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Abstract 

The dynamics of unconfined, spatially developing 
shear layers is studied by numerical solutions of the 
time-dependent Euler equations using a second-order 
Godunov scheme. Effects of density and velocity vari­
ations between the two streams of the shear layer are 
studied and color graphics is used to show more clearly 
the entrainment process of the surrounding streams. 
The calculations demonstrated that the evolution of 
the mean flow was dominated by two-dimensional, in­
viscid effect.s. The I.m.s. fluctuating velocity and 
density profiles were found to be in good agreement 
with the measurements of Oster and \\'ygnanski and 
of Konrad, except for the peak value of the v' profile. 

1. INTRODUCTION 

This paper presents results of numerical simulation of 
unconfined, spatiaHy developing, two-dimensional un­
steady shear layers in a constant-ambient-pressure en­
vironment. It has been known for more than a hun­
dred years that the shear layer generated by a splitter 
plate can be inviscidly unstable. The late-time con­
sequence of such flow instabilities is that perturbed 
shear layers roB up into large-scale vorticaJ structures 
(Michel 1932; Brown and Roshko 1974); the latterwork 
also demonstrated that the largest-scale structures are 
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essentially independent of the flow Reynolds nuJDber 
(although micro-scale mixing within these structures 
is Reynolds-number dependent). It also is known that 
the growth of the shear layer is governed by the pairin, 
mechanism of these vortical structures (Winant aDd 
Browand 1974); a complex nonlinear dynamical pro-­
cess (Corcos and Sherman 1984). Perturbations may 
occur naturally or they may be intentionally applied. 
Studies with applied upstream perturbations indic.at.e 
that vortex dynamics are basically inviscid (Ho aDd 
Huang 1982; Oster and \\'ygnanski 1982). 

Many shear layer computations involving discretiu· 
tions of the N avier-Stokes equations are available. 
These include results using finite-difference methods 
(Corcos and Sherman 1984; MclnviHe et al. 1985; 
Davis and Moore 1985), spectral methods (Riley and 
Metcalfe 1980), and vortex methods (Ashurst 1979; 
Leonard 1980; Ghoniem et a1. 1982). All of these 
calculations succeed in resolving small-scale flowfield 
structures and are of high quality. However I modeling 
of the viscous terms imposes computational inefficien­
cies due to the disparity between viscous and invis­
cid length scales .. One may either resolve the \;'scous 
length scales on a mesh and, hence, use severely re­
stricted time steps, or employ implicit time different· 
ing and accept the resulting numerical diffusion. The 
random vortex method (Chofin 1973, 1986) avoids this 
problem at the expense of introducing a statistical er­
ror. 

Due to advances in the development of high.order 
upwind methods for solving conservation laws, it is 
now possible to compute high resolution, essentially 
nondiffusive flowfie1ds for the equations of inviscid 
gas dynamics. This approach is taken here to sim­
ulate shear layer experiments, with the objective of 
demonstrating that viscous forces need not be taken 
into account in modeling the dynamics of shear layer 



flowfields. Such methods neglect molecular diffusion 
effects (Le., diffusion of vorticity and passive scalars 
across streamlines), 80 that the methodology may be 
viewed as an asymptotically large Reynolds number 
approach. An advantage of using the gas dynamic 
equations is that baroclinic generation of vorticity is 
automatically induded. Its main disadvantage is 
that small Mach number calculations can be quite ex­
pensive; this will be explained in more detail 
in Section 2. 

)' 

Previous caJeulations along these lines have b.een re­
ported by G rinstein et a1. (1986), using flux ~corrected 
transport code to solve Euler's equations, and by 
Inoue (1985), using a vortex method to solve potential 
equations. Obviously, steady upstream conditions will 
not produce any vortex formation using an 
Euler code. A fluctuating inflow~pressure condition 
was used by Grinstein et al. (1986) by imposing a zero­
slope condition on the pressure at the inflow bound­
ary. Therefore, the pressure perturbations are not 
prescribed; in fact, the quantitative values of these 
perturbations are part of the solution. We chose to 
follow our previous work (Chien et a1. 1987) by im­
posing a given velocity perturbation at the inflow (up­
stream) boundary, with the frequency content and rel­
ative amplitudes of the perturbations obtained from 
the inviscid linear spatial instability calculations of 
Monkewitz and Huerre (1982). (More details are given 
in Section 2.) In addition, quantitative r .m.s.fluctuat­
ing velocity results, which require long computations 
to obtain converged solutions, are not available in 
Grinstein et al. (1986). In fact, despite the large 
amount of computational effort.s, detailed quantita­
tive mean and fluctuating flow calculations are quite 
meager; all of those reported in the literature have 
been based on vortex methods (Ashurst 1979; Inoue 
1985; Inoue and Leonard 1987; Ghoniem and Ng 1987), 
which cannot, yet be generalized to study the vari­
able density effects investigated by Brown and Roshko 
(1974) and Konrad (1977). Therefore, the primary 
purpose of this paper is to present detailed quantita­
tive results based on a finite-difference solution of the 
Euler's equ ations and to compare these solutions with 
available experiments and other pertinent computa­
tions. Effects of both the density ratio and velocity 
ratio on the solutions are addressed in detail in the 
paper. 

