLUTO (Mignone et al. 2007), ENZO
(Wang & Abel 2009), and FLASH (Fryxell et al. 2000).
However, to our knowledge, there is no AMR code in the
literature that has demonstrated the capability of simu-
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lating supersonic MHD turbulence with initial conditions
appropriate for star-forming regions. The primary rea-
son for this is that Godunov schemes for ideal MHD with
high-order approximate Riemann solvers cannot guar-
antee positivity in density and pressure (e.g. LeVeque
1992; Toro 1999; Berthon 2005; Zhang & Shu 2010) and
are therefore unstable for turbulence that is driven for
long times with such initial conditions. This becomes an
important consideration when developing an AMR ideal
MHD code for star formation simulations with MHD tur-
bulence.

Because turbulence is intermittent, one might hope
that AMR would be very effective in simulating it. How-
ever, in a study of purely hydrodynamic turbulence using
the ENZO code, Kritsuk et al. (2006) argued that the use
of AMR only became practical from an efficiency stand-
point if the base mesh had high resolution to start with.
When they attempted runs with coarse (1283 and 2563)
base meshes (note that they used refinement ratios of 4),
a large fraction of their domain was refined until they
were sufficiently able to resolve the localized turbulent
structures using AMR: with the refinement criterion they
adopted, they refined 90% of the computational domain
at 5123 resolution, 65% of the domain at 10243 resolu-
tion and 34% at 20483 resolution. Furthermore, it is not
just a matter of whether AMR is economical for a turbu-
lence simulation, but also whether it can accurately cap-
ture the properties of the turbulence. Another attempt
at using different refinement criteria, such as refining on
local vorticity and divergence of velocity in addition to
shock refinement for purely hydrodynamic turbulence,
also shows that very large refinement coverage generally
results in capturing the turbulence statistics (Schmidt et
al. 2009).

In this paper, we present a robust MHD AMR scheme
that is able to simulate turbulent flows with high Mach
numbers and strong initial magnetic fields and that uses
an accurate CT scheme to maintain ∇ · B = 0 to ma-
chine accuracy without recourse to approximate methods
that rely on either divergence cleaning(e.g. Crockett et
al. 2005) or monopole advection (Powell’s 8-wave scheme
and its extensions; e.g. Powell et al. 1999; Dedner et al.
2002; Mignone et al. 2007; Wang & Abel 2009; Waa-
gan et al. 2011). Recently, Waagan (2009) modified the
MHD module of the FLASH code using a directionally
split MUSCL-Hancock scheme with properly discretized
Powell source terms in order to enable stable driven-
turbulence simulations. The driven-turbulence tests in
Waagan et al. (2011) are either at high Mach numbers
with a relatively weak initial magnetic field (β0 ∼ 1)
or at low thermal Mach numbers (. 2) with somewhat
stronger fields (β0 ∼ 0.25). The tests they carried out
were all unigrid; the performance of their code on driven
turbulence with AMR was not described. Waagan et
al. (2011) cites simulations of driven turbulence at high
Mach numbers in strong fields using this code, but these
too were unigrid simulations.

Here we present the results of a quantitative inves-
tigation of simulations of ideal MHD turbulence using
a newly implemented ideal MHD module in our AMR
code, ORION2, which is based on a conservative high-
order Godunov scheme. We investigate the significance
of refinement coverage to the quality of turbulence statis-
tics in strongly supersonic MHD turbulent flow. We are

able to perform long duration, high Mach number, driven
MHD turbulence simulations with a magnetic field that
is initially moderately strong (β0 = 0.1). In §2, we
briefly describe the numerical method and the implemen-
tation of our AMR constrained transport scheme using
the Chombo AMR framework (Colella et al. 2000). In
§3, we present several standard tests to examine the ac-
curacy of the code for both unigrid and AMR simula-
tions. In §4 we discuss the effects of refinement coverage
on several ideal MHD turbulence statistics using AMR.
We focus our discussion on the velocity power spectrum,
the PDF, and the turbulence dissipation rates. In §5 we
present our conclusions.

2. NUMERICAL METHOD

2.1. ORION2

In this paper we present ORION2, which represents
a major upgrade of our parallel radiation hydrodynamic
AMR code ”ORION” (Truelove et al. 1998; Klein 1999;
Krumholz et al. 2004, 2007). ORION2 is implemented
using the Chombo AMR framework (Colella et al. 2000)
and is in a modular form that allows the selection of
a variety of physics modules for simulations. Chombo
is a set of highly optimized tools that provide an in-
frastructure for implementing finite difference and finite
volume methods for solving partial differential equations
on a block-structured AMR grid configuration. Elliptic
and time-dependent modules are included, as well as sup-
port for parallel platforms using MPI. The newly devel-
oped MHD module of ORION2 is based on the Godunov
scheme in the finite volume formalism implemented in
the PLUTO code (Mignone et al. 2007). Specifically,
we use a dimensionally unsplit Corner Transport Up-
wind (CTU) scheme (Colella 1990) incorporating the
Constrained Transport (CT) framework (Evans & Haw-
ley 1988). This CTU+CT integrator is best described
in Stone et al. (2008), which will not be repeated here.
Our implementation preserves some of the flexibility of
the PLUTO code in choosing (1) different interpolation
schemes to re-construct cell interface states from the cell-
center values, such as the piecewise linear method (PLM)
or the piecewise parabolic method (PPM); (2) differ-
ent limiters for the preservation of monotonicity near a
discontinuity during the re-construction stage, from the
very diffusive minmod to least diffusive monotonized cen-
tral difference limiter; (3) different Riemann solvers, such
as Roe and HLL-family solvers, to obtain fluxes at the
cell interfaces based on the reconstructed cell interface
states; and (4) different CT electromotive force (EMF)
averaging schemes, such as the simple arithmetic aver-
aging of fluxes computed during the upwind step (Bal-
sara & Spicer 1999), or a face-to-edge integration pro-
cedure using the arithmetic average of the EMF deriva-
tives from neighbor cells, or selecting EMF derivatives
according to the sign of the mass flux at the cell inter-
face. See Gardiner & Stone (2005) on how to compute
the EMF at cell edges during the upwind step. Mignone
et al. (2007) have summarized the advantages and dis-
advantages of the combinations of different solvers and
integration schemes.

