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Abstract

The dynamics of unconfined, spatially developing
shear layers is studied by numerical solutions of the
time-dependent Euler equations using a second-order
Godunov scheme. Effects of density and velocity vari-
ations between the two streams of the shear layer are
studied and color graphics is used to show more clearly
the entrainment process of the surrounding streams.
The calculations demonstrated that the evolution of
the mean flow was dominated by two-dimensional, in-
viscid effects. The r.m.s. fluctuating velocity and
density profiles were found to be in good agreement
with the measurements of Oster and Wygnanski and
of Konrad, except for the peak value of the v’ profile.

1. INTRODUCTION

This paper presents results of numerical simulation of
unconfined, spatially developing, two-dimensional un-
steady shear layers in a constant-ambient-pressure en-
vironment. It has been known for more than a hun-
dred years that the shear layer generated by a splitter
plate can be inviscidly unstable. The late-time con-
sequence of such flow instabilities is that perturbed
shear Jayers roll up into large-scale vortical structures
(Michel 1932; Brown and Roshko 1974); the latterwork
also demonstrated that the largest-scale structures are
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essentially independent of the flow Reynolds number
(although micro-scale mixing within these structures
is Reynolds-number dependent). It also is known that
the growth of the shear layer is governed by the pairing
mechanism of these vortical structures (Winant and
Browand 1974); a complex nonlinear dynamical pro-
cess (Corcos and Sherman 1984). Perturbations may
occur naturally or they may be intentionally applied.
Studies with applied upstream perturbations indicate
that vortex dynamics are basically inviscid (Ho and
Huang 1982; Oster and Wygnanski 1982).

Many shear layer computations involving discretiza-
tions of the Navier-Stokes equations are available.
These include results using finite-difference methods
(Corcos and Sherman 1984; Mclnville et al. 1985;
Davis and Moore 1985), spectral methods (Riley and
Metcalfe 1980), and vortex methods (Ashurst 1979;
Leonard 1980; Ghoniem et al. 1982). All of these
calculations succeed in resolving small-scale flowfield
structures and are of high quality. However, modeling
of the viscous terms imposes computational inefficien-
cies due to the disparity between viscous and invis-
cid length scales.. One may either resolve the viscous
length scales on a mesh and, hence, use severely re-
stricted time steps, or employ implicit time differenc-
ing and accept the resulting numerical diffusion. The
random vortex method {Chorin 1973, 1986) avoids this
problem at the expense of introducing a statistical er-
ror.

Due to advances in the development of high-order
upwind methods for solving conservation laws, it is
now possible to compute high resolution, essentially
nondiffusive flowfields for the equations of inviscid
gas dynamics. This approach is taken here to sim-
ulate shear layer experiments, with the objective of
demonstrating that viscous forces need not be taken
into account in modeling the dynamics of shear layer




flowfields. Such methods neglect molecular diffusion
effects (i.e., diffusion of vorticity and passive scalars
across streamlines), so that the methodology may be
viewed as an asymptotically large Reynolds number
approach. An advantage of using the gas dynamic
equations is that baroclinic generation of vorticity is
automatically included. Its main disadvantage is
that small Mach number calculations can be quite ex-
pensive; this will be explained in more detail
in Section 2. .
Previous calculations along these lines have been re-
ported by Grinstein et al. (1986), using flux-corrected
transport code to solve Euler's equations, and by
Inoue (1985), using a vortex method to solve potential
equations. Obviously, steady upstream conditions will
not produce any vortex formation using an
Euler code. A fluctuating inflow-pressure condition
was used by Grinstein et al. (1986) by imposing a zero-
slope condition on the pressure at the inflow bound-
ary. Therefore, the pressure perturbations are not
prescribed; in fact, the quantitative values of these
perturbations are part of the solution. We chose to
follow our previous work (Chien et al. 1987) by im-
posing a given velocity perturbation at the inflow (up-
stream) boundary, with the frequency content and rel-
ative amplitudes of the perturbations obtained from
the inviscid linear spatial instability calculations of
Monkewitz and Huerre (1982). (More details are given
in Section 2.) In addition, quantitative r.m.s.fluctuat-
ing velocity results, which require long computations
to obtain converged solutions, are not available in
Grinstein et al. (1986). In fact, despite the large
amount of computational efforts, detailed quantita-
tive mean and fluctuating flow calculations are quite
meager; all of those reported in the literature have
been based on vortex methods (Ashurst 1979; Inoue
1985; Inoue and Leonard 1987; Ghoniem and Ng 1987),
which cannot.yet be generalized to study the vari-
able density effects investigated by Brown and Roshko
(1974) and Konrad (1977). Therefore, the primary
purpose of this paper is to present detailed quantita-
tive results based on a finite-difference solution of the
Euler’s equations and to compare these solutions with
available experiments and other pertinent computa-
tions. Effects of both the density ratio and velocity
ratio on the solutions are addressed in detail in the
paper.