The numerical results presented here were obtained 
using an explicit second-order Godunov scheme 
(Colella and Glaz 1985). The nondiffusive, high res­
olution properties of this scheme have been carefully 
demonstrated by a mesh refinement study combined 
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with a comprehensive comparison with other schemes 
(Woodward and Colella 1984). Its accuracy has been 
shown in a variety of applications (Colella et aI. 1985, 
Glaz et aI. 1985); in many situations, embedded shear 
layers become unstable, roll up, and intera.ct with the 
ambient flow as wen as self·interact (Glowacki et aI. 
1986t Kuhl et aI. 1987). Thus, the present calcula­
tions also serve to validate the accuracy of the code in 
shear layer regions, by direct qualitative and quanti­
tative comparison with experimental data. 

By design, our work is limited to unsteady calculations 
of tw~dimensional shear layers which are statistiea.lly 
steady (in the sense of time-averaging); as suggested 
by Roshko (1981), a two-dimensional solution is valu­
able both as a gauge against which to compare the real 
flows, and as a step in understanding them. Exten­
sion of the present method to three-dimensional cal­
culations using operator splitting is conceptually feasi­
ble, but the computational resources required for such 
an effort is extremely prohibitive at the present time. 
Some of the results herein have been presented else­
where in preliminary versions of this work (Chien et 
at 1988, 1989; Kuhl et al. 1990). In these earlier re­
ports, monitoring ~tations situated at three constant 
streamwise locations were used to store the flowfield 
time histories for quantitative data analysis. Since the 
upstream condition is known to have a strong effect on 
the development of a free shear layer (Bradshaw 1966), 
more monitoring stations are needed to study the rate 
of attaining self similarity of various mean and flue .. 
tuating profiles. Nineteen monitoring stations located 
at constant strearnwise intervals throughout the region 
of interest have been used in three new calculations to 
be presented in this study. Two of these calculations 
correspond to the cases studied experimentally in de­
tail by Brown and Roshko (1974) and by Oster and 
Wygnanski (1982), respectively. The density ratio and 
the velocity ratio for these two cases are both different. 
Since the development of a free shear layer is known to 
depend on both of these ratios, a third calculation bas 
also been made so that the effect of each parameter 
can be individually assessed. 

The formulation of our numerical simulations is de­
scribed in Section 2. Results and comparison with 
experimental data are presented in Section 3, where 
detailed quantitative comparisons of mean and fluctu­
ating flow field profiles are offered (the numerical data 
are obtained by statistically averaging the numerical 
solution over time intervals which are long relative to 
the time scales of vortex formation and pairing). Our 
conclusions are summarized in Section 4. 



2. Methodology 

Our computational models are based on the equations 
of inviscid gas dynamics, thereby neglecting molecular 
viscosity and heat conduction; gravitational forces are 
neglected as welL The equations may be written in 
eonservation form for a Cartesian geometry as 

U, + F(U)&, + G(U), = 0 

where 

(
P) (PU) (Pu) 2 U - pu F _ pu + P G _ PUV 

- pv • - pUV ) - pv' + P , 
pE puE + up pvE + vp 

and p is the density, u = (u, v) is the velocity field in 
the Cartesian coordinates x = (x, 11), p is the pressure, 
E = e + ~(u' + v') is the total specific energy, and 
e is the specific internal energy. We always assume a 
perfect gas with equation-or-state 

P = (")' - l)pe, 

and take,,), = lA. The streamwise direction is always 
taken to be the positive x-axis. 

The Eulerian second-order Godunov scheme (Colella 
and Glaz 1985) is used to solve these equations (or 
given initial data and boundary conditions. This 
scheme is in conservation form and explicit. 

Dimensional operator splitting is used for two-dimen­
sional calculations. A rectangular N x M mesh is 
specified by defining zone interfaces Xi t i = O, ... t 
Nand lIj t j = 0, ... ,M with zone sizes ~Zi and flYj 

where ~Zi = Xi - Xi-l and fl.Yj = IIi - IIj-l- Flow­
field quantities, averaged over a computational zone. 
are denoted by Pij, etc. The time step is limited by 
the CFL stability criterion 

~Yj ) 
(csj + I Vij I) 

where c = (,,),p/p)1/2 is the sound speed and 0' < 1 is 
the Courant number. The value (f = 0.95 has been 
used in all calculations. 