The CT scheme increases the complexity of the algo-
rithm, especially for an AMR code, and it requires ad-
ditional memory for storing the face-centered magnetic
field. However, the benefit of the CT scheme is that the
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solenoidal constraint ∇ · B = 0 is ensured to machine ac-
curacy. For cell-centered MHD algorithms, divergence-
cleaning methods (e.g. Crockett et al. 2005) are used to
ensure the solenoidal constraint, but they cannot guaran-
tee positivity of pressure (or energy) and therefore reduce
the robustness of the code. The Dedner et al. (2002) ap-
proach, which is used in some cell-centered codes (e.g.
Peng & Abel 2009; Mignone & Tzeferacos 2010), allows
magnetic monopoles to decay with time as they are trans-
ported to the domain boundaries. Some studies have
reported that monopoles could lead to incorrect jump
conditions and other spurious dynamical effects (e.g Bal-
sara & Spicer 1999; Tóth 2000). The cell-centered field
is readily calculated with the CT scheme: once the face-
centered magnetic field is updated, the cell-centered mag-
netic field is computed from a simple averaging of the
face-centered magnetic fields.

2.2. AMR Implementation

Extending any uniform-mesh algorithm to AMR re-
quires several modifications, primarily involving the cou-
pling between the solutions at different resolutions. We
follow the block-structured AMR approach outlined by
Berger and Colella (1989) and extended to MHD by Bal-
sara (2001).

We begin with a uniform mesh that spans the domain
and is denoted as AMR level ` = 0, with mesh spacing
h0. (Superscripts on the symbols h, nref , t and ∆t indi-
cate the level of refinement, not a power.) When refine-
ment is triggered by some criterion, such as a steep den-
sity, velocity or magnetic field gradient, refined grids are
constructed in logically-rectangular patches with mesh
spacing h1 = h0/n0

ref , which are grouped into AMR level
1; here the refinement ratio n0

ref is some power of 2. If
further refinement is desired, more AMR levels are con-
structed. Each AMR level ` has a uniform mesh spacing
h` = h`−1/n`−1

ref . In general, n`
ref can have a non-uniform

dependence on `, but in this paper we adopt n`−1
ref = 2.

Patches with the same resolution are organized into lev-
els, which are then organized into a hierarchy of AMR
levels.

Following the approach outlined by Berger and Colella
(1989), we refine in time as well as space, commonly
known as “subcycling” – the solution on each AMR level
is updated using a timestep ∆t` = ∆t`−1/n`−1

ref . If we
know the solution on the entire AMR hierarchy at time
t0, then we begin the multilevel update of the solution
on all levels by updating the base level solution by ∆t0,
without regard for any finer levels. We then recursively
advance any refined levels until the solution on the en-
tire AMR hierarchy has reached t0 + ∆t0. Whenever
the solutions on different levels reach the same solution
time, they are “synchronized”, to ensure that the com-
posite solution remains conservative and maintains the
solenoidal nature of the magnetic field.

In general, the update of the solution on each logically-
rectangular patch follows the same approach as that for a
uniform-mesh implementation. AMR-specific implemen-
tation details fall into the following categories:

1) Boundary conditions: Following common prac-
tice, boundary conditions at the edge of a rectan-
gular patch are handled by adding a ring of ghost
cells around the patch sufficient to complete the

stencils used to update the solution on the inte-
rior of the patch (otherwise known as the “valid
region”). The algorithm in this work requires 4
ghost cells. Solution values in ghost cells (and the
magnetic fields on the associated “ghost faces”) are
filled depending on the type of boundary they are
associated with:

1.1) Physical domain boundaries – if the patch
boundary abuts a (non-periodic) physical do-
main boundary, ghost cell values are set using
standard discretizations of the relevant physi-
cal domain boundary condition (e.g. Dirichlet
or Neumann boundary conditions).

1.2) Copy boundaries – if the patch is adjacent to
other patches on the same level, ghost-cell val-
ues are filled by copying interior (valid-region)
values from adjacent patches.

1.3) Coarse-fine boundaries – if the ghost cells
are along a coarse-fine boundary between two
AMR levels, coarse-level solution values are
interpolated to fill in ghost regions. If the
fine level is not at the same solution time
t as the coarse-level solution, we interpolate
the coarse-level data linearly in time, since
t`−1
old ≤ t` ≤ t`−1

new. Cell-centered conserved
quantities are filled using piecewise linear in-
terpolation that is limited to prevent the cre-
ation of new maxima and minima, following
Berger and Colella (1989). The face-centered
magnetic field is interpolated by first per-
forming a piecewise-linear interpolation of the
coarse-level field onto the fine-level faces that
overlie the coarse-level faces, and then linearly
interpolating these interpolated values in the
face-normal direction to fill the fine-level faces
that do not overlie coarse-level faces. Note
that this differs from the divergence-free inter-
polation scheme presented by Balsara (2001)
in that interpolated values are not necessarily
divergence free. We have not found it nec-
essary to ensure that the magnetic fields in
ghost regions are divergence-free, because the
interpolated ghost values are used only in the
reconstruction scheme to compute the fluxes
in the divergence-preserving CT scheme and
are never directly used to increment the mag-
netic fields themselves.

2) Interpolation to newly-refined regions: As
the solution evolves, the refined regions evolve with
it through a regridding process. Previously re-
fined regions are de-refined when finer resolution
is no longer needed, while coarse-level regions are
refined when finer resolution is required. In the de-
refinement case, we simply average the fine-level
solution to the newly-exposed coarse-level mesh.
Newly-refined regions are filled by interpolating
the coarse-level solution. Cell-centered conserved
quantities are interpolated using piecewise linear
interpolation that is limited to prevent the cre-
ation of new solution maxima and minima. The
face-centered magnetic field is defined using a two-
step process. First, we interpolate the coarse-level
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B field onto the new faces using the face-centered
interpolation used to fill ghost faces at coarse-fine
interfaces. Then, the newly interpolated values are
projected using a variant of the face-centered pro-
jection described in Martin & Colella (2000) to en-
sure that they are discretely divergence-free.

3) Synchronization: When the solutions on two
AMR levels reach the same time, a series of syn-
chronization operations is performed. First, the
fine-level solution is averaged onto the covered re-
gions of the coarser level. This includes both cell-
centered conserved variables and the face-centered
B. The coarse- and fine-level solutions have been
updated using fluxes that have been computed in-
dependently, likely resulting in a loss of conserva-
tion at coarse-fine interfaces. Conservation is main-
tained through a flux-correction step similar to that
used by Berger and Colella (1989), which ensures
that the same fluxes are used to update the coarse-
and fine-level solutions across coarse-fine interfaces.

Similarly, the magnetic field is unlikely to be
divergence-free at coarse-fine interfaces because
coarse- and fine-level magnetic fields have been up-
dated independently. Following Balsara (2001), we
ensure a divergence-free B at coarse-fine interfaces
through a correction step that ensures that the
same electric field values are used to update the
coarse- and fine-level B field adjacent to coarse-fine
interfaces.

