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Abstract

We present a new numerical algorithm for the solution of coupled collisional and collisionless systems, based on the
block structured adaptive mesh and time refinement strategy (AMR). We describe the issues associated with the discret-
ization of the system equations and the synchronization of the numerical solution on the hierarchy of grid levels. We imple-
ment a code based on a higher order, conservative and directionally unsplit Godunov’s method for hydrodynamics; a
symmetric, time centered modified symplectic scheme for collisionless component; and a multilevel, multigrid relaxation
algorithm for the elliptic equation coupling the two components. Numerical results that illustrate the accuracy of the code
and the relative merit of various implemented schemes are also presented.
� 2007 Published by Elsevier Inc.
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1. Introduction

Astrophysical systems are typically complex and highly non-linear, providing the ground for the occur-
rence, either singly or concomitantly, of numerous physical processes. These include, among others, hydro-
and magnetohydro-dynamics, gravity, radiation and many-body interactions. They operate on a wide range
of spatial and temporal scales and it is often desirable to fully cover these ranges for a thorough understanding
of the problem. Thus the problems are demanding both in terms of physics algorithms and dynamic range
(resolution). While the development of high order numerical schemes certainly improves the quality of numer-
ical solutions and the availability of ever more powerful computers has allowed the performance of larger cal-
culations, special techniques are required in order to achieve very large dynamic ranges.
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The adaptive mesh refinement (AMR) technique offers a powerful solution for this purpose [1,2]. While
there are difficulties associated with its implementation, the use of AMR in astrophysics and cosmology
has grown significantly to include studies of nucleosynthesis in Supernovae explosions [3–6], of the multiphase
interstellar medium and radiative shock hydrodynamics [7,8], the problem of star formation out of the col-
lapse of protostellar clouds [9–11] and the formation of the first stars as well as the large scale structure in
the universe [12,13]. The use of AMR technique in the above examples has often been instrumental in either
revealing new properties of the investigated system (such as instabilities) or pointing out mistaken views based
on limited resolution calculations.

We will consider two aspects of application of AMR to astrophysical problems. The first is the extension to
incorporate self-gravity. This capability leads to new algorithmic difficulties due to the elliptic nature of the
problem. In particular the solution has to be computed simultaneously on all levels of refinement and conti-
nuity of both the solution and its normal derivative has to be enforced at coarse–fine level interfaces [14].
However, this introduces non-trivial complications when time refinement is also employed: the coarser levels
are advanced first and finer levels are advanced with the assumption that boundary conditions at fine–coarse
interfaces are provided by the coarse level solutions interpolated in time. However, the full multilevel elliptic
solution can only be computed when all levels are synchronized and thus is not available when the coarser
levels are ahead of the finer levels. Thus the first implementations of a full multilevel elliptic solver for self-
gravity [10,11,15] do not use refinement in time. And when employing time refinement the multilevel elliptic
equation has been solved as a set of independent boundary value problems, one for each level, not a fully mul-
tilevel solution [16–19].

The second issue we will address is the application of AMR to hybrid systems, that is a self-gravitating gas
coupled to a particle representation of a collisionless matter described by Vlasov–Poisson equations [20]. This
is relevant to several problems in astrophysics, particularly for modeling the formation and evolution of struc-
ture in the universe. In this case the AMR technique is combined with Particle-Mesh methods to compute the
right-hand side to the Poisson’s equation due to the particles mass. In order to take advantage of the higher
resolution of the finer grids, it is desirable to advance the particles with the force compute on, and the time-
steps of, the finest grids that cover their spatial position. This introduces a complication for the elliptic solver
similar to the one described above for the case of self-gravitating gas dynamics, in the sense that the particles
contribution to the right-hand side of Poisson’s equation needs to be accounted for even when the levels of
refinement are not synchronized.

Various AMR codes for hybrid systems have been developed over the past several years [21,16–19,15]. The
refinement strategy in [16,18,15] is based on splitting of individual cells and in [17] only the collisionless com-
ponent is evolved. Virtually all schemes use Strang splitting [22] for the multidimensional version of the hydro-
dynamics and a modified leap-frog method for the integration of the equation of motion of the particles. This
has also been done for problems in which there is no coupling to a collisional fluid component, as occurs in
computations of collisionless plasmas [23].

In our approach we use the block structured scheme for adaptive mesh and time refinement proposed in [2] as a
starting point and extend it include gravity and collisionless particle dynamics. We use an unsplit Godunov’s
method for hydrodynamics [24]; a symmetric, time centered modified symplectic scheme based on the kick–
drift–kick sequence for the collisionless component; and a multilevel, multigrid relaxation algorithm for the ellip-
tic equation coupling the two systems. We introduce two new procedures to solve synchronization issues
described above that arise with the elliptic solver when the coarse and finer levels are not synchronized. We
use a method analogous to those developed for AMR for incompressible flows [25,26] to compute a lagged esti-
mate of the correction of the elliptic matching conditions at boundaries between refinement levels at times when
the levels are not synchronized. We also present a detailed discussion of refinement in time in the presence of col-
lisionless particles, including methods for associating particles with refinement levels, and a particle aggregation
operation to cost-effectively estimate the density distribution on coarse levels due to particles evolved on finer
levels without compromising the code accuracy. We provide a detailed description of the formal discretization
of the system of equations and the issues involved with the synchronization of the numerical solution in the pres-
ence of refinement in time, at a level of detail which we feel is lacking in the current literature.

The paper is organized as follows. First, the evolution equations and single level algorithms are outlined in
Section 2. In Section 3 we provide a formal definition of the employed AMR volume discretization, variables
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and operators and then describe in detail the general AMR algorithm for hybrid system. Finally, in Section 4
we test the accuracy of the code by comparing its results against for set of standard solutions.
2. Evolution equations and temporal discretization

In this section we introduce the system equations and describe their temporal discretization on individual
levels of refinement. Motivated by cosmological applications, the numerical schemes are formulated for a grid
with a time dependent scale length, a(t). Thus after a description of the expanding grid, we introduce the time
discretization for the equations of hydrodynamics with gravity and the equations of motion for the collision-
less component and then briefly outline the time step constraints and code units.

2.1. Comoving frame

Cosmic expansion is described by the first Friedmann’s equation which reads [27]
_a
a
¼ H0ðXma�3 þ Xka�2 þ XKÞ1=2 ð1Þ
where a(t) is the scale of the universe as a function of time; H0 measures the current (a = 1) rate of cosmic
expansion (the Hubble constant); Xm, Xk and XK are parameters representing the current energy density asso-
ciated to matter, curvature and ‘dark’ component, respectively, in units of the closure value. The solution to
Eq. (1) relating cosmic time and expansion parameter reads
H 0tðaÞ ¼
Z a

0

d~a

~aðXm~a�3 þ Xk~a�2 þ XKÞ1=2
ð2Þ
and admits simple solutions for Xk = 0. Since the equations of motion in an expanding Universe are most nat-
urally solved in a comoving frame, which expands at the rate _a=a given by Eq. (1), we operate the change of
coordinates
x ¼ aðtÞ�1
r ð3Þ
where r and x are the coordinates in the laboratory and comoving reference frame, respectively, and transform
all differential operators (time derivatives, gradient, laplacian) according to [27]
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The velocity
_r ¼ _axþ a _x � _a
a

rþ a _x ð6Þ
is decomposed into a Hubble flow, ð _a=aÞr, and a peculiar proper component, u ¼ a _x. It is also convenient to
introduce the density and pressure in terms of the comoving volume x3, as opposed to the proper volume r3,
qðt; x ¼ r=aÞ ¼ a3qpðt; rÞ ð7Þ

P ðt; x ¼ r=aÞ ¼ a3P pðt; rÞ ð8Þ

where the subscript p indicates the proper quantities.

2.2. Hydrodynamics

In comoving coordinates, the hydrodynamics is described by the following set of inhomogeneous partial
differential equations
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expressing (from top to bottom) mass, momentum, energy and entropy conservation. Here, q and P are the
comoving density and pressure, respectively, u is the peculiar proper velocity, / the proper gravitational po-
tential, e ” eth + ek = P/q(c � 1) + u2/2 is the specific total energy, s = P/qc is the specific entropy and c the gas
adiabatic index. The first inhomogeneous terms on the right hand side of Eqs. (10)–(12) describe the effects due
to adiabatic cosmic expansion (/ _a=a). In particular, the factor 2 for the last two equations arises by assuming
that the internal energy of the gas is solely associated with translational degrees of freedom1. Finally, gravity is
described by the gravitational potential /, which is generated by the matter distribution of both the collisional
and the collisionless components.

We use a cell-centered discretization for our primary dependent variables: Uðx; tÞ � ðq; qu; qeÞT ! Un
i ,

where i 2 ZD indexes grid points in a space with D dimensions and n is a discrete time index. The starting
point for our temporal discretization is a conservative finite-difference method for the hydrodynamic
equations:
Unþ1;h ¼ U n � DtAðtÞ D �~F nþ1
2

� �
ð13Þ
where D �~F nþ1
2 approximates the spatial derivative terms on the left-hand side of (11), AðtÞ is a diagonal matrix

with elements 1
anþ1=2 ;

1
anþ1 ;

anþ1=2

ðanþ1Þ2 ;
anþ1=2

ðanþ1Þ2

h i
, and Dt is the time step. We use an unsplit second-order Godunov’s

method [28,29,24] to compute the flux divergence. In addition to the cosmological expansion terms, the gas
and particle components couple through the force field which is solution to the following Poisson’s equation
D/ ¼ 4pG
a
ðqm � hqmiÞ: ð14Þ
Here qm = qgas + qpart is the total comoving mass density; the particle density, qpart, is computed through a
Particle Mesh method (see details in the Appendix A). When periodic boundary conditions are used, Æqmæ
is the volume average, otherwise it is zero. The details of the spatial discretization for Poisson’s equation
are given in the following section. For now, we assume that we can compute the gravitational acceleration
at cell centers, fi � �$/, with second order accuracy. To compute the effect of the source terms, we need
to compute them before and after the hydrodynamic update, taking advantage of the fact that no sources ap-
pear in the density evolution equation:
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where qnþ1=2
i ¼ ð1=2Þðqn

i þ qnþ1
i Þ, and DðqekÞ ¼ ð1=2Þ½qnþ1

i ðunþ1
i Þ

2 � qn
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i Þ
2�. After the hydrodynamics update

given in Eq. (13) we apply the source terms as follows
Unþ1;h;s1 ¼ U nþ1;h þ DtSn: ð16Þ
re generally, in D dimensions, the energy losses due to expansion are _eth=eth ¼ Dðc� 1Þ _a=a for the internal energy and _ek=ek ¼ 2 _a=a
specific kinetic energy, respectively.
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The above estimate of the source term, after being converted to primitive variable form, is also used in the
hydrodynamic predictor step in order to obtain fully time-centered fluxes. Sn accounts for the expansion terms
to the desired accuracy but is only first order accurate as far as the gravity term is concerned (hence the super-
script s1). After the new gravitational potential has been computed a source correction term is estimated as
dS
nþ1

2
i ¼ 1

2
qnþ1

i

df
nþ1=2
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0
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0
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with, df
nþ1=1
i ¼ f nþ1

i � f n
i , and the final source update is
U nþ1 ¼ Unþ1;h;s1 þ DtdSnþ1
2: ð18Þ
2.2.1. Hypersonic flows

Accretion flows induced by gravity are typically hypersonic and can be characterized by very large Mach
numbers M P 100. This situation is common in cosmological simulations [30].