Such explicit methods are most appropriate for com­
pressible flowfields. Small Mach number flowfields may 
also be obtained, but at the cost of either very poor 
computational efficiency or violation of Mach number 
similitude. For example, if the Mach number M ..., 0.01 
(which is typical of some of the experimental data used 
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here), then it would take approximately one hundred 
time steps to convect a fluid parcel through one com­
putational zone. To avoid this problem, the sound 
speed of the gas has been modified for the eomputa. 
tions so that typical flow Mach numbers would be of 
the order M - 0.2. Of course, the density and velocity 
ratios across the shear layer are preserved, but Mach 
number similitude is violated. Since compressibility 
effects are negligible at these Mach numbers and we 
do not require temperature data for our comparisons. 
this Mach number eompromise was found acceptable 
for the present study. 

The dynamics of the interface separating the two fluid 
streams is of great importance in shear layer studies. 
Consequently, an additional calculation was performed 
of a discretization of the material interface by marker 
particles, XI:(t), k = 1, ... , K(t} where Xt(t) denotes 
the location of the kth marker at time t and K(t) is the 
total number of markers present in the flowfieJd at time 
t. The time evolution of the markers was governed by 
passive advection, i.e., dXt/dt = U(Xe,t)j this ordi­
nary differential equation with right-hand side given 
by the underlying computed velocity field was solved 
by straightforward finite differences and linear inter­
polation for u. Initially, the interface is represented 
by severa) thousand markers and new markers are in­
serted at the inflow during every time step. Since the 
interface is unstable~ it is expected that IXI: - Xl-II can 
become large; whenever this value exceeded twice the 
initial marker spacing, a new marker was inserted at 
their midpoint. Marker points which exited the fine­
grid region (see below) were deleted. Finally, the con­
dition K(t) :s 75,000 was imposed due to eomputer 
time limitations; if the condition was violated, no fur­
ther markers would be inserted over the Jast forty per­
cent of the mesh in the streamwise direction. 

The accuracy of this approach is a matter of some 
debate. Due to the underlying physical instability, 
one is solving what amounts to a chaotic dynamieal 
system in current terminology. In particular 1 expo­
nential separation of orbits is expected which implies 
that the numerical orbit xj:{t) is not dose to the ae­
tual physical orbit of the initial marker after a time 
which is probably small relative to the total compu­
tation time. However, this does not imply that the 
aggregate of numerical orbits is not a good represen­
tation of the aggregate of physical orbits. Indeed, our 
results here (comparisons with ron tour plots and shad­
owgraphs from the experiments) suggest the contrary. 

The calculations were performed on a two-dimensional 
Cartesian grid, see Figure 1. A fine, uniformly-zoned 



region with .6.z = l1y covering the domain DF = 
{(z,,,,) : 0 :s z :s XFt -YF ~ " :s YF } was placed 
straddling the centerline of the shear layer. An ex­
panding grid (above, below, and to the right of 0,.) 
was used to place the mesh boundaries far from the 
region of interest and thereby minimize any influence 
of the numerical boundary condition on the dynamics 
of the free shear Jayer. For this study, we have taken 
OF = 500 x 80 and OT = 520 X 1141 where OF and OT 
rerer to the grids in the fine and total mesh regions, 
respectively. 

Initial data was determined using a Tanh(y) profile to 
model the shear layer. We have 

where 

and 

u(z, II, t = 0) = f(",) 

v( z I II I C = 0) = 0 

fey) = Um[l + lTanh(2yjc5)] 

Here. UI and U2 denote the free stream velocity at 
JI = :i:oo, respectivelYi Urn is the mean flow velocity; 
l is the shear parameter and 6 is the maximum slope 
thickness of the layer, i.e., 6 = (U l - U2)/(dujdY)mu. 
If the free stream densities are different, we have 

p(Z, :V, t = 0) = hey) 

where 

hey) = Pm[l + l, Tanh(2yjc5)] 

_ (Pt + P2) l _ (PI - P2) 
Pm - 2 ' P - (Pl + P2) , 

where PI, P2 are the free stream densities at JI = :1::00, 
respectively; Pm is the mean shear layer density and l, 
is the density shear parameter. Note that the same 6 
is used as the length scale for the density distribution. 

The left inflow boundary data are determined from 

where 

u(O, YI t) = fey) . get) 
v(O, y, t) = 0 

p(O,!I, t) = hey) 

N 

get) = 1 + E in sin(wn t) 
n=l 

The perturbation frequencies Wn and amplitudes in 

have been taken from the linear stability analysis for 
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Tanh(y) shear layer profiles (Monkewitz and Huerre 
1982): 

(1 = 0.01,£2 = 0.7St),!! = 0.55tl,!4 = 0.44fl. 

En = 1.7tl/n for n ~ 5 . 