3. STANDARD TEST RESULTS

We have performed many tests of the ORION2 MHD
module, including the well-known standard tests, such
as the EM wave families (e.g. Crockett et al. 2005), the
Ryu & Jones (1995) shock-tube tests, the Brio & Wu
(1988) shock-tube test, the field-loop advection test, and
the MHD blast-wave test as in Gardiner & Stone (2005).
We present the results of only two of the shock-tube tests
and the field-loop advection test here to demonstrate the
second-order accuracy of the MHD module.

3.1. Shock-tube Tests

Ryu & Jones (1995) developed a suite of shock-
tube tests that are commonly used for testing
MHD algorithms. In Figure 1, we present the
results of just one of the tests with the set-
ting of initial conditions (ρ, vx, vy, vz, Bx, By, Bz, P ) =

(1, 10, 0, 0, 5/(4π)1/2, 5/(4π)1/2, 0, 20) on the left and
(1,−10, 0, 0, 5/(4π)1/2, 5/(4π)1/2, 0, 1) on the right of the
contact discontinuity; here ρ is the density, v the veloc-
ity and P the gas pressure. The contact discontinuity is
located at the middle of the shock tube, and we set the
adiabatic index of the gas to be γ = 5/3. The length
of the shock tube is 1 and is resolved by 512 cells along
the x-direction. The initial condition on the velocity is a
colliding flow with a magnetic field at an angle of 45◦ in
the x− y plane. The results at a time 0.08 in code units
(corresponding to 0.46 sound crossing times at the left
side of the shock tube initially) are shown in Figure 1,
and they agree with the magnitudes and locations of the
shocks found by Ryu & Jones (1995) to almost within
the thickness of the lines.

In Figure 2, we show the results of another com-
monly used shock-tube problem, that of Brio & Wu
(1988) . The initial conditions of this test are
(ρ, vx, vy, vz, Bx, By, Bz, P ) = (1, 0, 0, 0, 0.75, 1, 0, 1) on
the left and (0.125, 0, 0, 0, 0.75,−1, 0, 0.1) on the right;
here P is the gas pressure. The contact discontinuity is
located at the middle of the shock tube and γ = 2. The
length of the shock tube is 1 and is resolved by 800 cells
along the x-direction. The gas has no movement initially.
The y-component of the magnetic field changes sign at
the contact discontinuity and has a pressure jump of 10.
Figure 2 shows the results at a time of 0.1 (corresponding
to 0.14 sound crossing times at the left side of the shock
tube initially). We can see the compound wave, which
is composed of an Alfvén wave and a slow wave, in the
figure.

3.2. Field-Loop Advection

Since Gardiner & Stone (2005) first suggested using the
advection of a magnetic field loop to show the difference
between operator split and unsplit schemes, field-loop
advection has become a standard test for MHD algo-
rithms. Our setup of the 3D test is exactly the same as
in Gardiner & Stone (2008): the magnetic field loop is
created inside a rectangular box of size (2,1,1) resolved
on a 2N×N×N grid with periodic boundaries. The loop
of magnetic field is generated from a vector potential on
a coordinate system (x1, x2, x3), with A1 = A2 = 0 and

A3 =

{

B0(R − r) for r ≤ R,
0 for r > R, (1)

where B0 = 10−3, r =
√

x2
1 + x2

2, and the size of the
loop is R = 0.3. The computational coordinate system
(x, y, z) is transformed to (x1, x2, x3) by

x1 = (−2x + z)/
√

5,

x2 = y, (2)

x3 = (x + 2z)/
√

5,

corresponding to a rotation about the y-axis. The den-
sity (ρ = 1) and pressure (P = 1) are uniform and the
whole region is advected with a velocity (2,1,1). There-
fore, after one unit of time, a loop starting in the middle
of the rectangular region will travel across the 3D diag-
onal of the box and return back to the initial position.
The advection continues for 2 cycles and the images of
the magnetic field loop at the beginning and the end of
this test are shown in Figure 3. The top part of the
figure shows the simpler case in which the field loop is
aligned with the z-axis, which is similar to a 2D advec-
tion test. The loops diffuse slightly but maintain their
shapes nicely after 2 cycles of advection. The time evolu-
tion of the volume mean δB2/B2 is similar to that of the
3D inclined field-loop test, and Bz remains zero to the
machine accuracy. In the rest of this section, we focus
on the 3D inclined field-loop test results. We have per-
formed the inclined field-loop test 3 times on a single level
grid (unigrid) with 3 different resolutions: N = 32, 64
and 128, as in Gardiner & Stone (2008). No AMR is
used. The time evolution of the mean square field, 〈B2〉,
normalized by the initial value, 〈B2

i 〉, of the whole ad-
vection sequence is shown in Figure 4a as the three thin
curves. The results are similar to those of Gardiner &
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Stone (2008), who used a second-order PLM reconstruc-
tion scheme, and to those of Fromang et al. (2006), who
used a second-order TVD scheme for the Ramses code.
Gardiner & Stone (2008) pointed out that with the axis
of the field loop aligned along an inclined direction with
respect to the computational grid, preserving B3 to be
zero is non-trivial. The time evolution of the normalized
error, < |B3| > /B0, of the 3 tests is shown in Figure
4b; the error is slightly smaller than that in Gardiner &
Stone (2008). Figure 5 shows the volume rendering of
the inclined field loop from the N = 64 unigrid model
after 2-cycles of advection along the 3D box diagonal.

We next investigate how AMR affects this test. In Fig-
ure 6, we show an AMR advection test with a base grid
of resolution N = 64 and one level of refinement, with a
refinement ratio nref = 2. The refinement criterion is on
the jump in the normalized magnetic pressure (δB2/B2),
and the refinement threshold is 2.8. With this refinement
criterion, the entire field loop is covered by the fine grid.
The level 1 fine grids continually move with the loop. Af-
ter 2 cycles, the loop maintains its shape as in the advec-
tion test on a unigrid with a resolution of N = 128. The
dotted curve in Figure 4a almost exactly coincides with
the thin solid curve. The normalized error 〈|B3|〉/B0 is
also close to that of N = 128 test.

In Figure 7, we show an advection test using fixed mesh
refinement (FMR) as opposed to adaptive mesh refine-
ment (AMR). The level 1 fixed fine grid, which also has
nref = 2, is smaller than the base grid in space, and there-
fore the loop passes through the coarse-fine grid bound-
ary during the advection. The loop maintains its shape
nicely after 2 cycles of advection passing in and out of
the fine grid, but it diffuses slightly after the first pas-
sage through the coarse/fine boundary. The normalized
values of 〈B2〉 and 〈|B3|〉 are shown in Figure 4a and
4b (thick dashed curve). Note that this test also high-
lights the need for effective refinement criteria and for
adaptive refinement that follows the solution, since this
test only results in comparable accuracy to the uniform
coarse mesh. In the unigrid, AMR and FMR tests, ∇ · B
vanishes to order 10−16 (machine accuracy).