The numerical results presented here were obtained
using an explicit second-order Godunov scheme
(Colella and Glaz 1985). The nondiffusive, high res-
olution properties of this scheme have been carefully
demonstrated by a mesh refinement study combined

with a comprehensive comparison with other schemes
(Woodward and Colella 1984). Its accuracy has been
shown in a variety of applications {Colella et al. 1985,
Glaz et al. 1985); in many situations, embedded shear
layers become unstable, roll up, and interact with the
ambient flow as well as self-interact (Glowacki et al.
1986, Kuh! et al. 1987). Thus, the present calcula-
tions also serve to validate the accuracy of the code in
shear layer regions, by direct qualitative and quanti-
tative comparison with experimental data.

By design, our work is limited to unsteady calculations
of two-dimensional shear layers which are statistically
steady (in the sense of time-averaging); as suggested
by Roshko (1981), a two-dimensional solution is valu-
able both as a gauge against which to compare the real
flows, and as a step in understanding them. Exten-
sion of the present method to three-dimensional cal-
culations using operator splitting is conceptually feasi-
ble, but the computational resources required for such
an effort is extremely prohibitive at the present time.
Some of the results herein have been presented else-
where in preliminary versions of this work (Chien et
al. 1988, 1989; Kuhl et al. 1990). In these earlier re-
ports, monitoring stations situated at three constant
streamwise locations were used to store the flowfield
time histories for quantitative data analysis. Since the
upstream condition is known to have a strong effect on
the development of a free shear layer (Bradshaw 1966),
more monitoring stations are needed to study the rate
of attaining self similarity of various mean and fluc-
tuating profiles. Nineteen monitoring stations located
at constant streamwise intervals throughout the region
of interest have been used in three new calculations to
be presented in this study. Two of these calculations
correspond to the cases studied experimentally in de-
tail by Brown and Roshko (1974) and by Oster and
Wygnanski (1982), respectively. The density ratio and
the velocity ratio for these two cases are both different.
Since the development of a free shear layer is known to
depend on both of these ratios, a third calculation bas
also been made so that the effect of each parameter
can be individually assessed.

The formulation of our numerical simulations is de-
scribed in Section 2. Results and comparison with
experimental data are presented in Section 3, where
detailed quantitative comparisons of mean and fluctu-
ating flowfield profiles are offered (the numerical data
are obtained by statistically averaging the numerical
solution over time intervals which are long relative to
the time scales of vortex formation and pairing). Our
conclusions are summarized in Section 4.




2. Methodology -

Our computational models are based on the equations
of inviscid gas dynamics, thereby neglecting molecular
viscosity and heat conduction; gravitational forces are
neglected as well. The equations may be written in
conservation form for a Cartesian geometry as

U, + F(U), + G(U), =0

where
P pu pu
u=| P pul+p _| pur
- » - s - 2
pv puv pv’+p
pE puE + up pvE+ vp

and p is the density, u = (u,v) is the velocity field in
the Cartesian coordinates x = {z, y), p is the pressure,
E = e + 1(u? + v?) is the total specific energy, and
e is the specific internal energy. We always assume a
perfect gas with equation-of-state

p=(y—1)pe,

and take 4 = 1.4. The streamwise direction is always
taken to be the positive x-axis.

The Eulerian second-order Godunov scheme (Colella
and Glaz 1985) is used to solve these equations for
given initial data and boundary conditions. This
scheme is in conservation form and explicit.