In this case the total energy is largely dominated by the kinetic component, ek �M2eth. Since conservative
hydro-schemes track the total energy, e = eth + ek, relatively small errors in the partition of the two compo-
nents can produce spurious values of eth. This is particularly worrisome when a 4-byte (single precision) digital
representation of the numerical data is employed. For this reason, we introduce the additional Eq. (12)
describing the evolution of the gas entropy. When the Mach number of the bulk flow is very high,
M P 50, and away from shocks, it provides a more accurate solution from the thermal energy than the total
energy equation. Eq. (12) is naturally incorporated in the numerical scheme for hydrodynamics adopted here
because of its conservative form. In addition, being a simple advection equation, the conservative fluxes for its
integration are a byproduct of the Riemann solution and require virtually no extra effort to compute.

The equation for the internal energy could be alternatively integrated [31], but its non-conservative form
makes it less attractive. Authors in Ref. [32] already employed the entropy equation in order to improve
the accuracy of their Total Variation Diminishing scheme for hypersonic flows, although their implementation
required solving twice for the hydrodynamic equations with an extra cost of 30%.

It is worth pointing out that for high Mach number flows, errors in the velocity field are propagated into the
Riemann solver solution for the pressure at the cell interface, P*, with a coefficient �M, that is, largely ampli-
fied. More precisely we find
dP �

P �
¼ c

dDu
u

M ð19Þ
where Du is the one dimensional velocity jump at the cell interface. However, as illustrated above, the pressure
terms enter the hydrodynamic equations with a weight M�1 as compared to kinetic terms and, therefore, the
numerical solution is not degraded in the case of high Mach number flows because of approximations involved
in the Riemann solver solution.

2.3. Collisionless component

The collisionless component is described by a set of particles whose evolution in phase space is computed
according to
dy

dt
¼ 1

a
u ð20Þ

du

dt
¼ � _a

a
uþ 1

a
f ð21Þ
where y and u are the comoving coordinate and peculiar proper velocity, respectively. The acceleration acting
on the particle, f, is obtained by first computing the acceleration on the grid, using a cell- or face-centered
scheme, and then by interpolating it to the particle position through a Particle Mesh method [20]. In order
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to advance in time the particle positions and velocities we propose the following integration scheme based on a
kick–drift–kick sequence [33]: first the particles velocity and positions are updated as
unþ1=2 ¼ un an

anþ1=2
þ 1

anþ1=2
f nðynÞDt

2
ð22Þ

ynþ1 ¼ yn þ 1

anþ1=2
unþ1=2Dt: ð23Þ
After computing the acceleration at the new timestep, the particle velocity is finally updated as
unþ1 ¼ unþ1=2 anþ1=2

anþ1
þ 1

anþ1
f nþ1ðynþ1ÞDt

2
: ð24Þ
The proposed scheme is reflexive and hence symplectic [34]. This has the nice property that the integral of mo-
tion will be conserved on average preventing secular accumulation of error and keeping the system about its
true trajectory in phase space (see, e.g. discussion in [33]). We have also implemented an alternative method,
based on the more common drift–kick–drift sequence, which does the following: first particle positions at half
the time step are predicted as
ynþ1=2 ¼ yn þ 1

an
un Dt

2
; ð25Þ
then particle positions and velocity are further temporarily updated to
unþ1;� ¼ un an

anþ1
þ 1

anþ1
f nðynþ1=2ÞDt ð26Þ

ynþ1;� ¼ ynþ1=2 þ 1

anþ1
unþ1;� Dt

2
: ð27Þ
Based on the gravitational potential at the new time-step, a final correction term is applied, that allows second
order accuracy
unþ1 ¼ unþ1;� þ 1

anþ1
f nþ1ðynþ1=2Þ � f nðynþ1=2Þ
� �Dt

2
ð28Þ

ynþ1 ¼ ynþ1=2 þ 1

anþ1
unþ1 Dt

2
: ð29Þ
The above scheme, however, is not fully reflexive. The need of temporary states that approximate the solution
at the end of the time step in order to calculate the final correction step, breaks the time symmetry of the
scheme.

Note that in both schemes, there is no need for storage of extra information about either the particle posi-
tions or their velocities at any old or intermediate step. In addition, the gravitational potential is computed
only once per time step making their overall computational cost of rather inexpensive.

It should be noticed, however, that in the case of AMR reflexivity is lost even in the former scheme without
additional precautions. This occurs when a particle is transferred to a different level of refinement, or even
during a refinement operation. In both cases, the gravitational potential changes as a result of these proce-
dures. Since this change takes place after the correction steps, the backward application of the scheme would
not reproduce the initial configuration. Although in principle this could be fixed by storing information about
the last timestep and acceleration for each particle, we have not implemented any of this.
2.4. Time step

The time-step is subjected to the following constraints: In accord with the Courant–Friedrichs–Lewy (CFL)
condition for stability of finite difference methods [35], we require
Dt ¼ Chydro
aðtÞDx

Maxðjuij þ csÞ
ð30Þ
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where Chydro < 1 is the CFL number, and ui and cs are the fluid velocity in the ith direction and sound speed of
the flow, respectively. In presence of a source term, S, we modify the estimate of the fluid velocity according to
juij þ cs !
jSijDx

½ðjuij þ csÞ2 þ 2jSijDx�1=2 � ðjuij þ csÞ
ð31Þ
where Si is the component of the source term affecting the velocity ui. For the purpose of accuracy, rather than
stability, for the collisionless particles we likewise require
Dt ¼ Cpart
aðtÞDx

MaxðjuijÞ
ð32Þ
with Cpart < 1 and with Ui corrected as in Eq. (31) but with cs = 0. Finally, we require that the background
expansion remains limited during each integration cycle. This allows us to time center the value of a(t) in
our integration schemes above and neglect its changes with time. We thus enforce
Dt < Cexp

a
_a

ð33Þ
with Cexp . (1–2) · 10�2.

2.5. Code units

The natural choice for the dimensional units of the above physical equations is given by the following
lengths, mass and time scales
L� ¼ Lbox ð34Þ
q� ¼ qcXm ð35Þ
t� ¼ H�1

0 ð36Þ

where Lbox is the size of the computational box and qc � 3H 2

0=8pG ¼ 1:879	 10�29h2 is the critical density of
the universe, with h ” H0/100 km s�1 Mpc�1. The units for the other quantities are defined in terms of these as
u� ¼ H�1
0 Lbox ð37Þ

P � ¼ q�u
2
� ð38Þ

/� ¼ u2
� ð39Þ

T � ¼ mprotonP �=kBq� ð40Þ

where mproton is the proton mass and kB Boltzmann’s constant.
3. Adaptive mesh refinement approach

In this section we outline the structure of the AMR algorithm. After introducing the formal notation, we
describe in some detail the scheme for hydrodynamics with self-gravity and its modifications when a collision-
less component is also included, in the simple case of two levels of refinement. We then describe the extension
of the scheme to the general multilevel case.
3.1. Multilevel volume discretization, variables and operators

The underlying discretization of the D-dimensional space is given as points ði0; . . . ; iD�1Þ ¼ i 2 ZD. The
problem domain is discretized using a grid C 
 ZD that is a bounded subset of the lattice. C is used to represent
a finite-volume discretization of the continuous spatial domain into a collection of control volumes: i 2 C rep-
resents a region of space,
V i ¼ ½ih; ði þ uÞh� ð41Þ
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where h is the mesh spacing, and u 2 ZD is the vector whose components are all equal to one. We can also
define face-centered discretizations of space based on those control volumes: Ced ¼ fi � 1

2
ed : i 2 Cg, where

ed is the unit vector in the d direction. Ced
is the discrete set that indexes the faces of the cells in C whose nor-

mals are ed:
Aiþ1
2ed ¼ ½ði þ edÞh; ði þ uÞh�; i þ 1

2
ed 2 Ced

: ð42Þ
We define cell-centered discrete variables on C:
/ : C! Rm
and denote by /i 2 Rm the value of / at cell i 2 C. We can also define face-centered vector fields on C:
~F ¼ ðF 0; . . . ; F D�1Þ; F d : Ced ! Rm
and define a discretized divergence operator on such a vector field:
ðD �~F Þi ¼
1

h

XD�1

d¼0

ðF d;iþ1
2ed � F d;i�1

2ed Þ; i 2 C: ð43Þ
We will find it useful to define a number of operators on points and subsets of ZD. We define a coarsening
operator by: Cr : ZD ! ZD,
CrðiÞ ¼
i0

r

� 	
; . . . ;

id�1

r

� 	� �
where r is a positive integer. These operators acting on subsets of ZD can be extended in a natural way to the
face-centered sets: CrðCed Þ � ðCrðCÞÞe

d

. For any set � ˝ C, we define Gð� ; rÞ, r > 0, to be the set of all points
within a |Æ|-distance r of � that are still contained in C:
Gð� ; rÞ ¼ C \ [
jij6r

� þ i
where jij ¼ max
d¼0...D�1

ðjid jÞ. We can extend the definition to the case r < 0:
Gð� ; rÞ ¼ C� GðC� � ;�rÞ:

Thus Gð� ; rÞ consists of all of the points in � that are within a distance �r from points in the complement of �
in C. In the case that there are periodic boundary conditions in one or more of the coordinate directions, we
think of the various sets appearing here and in what follows as consisting of the set combined with all of its
periodic images for the purpose of defining set operations and computing ghost cell values. For example,
Gð� ; rÞ is obtained by growing the union of � with its periodic images, and performing the intersections
and differences with the union of C with its periodic images.