4. SUPERSONIC ISOTHERMAL MHD TURBULENCE WITH
AMR

4.1. Simulation Model Parameters

In this section, we investigate the effects of AMR on
ideal MHD simulations of isothermal, supersonic turbu-
lence in a strong magnetic field. We discuss only the
effects of AMR on the velocity power spectrum, the den-
sity PDF, and the turbulent dissipation rate. We present
the results of 10 simulations, all with an rms 3D sonic
Mach number Mrms = 10 and an initial value of the
plasma β paramater β0 = 0.1; the corresponding initiial
Alfvén Mach number is MA,0 =

√
5. Periodic boundary

conditions are used. We implemented an algorithm for
driving the turbulence with AMR using the recipe dis-
cussed in Mac Low (1999). The high value of the sonic
Mach number and the low value of β0 have proven to be
very challenging in the past since the simulation can be-
come unstable within or soon after one dynamical cross-
ing time, especially with AMR. We define the dynamical
crossing time as the length of the box divided by the rms
velocity of the turbulent box. The driving pattern we
use is the same for all 10 models to facilitate direct com-

parison. The system is continuously driven at the largest
scales, k = 1 ∼ 2, so as to maintain Mrms = 10 for 3
dynamical crossing times (i.e., 0.3 sound crossing times).
We analyze the data only after the first crossing time so
as to allow the system to relax to a steady state. There
are a total of 50 data files written out from each model
in the last two dynamical crossing times.

We have explored different interpolation schemes and
Riemann solvers in order to determine a combination
of these algorithms which provides accuracy and stabil-
ity for driven turbulence over several dynamical crossing
times. Here we describe the combination of algorithms
we adopted for our tests:

1) The second-order accurate in space, piecewise to-
tal variation diminishing (TVD) linear interpola-
tion scheme described in Toro (1999).

2) The multi-dimensional shock flattening strategy
developed by Mignone (2005), in which the interpo-
lation reverts to the minmod limiter and the fluxes
are computed using the HLL solver when a strong
shock is detected. This provides additional dissi-
pation in the proximity of a strong shock so as to
guarantee positivity of the pressure.

3) The harmonic mean limiter of van Leer (1974).

4) With the CT scheme, the electromotive force
(EMF) is computed at the zone edges using a two
dimensional Riemann solver based on a four-state
HLL flux function (Londrillo & del Zanna 2004;
Mignone et al. 2007).

5) The simple three-state HLLD approximate Rie-
mann solver for the isothermal case described by
Mignone (2005). The absence of the entropy mode
in the isothermal case leads to a different formu-
lation based on a three-state representation rather
than the four-state representation of Miyoshi & Ku-
sano (2005). The MHD module can also handle a
non-isothermal ideal gas, but we do not include
tests with non-isothermal turbulence here.

6) The characteristic tracing scheme of Colella &
Woodward (1984).

We have tried the Roe solver (Roe 1986), which is an
approximate linear Riemann solver, with the above com-
bination, and it is equally stable for long-duration driven
turbulence simulations. The standard tests in Mignone
et al. (2007) show that the Roe and HLLD solvers yield
comparable accuracy, but the HLLD solver is faster. Our
tests lead to the same conclusion, so we use the HLLD
solver for all the driven MHD turbulence simulations in
this investigation.

To push this stable scheme further, we carried out two
simulations on a 1283 base grid with 2 levels of refinement
for 3 dynamical crossing times: (1) Mrms = 10, plasma
β0 = 0.02; and (2) Mrms = 17.32, plasma β0 = 0.00667.
We found that the former test is stable using a CFL
number of 0.4 and the latter test is stable using a CFL
number of 0.35. The results for the second test (Model
11) are shown with the other 10 models for reference,
even though the initial conditions of this test are dif-
ferent. All the standard tests shown in §3 use the above



6 Li, McKee, & Klein

combination of algorithms and demonstrate the accuracy
resulting from this choice. However, it must be borne
in mind that our choice of Riemann solver, reconstruc-
tion, limiter, and EMF averaging schemes is probably not
unique, since we have tested only a small combination of
all existing solvers and reconstruction schemes.

We have also tried the third-order accurate Piecewise-
Parabolic-Method (PPM) of Colella & Woodward (1984)
as the reconstruction scheme, but the simulation be-
comes unstable within or soon after one dynamical cross-
ing time, regardless of what limiter is used (even with the
most diffusive minmod limiter). We conclude that spe-
cial treatments will be required to use higher-order inter-
polation schemes for simulations of high Mach number,
strong magnetic field turbulence.

4.2. Refinement Criteria

Kritsuk et al. (2006) have proposed two refinement
criteria for hydrodynamic turbulence, one based on the
jump in pressure and one on the norm of the velocity gra-
dient matrix. We have used this as a guideline in setting
our refinement criteria for MHD turbulence. For the first
criterion, we replace the thermal pressure P by the sum
of the thermal and magnetic pressures, Ptot = P+B2/8π;
cells are tagged for refinement if ∆Ptot/Ptot exceeds a
pre-determined threshold. For the second criterion we
use the Kritsuk et al. (2006) refinement criterion for
strong shear, which is determined by computing the norm
of the velocity gradient matrix ‖∂ivj‖ without the con-
tribution from the diagonal elements. The norm is then
normalized by cs/∆x and is tagged for refinement at a
threshold that is the same as that for the total pres-
sure jump. Kritsuk et al. (2006) found that AMR results
agreed well with unigrid results at the maximum reso-
lution of the AMR for a pressure jump threshold of 2.
With the inclusion of the shear velocity refinement crite-
rion, they found that the pressure jump threshold could
be raised to 3.

We have carried out a series of tests to investigate
the sensitivity to the refinement threshold. Unlike Krit-
suk et al. (2006), we find that a refinement threshold
∆Ptot/Ptot = 2 causes the base level to be completely
refined in all our AMR models, most likely because of
the inclusion of magnetic pressure. Kritsuk et al. (2006)

use an AMR refinement ratio n`−1
ref = 4. For example,

their 10243 AMR run has a base grid of 2563 with one
level of refinement. All of our tests use n`−1

ref = 2, except
for one with n0

ref = 4 for comparison. With a refinement
ratio of 2, two levels of refinement are needed to achieve
a maximum resolution of 10243 with a 2563 base grid.
The fraction of the volume covered by the first level of
refinement (i.e., the “coverage”) is independent of the
refinement ratio. Thus, the coverage at level 1 with a
refinement ratio of 2 (maximum refinement equivalent to
5123) is the same as that at level 1 with a refinement ra-
tio of 4 (10243), but the number of cells is 8 times larger
in the latter case. The coverage at level 2 with a refine-
ment ratio of 2 (10243) is smaller than that of level 1
with a refinement ratio of 4, and the number of cells is
correspondingly smaller.