Dimensional operator splitting is used for two-dimen-
sional calculations. A rectangular N x M mesh is
specified by defining 20ne interfaces z;,1 = 0,...,
N and y;, j = 0,...,M with zone sizes Az, and Ay;
where Az; = z; — z;_, and Ay; = y; ~ y;—;. Flow-
field quantities, averaged over a computational zone,
are denoted by p,;, etc. The time step is limited by
the CFL stability criterion

Az.- ij
(eij + luij ' e+ vij 1)

At = o'min,-,j(

)

where ¢ = (yp/p)'/? is the sound speed and & < 1 is
the Courant number. The value ¢ = 0.95 has been
used in all calculations.

Such explicit methods are most appropriate for com-
pressible flowfields. Small Mach number flowfields may
also be obtained, but at the cost of either very poor
computational efficiency or violation of Mach number
similitude. For example, if the Mach number M ~ 0.01
(which is typical of some of the experimental data used

-

here), then it would take approximately one hundred
time steps to convect a fluid parcel through one com-
putational zone. To avoid this problem, the sound
speed of the gas has been modified for the computa-
tions so that typical flow Mach numbers would be of
the order M ~ 0.2. Of course, the density and velocity
ratios across the shear layer are preserved, but Mach
number similitude is violated. Since compressibility
effects are negligible at these Mach numbers and we
do not require temperature data for our comparisons,
this Mach number compromise was found acceptable
for the present study.

The dynamics of the interface separating the two fluid
streams is of great importance in shear layer studies.
Consequently, an additional calculation was performed
of a discretization of the material interface by marker
particles, x;(t), k = 1,..., K(t) where x;(t) denotes
the location of the kth marker at time ¢ and K(1) is the
total number of markers present in the flowfield at time
t. The time evolution of the markers was governed by
passive advection, i.e., dx;/dt = u(x;,t); this ordi-
nary differential equation with right-hand side given
by the underlying computed velocity field was solved
by straightforward finite differences and linear inter-
polation for u. Initially, the interface is represented
by several thousand markers and new markers are in-
serted at the inflow during every time step. Since the
interface is unstable, it is expected that |x; —x;.;| can
become large; whenever this value exceeded twice the
initial marker spacing, a new marker was inserted at
their midpoint. Marker points which exited the fine-
grid region (see below) were deleted. Finally, the con-
dition A'(t) < 75,000 was imposed due to computer
time limitations; if the condition was violated, no fur-
ther markers would be inserted over the last forty per-
cent of the mesh in the streamwise direction.

The accuracy of this approach is a matter of some
debate. Due to the underlying physical instability,
one is solving what amounts to a chaotic dynamical
system in current terminology. In particular, expo-
nential separation of orbits is expected which implies
that the numerical orbit x,(t) is not close to the ac-
tual physical orbit of the initial marker after a time
which is probably small relative to the total compu-
tation time. However, this does not imply that the
aggregate of numerical orbits is not a good represen-
tation of the aggregate of physical orbits. Indeed, our
results here (comparisons with contour plots and shad-
owgraphs from the experiments) suggest the contrary.

The calculations were performed on a two-dimensional
Cartesian grid, see Figure 1. A fine, uniformly-zoned



region with Az = Ay covering the domain D =
{(z.¥) : 0 < z < Xp,~YFr < ¥y < Yr} was placed
straddling the centerline of the shear layer. An ex-
panding grid (above, below, and to the right of D)
was used to place the mesh boundaries far from the
region of interest and thereby minimize any infiuence
of the numerical boundary condition on the dynamics
of the free shear layer. For this study, we have taken
QF = 500 x 80 and Q1 = 520 x 114, where Qr and Qr
refer to the grids in the fine and total mesh regions,
respectively.

Initial data was determined using a Tanh(y) profile to
model the shear layer. We have

u(z,y,t =0) = f(y)
v(z,y,t=0)=0

where
J(y) = Un[l + ATanh(2y/$)]
and
U. = (Uh +Ua) _ Uy =Uy)
m- 2 T T (4 Up)

Here, U, and U, denote the free stream velocity at
y = $oo, respectively; Un, is the mean flow velocity;
A is the shear parameter and § is the maximum slope
thickness of the layer, i.e., § = (Uy — U;)/(du/dy)max-
If the free stream densities are different, we have

p(z,y.1 = 0) = h(y)

where

h(y) = pm[1 + A, Tanh(2y/é)]

_Grm) , _mp)
" 2 " T ()

where p;, p2 are the free stream densities at y = oo,
respectively; p,, is the mean shear layer density and A,
is the density shear parameter. Note that the same §
is used as the length scale for the density distribution.