Note that the maximum perturbation amplitude is one 
percent and Wi is twice that given by Monkewjtz and 
Huerre (1982) because our reference length scale is 
twice of theirs (see below). 

Numerical implementa.tion of the boundary conditions 
is straightforward (Colella and Glaz 1985) for free 
shear layers. Dirichlet data is imposed on the up­
stream side (using the equations above) as well as the 
top and bottom sides (using free stream va.lues) and an 
outflow boundary condition is used on the downstream 
side. 

The lengths have been normalized by 6/2 and we 
choose ~Z = l1y = 1 in the fine zone region; i.e., 
XF = 500 and YF = 80. Also, Xa = 8800 and 
YT = 1500 (see Fig. 1 Cor definitions of XF, XRt 
YF and YT); it may be noted how rapidly the grid 
expands from the fine mesh to cover the total com­
putational domain. Despite the excellent agreement 
with experiment, it would be of great interest to per­
form a mesh refinement study and re-analyze detailed 
flow·field structures. With the code used here, this is 
currently beyond the limits of our computer resources. 

The physical parameters defining the simulations are 
summarized in Table 1. The parameter r is defined by 
r = U2jU1 and Mb M2! and Mm refer to the Mach 
numbers of the top stream. bottom stream, and the 
mean flow l respectively. In all of the calculations, 
Um = 1.0 (i.e., the velocities are normalized by Um ), 

the density is normalized by the lower ambient den­
sity, and we take P = PI = P'2 = 17.86; if P = I, then 
this choice implies that the sound speed c = 5.0 and 
Mm = 0.2. 

Table I. Calculational Matrix 

C&.5o! V, U, r l " /12 1, MI M2 .\1 .. 

I 14$ 0.$5 0.38 O.4~ 1.0 7.0 -0.7$ 0.2'9 0.2'9 0.40 

II I.U 0.5S 0.38 O ... :s, 7.0 1.0 0.7S 0.77 0.11 0."0 

111 1.25 0.75 0.60 0.2S 1.0 1.0 0 0.25 0,1$ 0.20 

IV t.4S 0.5S 0.38 o 4S t.O 1.0 0 0.2'9 0.11 0.20 



3. RESULTS AND DISCUSSIONS 

A typical shear layer contains a wide spectrum of per­
turbation frequencies, and the mixing width of the 
layer continues to grow with increasing distance. The 
numerica! simulation of one such experiment (Brown 
and Roshko 1974) is described here in detail. Addi­
tionally, the calculations were continued so as to pro­
vide data for a statistical analysis of mean and fluctu­
ating flowneld quantities of the solutions and these are 
compared with experimental data. This analysis is re­
peated for three other simulations - one using the same 
initia1 conditions as in the above experiment but with 
the density ratio inverted (Brown and Roshko 1974), 
and two more referring to an experiment (Oster and 
Wygnanski 1982) with equal density freestreams. The 
flow parameters for all four cases are listed in Table 1. 

The calculation for Case I began by exciting only the 
fundamental frequency for 1000 time steps. At this 
point, the first nine subharmonics ""'2, ""'3,.'" "'10 were 
included in the inflow boundary perturbation and re­
tained for the remainder of the calculation. All ten 
modes were used from the beginning for Cases III 
and IV. We computed a total of 20,000 time steps for 
Case I, 30,000 steps for Case III and 26,000 steps for 
Case IV. The Case II flowfield was initialized using the 
results of the Case I computation at time t = 2579.0 
at which point the Tanh(y) profile for the density was 
inverted and the new calculation commenced. A total 
of 14,000 time steps were computed for Case II (al­
though "'-' 2000 steps were required for the influence of 
the initialization procedure to exit the computational 
mesh). Each time step took about 4 seconds on the 
LANL CRAY XMP computer. 

The dynamic evolution of the Case I flowfield was 
discussed in Kuhl et a1. (1990) using materia] in­
terface plots. For brevity, one such plot is shown in 
Figure 2( a). This material interface plot actually rep­
resents unconnected dots placed at the marker particle 
locations. The initial interface contained 5 1000 equally 
spaced markers. This number rapidly increased to the 
imposed maximum of 75,000 during the course of the 
calculation, which implies that the length of the inter­
face (insofar that this remains meaningful) increased 
by a factor greater than 15 during the course of the 
calculation. We note that in the experiment, the up­
per gas was helium and the lower gas was nitrogen; 
this terminology is used below for convenience. 

For comparison with this calculated interface, 
Figure 2(b) presents a shadowgraph picture of the 
helium-nitrogen interface recorded during the exper-
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iment (Brown and Roshko 1974 t Fig. 3d). Similarities 
between the calculated and experimental interface are 
remarkable. The shape and wavelength of the large-­
scale structures are quite similar. 