A simple way of characterizing the refinement of a mul-
tilevel AMR calculation is the volume-averaged resolu-

tion,

〈R〉 ≡
∑

i

RiVi. (3)

where Ri is the 1D resolution of level i and Vi is the
fractional volume coverage for level i excluding higher
levels. For example, for Model 4, the volume coverage of
levels 0, 1 and 2 is Vi = 0.35, 0.48, 0.17, respectively (the
total level 1 coverage is 0.65 but V1 excludes the volume
refined at level 2). For this model, 〈R〉 = 128 × 0.35 +
256×0.48+512×0.17 = 255, which is very close to that
of a 2563 unigrid model.

We have performed a large number of ideal MHD tur-
bulent box experiments using different base grid sizes
(1283 and 2563), different refinement criteria, different
minimum block sizes, and different refinement ratios. We
also have two unigrid turbulence models, at 1283 and
5123, for comparison. The unigrid 5123 model will serve
as the reference for all AMR models presented in this
paper.

4.3. Power Spectrum

In this section, we study how changes in resolution
and refinement criteria affect the velocity power spec-
trum, Pv(k) ∝ k−n, in terms of the power index, n,
and the extent of the inertial range, kmax. We fit the
power spectra obtained from the 50 data dumps between
1 and 3 dynamical crossing times between k = 4 (to avoid
the effects of driving) up to a value of k that increases
by unity at each iteration. All the fitting results and
the plots shown in section 4 are time-averaged results
from the 50 data dumps over these two dynamical cross-
ing times. (Since the turbulence remains correlated for
about one dynamical crossing time (e.g. Li et al. 2008),
we assign an error to the mean value of P (k) from the
50 data dumps equal to the standard deviation divided
by

√
3.) As more points are added, the uncertainty in

the slope decreases, and correspondingly so does the re-
duced χ2 of the fit. However, the reduced χ2 begins to
increase when the power spectrum turns over due to nu-
merical dissipation; we define the point at which χ2 is a
minimum as the upper end of the inertial range, kmax.
In order to overcome the possibility that noise in the
data could artificially lower kmax, we omit the point at
kmax + 1 that led to the increase in χ2 and evaluate the
reduced χ2 of the fit including the point at kmax + 2;
if the value of the reduced χ2 is less than the previous
minimum, we set kmax = kmax(previous)+2 and proceed
with the iteration. We allow for the possibility that the
noise fluctuation could be up to three cells wide. This
procedure allows our estimate of the inertial range to
extend beyond the bumps at k ' 9 that are apparent
in the spectra in Figure 8 and are due to an artifact in
the driving pattern. This method is conservative, but
it can eliminate the impact of the bottleneck effect on
determining the spectral index or the size of the inertial
range (e.g. Verma 2007; Kritsuk et al. 2007) when the
inertial range available for turbulent energy transfer is
small. However, we note that our MHD turbulence tests
do not suffer from the bottleneck effect.

In Table 1, we present the fitted results of the 10 ideal
MHD turbulence models. The table includes the refine-
ment coverage at each fine level. For example, in Model
4, level ` = 1 has a volumetric coverage of 65% of the
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computational domain and level 2 has a volumetric cover-
age of 17% of the computational domain (or 17/65 ∼ 26%
of level 1). In Figure 8, the compensated power spectra
of models 1, 3, 4, 6, and 10 are shown. We summarize
the results in Figure 8 and Table 1 as follows:

1) Models 1 and 10 are unigrid simulations and pro-
vide a basis for evaluating the AMR models. The
spectral index of Model 10 is n = 1.42± 0.02, con-
sistent with other strong magnetic field supersonic
turbulence simulations, which show that the power
spectrum is close to the Iroshnikov-Kraichnan spec-
trum (Iroshnikov 1963; Kraichnan 1965). The low
resolution Model 1 has a steeper spectral index,
n = 1.75 ± 0.06. We repeated Model 10 (uni-
grid 5123 with an HLLD solver) using the Roe
solver and obtained a power spectrum that agrees
to within the uncertainty of fitting.

2) Models 2 to 4 test the effect of changing the refine-
ment threshold for the total pressure jump from
3.25 to 2.5. As the threshold drops, the refinement
coverage increases, and the spectral index slowly
approaches that of Model 10. Correspondingly,
the inertial ranges are significantly longer (2 times)
than in Model 1 and appear to converge to that of
Model 10 as the refinement coverage increases.

3) Model 5 tests the effect of shear flow refinement
on the AMR calculation. There is no noticeable
increase in the accuracy of Model 5 compared to
Model 4, presumably because the additional cri-
terion did not significantly increase the average
refinement. Model 8 has shear flow refinement,
whereas Model 7 does not; however, Model 8 has 2
levels of refinement compared to 1 for Model 7, so
no inference on the effect of the shear flow refine-
ment can be drawn.

4) Comparison of models 5 and 6, and of models 4
and 7, addresses the effects of refinement coverage
on the overall improvement of the power spectrum.
Model 6 has only 1 level of refinement but uses a
refinement ratio of 4, equivalent to full coverage
of level 1 at the resolution of level 2 in Model 5,
which is a 2-level model using a refinement ratio of
2. The average refinement in Model 6 is about 60%
greater than in Model 4; correspondingly, there is
a substantial improvement to the power spectrum
and a modest increase in the size of the inertial
range. However, the computational time for Model
6 is about 3 times that of Model 5, a big price to
pay for the improvement. The reason for the large
increase in computing time is that each cell that
is refined only to level 1 in the two-level run has
8 times as many refined cells in the one-level run.
An additional test of the effects of refinement cov-
erage is provided by comparing Model 7 to Model
4; the former uses a base grid of 2563 and only 1
level of refinement. Model 7 has an average refine-
ment about 20% greater than Model 4. For this,
one gets a significant improvement in the spectral
index, but only a small increase in the size of the
inertial range. The computation time for Model 7
is similar to that for Model 6.