We use a finite-volume discretization of space to represent a nested hierarchy of grids that discretize the
same continuous spatial domain. We assume that our problem domain can be discretized by a nested hierar-
chy of grids C0 � � �Clmax , with Clþ1 ¼ C�1

nl
ref
ðClÞ, and that the mesh spacings hl associated with Cl satisfy hl

hlþ1 ¼ nl
ref .

The integer nl
ref is the refinement ratio between level l and l + 1. These conditions imply that the underlying

continuous spatial domains defined by the control volumes are all identical. In this paper we will further
assume that nl

ref is even. In the case where there are only two levels, we will refer to them as coarse and fine,
with the notation {l = 0, l = 1}! {c, f}, and n0

ref ! nref .
AMR calculations are performed on a hierarchy of meshes, fXlglmax

l¼0 with Xl 
 Cl and Xl � Cnl
ref
ðXlþ1Þ. Typ-

ically Xl is decomposed into a disjoint union of rectangles to perform calculations efficiently.
We make two assumptions about the nesting of grids at successive levels. We require that the control vol-

ume corresponding to a cell in Xl is either completely contained in the control volumes defined by Xl�1 or its
intersection has zero volume. We also assume that there is at least one layer of level-l cells separating level-
(l + 1) cells from level-(l�1) cells: GðCnl

ref
ðXlþ1Þ; 1Þ 
 Xl. We refer to grid hierarchies that meet these two con-

ditions as properly nested.
From a formal numerical analysis standpoint, a solution on an adaptive mesh hierarchy fXlglmax

l¼0 approx-
imates the exact solution to the Partial Differential Equations only on those cells that are not covered by a grid
at a finer level. We define the valid region of Xl as
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Xl
valid ¼ Xl � Cnl

ref
ðXlþ1Þ:
A composite array wcomp is a collection of discrete values defined on the valid regions at each of the levels of
refinement:
wcomp ¼ fwl;compglmax

l¼0 ; wl;comp : Xl
valid ! Rm:
We can also define valid regions and composite arrays for face-centered variables: Xl;ed

valid ¼ Xl;ed � Cnl
ref
ðXlþ1;ed Þ.

Thus, Xl;ed

valid consists of d-faces that are not covered by the d-faces at the next finer level. A composite vector
field ~F comp ¼ f~F l;validglmax

l¼0 is defined as follows:
~F l;comp ¼ ðF l;comp
0 . . . F l;comp

D�1 Þ; F l;comp
d : Xl;ed

valid ! R
Thus a composite vector field has values at level l on all of the faces not covered by faces at the next finer level.
We want to define a composite divergence Dcompð~F lþ1;comp; ~F l;compÞi for i 2 Xl

valid. To do this, we construct an
extension of ~F l;comp to the edges adjacent to Xl

valid that are covered by fine level faces. On the valid coarse-level
d-faces, F l

d ¼ F l;comp
d . On the faces adjacent to cells in Xl

valid, but not in Xl;ed

valid, we set F l
d ¼ hF

lþ1;comp
d i, the aver-

age of F lþ1
d onto the next coarser level:
hF lþ1
d iilþ1

2ed ¼
1

ðnrefÞD�1

X
iþ1

2ed2F d

F lþ1
d;iþ1

2ed ; il þ
1

2
ed 2 flþ1

d;þ [ flþ1
d;� :
Here F d is the set of all fine level d-faces that are covered by Ailþ1
2ed . flþ1

d;� consists of all the d-faces in Xl on the

boundary of Xl+1, with valid cells on the low (± = �) or high (± = +) side:
flþ1
d;� ¼ fi �

1

2
ed : i � ed 2 Xl

valid; i 2 Cnl
ref
ðXlþ1Þg:
Given that extension, our composite divergence is defined as:
Dcompð~F lþ1;comp; ~F l;compÞi ¼ D �~F l
i ; i 2 Xl

valid: ð44Þ

It is useful to express Dcomp as the application of the level divergence operator D applied to extensions of
~F l;comp to the entire level, followed by a step that corrects the cells in Xl

valid that are adjacent to Xl+1. We define
a flux register d~F lþ1 associated with the fine level
d~F lþ1 ¼ ðdF lþ1
0 ; . . . ; dF lþ1

D�1Þ
dF lþ1

d : flþ1
d;þ [ flþ1

d;� ! Rm:
Let ~F l be any coarse level vector field that extends ~F l;comp, i.e.
F l
d ¼ F l;comp

d on Xl;ed

valid:
Then, for i 2 Xl
valid,
Dcompð~F lþ1;comp; ~F l;compÞi ¼ ðD~F lÞi þ DRðd~F lþ1Þi ð45Þ

where d~F lþ1 is a flux register set to be
dF lþ1
d ¼ hF lþ1

d i � F l
d on fl

d;þ [ fl
d;�
and DR is the reflux divergence operator, given by the following for valid coarse level cells adjacent to Xl+1:
DRðd~F lþ1Þi ¼
1

hl

XD�1

d¼0

X
�¼þ;�:

i�1
2ed2flþ1

d;�

�dF lþ1
d;i�1

2ed :
For the remaining cells in Xl
valid, DRðd~F lþ1Þ is defined to be identically zero.

We can use this notation to define the discretizations of Poisson’s equation we will be using to compute self-
gravity. On a single level, Xl, we define Dl, the discrete Laplacian, to be the standard 2D + 1 point operator,
with the values used on ghost cells computed using quadratic interpolation:
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Dl/l ¼ D �~F l;/ ð46Þ

F l;/
d ¼

/iþed � /i

hl ð47Þ

/l
i ¼ Ið/l;/l�1Þi for i 2 oXl ð48Þ
where oXl � GðXl; 1Þ � Xl. Here the interpolation function I is an O(h3) estimate of the value on the ghost cell
obtained from interpolating from values of /l�1 on Xl�1

valid and from the values of /l on Xl; for details, see [36].
We can then define the composite Laplacian Dcomp applied to all of the valid data on all levels, in terms of that
operator and refluxing operations:
ðDcomp;l/Þi ¼ ðD
l/l;extÞi þ DRðd~F l;/Þ for i 2 Xl

valid ð49Þ

d~F l;/ ¼ h~F lþ1;/i �~F l;/ ð50Þ

where /l,ext is some extension of /l,comp to all of Xl. The resulting operator depends only on the valid values of
/ in the grid hierarchy (modulo roundoff considerations; cf. Ref. [37] for further details).

3.2. AMR for compressible flows with self-gravity

The starting point for this work is the algorithm described in [2] for solving hyperbolic conservation laws on
nested refined grids. For the case of two levels, we assume that the solution on both levels is known at time tc.
The basic steps to evolve the solution on both levels to time tc + Dtc can be summarized as follows:

1. Update the solution on the coarse grid:
U cðtc þ DtcÞ ¼ U cðtcÞ � DtcðD �~F cÞ þ DtcSðU cÞ on Xc: ð51Þ

Here SðU cÞ is computed as in Eq. (15) (with the body force, f, set to zero), and the discrete fluxes ~F are local
functions of Uc. We also initialize flux registers associated with Xf using the same fluxes
d~F f ¼ �~F c:
2. Advance the solution from tf to tf + Dtf on the fine grid nref times, nrefDtf = Dtc:
U fðtf þ DtfÞ ¼ U fðtfÞ � DtfðD �~F fÞ þ DtSðU fÞ on Xf

d~F fþ ¼ 1

nref

h~F fi

tfþ ¼ Dtf :

ð52Þ
Any values required to compute the stencil that are contained in Cf � Xf are computed by interpolating the
coarse grid values Uc(tc), Uc(tc + Dtc), using linear interpolation in time, and piecewise linear interpolation
in space.

3. Synchronize the values at the old and new times:
U cðt þ DtcÞ ¼ hU fðt þ DtcÞi on Cnref
ðXfÞ

U cðt þ DtcÞþ ¼ DRðd~F Þ
ð53Þ
where Æ Æ æi denotes the arithmetic average onto the coarse cell i of all of the values defined on fine grid cells
contained in i.

To extend this algorithm to the case of self-gravity, we must solve the Poisson’s equation for the gravita-
tional potential due to the mass distribution of the fluid on the coarse and fine levels. As usual the coarse level
is advanced first, and the solution at tc + Dtc is used to provide time interpolated boundary conditions for the
fine level at intermediate time steps. In the case of hyperbolic equations the finite characteristic speeds ensure
that a fully consistent multilevel solution can be recovered at synchronization time with the refluxing opera-
tion. Because of its elliptic nature, however, in order to preserve its multilevel character Poisson’s equation
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should be solved simultaneously on all levels. Notice that the coupling among levels is enforced by the con-
tinuity of the potential (Dirichlet) and of its normal derivative (Neumann) at the coarse/fine grid interface.
Therefore, to maintain the multilevel character of Poisson’s equation when the levels are not synchronized
yet, we obtain a single level solution to Poisson’s equation on the coarse level and apply a lagged estimate
of the effect of the coarse/fine matching conditions at refinement boundaries, following the ideas developed
in [25,26,38] for incompressible fluids. This leads to the following modifications to the algorithm given above.

0. At simulation start, when all levels are synchronized, we compute a composite grid solution to Poisson’s
equation
ðLcomp;c/compÞðtcÞi ¼ qcðtcÞi; i 2 Xc
valid ð54Þ

ðLcomp;f/compÞðtcÞi ¼ qfðtcÞi; i 2 Xf ð55Þ

as well as the coarse grid solution
ðLc/cÞðtcÞ ¼ qcðtcÞ on Xc: ð56Þ

Here, and in what follows, we will denote by LðtÞ � aðtÞ

4pG D with superscripts l, c, f, comp indicating the par-
ticular discretization of the Laplacian operator.