Also included in Figure 2 are the corresponding den· 
sity, vorticity and overpressure contours. The shape 
of the large structures as deduced from the density 
contours agrees with the material interface shape, in­
dicating little numerical diffusion. It is interesting to 
note that vorticity is created near the braid regions 
and entrained into the structures. Approximately cir­
cular low pressure regions are found in each large struc­
ture, and this generates a radial pressure gradient. 
As the helium-nitrogen interface is entrained obliquely 
through this pressure gradient, vorticity is generated 
by the baroclinic mechanism. The maximum value of 
this vorticity reaches about minus one-half of the in­
flow vorticity; hence, it must have an effect on the 
ftow. Indeed, dose inspection of the material inter­
face reveals some smaller-scale vortices rotating in the 
counterclockwise direction. This causes the merging 
patterns to be considerably more complex and less reg­
ular than the other cases to be discussed later. 

Figure 3 depicts the corresponding flowfield near the 
centerline (i.e., y = 0.5). Large fluctuations are ev­
ident in the velocity, density and dynamic pressure. 
In fact, densities corresponding to pure helium and to 
pure nitrogen are seen near the centerline; similarly, 
the velocity fluctuates between values corresponding 
to approximately U1 and to U2. Overpressure fluc­
tuations are small (between + 1.5 to -4.0 percent of 
ambient), which validates the use of the Mach number 
compromise (0.29 :5 M :5 0.4) for this calculation. 

To gain some insight into the entrainment process, 
density and vorticity contours for Case I are shown 
in coJor in Figure 4, where the light fluid is shown as 
blue and the heavy fluid as red. In agreement with 
Grinstein et al. (1986) I the density color visualization 
shows clear1y that more high-speed (Jight) fluid are en­
trained into the shear layer than low-speed fluid. The 
vorticity color visualization shows the formation and 
growth of the large-scale vortical structures somewhat 
more dearly than the contours shown in Figure 2(d). 
The barodinic generation of vorticity (due to density 
and pressure gradients being nonparallel), shown as 
blue, and the vort.icity due to velocity gradients t shown 
as red, are vividly seen. 

Material interface plots of the first three cases are com­
pared in Figure 5. One notes immediately that the 
large-scale structures of Case II are considerably Jess 
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complex than those of Case I. The visual agreement 
between these plots and the shadow graphs of the ex­
periments is remarkable. The large-scale dyna.m.ies of 
the equal-density Case III Jayer is much more straight­
forward in that relatively little small·scale entrainment 
and interleaving of the two streams is apparent in the 
vortical structures. In Figure 6, the calculated visual 
spreading rates tS~ .. are compared with the experipJen­
tal data (Brown and Roshko 1974, Fig. 7). The' bars 
over the calculated results represent the variation in 
the visual spread ing rate over time and the straight 
lines are suggested by Brown and Roshko (1974). The 
calculations are in good agreement with the experi­
mental data. Other measures of the spreading rates 
based on the mean velocity profiles will be presented 
later. 

In order to implement our statistical analysis, moni. 
taring stations were used to store the flowfield time 
histories. Each station consists of 82 positions in the 
fine zone region of the mesh across the shear layer. Ex­
cept for Case II, nineteen stations located at constant 
intervals between z = 25 and z = 475 were employed. 
These flowfield histories were then integrated over t.he 
last 10,000 time steps to establish the various time­
averaged shear layer profiles. For Case II. three sta· 
tions located at z = 100, 200 and 400 were employed 
and only the last 6000 time steps were available at 
aU 246 positions for the time integration. One reason 
for not doing an equally elaborate study for Case II 
is because the mixing is less vigorous than Case I and 
hence, less interesting. In addition l no experimental 
fluctuating data are available for Case II for compar­
ison; 6000 time steps are adequate to establish mean 
profiles. 

Several measures of the spreading rate of the shear 
layer based on these time-averaged mean velocity pro. 
files have been calculated in the present study. Follow­
ing previous investigators (Liepmann and Laufer 1947; 
Ost~r and Wygnanski 1982j Inoue and Leonard 1987), 
we mtroduce the notation JI, to denote the location 
at which the mean streamwise velocity component ti 
reaches the value given by 

Of particular interest are the quantities Yo.S and 
b(: JlO.95 - YO.l). Their values at all 19 stations have 
been computed for Cases I, III and IV; they exhibit 
good linear behavior over the last 15 stations. A Jeast­
squares linear fit over these data allows us to compute 
the slope and the corresponding location of the vir­
tual origin ZOo We have also calculated the momentum 
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thickness (for a constant-density flow) 

() = 100 
(U1 - ti) (u - U2) dy 

-co (U1 - U,)2 

for the same cases and obtained the slope and the cor­
responding %0 by the same procedure. The values of 
:, ~ and d ~:' are listed in Table 2 together with 
the experimental data of Oster and Wygnanski (1982) 
and the computed values of Inoue and Leonard (1987). 
Several conclusions may be drawn from Table 2. 