5) Like Models 2-4, Models 8 and 9 address the im-
plications of increased refinement coverage for im-
provements in the power spectrum. Note that the
level 2 resolution in these models is the same as
that in a 10243 resolution simulation. Model 9
has only a slightly lower threshold for the pressure
jump than Model 8 (2.3 vs. 2.5), but this leads
to almost a twofold increase in the average refine-
ment. This increase in average refinement yields
an increase in the inertial range, but has no signifi-
cant effect on the spectral index. Even though the
average refinement of Model 9 exceeds that in the
unigrid Model 10, the latter appears to have the
most accurate spectral index and the largest iner-
tial range. Our finding that a unigrid simulation at
5123 resolution is superior to an AMR simulation
with a maximum refinement of 10243 is consistent
with the conclusion of Kritsuk et al. (2006) that a
large base grid is required to obtain the advantages
of AMR for simulations of turbulence.

6) Model 11 has different initial conditions from the
above 10 models. This model has Mrms = 17.32
and plasma β0 = 0.00667; the corresponding
Alfvén Mach number is MA,0 = 1. This model is in
many ways similar to Model 3 in Table 1 in terms
of the power spectral index, the length of inertial
range, and refinement coverage, although Model 3
has very different initial conditions (Mrms = 10,

β0 = 0.1, and MA,0 =
√

5).

From the above summary, we can see that changes in re-
finement criteria directly affect the average refinement,
which in turn directly affects the quality of the turbu-
lence power spectrum.

In Figure 9, we show the power spectra of the magnetic
field for models 1, 3, 4, 6, and 10. The convergence
behavior of the magnetic field power spectrum is similar
to that of the velocity power spectra in Figure 8.

A recent study of the effects of purely solenoidal and
purely compressive turbulent driving (Federrath et al.
2010) shows that there are significant differences in the
turbulence statistics between these two extreme driv-
ing models. For example, the dispersion in the den-
sity PDF with purely compressive driving can be 3
times that resulting from purely solenoidal driving. For
purely solenoidal driving, the solenoidal component of
the power spectrum will dominate the dilatational com-
ponent. This is reversed for purely compressive driv-
ing. Reality probably is somewhere in between these
two extreme cases. Our driving is purely solenoidal. We
decompose the solenoidal (∇ · vs ≡ 0) and dilatational
(∇×vc ≡ 0) components from the velocity, v = vs +vc,
by

vc(k)= [k̂ · v(k)]k̂ (4)

vs(k)= [k̂× v(k)] × k̂ (5)

(Lemaster & Stone 2009). We define the fraction of the
dilatational component in the velocity power spectrum
as

χc(k) ≡ Pvc
(k)

Pv(k)
(6)

(Kritsuk et al. 2009a). Figure 10 shows the time-
averaged velocity power spectrum of Model 10 with
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the solenoidal and dilatational components. The time-
averaged χc(k) = 0.27±0.01, 0.26±0.01, and 0.26±0.02
for Models 1, 4, and 10, respectively. It appears that
χc(k) is not sensitive to the resolution. For Model
11, which has a smaller Alfvén Mach number, χc(k) =
0.27 ± 0.02 is the same. The value of χc(k) in an ideal
MHD turbulence model with purely solenoidal forcing
(Kritsuk et al. (2009a)) is ≈ 1/4, similar to our values.
Lemaster & Stone (2009) measure the dilatational com-
ponent of the kinetic energy (i.e., the density-weighted
velocity power spectrum) and find that it is even smaller
compared to the solenoidal component.

4.4. Density PDF

In Figure 11a, we show the probability density func-
tions (PDFs) of density for models 1, 4, and 10 to
demonstrate the effect of refinement on the density PDF
in AMR simulations. The density PDF of the unigrid
Model 1 at 1283 resolution is narrower than the density
PDF of the unigrid Model 10 at 5123 resolution. A low
resolution unigrid turbulence simulation cannot reach the
highest and lowest densities attainable in a high resolu-
tion unigrid simulation. As a result, the maximum wave
speed in a low resolution simulation can be lower than in
a high resolution simulation, since the minimum density
is higher and the maximum Alfvén velocity is most likely
smaller. On the other hand, since the maximum density
in a low resolution simulation is smaller, the clump mass
function will be reduced at high densities; this could be
problematic in simulations of star formation.

AMR offers the best of both worlds: As shown in Fig-
ure 11a, at low densities the AMR simulation (Model 4)
is close to Model 1 and therefore does not have the very
high Alfvén velocities that appear in the high resolution
Model 10. In simulations of star formation, the loss of
resolution at low densities is not important. However,
Model 4 has the same maximum resolution as Model 10,
and the AMR enables it to track accurately the high-
density portion of the density PDF, which is critical in
simulations of star formation.

In Figure 11b, the density PDFs of models 2 and 3
are plotted on top of the density PDF of Model 10. The
high-density part of the PDF of Model 2 deviates more
from that of Model 10 than that of Model 3 because of
the very low level 2 coverage (1.3%) in Model 2. Model 3
suggests that in order to have a good match to the high
density part of the Model 10 PDF, the level 2 coverage
must be & 10% for this problem. With the Roe solver,
the PDF of a unigrid simulation extends to slightly lower
densities than that for the same unigrid simulation using
the HLLD solver, but the high-density parts of the PDF
are almost the same. Therefore, not only is the Roe
solver slower than HLLD solver per time step, but the
time step in an MHD turbulence simulation will also be
smaller.

4.5. Turbulent Energy Dissipation Rate

Both hydrodynamic and MHD turbulence simulations
show that turbulence decays on the order of a dynami-
cal crossing time. The dissipation rate of the turbulent
energy is of order ρv3

rms/L. Specifically, we write

Ė = ε
ρv3

rms

Lint
, (7)

where vrms is the density-weighted rms velocity of the
turbulence and the integral length scale (Batchelor 1953)
for a compressible fluid with a magnetic field is defined
by

Lint =
3π

2〈ρv2 + B2/4π〉

∫

k−1Etot(k)dk, (8)

where Etot(k) is the total energy power spectrum, in-
cluding both kinetic energy and magnetic energy. Su-
personic MHD turbulence simulations (Mac Low (1999),
Stone et al. (1998), and Lemaster & Stone (2009)) sug-
gest that the proportionality constant ε ∼ 0.5. Kaneda et
al. (2003) summarized the results of many pure hydrody-
namic incompressible simulations and showed that, with
their highest resolution (40963) simulation, ε converged
to about 0.4.