1. Together with U(tc), the acceleration f c(t) derived from the composite solution of the potential on the
coarse grid is used to compute the coarse grid fluxes and source terms. After updating the conserved quan-
tities using (51), we compute the coarse grid potential at the new time
ðLc/cÞðtc þ DtcÞ ¼ qcðtc þ DtcÞ ð57Þ
~/c;compðtc þ DtcÞ ¼ /cðtc þ DtcÞ þ ð/c;compðtcÞ � /cðtcÞÞ ð58Þ
where in the latter step we have approximately corrected the coarse grid single-level-solution of the poten-
tial for the effects due to the solution on the finer grid [25,26]. We use the solution in Eq. (58) with
/c,comp(tc) to obtain boundary conditions interpolated in time for the potential at the fine level at interme-
diate timesteps.

2. We apply the update (51) on the finer level. At tf = tc in order to compute the hydrodynamic fluxes and
source terms we use the force, ff, derived from the composite potential solution to Eq. (55). At intermediate
steps, tc < tf < tc + Dtc, we solve the following Poisson’s equation on the fine grid with interpolated bound-
ary conditions
ðLf/fÞðtfÞ ¼ qfðtfÞ on Xf

/fðtfÞ ¼ I ½/fðtfÞ; ~/cðtfÞ� on oXf
ð59Þ
where ~/cðtfÞ is obtained by linear interpolation in time as
~/cðtfÞ ¼ ð1� aÞ/c;compðtcÞ þ a~/c;compðtc þ DtcÞ; a ¼ tf � tc

Dtc
:

We compute the forces at the new timestep and apply the correction (17) and (18) to the fluid momentum
and kinetic energy.

3. At time of synchronization, tf = tc + Dtc, we solve the set of Eqs. (54)–(56), for the composite and single level
solution of the potential. We use the composite solution to derive the new force, f n+1, and apply momentum
and kinetic energy corrections (17) and (18) to obtain time centered forces on both coarse and fine levels. The
flow of the calculation restarts from step 1 with the gravitational force known at all levels.

3.3. AMR with particles

Due to the time refinement character of the AMR technique the solution on different levels is advanced with
different timesteps. This implies that the density field represented by the particles evolved on the finer level may
not be available on the coarser level unless they are synchronized. However, this is information is necessary to
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solve Poisson’s equation. Therefore, we find it convenient to introduce effective particles to recover such infor-
mation in a computationally inexpensive way and without compromising the code accuracy.

Thus we introduce an aggregation operation P ! hPil that projects a collection of particles covered by Xl

onto a set of effective particles, with no more that one particle per cell. If p 2 hPil, then
mp ¼
X

p0:xp0 2V i

mp0 ð60Þ

xp ¼
1

mp

X
p0 :xp0 2V i

mp0xp0 ð61Þ

up ¼
1

mp

X
p0 :xp0 2V i

mp0up0 ð62Þ
The aggregation operation conserves the monopole and dipole terms but causes information to be lost on the
quadrupole moment of the aggregated particles [39], which provides corrections to the potential of order h2.
Thus the aggregation step preserves second order accuracy. Note, also, that the potential and force fields ob-
tained through the aggregated particles are only used to provide boundary conditions for the finer level.

Restricting again the discussion to the case of two levels of refinement, the changes in the algorithm
described above are given as follows:

0. At simulation start, we partition the particles into ones that will be evolved using the coarse and fine time
steps. If P is the set of all particles,
Pf ¼ fp 2 P : xp 2 GðXf ;�nref nbufÞg ð63Þ
Pc ¼ P � Pf : ð64Þ
The parameter nbuf is chosen so that the support for the Particle-Mesh interpolation function, used to cal-
culate the force acting on the particle and the particle mass distribution on the grid, is completely con-
tained in Xf for all of the fine grid time steps, nrefDtf = Dtc. Using nbuf = 1 and Cpart = 0.5 is sufficient
for all choices of Particle-Mesh scheme used here (see Appendix A). We then define the set hPfic of fine
particles aggregated on the coarse grid using Eqs. (60)–(62). Finally, in computing the gravitational poten-
tial the densities in Eqs. (54)–(56) are modified to account for the mass distribution of the particles:
qc
i ðtcÞ ¼ qc;fluid

i ðtcÞ þ 1

ðhcÞD
X

p2Pc[hPf ic
mpW

ði þ 1
2
uÞhc � xpðtcÞ

hc

� �
ð65Þ

qf
i ðtcÞ ¼ qf;fluid

i ðtcÞ þ 1

ðhfÞD
X
p2Pf

mpW
ði þ 1

2
uÞhf � xpðtcÞ

hf

 !
þ 1

ðhcÞD
X
p2Pc

mpW
Cnref
ðiÞ þ 1

2
u


 �
hc � xpðtcÞ

hc

� �
:

ð66Þ

Here W is one of the Particle-Mesh assignment schemes used to spread the particle mass on the grid, de-
scribed in Appendix A. Note that the addition to qc of the density field due to hPfic has no effect on the
composite solution, because the support of W for each particle 2 hPfic is contained entirely in Cnref

ðXfÞ.
1. The gravitational force resulting from the composite solution of the potential is used to compute both the

fluid fluxes and source terms, as well as to perform the update (22) and (23) for the particles in Pc [ hPfic.
For the latter, we interpolate the accelerations from the grid cells to particle positions with one of the meth-
ods described in Appendix A.

2. At the end of each fine time step, while tf + Dtf < tc + Dtc, we compute the new fine potential, /f, modifying
the mass density as
qfðtfÞi¼qf;fluidðtfÞiþ
1

ðhfÞD
X
p2Pf

mpW
ðiþ 1

2
uÞhf�xpðtfÞ

hf

 !
þ 1

ðhcÞD
X
p2Pc

mpW
Cnref
ðiÞþ 1

2
u


 �
hc�xpðtfÞ

hc

� �
; i2Xf

ð67Þ



412 F. Miniati, P. Colella / Journal of Computational Physics 227 (2007) 400–430
where the positions of the particles in Pc at the intermediate times are given by linear interpolation be-
tween xp(tc) and xp(tc + Dtc). We then use the acceleration due to this field to update the fine particle veloc-
ities using (24), and the fine fluid state using (17) and (18).

3. The synchronization step is analogous to the one in Section 3.2: we calculate a single grid and composite
grid solution of the potential using the total mass density distribution of fluid and particles given by Eqs.
(65) and (66). The gravitational force derived from the composite potential is used to apply the corrections
to the particle velocity, given in Eq. (24), and to the fluid momentum and kinetic energy, given in Eqs. (17)
and (18), at all levels. Finally, the sets Pc;Pf and hPfic are upgraded following the definitions in (63) and
(64) to account for the new particle positions. The flow of the calculation restarts from step 1.

3.4. The general multilevel algorithm

For the case of a general (lmax + 1)-level calculation, we assume that at simulation start all the particles
have been partitioned into groups corresponding to the levels on which they shall be advanced, and that
the particles being advanced by finer grids have been aggregated into effective particles for the next coarser
levels. This is summarized in the procedure:

for l = 0, . . ., lmax � 1 do
Plþ1 ¼ fx 2 Pl : xpðtlÞ 2 GðXlþ1;�nrefnbufÞg
Pl  Pl � Plþ1

end for

Plmax
c ¼ ;

for l = lmax � 1, . . ., 0 do

Pl
c ¼ hPlþ1 [ Plþ1

c i
l

end for

We can then describe the algorithm for advance(l) that advances the solution at level l, 0 6 l 6 lmax by one time
step. We assume that the solution is attained at time tl + Dtl in a process that includes a recursive application
of advance. At the beginning of advance, we assume that: we know the fluid state Ul and particle state Pl asso-
ciated with that level at time tl; we know the fluid, particle, and potential at the next coarse level at times tl�1,
tl�1 + Dtl�1; a composite solution as well as single level solution of the gravitational potential at time tl has
been computed on level l�1 and on all finer levels.

We then advance the solution by a time step Dtl, with nl�1
ref Dtl ¼ Dtl�1, as follows:

1. Using U(tl) along with the accelerations, f l
i , i 2 Xl, computed from /l, we calculate the hyperbolic fluxes ~F l

and the source terms S(tl). We update the conserved quantities
Uðtl þ DtlÞ ¼ UðtlÞ � DtlD �~F l þ DtlSlðtlÞ
dF lþ1 ¼ �~F l if l < lmax

dF lþ ¼ h~F li if l > 0

ð68Þ
and advance the positions and velocities of the particles in Pl [ Pl
c using (22) and (23).

2. With tl tl + Dtl, we solve Poisson’s equation on level l
ðLl/lÞðtlÞi ¼ qfluid;lðtlÞi þ
1

ðhlÞD
X
p2Pl

mpW
ði þ 1

2
uÞhl � xpðtlÞ

hl

 !
þ 1

ðhlÞD
X
p2Pl

c

mpW
ði þ 1

2
uÞhl � xpðtlÞ

hl

 !

þ 1

ðhl�1ÞD
X

p2Pl�1

mpW
Cl�1

nref
ðiÞ þ 1

2
u

� �
hl�1 � xpðtlÞ

hl�1

0
@

1
A; i 2 Xl ð69Þ

/lðtlÞi ¼ I ½/lðtlÞ; ~/l�1ðtlÞ�i; i 2 oXl
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where ~/l�1ðtÞ is obtained by linear interpolation in time between ~/l�1;compðtl�1Þ and ~/l�1;compðtl�1 þ Dtl�1Þ
with the latter defined in Eq. (58). As in Eq. (58) we then estimate
~/l;compðtlÞ ¼ /lðtlÞ þ ð/l;compðtl � DtlÞ � /lðtl � DtlÞÞ ð70Þ

which is used to provide boundary conditions for the potential at the next finer level, /l+1(t).

3. We call advance recursively nl
ref times.
tl+1 = tl

while tl+1 < tl + Dtl do

advance(l + 1)
tl+1 = tl+1 + Dtl+1

end while

4. If tl�1 < tl < tl�1 + Dtl�1, we obtain f/l0 ;compðtlÞgl0Pl by solving the composite equations:
ðLcomp;l0/compÞðtlÞi ¼ qfluid;l0 ðtlÞi þ
1

ðhl0 ÞD
X
p2Pl0

mpW
ði þ 1

2
uÞhl0 � xpðtlÞ

hl0

 !