The left inflow boundary data are determined from

U(O, y’t) = f(y) * 9(1)
v(0,y,1) =0
p(0,y,1) = h(y)

where

N
gty =1+ Zc,, 8in(wn t)
=1

The perturbation frequencies w,, and amplitudes ¢,
have been taken from the linear stability analysis for

)
Tanh(y) shear layer profiles (Monkewitz and Huerre
1982):

w; = 0438w, = w1 /n,n = 1,...,N,

G = 0.01,(2 = 075(’1 1€3 = 0.5561,(4 = 0.44(1,
¢, = 1.7¢;/nforn > 5

Note that the maximum perturbation amplitude is one
percent and w; is twice that given by Monkewitz and
Huerre (1982) because our reference length scale is
twice of theirs (see below).

Numerical implementation of the boundary conditions
is straightforward (Colella and Glaz 1985) for free
shear layers. Dirichlet data is imposed on the up-
stream side (using the equations above) as well as the
top and bottom sides (using free stream values) and an
outflow boundary condition is used on the downstream
side.

The lengths have been normalized by 6/2 and we
choose Az = Ay = 1 in the fine 2zone region; i.e.,
Xr = 500 and Yr = 80. Also, Xg = 8800 and
Yr = 1500 (see Fig. 1 for definitions of X, X,
Yr and Y7); it may be noted how rapidly the grid
expands from the fine mesh to cover the total com-
putational domain. Despite the excellent agreement
with experiment, it would be of great interest to per-
form a mesh refinement study and re-analyze detailed
flow-field structures. With the code used here, this is
currently beyond the limits of our computer resources.

The physical parameters defining the simulations are
summarized in Table 1. The parameter r is defined by
r = Uy /U, and My, M,, and M,, refer to the Mach
numbers of the top stream, bottom stream, and the
mean flow, respectively. In all of the calculations,
Um = 1.0 (i.e., the velocities are normalized by U,,),
the density is normalized by the lower ambient den-
sity, and we take p = p, = ps = 17.86; if p = 1, then
this choice implies that the sound speed ¢ = 5.0 and
Mn =02,

Table 1. Calculational Matrix

Case | Uy Uy t A nleml A | M | M| Md

1714501055/038 |045|10]7.0/-075(029] 029|040
1] 145[055 038 045 {7.0]10[075]0.77|0.11 040
128 075 060 025|10{10) ©0 | 02501502

IV 14505503 045]10]110( 0 [029]/011]02




3. RESULTS AND DISCUSSIONS

A typical shear layer contains a wide spectrum of per-
turbation frequencies, and the mixing width of the
layer continues to grow with increasing distance. The
numerical simulation of one such experiment (Brown
and Roshko 1974) is described here in detail. Addi-
tionally, the calculations were continued so as to pro-
vide data for a statistical analysis of mean and fluctu-
ating flowfield quantities of the solution, and these are
compared with experimental data. This analysis is re-
peated for three other simulations - one using the same
initial conditions as in the above experiment but with
the density ratio inverted (Brown and Roshko 1974),
and two more referring to an experiment (Oster and
Wygnanski 1982) with equal density freestreams. The
flow parameters for all four cases are listed in Table 1.

The calculation for Case I began by exciting only the
fundamental frequency for 1000 time steps. At this
point, the first nine subharmonics wy, wa,.. ., wio wWere
included in the inflow boundary perturbation and re-
tained for the remainder of the calculation. All ten
modes were used from the beginning for Cases III
and IV. We computed a total of 20,000 time steps for
Case 1, 30,000 steps for Case 11l and 26,000 steps for
Case IV. The Case I1 fiowfield was initialized using the
results of the Case I computation at time t = 2579.0
at which point the Tanh(y) profile for the density was
inverted and the new calculation commenced. A total
of 14,000 time steps were computed for Case 11 (al-
though ~ 2000 steps were required for the influence of
the initialization procedure to exit the computational
mesh). Each time step took about 4 seconds on the
LANL CRAY XMP computer.