The turbulent dissipation rate coefficient ε for the 10
models presented here is plotted as a function of the av-
erage resolution in Figure 12. The horizontal uncertainty
bar is obtained from the standard deviation of the vari-
ation of the refinement coverage during the simulation,
usually a few percent of the refinement coverage. Mod-
els 1 and 10 do not have horizontal error bars since they
are unigrid models. Figure 12 shows that the dissipa-
tion rate is within the uncertainties of the 5123 unigrid
simulation for 〈R〉 & 350. For the three AMR mod-
els with 〈R〉 & 350, the mean ε = 0.48 ± 0.02, which
agrees well with the result from the 5123 unigrid model,
ε = 0.48 ± 0.01, and is similar to the results from other
unigrid simulations of ideal MHD turbulence, ε ' 0.5
(e.g. Lemaster & Stone 2009). In Figure 12, we also plot
the value of ε for Model 11 (solid circle) for reference.
Although this model has the same spectral index for the
velocity power spectrum as Model 3, the value of ε of this
model is smaller.

Models 6, 8, and 9 have similar turbulent dissipation
rates as Model 10, and one might think that using a lower
resolution base grid with AMR would have the advantage
of reaching the dissipation rate obtained from a unigrid
model with higher resolution. However, Table 1 shows
that the CPU usage for these 3 models actually is higher
than for the unigrid Model 10. This is another indication
of the inefficiency of AMR for turbulence studies until a
much larger base grid is used.

4.6. Turbulent Magnetic Field

For a magnetized turbulent system, the magnetic field
strength will be enhanced as the result of field-line
stretching. The maximum field-line stretching will be
limited by the grid resolution, which determines the nu-
merical diffusion of the magnetic field that we want to
minimize. We plot the time-averaged change in mag-
netic field strength, 〈|∆B|〉, normalized by the initial
mean field strength, B0, versus the volume-averaged
resolution 〈R〉 in Figure 13. Since the initial Alfvén

Mach number is modest (MA,0 =
√

5) for Models 1-
10, the enhancement of the field strength is also modest,
〈|∆B|〉 ∼ (1.54±0.09)B0 from the mean value from Mod-
els 6 to 10, which have overlapping error bars and which
have 〈R〉 & 300. The value of 〈|∆B|〉/B0 = 0.53 for
Model 11 is smaller since MA,0 = 1 is smaller. Only sys-
tems with initially high Alfvén Mach numbers can have
a turbulent magnetic field many times greater than the
mean field, and simulations of such systems require much
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higher resolution to have converged magnetic field statis-
tics (e.g. Kritsuk et al. 2009a).

5. CONCLUSIONS AND DISCUSSIONS

We have developed a robust MHD module for our new
AMR code, ORION2, and have demonstrated its ability
to carry out accurate long-duration AMR simulations of
highly supersonic turbulent flows with strong magnetic
fields (β � 1, MA ∼ 1). Although unigrid simulations
of such flows have been published (e.g., Kritsuk et al.
2009b), to our knowledge the AMR simulations of these
flows presented herein are the first to appear in the litera-
ture. Since observations suggest that GMCs have highly
supersonic flows with relatively strong magnetic fields
(McKee & Ostriker 2007) and since AMR is essential for
following gravitational collapse, this represents an impor-
tant advance in our ability to study the conditions that
lead to star formation. ORION2 is able to do this be-
cause the code is sufficiently flexible that one can easily
experiment with different reconstruction schemes, Rie-
mann solvers, CT EMF averaging schemes, and limiters
to find the suitable combination that we have described.

We have tested the accuracy of our code with sev-
eral standard MHD tests, including the Ryu & Jones
(1995) shock tube test, the Brio & Wu (1988) shock tube
test, and the 3D current-loop test on unigrid, FMR, and
AMR. The results we have presented here demonstrate
that the CTU+CT algorithm performs accurately and
works properly within the Chombo AMR framework.
We found that the piecewise linear, spatially second-
order, TVD scheme combined with a multi-dimensional
shock flattening strategy developed by the PLUTO group
(Mignone et al. 2007) can work with both Roe and HLLD
solvers to enable stable, long-duration (3 crossing times)
simulations of driven MHD turbulence with an rms Mach
number of Mrms = 17.3 and an initial plasma β param-
eter of β0 = 0.0067 on a 1283 base grid with 2 levels of
refinement.