þ 1

ðhl0�1ÞD
X

p2Pl0�1

mpW
Cnl0�1

ref
ðiÞ þ 1

2
u

� �
hl0�1 � xpðtlÞ

hl0�1

0
@

1
A; i 2 Xl0

valid; l0 ¼ l; . . . ; lmax

ð71Þ

/l;compðtlÞi ¼ I ½/l;compðtlÞ; ~/l�1ðtlÞ�i; i 2 oXl:
The field so obtained is used to compute accelerations at the new time, and update the fluid and particle
velocities using (17), (18) and (24), respectively.

5. The solution at level l is synchronized with the solutions at the finer levels:
Uðtl þ DtlÞ ¼ hUðtlþ1Þi on Cnl
ref
ðXlþ1Þ

Uðtl þ DtlÞþ ¼ DRðd~F lþ1Þ

We upgrade the sets Pl0 for l 0 = l � 1, . . ., lmax and hPl0þ1il

0
for l 0 = l � 1, . . ., lmax � 1, according to the

new particle positions. The flow of the calculation restarts from step 1.

4. Convergence tests

We have implemented the above schemes in a Cosmological Hydromagnetic AMR Radiation Many-body
(CHARM) code. The code is based on the CHOMBO AMR library and it is implemented in a hybrid C++/
Fortran77 language. Additional physics modules, such as radiation [40], cosmic-rays [41,42] and magnetohy-
drodynamics will be presented elsewhere. In the following, we focus on numerical tests to assess the perfor-
mance of the algorithms in terms of accuracy and applicability to problems of direct interest. Performance
tests will be presented elsewhere.

Unless explicitly stated otherwise, in the following we use these CFL coefficients for the time step: Chydro =
Cpart = 0.5 and Cexp = 0.01. In addition, we restrict the results to the case of a TSC interpolation scheme
which, in accord with previous authors, we find to give the most accurate results. Errors and convergence rates
are calculated as follows. At a given resolution, r, for any given cell or particle, i, we estimate the error on a
computed quantity, qc

rðiÞ, with respect to the analytic solution, qa(i), as
dqrðiÞ ¼ qc
rðiÞ � qa

r ðiÞ: ð72Þ
We then compute the n-norm of the error, i.e.
LnðdqrÞ ¼ kdqrkn ¼
X
jdqrðiÞj

nvi

h i1=n
ð73Þ
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where vi is either the ith cell volume or the inverse of the number of particles; finally we estimate the conver-
gence rate as
Rn ¼
ln½LnðdqrÞ=LnðdqsÞ�

lnðDxr=DxsÞ
: ð74Þ
For the cases studied below we report the L1, L2 and L1 norm of the errors.

4.1. Zel’dovich’s pancake

We begin with a classical test problem for cosmological codes, the evolution of a one-dimensional plane-
wave perturbation in an expanding background. In Zel’dovich’s formulation [43], the comoving position
and peculiar velocities of collisionless matter evolve as
xðtÞ ¼ qþ bðtÞ
aðtÞ pðqÞ ð75Þ

vðtÞ ¼ aðtÞ _xðtÞ ð76Þ

where q, p are the Lagrangian initial position and displacements, a(t) is the expansion factor and b(t)/a(t) de-
scribes the growth factor of the perturbation. For a closed universe (Xm = 1), a(t) = (3H0t/2)2/3 (Eq. (2)) and
b(t) = 2a2/5 [43].

Setting the initial displacements to a sinusoidal form, p(q) = 5Asin(kq)/2, where k is the perturbation wave-
number, we obtain
xðtÞ ¼ qþ aA sinðkqÞ ð77Þ
vðtÞ ¼ a _aA sinðkqÞ ð78Þ

qðtÞ ¼ q0 1þ aAk cosðkqÞ½ ��1
: ð79Þ
The solution described by Eq. (77) becomes singular, that is ox/oq = 0 when acollapse = (Ak)�1. At this stage,
particles trajectories cross at x = q = p/k and a caustic forms. In the following we use astart = 1/51, acollapse =
1/2 and k = 2p/h�1Lbox.

4.1.1. Collisionless component

Table 1 demonstrates the second order accuracy of the code. The different columns report, as a function of
numerical resolution, the L1, L2 and L1 norms of the error on the particles position, velocity and force, and
the corresponding convergence rates of the errors. The L2 norm of these errors is also reported graphically in
the left hand side panels of Fig. 1. For this case we use equal number of cells and particles, Npart = Ncell, a cell-
centered force scheme, and a constant Dt

Dx ¼ 1:6	 10�4. In Fig. 1 we also report the L2 norm of the errors for
the case in which Npart ¼ 1

2
N cell and the particles are initially placed either at cell nodes (central panels, NCP

for node centered particle) or cell centers (right panels, CCP for cell centered particle). Both these configura-
tions lead to a slower convergence rate than our reference case illustrated in the left hand side panels.

In cosmological simulations, the timestep during the initial stages is determined by the expansion rate of the
background. Thus in Table 2 we report the same quantities as in Table 1 but for the case of a (variable) time-
step determined by Dt

Dx ¼ Cexpða_aÞ, with Cexp = 10�2. The L2 norm of these errors are also reported as filled sym-
bols in the left hand side panels of Fig. 2. The errors were computed after ten timesteps so that the system is
still in the linear regime. And, in fact, the convergence rates are the same as in Table 1. The same correspon-
dence in terms of convergence rates also exists for the case in which Npart ¼ 1

2
N cell, as illustrated for the NCP

case by the star symbols in right hand side panels of Fig. 2.
Next, we consider the errors during the non-linear regime of the calculation. In particular, we consider the

solution just prior to the caustic formation, when the background expanded by a factor 25 since the simulation
start. On the left hand side of Table 3 we report the L1 and L1 error norms and convergence rates as in Table
2 while the L-2 errors are shown as open symbols in the left hand side panels of Fig. 2. We see that in the non-
linear regime the convergence rates of the errors in the particle positions, velocities and forces have worsened
in a minor, appreciable and considerable way, respectively.



Table 1
Convergence tests: collisionless casea

Npart L1 R1 L2 R2 L1 R1

Position

8 1.3e � 07 1.9 1.4e � 07 1.9 1.9e � 07 1.8
16 3.5e � 08 2.0 3.9e � 08 2.0 5.4e � 08 2.0
32 8.9e � 09 2.0 9.8e � 09 2.0 1.3e � 08 2.1
64 2.2e � 09 2.0 2.4e � 09 1.9 3.0e � 09 1.6
128 5.6e � 10 – 6.2e � 10 – 9.8e � 10 –

Velocity

8 1.3e � 04 1.9 1.4e � 04 1.9 1.9e � 04 1.8
16 3.5e � 05 2.0 3.8e � 05 2.0 5.3e � 05 2.0
32 8.8e � 06 2.0 9.7e � 06 2.0 1.3e � 05 2.1
64 2.2e � 06 2.0 2.4e � 06 1.9 3.0e � 06 1.6
128 5.5e � 07 – 6.2e � 07 – 9.7e � 07 –

Force

8 6.5e � 02 1.9 7.1e � 02 1.9 9.4e � 02 1.8
16 1.7e � 02 2.0 1.9e � 02 2.0 2.7e � 02 2.0
32 4.4e � 03 2.0 4.8e � 03 2.0 6.5e � 03 2.1
64 1.1e � 03 2.0 1.2e � 03 1.9 1.5e � 03 1.6
128 2.8e � 04 – 3.1e � 04 – 4.8e � 04 –

a We use equal number of cells and particles, Npart = Ncell, a cell-centered force scheme, and a constant Dt
Dx ¼ 1:6	 10�4.

Fig. 1. L2 norm of the error in position (top), velocity (center) and force (bottom) as a function of the number of grid cells. Left panels
correspond to the case in which the number of particles and grid cells is the same, Ncell = Npart. Central and right panels correspond to
Npart ¼ 1

2
N cell, with particles initially placed either at cell nodes (middle panels) or at cell centers (right panels). In all cases a two point cell

centered force stencil is used. See legend for the meaning of the symbols (UG = Uniform Grid, a is the expansion parameter).
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Fig. 2. L2 norm of the error in position (top), velocity (center) and force (bottom) as a function of the number of grid cells. Left panels
correspond to the case in which the number of particles and grid cells is the same, Ncell = Npart. Right panels correspond to Npart ¼ 1

2
N cell,

with particles initially placed at cell nodes. See legend for the meaning of the symbols (UG = Uniform Grid, a is the expansion parameter).

Table 2
Convergence tests: collisionless, variable timestep, linear phasea

Npart L1 R1 L2 R2 L1 R1

Position

8 6.4e � 06 1.9 6.9e � 06 1.9 9.2e � 06 1.8
16 1.7e � 06 2.0 1.9e � 06 2.0 2.6e � 06 2.0
32 4.3e � 07 2.0 4.7e � 07 2.0 6.4e � 07 2.1
64 1.1e � 07 2.0 1.1e � 07 1.9 1.4e � 07 1.6
128 2.5e � 08 – 2.8e � 08 – 4.5e � 08 –

Velocity

8 8.9e � 04 1.9 9.6e � 04 1.9 1.3e � 03 1.8
16 2.3e � 04 2.0 2.6e � 04 2.0 3.6e � 04 2.0
32 5.9e � 05 2.0 6.5e � 05 2.0 8.9e � 05 2.1
64 1.5e � 06 2.0 1.6e � 05 1.9 2.0e � 05 1.6
128 3.7e � 07 – 4.2e � 06 – 6.6e � 06 –

Force

8 6.5e � 02 1.9 7.1e � 02 1.9 9.4e � 02 1.8
16 1.7e � 02 2.0 1.9e � 02 2.0 2.7e � 02 2.0
32 4.4e � 03 2.0 4.8e � 03 2.0 6.5e � 03 2.1
64 1.1e � 03 2.0 1.2e � 03 1.9 1.5e � 03 1.6
128 2.8e � 04 – 3.1e � 04 – 5.1e � 04 –

a We use equal number of cells and particles, Npart = Ncell, a cell-centered force scheme, a variable timestep, Dt
Dx ¼ Cexpða_aÞ;Cexp ¼ 10�2,

and a = 0.0221.
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Table 3
Convergence tests: collisionless, variable timestep, non-linear phasea