The dynamic evolution of the Case 1 flowfield was
discussed in Kuhl et al. (1990) using material in-
terface plots. For brevity, one such plot is shown in
Figure 2(a). This material interface plot actually rep-
resents unconnected dots placed at the marker particle
locations. The initial interface contained 5,000 equally
spaced markers. This number rapidly increased to the
imposed maximum of 75,000 during the course of the
calculation, which implies that the length of the inter-
face (insofar that this remains meaningful) increased
by a factor greater than 15 during the course of the
calculation. We note that in the experiment, the up-
per gas was helium and the lower gas was nitrogen;
this terminology is used below for convenience.

For comparison with this calculated interface,
Figure 2(b) presents a shadowgraph picture of the
helium-nitrogen interface recorded during the exper-

iment (Brown and Roshko 1974, Fig. 3d). Similarities
between the calculated and experimental interface are
remarkable. The shape and wavelength of the large-
scale structures are quite similar.

Also included in Figure 2 are the corresponding den-
sity, vorticity and overpressure contours. The shape
of the large structures as deduced from the density
contours agrees with the material interface shape, in-
dicating little numerical diffusion. It is interesting to
note that vorticity is created near the braid regions
and entrained into the structures. Approximately cir-
cular low pressure regions are found in each large struc-
ture, and this generates a radial pressure gradient.
As the helium-nitrogen interface is entrained obliquely
through this pressure gradient, vorticity is generated
by the baroclinic mechanism. The maximum value of
this vorticity reaches about minus one-half of the in-
flow vorticity; hence, it must have an effect on the
flow. Indeed, close inspection of the material inter-
face reveals some smaller-scale vortices rotating in the
counterclockwise direction. This causes the merging
patterns to be considerably more complex and less reg-
ular than the other cases to be discussed later.

Figure 3 depicts the corresponding flowfield near the
centerline (i.e., y = 0.5). Large fluctuations are ev-
ident in the velocity, density and dynamic pressure.
In fact, densities corresponding to pure helium and to
pure nitrogen are seen near the centerline; similarly,
the velocity fluctuates between values corresponding
to approximately U; and to U,. Overpressure fluc-
tuations are small (between + 1.5 to -4.0 percent of
ambient ), which validates the use of the Mach number
compromise (0.29 < M < 0.4) for this calculation.

To gain some insight into the entrainment process,
density and vorticity contours for Case 1 are shown
in color in Figure 4, where the light fluid is shown as
blue and the heavy fluid as red. In agreement with
Grinstein et al. (1986), the density color visualization
shows clearly that more high-speed (light) fluid are en-
trained into the shear layer than low-speed fluid. The
vorticity color visualization shows the formation and
growth of the large-scale vortical structures somewhat
more clearly than the contours shown in Figure 2(d).
The baroclinic generation of vorticity (due to density
and pressure gradients being nonparallel), shown as
blue, and the vorticity due to velocity gradients, shown
as red, are vividly seen.

Material interface plots of the first three cases are com-
pared in Figure 5. One notes immediately that the
large-scale structures of Case II are considerably less



complex than those of Case I. The visual agreement
between these plots and the shadowgraphs of the ex-
periments is remarkable. The large-scale dynamics of
the equal-density Case III layer is much more straight-
forward in that relatively little small-scale entrainment
and interleaving of the two streams is apparent in the
vortical structures. In Figure 6, the calculated visual
spreading rates §{;, are compared with the experimen-
tal data (Brown and Roshko 1974, Fig. 7). The bars
over the calculated results represent the variation in
the visual spreading rate over time and the straight
lines are suggested by Brown and Roshko (1974). The
calculations are in good agreement with the experi-
mental data. Other measures of the spreading rates
based on the mean velocity profiles will be presented
later.

In order to implement our statistical analysis, moni-
toring stations were used to store the flowfield time
histories. Each station consists of 82 positions in the
fine zone region of the mesh across the shear layer. Ex-
cept for Case I, nineteen stations located at constant
intervals between z = 25 and z = 475 were employed.
These flowfield histories were then integrated over the
last 10,000 time steps to establish the various time-
averaged shear layer profiles. For Case 1I, three sta-
tions located at z = 100, 200 and 400 were employed
and only the last 6000 time steps were available at
all 246 positions for the time integration. One reason
for not doing an equally elaborate study for Case II
is because the mixing is less vigorous than Case I and
hence, less interesting. In addition, no experimental
fluctuating data are available for Case Il for compar-
ison; 6000 time steps are adequate to establish mean
profiles.