Table 2. Compari!>oll or Variolls SpreAding Rates 

Source l l, II~ tI, t.ru 
h b tit 

Oster And W')'gnanski 0.25 0 0.0.&5 0.009 -0.004 

Inou~ and u-onl\rd 0.25 0 0.049 0.010 -0.006 

This study 0.25 0 OcOSO 0.010 -0.006 

Oster and \\tygnAMki- 0.016 ·0.018 

This study 0.016 -0.016 

This study 0.015 0.02; 

-Int erpolat c:-d "'nlues 

First of aU , for constant-density cases, present finite­
difference results agree well with the experimental data. 
and the solution of a vortex method , indicating the re­
liability of the present approach. Secondly, the growth 
rate of the shear layer (as measured by either ~! or 
~) and the slope of its center line ('~~;.') increase in 
magnitude with increasing A. As pointed out before 
by other investigators, the center line of the constant­
density shear layer moves toward the low-speed region 
(Oster and Wygnanski 1982), indicating that more 
high-speed fluid particles are entrained into the shear 
layer than low-speed fluid particles (Grinstein et aI. 
1986). As the density of the high-speed fluid is re­
duced relative to the low-speed fluid (as e.g., in Case 1)1 
these lighter particles are easier to be entrained into 
the shear layer I resulting in a higher sprea.ding rate 
than that of the corresponding constant-density case. 
This has already been shown in Figure 6 using visual 
spreading rate data, and the :! values given by the 
present calculations listed in Table 2 reconfirm this 
reasoning. One may note that the growth rate based 
on visual data (as in Fig. 6) is more sensitive to den­
sity variations than ::. More surprising is the failure 
of : to indicate even the trend of this density effect. 
For variable-density flows, the momentum thickness 
should be modified by 

8' = (CO P(UI - 11)(11 - U2 ) dy 
1-00 Pm(U1 - U1)2 



and our calculations give -::: = 0.006 for Case 1, a 
value which is two and a half times smaller than the 
corresponding value for the constant-density Case IV. 
This may be explained as follows. As the density of the 
high. velocity fluid is reduced, the average velocity of 
this particle and a heavier low-velocity particle will be 
Jower tha.n the average velocity of these two particles 
at constant density. Therefore, the center line of this 
shear layer moves toward the high-velocity side relative 
to the corresponding constant-density flow. For Case 
I, P2 = 7 PI, and the density reduction on the high­
velocity side is sufficient to yield d~rl > O. The region 
over which the product (UI - 11)( 11- U2 ) is the largest 
occurs now where f=. <: 1, therefore, producing a 
smaller value of 8' than the corresponding constant­
density case (i.e., 8). Since 8 = 8' = 0.5 at :t = 0, it 
is easy to see that ~ < *. Consequently, we con­
clude that the slope of the momentum thickness is Rot 

indicative of the extent of mixing in a variable-density 
shear layer. 

To compare time-averaged profiles at different stations, 
a scaling variable 

will be used, with the virtual origin, :to, determined 
from the least-squares linear fit of b for Cases I, III and 
IV. Since only three stations are available for Case II, 
a reliable curve fit cannot be made. Therefore,:to 

determined from material interrace plots is used for 
that case. The results are: :to = 13.5, -42.0, 31.0 and 
-2.0 for Cases I, II, III and IV, respectively. 

The development of the mean velocity and density pro-­
files for Case I is shown in Figure 7. It is clear that the 
profiles do approach an asymptotic, similar shape as 
:t is increased. and the above scaling helps to collapse 
the data. In fact, these figures indicate that the pro-­
files at f. = 300 are not far from the asymptotic ones 
(OJ is the initial momentum thickness, (h = 0.5). The 
development of the mean velocity profiles for Cases III 
and IV is shown in Figures 8 and 9, respectively. It ap­
pears that, for these constant-density flows, the above 
scaling again helps to collapse the data; the mean pro­
files are somewhat Jess complicated and the profile at 
f. = 200 is not far from the asymptotic distribution. 

The mean velocity and density profiles at selected sta. 
tions for Cases I, II and HI are compared with the 
mean profiles measured by Brown and Roshko (1974, 
Figs. 13b and c) and Oster and \\tygnanski (1982, 
Fig. 6d) in Figures 10-12. The calculated profiles are 
seen to agree reasonably wen with the measured pro­
files. The best agreement between measurements and 
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calculations is for the simpler, constant-density flow 
(Case III). 