Npart Uniform grid AMR

L1 R1 L1 R1 L1 R1 L1 R1 lmax

Position

8 3.0e � 02 1.7 4.6e � 02 1.6 2.9e � 02 1.9 4.5e � 02 1.9 1
16 9.5e � 03 1.8 1.6e � 02 1.8 7.9e � 03 2.0 1.2e � 02 2.0 1
32 2.7e � 03 1.9 4.7e � 03 1.8 2.0e � 03 2.0 3.1e � 03 1.9 2
64 7.2e � 04 2.0 1.3e � 03 2.0 5.1e � 04 2.0 8.3e � 03 1.9 2
128 1.8e � 04 2.0 3.3e � 04 1.8 1.2e � 04 2.0 2.2e � 04 1.3 3
256 4.6e � 05 – 9.2e � 05 – 3.0e � 05 – 9.2e � 05 3

Velocity

8 5.9e � 02 1.4 9.4e � 02 1.2 5.1e � 02 1.8 7.9e � 02 1.9 1
16 2.2e � 02 1.6 4.1e � 02 1.2 1.4e � 02 1.8 2.1e � 02 1.5 1
32 7.4e � 03 1.6 1.8e � 02 1.3 4.1e � 03 2.1 7.4e � 03 2.2 2
64 2.4e � 03 1.7 7.3e � 03 1.4 9.6e � 03 2.1 1.6e � 03 1.9 2
128 7.4e � 04 1.8 2.8e � 03 1.6 2.2e � 04 2.0 4.5e � 04 1.3 3
256 2.1e � 04 – 9.1e � 04 – 5.7e � 05 – 1.8e � 04 – 3

Force

8 1.5e � 01 1.1 2.6e � 01 0.7 1.1e � 01 1.3 1.8e � 01 0.9 1
16 7.4e � 02 1.0 1.6e � 01 0.5 4.5e � 02 2.4 9.3e � 02 2.6 1
32 3.7e � 02 1.0 1.2e � 01 0.6 8.2e � 02 1.2 1.6e � 02 0.1 2
64 1.8e � 02 1.2 7.8e � 02 0.7 3.5e � 03 0.5 1.5e � 02 2.3 2
128 8.1e � 03 1.4 4.6e � 02 1.0 2.5e � 03 1.6 3.0e � 02 1.3 3
256 3.1e � 03 – 2.2e � 02 – 8.2e � 04 – 1.2e � 02 – 3

a We use equal number of cells and particles, Npart = Ncell, a cell-centered force scheme, a variable timestep, Dt
Dx ¼ Cexpða_aÞ;Cexp ¼ 10�2,

and a = 0.479.
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Finally, we test the performance of the AMR code. We use a constant refinement ratio, nref = 2, and refine
cells enclosing a mass larger than 1.5 the average value. A maximum of three levels of refinement were allowed.
All runs used a first level of refinement for about 30% of the calculation, except for the lowest resolution case
for which the percentage was 12%. The second level of refinement was only used by the three higher resolution
runs and only for about 5% of the time. Finally, a third level of refinement was employed only by the two
finest runs and only for less than 1% of the time. Similarly, finer grids cover a progressively smaller fraction
of the computational domain. The L1 and L1 error norms and convergence rates for the AMR runs are
reported on the right hand side of Table 3 while the L-2 errors are shown as spur symbols in the left hand
side panels of Fig. 2. These results show that employing AMR during the non-linear evolution improves
the convergence rate of the solution in such a way that they resemble the values in the linear stage. This is
true in this example for the errors in the position and velocity and to a lesser extent, the force, which is more
affected by coarse/fine boundary effects.

Fig. 3 compares the errors in position, velocity and force for a fixed grid (left) and an AMR grid (right)
calculations. It focuses on the region where, and the times when, the caustic forms and AMR operates. Thus
only one quarter of the total grid is shown (with the cell boundaries of the base grid indicated by vertical lines
and marked by integer labels), and the various errors are plotted only for the last one third of the simulation
run. At the beginning of that time span (when a � 0.2), the particles have clustered sufficiently at the grid cen-
ter and a first level of refinement is created. Six grid meshes are refined (only three between boundaries, 12–16,
are shown in Fig. 3). The second level of refinement is created much later and only affects one base (or two
refined) grid mesh(es) for the last ten per cent of the simulation. Fig. 3 shows that the errors in position, veloc-
ity and force of the particles close to the point where the caustic forms are much reduced when AMR is
employed. The generation of a level of refinement is accompanied by a change in the mass distribution and
the potential field. When this happens, a particle may experience a sudden change in terms of the force field
acting upon it. These effects are responsible for the somewhat ‘errant’ behavior of the force error, as illustrated
in the bottom-left panel of Fig. 3. Overall, though, for each particle the force fluctuations in the AMR case are
significantly smaller than the force errors in the uniform grid case.



Fig. 3. Comparison between two numerical experiments, employing a uniform grid (left) and two levels of refinement (right), in terms of
error in the particle position (top), velocity (middle) and force (bottom). The initial set up includes 32 grid cells (bound by vertical lines)
and 32 particles uniformly distributed. Only one quarter of the grid is shown, focusing on the critical region where the caustic forms.
Vertical lines indicate cells’ boundaries.
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As a last result for this section, in Fig. 4 we plot L2 convergence errors analogous to Fig. 1 but for the case
in which the force was computed with a staggered scheme. Comparison of the two figures shows that when
Npart = Ncell the solution obtained with the staggered scheme also converges with second order accuracy, while
being characterized by smaller errors. This is in agreement with previous findings [44]. However, when the
number of particles is halved (Npart ¼ 1

2
N cell) the results obtained with a staggered force scheme worsen more

dramatically than for the cell centered case, showing a very poor convergence rate. Closer inspection shows
that when the particles are sparse on the grid, oscillations appear in the potential due to the discrete character
of the matter distribution as reproduced on the grid. Since this affects only the quality of the staggered scheme
the problem may be related to the inconsistency of this scheme with the centering of the stencil used for the
discretization of the Laplacian operator. We shall return to this issue in the next test case where the problem
reappears with more dramatic effects.

4.1.2. Collisional component

We now turn to the performance of the hydrodynamic part of the code. We use the same tests employed in
the previous section for the the collisionless component. However, since in this case the solution refers to an
Eulerian grid, in order to have the velocity and density at a given grid location x(q, t) from Eqs. (78) and (79)
we must invert Eq. (77). We first consider the errors in the linear regime, in analogy to Tables 1 and 2 for the
collisionless component. In Table 4 we report the L1, L2 and L1 norms of the error for the gas density, veloc-
ity and force and the corresponding convergence rates, for the case of fixed time step, Dt

Dx ¼ 1:6	 10�4. Simi-
larly, the left hand side of Table 5 reports the L1, L2 and L1 errors for the case in which the time step is set by
the background expansion rate. The L2 errors for the fixed and varying timestep cases are also shown by the
filled symbols in the left and right hand side panels of Fig. 5, respectively. These tests show the second order



Table 4
Convergence tests: Godunov’s schemea

Npart L1 R1 L2 R2 L1 R1

Density

8 2.7e � 05 2.2 2.9e � 05 1.9 4.2e � 05 1.2
16 5.7e � 06 2.2 7.6e � 06 2.2 1.8e � 05 1.8
32 1.2e � 06 2.0 1.7e � 06 2.2 5.3e � 06 1.9
64 3.0e � 07 2.0 3.8e � 07 2.1 1.4e � 06 1.9
128 7.4e � 08 – 8.8e � 08 – 3.7e � 07 –

Velocity

8 3.3e � 05 2.0 3.6e � 05 2.0 5.2e � 05 2.0
16 8.1e � 06 2.0 9.0e � 06 2.0 1.3e � 05 2.0
32 2.0e � 06 2.0 2.2e � 06 2.0 3.2e � 06 2.0
64 5.0e � 07 2.0 5.6e � 07 2.0 7.9e � 07 2.0
128 1.2e � 07 – 1.4e � 07 – 2.0e � 07 –

Force

8 1.6e � 02 2.0 1.7e � 02 2.0 2.4e � 02 2.0
16 3.9e � 03 2.0 4.3e � 03 2.0 6.1e � 03 2.0
32 9.7e � 04 2.0 1.1e � 03 2.0 1.5e � 03 2.0
64 2.4e � 04 2.0 2.7e � 04 2.0 3.8e � 04 2.0
128 6.0e � 05 – 6.7e � 05 – 9.5e � 05 –

a We use a cell-centered force scheme and a constant timestep, Dt
Dx ¼ 1:6	 10�4.

Fig. 4. Same as Fig. 1 but for the case in which a staggered scheme is used for the force calculation.
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Table 5
Convergence tests: Godunov’s scheme, linear regimea

Npart L1 R1 L2 R2 L1 R1

Density

8 2.0e � 04 2.2 2.1e � 04 1.9 3.0e � 04 1.1
16 4.2e � 05 2.1 5.7e � 05 2.1 1.4e � 04 1.7
32 9.5e � 06 2.0 1.3e � 05 1.9 4.3e � 05 1.4
64 2.4e � 06 1.9 3.5e � 06 1.5 1.6e � 05 0.9
128 6.5e � 07 – 1.3e � 06 – 8.4e � 06 –

Velocity

8 2.1e � 04 2.0 2.3e � 04 2.0 3.3e � 04 2.0
16 5.1e � 05 2.0 5.7e � 05 2.0 8.2e � 05 2.0
32 1.3e � 05 2.0 1.4e � 05 2.0 2.0e � 05 2.1
64 3.2e � 06 2.0 3.5e � 06 2.0 5.0e � 06 1.9
128 7.9e � 07 – 8.9e � 07 – 1.3e � 06 –

Force

8 1.5e � 02 2.0 1.7e � 02 2.1 2.3e � 02 2.0
16 3.6e � 03 2.0 4.0e � 03 2.0 5.7e � 03 2.0
32 9.0e � 04 2.0 1.0e � 04 2.0 1.4e � 03 2.0
64 2.2e � 04 2.0 2.5e � 04 2.0 3.5e � 04 2.0
128 5.6e � 05 – 6.2e � 05 – 8.9e � 05 –

a We use a cell-centered force scheme, a variable timestep, Dt
Dx ¼ Cexpða_aÞ;Cexp ¼ 10�2, and a = 0.0221.