Several measures of the spreading rate of the shear
layer based on these time-averaged mean velocity pro-
files have been calculated in the present study. Follow-
ing previous investigators (Liepmann and Laufer 1947;
Oster and Wygnanski 1982; Inoue and Leonard 1987),
we introduce the notation y, to denote the location
at which the mean streamwise velocity component
reaches the value given by

= U+ p(Uy = Us)

Of particular interest are the quantities yos and
b(= yo.95s — yo.1).- Their values at all 19 stations have
been computed for Cases 1, 111 and IV; they exhibit
good linear behavior over the last 15 stations. A least-
squares linear fit over these data allows us to compute
the slope and the corresponding location of the vir-
tual origin z,. We have also calculated the momentum

—'ﬁ

thickness (for a constant-density flow)

[ (U= 8) (- Ua)
"‘/.w A

for the same cases and obtained the slope and the cor-
responding z, by the same procedure. The values of
{%, 5:! and %4 are listed in Table 2 together with
the experimental data of Oster and Wygnanski (1982)
and the computed values of Inoue and Leonard (1987).

Several conclusions may be drawn from Table 2.

Table 2. Comparison of Various Spreading Rates

Source A A, 4 o | fu
Oster and Wygnanski | 0.25 0 |0.045 |0.009 |-0.004
Inoue and Leonard 0.25 0 |0.049 [0.010 | -0.006
This study 025 0 (0050 {0010 |-0.006
Oster and Wygnanski® | 0.45 0 (0084 |0.016 |-0.018
This study 0.45 0 |0.081 |0.016 |-0.016
This study 045 | -0.75 |0.089 [0.015 | 0.027

*Interpolated values

First of all, for constant-density cases, present finite-
difference results agree well with the experimental data
and the solution of a vortex method, indicating the re-
liability of the present approach. Secondly, the growth
rate of the shear layer (as measured by either 4 or
42 and the slope of its center line (2424) increase in
magnitude with increasing A. As pointed out before
by other investigators, the center line of the constant-
density shear layer moves toward the low-speed region
(Oster and Wygnanski 1982), indicating that more
high-speed fluid particles are entrained into the shear
layer than low-speed fluid particles (Grinstein et al.
1986). As the density of the high-speed fluid is re-
duced relative to the low-speed fluid (as e.g., in CaseI),
these lighter particles are easier to be entrained into
the shear layer, resulting in a higher spreading rate
than that of the corresponding constant-density case.
This has already been shown in Figure 6 using visual
spreading rate data, and the :—:— values given by the
present calculations listed in Table 2 reconfirm this
reasoning. One may note that the growth rate based
on visual data (as in Fig. 6) is more sensitive to den-
sity variations than 42. More surprising is the failure
of ::—’ to indicate even the trend of this density effect.
For variable-density flows, the momentum thickness

should be modified by
, *® pUy — a)(u — Us)
¢ = dy
/-oo pm(Uy = Uz)?

- -



and our calculations give % = 0.006 for Case I, a
value which is two and a half times smaller than the
corresponding value for the constant-density Case IV.
This may be explained as follows. As the density of the
high- velocity fluid is reduced, the average velocity of
this particle and a heavier low-velocity particle will be
lower than the average velocity of these two particles
at constant density. Therefore, the center line of this
shear layer moves toward the high-velocity side relative
to the corresponding constant-density flow. For Case
I, p2 = 7p;, and the density reduction on the high-
velocity side is sufficient to yield 5’5%1 > 0. The region
over which the product (Uy — @i)(& — Uz) is the largest
occurs now where ;"’-‘- & 1, therefore, producing a
smaller value of #' than the corresponding constant-
density case (i.e., 8). Since 8§ =6’ =05at z =0, it
is easy to see that %‘- < g—:—. Consequently, we con-
clude that the slope of the momentum thickness is not
indicative of the extent of mixing in a variable-density
shear layer.