We have also computed the r .m.s. time averages about 
the mean values. The development of the fluctuating 
r .m.s. quantities u'. v', p' and shear stress (-U'V/) for 
Cases I, III and IV is shown in Figures 13-15. We 
start by considering the simplest, constant-density, low 
shear case shown in Figure 13 (Case III). The fluctuat.­
ing velocity profiles are seen to evolve from low intensi­
ties to much higher, well- developed distributions, and 
the lengths for these fluctuating profiles to reach their 
asymptotic. states are longer than that for the mean 
velocity profiles. Over the development region, u' pro­
files sometimes show the double-peaked shape similar 
to that oc.curring in the Region II of a forc.ed shear 
layer studied by Oster and Wygnanski (1982, Figs. 20 
and 21), but v' profiles remain essentially ben-shaped. 
Note that the development of the shear stress is less 
orderly than either u' or v', with perhaps a longer de­
velopmental length. Note also that the fluctuating pro­
files are not as converged as the mean profiles shown 
in Figure 8. 

The corresponding profiles for higher shear (Case IV) 
are shown in Figure 14. Comparing to the lower shear 
case, the fluctuating profiles extend to a wider lat­
eral distance, as was observed in experiments (Oster 
and Wygnanski 1982), and, in agreement with stability 
theory (Monkewitz and Huerre 1982), the rate of am­
plification of the first few profiles inc.reases with higher 
shear. The shear stress distributions converge at an 
even slower rate, but the overall trends of these two 
constant-density cases are qualitatively similar. 

When the density of the two freestreams are not equal, 
the fluctuating profiles become more complicated. 
Shown in Figure 15 are the u' , v', shear stress and p' 
distributions for Case I. Comparing to the correspond. 
ing constant.density results shown in Figure 14, we see 
that u' has multi-peaks and appears less converged. 
The locations of the peak u' and Vi values are now at 
fJ > 0, consistent with the result d~Zs > 0 shown in 
Table 2. At some stations, the shear stress may be­
come negative (u'v' > 0), suggesting again the type of 
behavior observed in region II of a Corced shear layer 
(Oster and \\rygnanski 1982, Figs. 25. 26). Since neg­
ative shear stress is not seen in Figure 14, nonuni­
form density may also have some effect. The shear 
stress distributions at the last three stations are multi· 
peaked and far from reaching an asymptotic state. Un­
like the shear stress, the fluctuating density profiles are 
seen to evolve rather quickly to an asymptotic distri-



bution, with the final, slowest adjustment occurring 
only near the edges of the shear layer. 

The peak values of U't ,,', p' and shear stress for 
Cases II III and IV are plotted as (unctions of f in 
Figure 16. They aU show a rapid initial growth at 
small values of z. For U', v' and pi, this is followed 
by a more gradual climb to the asymptotic values. 
There are oscillations in all of the results, and they 
are more pronounced in the peak shear stress values 
than in others. If randomness in amplitudes I frequen­
cies or relative phase angles are introduced in the per· 
turbations at the upstream boundary, vortex pairing 
locations will be less deterministic and these oscilla­
tions in peak values may be reduced. It may also be 
t.hat, even though the present mesh distribution is ad­
equate to capture the asymptotic distribution of the 
mean velocity and density, longer fine-zone computa­
tional distance in the flow direction is needed to study 
the asymptotic developJlltl'nt of the shear stress distri­
bution, especially for the higher shear va.riable density 
ease. 

For constant-density flows, Oster and Wygnanski 
(1982) found experimentally that the peak value of u' 
(normalized by the velocity difference across the shear 
layer as was done here) in the asymptotic region was 
approximately constant for velocity ratio r( = &) be­
tween 0.3 and 0.6. As shown in Figure 16, this weak 
dependence of the asymptotic peak value on the ve­
locity ratio is predicted here not only for u' t but also 
for v'. In addition I present calculations show that the 
peak values of u' and Vi are also insensitive to density 
ratio; no measurements are available for comparison. 
The osciHatory behavior of the peak shear stress, es­
pecially for higher shear cases, precludes any definitive 
conclusion. 

The fluctuating velocity profiJes at selected stations 
for Case III are compared in Figure 17 with the mea­
surements of Oster and Wygnanski(1982) and the cal­
culations of Inoue and Leonard (1987). The present 
u' and shear stress results are reasonably close to the 
data, but the peak value of v'is about twice the mea­
sured value. It is interesting to note that, in a singJe­
stream shear layer (r = 0) for initially laminar condi­
tion, Bradshaw (1966) reported a peak Vi value almost 
twice its fully-developed asymptotic va.)ue. This over­
shoot was seen to occur in the early region where the 
flow is presumably more two-dimensional. This ob­
servation, together with the dose a.greement shown in 
Figure 17 between the present ca1culations and the 
two-dimensional results of Inoue and Leonard (1987) 
based on an entirely different numerical method with 
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different initial and boundary conditions, suggests that 
the large difference between the predicted and mea­
sured Vi profiles may be the result of two-dimensional 
flow approximation used in numerical simulations. 
Similar conclusions based on forced shear layer studies 
have been previously reached by Inoue and Leonard 
(1987) and by Ghoniem and Ng (1987). 