Fig. 5. L2 norm of the error in density (top), velocity (center) and force (bottom) as a function of the number of grid cells. See legend for
the meaning of the symbols (UG = Uniform Grid, a is the expansion parameter).
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accuracy of the implemented scheme. We note, however, that in the case of variable time step the convergence
rate of the L1 norm of the density error is slower. Next, the left hand side of Table 6 reports the errors and
convergence rates for the case of a uniform grid calculation, well in the non-linear regime, close the formation
of the caustic (a = 0.479). As before, the L2 errors are also shown as open symbols in Fig. 5. Unlike the col-
lisionless case, here is the convergence rate of the density that is mostly affected, particularly at low resolutions
(cf. [31,45]). As illustrated by the L1 norm, the error is dominated by the contribution of a few cells, located
where the caustic forms.

Finally, we test the performance of the AMR code. As for the collisionless component, we use a constant
refinement ratio, nref = 2, refine cells enclosing a mass larger than 1.5 the average value and allow for a max of
three levels of refinement. The results at a = 0.476 are reported in the right hand side columns of Table 6 for
the L1, L1 errors and convergence rates. There we also show the maximum level employed by each run. L2

errors are reported as spur symbols in the right panels of Fig. 5.
The use of refined grids in terms of fraction of grid covered and fraction of the simulation time is very sim-

ilar to the corresponding collisionless case. Similar is also the benefit of AMR, which improves the conver-
gence of the solution to rates very similar to those characterizing the linear regime. This is indeed a
powerful performance of the AMR technique.

4.2. Effect of Cexp on the solution quality

We have investigated how the error depends on the choice of the parameter Cexp for the above problem. In
particular we have computed the error accumulated during an interval Da� acollapse, for values of the expan-
sion parameter a = 0.196 and a = 0.091, and for values of Cexp ranging from 10�3 to 0.5. We consider both the
fluid and the collisionless case. We use a uniform grid with 32 zones on a side and, for the collisionless case, we
use one particle per cell. The results are rather independent of the norm type. We find that the errors intro-
duced in the particles velocity and position is quite stable, except for the largest values of Cexp. On the other
hand, the errors in the fluid components decrease steadily as Cexp is reduced, spanning a factor �5 before
reaching a plateau for Cexp 6 (1–2) · 10�2.
Table 6
Convergence tests: Godunov’s scheme, non-linear regimea

Npart Uniform grid AMR

L1 R1 L1 R1 L1 R1 L1 R1 lmax

Density

8 2.2e � 01 0.5 8.2e � 01 – 1.6e � 01 0.7 8.2e � 01 – 1
16 1.6e � 01 0.7 1.2e00 – 1.0e � 01 0.6 1.5e00 – 1
32 9.7e � 02 0.9 1.5e00 0.0 6.4e � 02 2.0 2.4e00 1.3 2
64 5.0e � 02 1.6 1.5e00 1.0 1.6e � 02 2.0 1.0e00 1.1 2
128 1.6e � 02 – 7.3e � 01 – 3.9e � 03 – 4.7e � 01 – 3

Velocity

8 2.7e � 02 1.4 9.4e � 02 0.4 1.6e � 02 1.8 8.6e � 02 0.7 1
16 1.0e � 02 1.4 7.0e � 02 0.4 4.7e � 03 1.7 5.3e � 02 0.6 1
32 3.8e � 03 1.5 5.3e � 02 0.6 1.4e � 03 2.4 3.6e � 02 2.2 2
64 1.3e � 03 1.6 3.6e � 02 0.9 2.6e � 04 1.8 9.6e � 03 1.9 2
128 4.3e � 04 – 2.0e � 02 – 7.2e � 05 – 3.1e � 03 – 3

Force

8 6.8e � 02 1.6 2.3e � 01 0.5 3.7e � 02 1.7 2.0e � 01 0.9 1
16 2.3e � 02 1.5 1.6e � 01 0.5 1.1e � 02 2.3 1.1e � 01 0.8 1
32 8.4e � 03 1.5 1.1e � 01 0.6 2.2e � 03 2.0 6.3e � 02 1.7 2
64 2.9e � 03 1.6 7.3e � 02 0.9 5.5e � 04 1.8 1.9e � 02 2.2 2
128 9.5e � 04 – 3.9e � 02 – 1.6e � 04 – 4.0e � 03 – 3

a We use a cell-centered force scheme, a variable timestep, Dt
Dx ¼ Cexpða_aÞ;Cexp ¼ 10�2, and a = 0.479.
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4.3. Homologous dust cloud spherical collapse

In this section we test the ability of the code to follow the collapse of a pressure-less (dust) sphere of matter
[46]. The problem is described by the following equations
Fig. 6.
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with initial conditions
qði; t ¼ 0Þ ¼
f ½rðiÞ� if rðiÞ 6 R

0 if rðiÞ > R

�
ð82Þ

uði; t ¼ 0Þ ¼ 0 ð83Þ

where M(r) is the mass enclosed within a distance r from the sphere center, R is the radius of the sphere and
f(r) is a function (with f 0(r) 6 0) that depends solely on r. For the hydrodynamic case null density will be
approximated with a value q(r > R)� min[q(r)]. The problem admits a self similar solution in implicit form
which reads
ð1� nÞ1=2n1=2 þ sin�1ð1� nÞ1=2 ¼ s ð84Þ

r ¼ nr0; u ¼ r0

sc

n�1 � 1

 �1=2

; s � t
8pGhqir

3

� �1=2

ð85Þ
where Æqær = 3M(r)/4pr3 is the average density within a radius r.
From the numerical point of view, the problem is challenging in two respects: during collapse the force

potential becomes progressively steeper and, therefore, more demanding for the gravity solver. In addition,
since the problem has inherent radial symmetry and we are solving it on a Cartesian grid, the ability of the
code at preserving that symmetry will be tested. For the collisionless component we initially set particles with
null velocity at the center of cells whose distance from the cloud center is less than R (=1). This produces a
homogeneous density distribution everywhere inside R, except close to the cloud edge due to the discreteness
of the grid. In Fig. 6 we compare the position of each particle in phase-space (vr, r) as given by the code (black
filled triangles) with the analytic solution (cyan open circle). The left panel corresponds to the case in which a
Phase space distribution of particles for the spherical collapse of a pressureless cloud. Cyan open circles correspond to the analytic
n and filled triangles to the numerical simulation result. The right panel is for the case of a uniform grid whereas the left panel
ond to an AMR calculation with two levels of refinement. (For interpretation of the references to color in this figure legend, the
is referred to the web version of this article.)



F. Miniati, P. Colella / Journal of Computational Physics 227 (2007) 400–430 423
uniform grid is used whereas for the right panel solution AMR was employed. We allow for two levels of
refinement and tag cells with a total mass four times as high as the initial value. The comparison between ana-
lytic and numerical solution in Fig. 6 is made for a number of evolution times, expressed in terms of the adi-
mensional collapse time scoll = p/2. Noticeably, the code follows the particles motions with high accuracy all
the way down to the time of collapse. In particular, there is no sign of artificial asymmetries. Additional levels
of refinement were dynamically generated towards the final phase of the collapse. At the latest time shown
(s = 0.98scoll), we can see the improvement due to the employment of finer grids in the collapsing region. Note
that towards the edge of the cloud the particles are trailing. This is due to the inability to reproduce a perfectly
homogeneous sphere near the cloud edge from the beginning. The region affected by this is about one base
mesh wide.

When exploring the accuracy of cell-centered versus face-centered force schemes our tests suggest that,
again, in the uniform grid case the latter perform slightly better, at the level of ca. 15%. In analogy with
the analysis of Section 4.1, we have tested this further, for the case in which the ratio of cells to particles is
significantly larger than one. This situation may easily occur depending on the adopted criterion for refine-
ment and on the efficiency for the generation of the refined grid out of the tagged cells. In Fig. 7 we compare
the solutions obtained with a cell-centered (left) and a staggered (right) force scheme for an initial cell-to-par-
ticle ratio of 4. The initial dust sphere is placed on a grid of 256 cells on a side, and eight particles are aligned
along its radius out to 32 cells from its center. The code output is plotted at three different solution times close
to the time of collapse t = scoll. This test shows that when the number of cell-to-particle ratio is significantly
higher than one, the staggered force scheme tends to produce spurious results. This is in line with the findings
in the previous test problem in Section 4.1. On the other hand, the cell-centered scheme seems well behaved.
We find that the qualitative result does not change when we use a two or four point force stencil, when the
number of particles to resolve the sphere is changed or when the sphere center is shifted by a fraction of a
mesh size in an arbitrary direction.

Thus the staggered force scheme, although apparently more accurate than its cell-centered counterpart
when the number of cells is comparable to, or less than, the number of particles [44], it gives rise to spurious
results when particles are sparse on the grid. Therefore, caution must be exercised when employing staggered
schemes for force evaluation.

Finally, the results for the collisional case are illustrated in Fig. 8. The plot compares the density (top) and
velocity (bottom) profiles of the numerical solution (threaded black dots) and the analytic solution (cyan
dots). The latter extend only out the cloud size, whereas the numerical solution includes the region covered
by the finest level. Two times during the collapse are shown: t = 0.72scoll and t = 0.92scoll, corresponding to
the low and high curves, respectively. At these times one and two levels of refinement have been generated,
respectively. The chosen times are close to the collapse time, when the errors have accumulated and the sim-
Fig. 7. Phase space distribution of particles for the spherical collapse of a pressureless cloud. The initial cell-to-particle ratio is 4. Cyan
open circles correspond to the analytic solution and filled triangles to the numerical simulation result using a cell-centered (left) and face-
centered (right) force scheme, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)



t=0.72τcoll

t=0.72τcoll

t=0.92τcoll

t=0.92τcoll

Fig. 8. Density and velocity profile for spherical collapse of a pressureless cloud of gas. Cyan dots correspond to the analytic solution and
black dots to the numerical simulation results. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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ulation becomes more challenging. Nevertheless, as for the collisionless component, the code follows accu-
rately the evolution of the density and velocity profiles of the collapsing cloud. Again, close to the cloud edge
the density profile is smoother and the velocity field slower than the analytic solution. The size of the region
affected by this is again of order of the coarse mesh size and it is partially ascribed to the crude representation
of the cloud edge on the grid.