To compare time-averaged profiles at different stations,
a scaling variable

n=y/(z ~z,)

will be used, with the virtual origin, z,, determined
from the least-squares linear fit of b for Cases I, I1I and
IV. Since only three stations are available for Case 11,
a reliable curve fit cannot be made. Therefore, z,
determined from material interface plots is used for
that case. The results are: r, = 13.5, -42.0, 31.0 and
-2.0 for Cases I, II, 111 and IV, respectively.

The development of the mean velocity and density pro-
files for Case I is shown in Figure 7. It is clear that the
profiles do approach an asymptotic, similar shape as
z is increased, and the above scaling helps to collapse
the data. In fact, these figures indicate that the pro-
files at F = 300 are not far from the asymptotic ones
(6; is the initial momentum thickness, §; = 0.5). The
development of the mean velocity profiles for Cases 11
and IV is shown in Figures 8 and 9, respectively. It ap-
pears that, for these constant-density flows, the above
scaling again helps to collapse the data; the mean pro-
files are somewhat less complicated and the profile at

7 = 200 is not far from the asymptotic distribution.

The mean velocity and density profiles at selected sta-
tions for Cases I, I1 and 111 are compared with the
mean profiles measured by Brown and Roshko (1974,
Figs. 13b and ¢) and Oster and Wygnanski (1982,
Fig. 6d) in Figures 10-12. The calculated profiles are
seen to agree reasonably well with the measured pro-
files. The best agreement between measurements and

calculations is for the simpler, constant-density flow
(Case III).

We have also computed the r.ms. time averages about
the mean values. The development of the fluctuating
r.m.s. quantities u’, v/, p’ and shear stress (—u'v’) for
Cases 1, 111 and IV is shown in Figures 13-15. We
start by considering the simplest, constant-density, low
shear case shown in Figure 13 (Case III). The fluctuat-
ing velocity profiles are seen to evolve from low intensi-
ties to much higher, well- developed distributions, and
the lengths for these fluctuating profiles to reach their
asymptotic states are longer than that for the mean
velocity profiles. Over the development region, v’ pro-
files sometimes show the double-peaked shape similar
to that occurring in the Region II of a forced shear
layer studied by Oster and Wygnanski (1982, Figs. 20
and 21), but v’ profiles remain essentially bell-shaped.
Note that the development of the shear stress is less
orderly than either u’ or v/, with perhaps a longer de-
velopmental length. Note also that the fluctuating pro-
files are not as converged as the mean profiles shown
in Figure 8.

The corresponding profiles for higher shear (Case IV)
are shown in Figure 14. Comparing to the lower shear
case, the fluctuating profiles extend to a wider lat-
eral distance, as was observed in experiments (Oster
and Wygnanski 1982), and, in agreement with stability
theory (Monkewitz and Huerre 1982), the rate of am-
plification of the first few profiles increases with higher
shear. The shear stress distributions converge at an
even slower rate, but the overall trends of these two
constant-density cases are qualitatively similar.

When the density of the two freestreams are not equal,
the fluctuating profiles become more complicated.
Shown in Figure 15 are the u’,v’, shear stress and p’
distributions for Case 1. Comparing to the correspond-
ing constant-density results shown in Figure 14, we see
that ' has multi-peaks and appears less converged.
The locations of the peak u’ and v’ values are now at
1 > 0, consistent with the result '—‘%i > 0 shown in
Table 2. At some stations, the shear stress may be-
come negative (u'v’ > 0), suggesting again the type of
behavior observed in region 1I of a forced shear layer
(Oster and Wygnanski 1982, Figs. 25, 26). Since neg-
ative shear stress is not seen in Figure 14, nonuni-
form density may also have some effect. The shear
stress distributions at the last three stations are multi-
peaked and far from reaching an asymptotic state. Un-
like the shear stress, the fluctuating density profiles are

seen to evolve rather quickly to an asymptotic distri-




bution, with the final, slowest adjustment occurring
only near the edges of the shear layer.