No measurements on the fluctuating velocity profiles 
for variable density cases are available for compari­
son. Konrad (1977) hBS. however, measured the den­
sity fluctuations for Case I; his data are seen to be in 
strong agreement with our calculations in Figure 18. 

4. CONCLUSIONS 

Numerical simulations on the dynamics of two­
dimensional shear layers have been carried out using 
an explicit second-order God unov scheme. Quantita­
tive results have been obtained by statistically averag­
ing the numerical solutions over long time intervals and 
compared with available experimental data and -the­
oretical calculations. Consistent with the (c:onstant­
density) solutions of Grinstein et a1. (1986) and the 
(variable-density) experiments of Brown and Roshko 
(1974)~ the present study shows that more high-speed 
fluid particles are entra.ined into the shear layer than 
low-speed fluid partic1es, and reducing the density of 
the high-speed fluid results in higher spreading rate. In 
addition, the sJope of the momentum thickness is Rot 

indicative of the extent of mixing in a variable-density 
shear layer. 

Furthermore, this study shows that the mean velocity 
and density profiles do approach an asymptotic, sim­
ilar shape, and the developmental length is increased 
when the density of the high-speed fluid is reduced. 
Time-averaged fluctuating flow profiles approach their 
asymptotic states much slower than the mean profiles. 
Consistent with the experimental finding of Oster and 
Wygnanski (1982), the peak value of u' in the asymp­
totic region is insensitive to the velocity ratio. In addi­
tion, present calculations show that this is also true for 
Vi, and the peak values of u' and Vi are also insensitive 
to the density ratio. 

In conclusion, this study suggests that the mean-flow 
evolution of shear layers is dominated by inviscid ef­
fects. Accurate predictions of mean velocity, mean 
density, r.m.s. u' , shear stress and fluctuating density 
profiles can be made by a two-dimensional flow simu­
lation. To improve the accuracy of r.m.s. Vi profiles) 
however I a three-dimensional calculation is required. 

I 
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Figure 1. Schematic of the free shear layer calcula­
tions: (a) computational grid; (b) Tanh{y) streamwise 
velocity profile; and (e) density profile. 

Figure 2. Flow field for Case I: (a) material interrace; 
(b) shadowgraph from the experiment; (e) density con· 
tours; (d) vorticity contours (solid lines denote nega­
tive values); and (e) overpressure contours (solid lines 
denote positive values). 
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Figure 3. Flow field along the centerline (i.e., y = 
0.5 = 0.56y) corresponding to Figure 2. 
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Figure 4. Vorticity and density color visualizations for Case I. 
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Figure 5. Material interface plots comparing the 
spreading shear layer cases: (a), (b) Case I, (e), (d) 
Case II, (e) Case III. Figures (b). (d) are photographs 
of the experimental record (Brown and Roshko 1974). 
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spreading shear layer cases. 
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Figure 8. Mean velocity profile for Case III. 
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Figure 9. Mean velocity profile for Case IV. 
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:5 -1111 

Q: -IQ.. 

1.0 

0.8 

0.6 

0.4 

0.2 

1.0 

0.8 

0.6 

0.4 

0.2 

o 

<a> 

(b) 

.!.. = 200 0 
8; 400 0 

800 £\ 

·O.IS -0.10 -O.OS 0 O.OS 0.10 0.15 
-11 

Figure 11. Mean velocity and density profiJes for Case 
II; the shaded regions denote- the experimental data 
band of Drown and Roshko (1974). 



-~ 
I 

:s ---.;g 
I 

,=--

1.0 

0.8 

0.6 

0.4 

0.2 

0 
-0.15 -0.10 -O.OS 

~
-

~; 

. % i--- -= 6SO v 

;- 8 i 700 0 

800 A 
8500 I

~ 750 0 

o 0.05 0.10 0.15 
'1 

Figure 12. :Mean velocity profiles for Case III~ the 
shaded region denotes the experimental data band of 
Oster and \Vygnanski (1982). 

-N 

~ 
I 

:s --.:a 

N -N 

:::> 
I 

-::r 

O.S 

0.4 
(a) 

0.3 

0.2 

0.5 

0.4 (b) 

0.3 

0.02

1 

(e) 

0.01 

o 

~= 100 • 
8; 200. 

3000 
400 0 
5006 
6000 
700 9 
800 + 
900 x 

-_ -0.01 

I:: 
-0.02 

-0.03../--______ -.--__ ----.--
-0.15 -0.10 -O.OS 0 0.05 0.10 O.lS 

'1 
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