We examined the velocity power spectrum, the density
PDF, and turbulent dissipation rate in our investigation
of the effectiveness of AMR on the quality of MHD turbu-
lence simulations. By varying the refinement criteria, the
base grid resolution, and the number of refinement levels,
we find that the quality of the turbulence statistics—in
particular, the spectral index of the velocity power spec-
trum and the extent of the inertial range—is more closely
related to the average refinement coverage than to the
maximum level of refinement. Analysis of the density
PDFs shows that, with our refinement criteria, AMR is
particularly powerful for simulations in which interest is
focused on the regions of highest density: it does not
capture the regions of the lowest density as well as a
unigrid simulation, but it does capture the PDF of the
high-density regions quite accurately (e.g. Collins et al.
2011). Our result for the dissipation coefficient for tur-
bulence with M = 10 and β0 = 0.1 is ε = 0.48 ± 0.01.
This is consistent with other numerical studies of MHD
turbulence with unigrid codes, which find that ε ∼ 0.5.
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Fig. 1.— One of the Ryu & Jones (1995) shock-tube test results using the ORION2 MHD module. The top row, from left to right, shows
the density (ρ), pressure (P ), total energy density (Etot) along the shock tube, which is resolved by 512 cells. The second row shows the
three components of velocity and the bottom row shows the three components of magnetic field. In these panels, from left to right, we can
see the fast shock, slow rarefaction (apparent in the plots of vy and By), contact discontinuity, slow shock, and fast shock.
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Fig. 2.— Brio & Wu (1988) shock tube test results. The top row, from left to right, shows the density (ρ), pressure (P ), and velocity
along the shock tube (vx). The second row shows the y-component of the velocity (vy), the temperature (T ), and the y-component of the
magnetic field (By). The shock tube is resolved by 800 cells. A compound wave composed of an Alfvén and a slow wave is seen as the
spike near the middle of the figure.
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Fig. 3.— Vertical magnetic field-loop advection test on a unigrid with resolution N = 64 (a) at the beginning of the advection and
(b) after 2 cycles of advection. The inclined magnetic field loop, which is rotated by 63.4◦ about the y-axis from the vertical, (c) at the
beginning of the advection and (d) after 2 cycles of advection. Both field loops are advected with velocity (2,1,1). All four panels are at
z=0.5. The field loops maintain their shapes accurately after 2 cycles of advection. (A color version of this figure is available in the online
journal.)
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Fig. 4.— Time evolution of (a) the mean-squared magnetic field, 〈B2〉, normalized by the initial value at time = 0 and (b) the normalized
error, 〈|B3|〉/B0, for the inclined magnetic field-loop advection tests. The three unigrid tests are shown as thin dot-dashed (N = 32), thin
dashed (N = 64), and thin solid (N = 128) curves. The dotted curve (which nearly overlaps the N = 128 unigrid test result) is from the
advection test with AMR at N = 64 resolution on the base level and 1 level of refinement (see Figure 6). The thick dashed curve is from
the advection test with Fixed Mesh Refinement (FMR) at N = 64 resolution at the base grid and 1 level of refinement on a fixed fine grid
smaller than the base grid (see Figure 7). Both the AMR and the FMR tests use a refinement ratio nref = 2. See §3.2 for discussion of the
tests.
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Fig. 5.— Volume rendering of the inclined field loop from the 3D N = 64 unigrid model after two cycles of advection along the box
diagonal. (A color version of this figure is available in the online journal.)
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Fig. 6.— Inclined magnetic field-loop advection test with AMR at the beginning of the advection (left panel) and after 2 cycles of
advection (right panel). The blocks surrounding the loop show the location of the fine grids. Although the base grid has a resolution of
N = 64, the loop is always refined at a resolution of N = 128. The time evolution of the normalized 〈B2〉 and 〈|B3|〉 is almost the same as
that of a unigrid N = 128 test (Fig. 4). (A color version of this figure is available in the online journal.)
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Fig. 7.— Inclined magnetic field-loop advection test with fixed mesh refinement at (a) time = 0, (b) time = 0.25, (c) time = 0.5, and (d)
time = 2.0. The base grid resolution is N = 64 and the fine grid is equivalent to N = 128. When the field loop crosses the coarse-fine grid
boundary, the loop diffuses to the resolution of N = 64 but maintains its shape accurately after 2 cycles of advection. See Figure 4 for the
time evolution of the normalized 〈B2〉 and 〈|B3|〉 for this fixed mesh test. (A color version of this figure is available in the online journal.)
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Fig. 8.— Compensated velocity power spectra of models 1, 3, 4, 6, and 10. The spectra are compensated by k1.42, the spectral index
of the unigrid 5123 Model 10. Models 3, 4, and 6 are simulations with AMR. Models 1 and 10 have just the base grid at 1283 and 5123,
respectively. The spectra are labeled by their model numbers. The horizontal line is provided to aid comparison of the inertial ranges of
all the models. See §4.3 for a discussion of how refinement coverage affects the inertial range. (A color version of this figure is available in
the online journal.)
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Fig. 9.— Magnetic field power spectra of models 1, 3, 4, 6, and 10 (with model numbers shown in the same order as the curves, starting
from bottom) without compensation. The spectra show a similar convergence behavior with resolution as the velocity spectra in Figure 8.
(A color version of this figure is available in the online journal.)
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Fig. 10.— Time-averaged velocity power spectra of Model 10. The solenoidal Pvs
(k) (dot-dashed) and the dilatational Pvc

(k) (dashed)
components of the velocity spectrum are also shown. The time-averaged fraction of dilatation component χc(k) = 0.26 ± 0.02. The
solenoidal component dominates as a result of purely solenoidal driving of the turbulence.
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Fig. 11.— Comparison of density PDFs. Panel (a) shows unigrid Model 1 (dot-dash red line), AMR Model 4 (dashed blue line), and
unigrid Model 10 (solid black line). The AMR model matches the high-resolution unigrid Model 10 very well at high densities, but it is
similar to the low resolution unigrid Model 1 at low densities. Panel (b) shows AMR Model 2 (dot-dash red line), AMR Model 3 (dashed
blue line), and unigrid Model 10 (solid black line). Model 2 has a very low volume coverage at refinement level 2 and as a result the high
density end deviates more from the high-resolution unigrid model than does Model 3. (A color version of this figure is available in the
online journal.)
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Fig. 12.— Turbulent dissipation rate coefficient, ε, of the 10 MHD turbulence models listed in Table 1. For 〈R〉 & 350, ε agrees with the
value in the 5123 unigrid simulation, 0.476± 0.011. Model 9 has 〈R〉 ∼ 624 and ε = 0.467± 0.013. Model 11 (solid circle) has a somewhat
smaller value of ε than Model 3, which has the same value of the index of the velocity power spectrum.
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Fig. 13.— Normalized enhancement of the magnetic field strength, 〈|∆B|〉/B0, of the 11 MHD turbulence models listed in Table 1.

Model 11 (MA,0 = 1; solid circle) has a smaller enhancement in the magnetic field strength than the 10 models with MA,0 =
√

5.

TABLE 1
Velocity Power Spectral Indexes, Inertial Ranges, and Refinement

Model base Refinement Refinement Shear flow Spectral Inertial Refinement 〈R〉 Normalized
grid levels threshold refinementa index (n) rangeb coveragec (%) CPU timed

` = 1 ` = 2

1 128 0 ... ... 1.75± 0.06 4 ∼ 13 ... ... 128 3.81(-3)
2 128 2 3.25 no 1.76± 0.07 4 ∼ 13 6 1.3 139 5.17(-2)
3 128 2 2.75 no 1.65± 0.06 4 ∼ 14 36 9 197 4.87(-1)
4 128 2 2.5 no 1.61± 0.03 4 ∼ 17 65 17 255 6.30(-1)
5 128 2 2.5 yes 1.58± 0.03 4 ∼ 17 70 18 264 6.58(-1)
6 128 1e 2.5 yes 1.48± 0.04 4 ∼ 21 76 ... 420 2.46
7 256 1 2.5 no 1.46± 0.04 4 ∼ 18 19 ... 304 2.41
8 256 2 2.5 yes 1.48± 0.04 4 ∼ 21 31 6.5 369 4.71
9 256 2 2.3 yes 1.46± 0.03 4 ∼ 25 58 17 625 9.47
10 512 0 ... ... 1.42± 0.02 4 ∼ 26 ... ... 512 1.0
11f 128 2 2.75 yes 1.65± 0.06 4 ∼ 14 40 10.4 206 4.05(-1)

aWhen the shear flow refinement criterion is not included, refinement is determined by only the total pressure jump.
bThe inertial range extends from k = 4 to k = kmax.
c` = i stands for volume coverage at level i. The standard deviation of fluctuations in refinement coverage is . 3%
dThe total CPU time is normalized by the total CPU time of the Model 10 unigrid run.
eRefinement ratio n0

ref
= 4, corresponding to a maximum resolution of 5123.

fModel 11 is a stress test of the code and has Mrms = 17.32, β0 = 0.00667 and MA,0 = 1, in contrast to models 1-10, which

have Mrms = 10, β0 = 0.1 and MA,0 =
√

5.