The peak values of u', v’, p’ and shear stress for
Cases 1, 111 and 1V are plotted as functions of J-
Figure 16. They all show a rapid initial growth at
small values of z. For u’, v/ and p’, this is followed
by a more gradual climb to the asymptotic values.
There are oscillations in all of the results, and they
are more pronounced in the peak shear stress values
than in others. If randomness in amplitudes, frequen-
cies or relative phase angles are introduced in the per-
turbations at the upstreamn boundary, vortex pairing
locations will be less deterministic and these oscilla-
tions in peak values may be reduced. It may also be
that, even though the present mesh distribution is ad-
equate to capture the asymptotic distribution of the
mean velocity and density, longer fine-zone computa-
tional distance in the flow direction is needed to study
the asymptotic development of the shear stress distri-
bution, especially for the higher shear variable density
case.

For constant-density flows, Oster and Wygnanski
(1982) found experimentally that the peak value of v’
{normalized by the velocity difference across the shear
layer as was done here) in the asymptotic reglon was
approximately constant for velocity ratio r(= -2) be-
tween 0.3 and 0.6. As shown in Figure 16, thls weak
dependence of the asymptotic peak value on the ve-
locity ratio is predicted here not only for u’, but also
for v'. In addition, present calculations show that the
peak values of v’ and v’ are also insensitive to density
ratio; no measurements are available for comparison.
The oscillatory behavior of the peak shear stress, es-
pecially for higher shear cases, precludes any definitive
conclusion.

The fluctuating velocity profiles at selected stations
for Case III are compared in Figure 17 with the mea-
surements of Oster and Wygnanski(1982) and the cal-
culations of Inoue and Leonard (1987). The present
v’ and shear stress results are reasonably close to the
data, but the peak value of v’ is about twice the mea-
sured value. It is interesting to note that, in a single-
stream shear layer (r = 0) for initially laminar condi-
tion, Bradshaw (1966) reported a peak v/ value almost
twice its fully-developed asymptotic value. This over-
shoot was seen to occur in the early region where the
flow is presumably more two-dimensional. This ob-
servation, together with the close agreement shown in
Figure 17 between the present calculations and the
two-dimensional results of Inoue and Leonard (1987)

based on an entirely different numerical method with

different initial and boundary conditions, suggests that
the large difference between the predicted and mea-
sured v’ profiles may be the result of two-dimensional
flow approximation used in numerical simulations.
Similar conclusions based on forced shear layer studies
have been previously reached by Inoue and Leonard
(1987) and by Ghoniem and Ng (1987).

No measurements on the fluctuating velocity profiles
for variable density cases are available for compari-
son. Konrad (1977) has, however, measured the den-
sity fluctuations for Case I; his data are seen to be in
strong agreement with our calculations in Figure 18.

4. CONCLUSIONS

Numerical simulations on the dynamics of two-
dimensional shear layers have been carried out using
an explicit second-order Godunov scheme. Quantita-
tive results have been obtained by statistically averag-
ing the numerical solutions over long time intervals and
compared with available experimental data and the-
oretical calculations. Consistent with the (constant-
density) solutions of Grinstein et al. (1986) and the
(variable-density) experiments of Brown and Roshko
(1974), the present study shows that more high-speed
fluid particles are entrained into the shear layer than
low-speed fluid particles, and reducing the density of
the high-speed fluid results in higher spreading rate. In
addition, the slope of the momentum thickness is not
indicative of the extent of mixing in a variable-density
shear layer.

Furthermore, this study shows that the mean velocity
and density profiles do approach an asymptotic, sim-
ilar shape, and the deveiopmental length is increased
when the density of the high-speed fluid is reduced.
Time-averaged fluctuating flow profiles approach their
asymptotic states much slower than the mean profiles,
Consistent with the experimental finding of Oster and
Wygnanski (1982), the peak value of ¥’ in the asymp-
totic region is insensitive to the velocity ratio. In addi-
tion, present calculations show that this is also true for
v’, and the peak values of u’ and v’ are also insensitive
to the density ratio.

In conclusion, this study suggests that the mean-flow
evolution of shear layers is dominated by inviscid ef-
fects. Accurate predictions of mean velocity, mean
density, r.m.s. u’, shear stress and fluctuating density
profiles can be made by a two-dimensional flow simu-
lation. To improve the accuracy of r.m.s. v’ profiles,
however, a three-dimensional calculation is required.
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Figure 3. Flow field along the centerline (ie., y =
0.5 = 0.5Ay) corresponding to Figure 2.
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