4.4. Energy conservation: Layzer–Irvine equation

For pure hydrodynamics conservation of the total (kinetic + thermal) energy is enforced by our conserva-
tive Godunov’s method. When gravity is added, energy conservation should still hold, but is not explicitly
enforced in our scheme. Finally, with an expanding background energy is not conserved. For a collection
of particles that interact only gravitationally, the evolution of the energy of the system is regulated by the Lay-
zer–Irvine equation, which reads
d

dt
½aðtÞðE þWÞ� ¼ � _aE ð86Þ
where E is the kinetic energy associated to the peculiar motions of the particles and W their gravitational po-
tential energy due to the overdensity produced by their mass distribution. Clearly in absence of expansion
(a = 1, _a ¼ 0) Eq. (86) reduces to the ordinary energy conservation equation. Otherwise it describes the change
in the total energy of the system due to the adiabatic expansion of the background. The derivation and phys-
ical meaning of Eq. (86) is reviewed in Ref. [27]. Its applicability to hydrodynamic simulations is discussed in,
e.g. Ref. [32], in which case a monoatomic gas is assumed and E includes both the kinetic and thermal energy
of the gas. Eq. (86) can be integrated in time giving



Fig. 9.
See tex

F. Miniati, P. Colella / Journal of Computational Physics 227 (2007) 400–430 425
a½EðaÞ þWðaÞ� � a0½Eða0Þ þWða0Þ� ¼ �
Z a

a0

E da: ð87Þ
We can evaluate the integral on the RHS of the above equation numerically with the trapezoidal rule and as-
sess the accuracy of the code at tracking the energy of the system through the quantity
de ¼
a½EðaÞ þWðaÞ� � a0½Eða0Þ þWða0Þ� þ

R a
a0
E da

½a0Wða0Þ � aWðaÞ� : ð88Þ
We first test the energy conservation accuracy of the code for the case of the collapse of a pressureless cloud.
This is the problem studied in the previous section. We carry out three AMR calculation with different base
grid sizes, namely 16, 32, 64 corresponding to 4, 8, 16 cells per cloud radius, respectively. In these runs, cells
enclosing more then four times the initial mass content were tagged for refinement and a maximum of two 2
refinement levels were allowed. The results of the test are reported in the left hand side panel of Fig. 9 where
we plot the error in the total energy, de, as a function of resolution, for both the particle (open) and the gas-
dynamic (filled) case. The plots show that with 16 zones per cloud radius the error in the energy is at the level
of a per cent or so.

Next we test code accuracy at tracking the energy of the system in a cosmological run. For the purpose we
use a K-Cold Dark Matter cosmology with parameters Xm = 0.3, XK = 0.7, Xb = 0.04, for the energy density
in total matter, dark energy and baryonic matter, respectively; and H0 = 70 km s�1 Mpc�1 for the Hubble con-
stant. The physical domain has a size of L = 91.43 Mpc on a side. We execute three runs with different numer-
ical resolution. The first two runs employ a uniform grid with 323 and 643 cells, respectively, and the same
number of particles as grid cells. The third run uses a base grid with 323 cells and 323 particles, and two addi-
tional levels of refinement created in region where the total mass enclosed in a cell exceeds the initial value by a
factor eight. The initial conditions where generated on a 643 grid and coarse-averaged to a 323 grid for the low-
resolution-uniform and AMR runs.

The results are presented in the right panel of Fig. 9 where we plot de (top), E (middle) and W (bottom) as a
function of expansion parameter a for each resolution case. The plots show that when using a uniform grid the
total energy of the system is evolved with an accuracy at the percent level (� 2% and 1% for the 323 (dot) and
643 (dash) cases, respectively), with most of the error generated at startup. In the AMR case (solid line), how-
ever, our error parameter de increases visibly when refinement levels are created (at a � 0.15 and a � 0.2 for
the first and second level, respectively). The reason for this is simple. When a level of refinement is created the
potential energy of the system changes suddenly (see solid and dot lines in the bottom panel) throwing off the
balance between particle/gas velocities and their potential energy. As a result a large error in the sense of Eq.
(88) is generated. This is so, even though with the additional level of refinement the potential energy of the
system is more accurate as it gets closer the value from the higher resolution run (see solid and dash lines
Energy conservation error based on Eq. (88) for the collapse of a pressureless spherical cloud (left) and a cosmological run (right).
t for details.
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in the bottom panel). Over time the kinetic energy readjusts to the new potential (middle panel; notice that the
internal energy is negligible) and a balance between the two forms of energy is reestablished. Because the
potential energy associated with the newly formed structures is larger than that of the system at the time when
the refinement levels were first generated, the new balance between kinetic and potential energy reduces sub-
stantially the error as time progresses. At simulation end the AMR run (with a base grid of 323 cells) produces
estimates of de, E and W very close to the high resolution run.
4.5. Santa Barbara galaxy cluster

In this section we carry out the calculation defined by the ‘Santa Barbara Cluster Comparison Project’ [47]
and compare the results of our code with those from different codes implemented independently by other
authors and based either on similar or different techniques.

The problem consists of simulating the formation of a galaxy cluster in a Standard Cold Dark Matter uni-
verse. The cosmological parameters assumed were Xm = 1 and Xb = 0.1 for the total and baryonic mean mass
density in units of the critical density, respectively; H0 = 50 km s�1 Mpc�1 for the Hubble constant; r8 = 0.9
for the present-day linear rms mass fluctuation in spherical top hat spheres of radius 16 Mpc. The computa-
tional domain has a size of L = 64 Mpc on a side. The initial matter fluctuation are characterized by a power
spectrum with an asymptotic spectral index, n = 1, and are ‘constrained’ so that at simulation end a massive
structure has formed at the center of the computational box.

The simulation was initialized at z = 40 with two grids already in place: a base grid covering the entire 64
Mpc3 domain with 643 cells and 643 particles; and a second grid, also with 643 cells and 643 particles, but only
32 Mpc on a side and placed in the central region of the base grid, thus yielding an initial cell size of 0.5 Mpc.
Refinement is applied only in this central, higher resolution region and is based on a local density criterion:
cells with a total mass of 6.4 · 1010 Mx or more were refined. We allowed for five levels of refinement (for
a total of a six levels hierarchy), with a constant refinement ratio nref = 2. The size of the finest mesh is about
15 comoving kpc. We use the following CFL coefficients for the time step: Chydro = 0.8, Cpart = 0.5 and
Cexp = 0.02.

At simulation end a halo finder based on the spherical overdensity method [48] was run in order to define
the center of the galaxy cluster. The radial profiles for six quantities of interest are presented in Fig. 10
together with results from two other simulation codes: ENZO, which is an Eulerian AMR code similar to ours,
and HYDRA (as run by Jenkins & Pearce), which combines smoothed particle hydrodynamics (SPH) and adap-
tive particle–particle–particle–mesh (AP3M) method for the N-body part [49]. These two codes are meant to be
representative of the high resolution grid based and SPH approaches, respectively. Results are shown down to
scales of about 30 kpc which is just above the nominal resolution at finest level of refinement. The plot shows
that there is good agreement among the results of the different codes particularly with ENZO (even though we
used one less level of refinement and use a different refinement criterion). The discrepancies, when significant,
are consistent with those already found in the extensive comparison paper in Ref. [47]. In fact, there is very
good agreement in terms of dark matter density distribution (top left) which is well fit by the analytical form
proposed in Ref. [50] with parameters specified in the caption. Similarly, there is good matching of the solution
in terms of gas density distribution, except in the inner regions within 100 kpc, where the two AMR solutions
flatten and the SPH solution keeps on increasing. More significant is the difference in temperature distribution
(middle left), which drops in the SPH solution for the inner regions and stays constant for the AMR case.
These differences were already found and discussed in Ref. [47]. (See also Ref. [19] for similar findings.) Their
origin is not fully clear, although as suggested in Ref. [47], it could be ascribed to the different way in which
SPH and grid based methods treat shocks.

Next panel (middle right) shows the profile for the ratio of gas to dark matter mass, normalized to the glo-
bal value. Our solution is in good agreement with ENZO’s but deviates from HYDRA’s up to a few Mpc or
so. There is significant scatter in the results from the full set of codes found in Ref. [47], at the level of 0.1–0.2.
Nevertheless, it is pointed out in Ref. [47] that when integrated out to the virial radius of the system (2.7 Mpc),
the SPH codes seem to predict a systematically smaller values for this quantity than high resolution grid based
codes. The reason for this is still not clear.



Fig. 10. Radial profile of dark matter (top left), baryonic gas (top right) temperature (middle left), baryonic fraction (middle right), radial
velocity for dark matter (bottom left) and gas (bottom right). In addition to the results from CHARM (open circles), for comparison we also
show those from the ENZO AMR code (filled triangles) [21] as well as those from the HYDRA SPH code (open stars) [49].
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Finally, both the gas and dark matter radial velocity profiles agree quite well at all radii. Some differences
may arise due to slight differences in the simulation timing, as pointed out in Ref. [47]. Note that at larger radii
(last few points), typically characterized by wider scatter, both ENZO’s and HYDRA’s results tend to be
below the average value defined in Ref. [47].

5. Conclusions

We have presented a new code based on AMR technique for systems comprising collisional and collision-
less components coupled through a long range force. We have thus extended the scheme in [2] to include col-
lisionless particle dynamics and gravity arising from the mass distribution of the two components. For the
hydrodynamics we use a slightly modified directionally unsplit Godunov’s method based on Ref. [28]. As
for the collisionless component we have implemented various time centered modified symplectic schemes
based on both the kick–drift–kick and drift–kick–drift sequence. Our implementations of these schemes
appear to perform comparably. We have also used different types of stencil to calculate the force from the
potential. We find that while the staggered schemes appear more accurate when the number (density) of par-
ticles is at least as large as the number of grid cells, it produces spurious results when the particles are sparse on
the grid. Cell centered stencils thus seem more reliable, especially when a five point cell centered discretization
of the Laplacian operator is used.

Due to the time refinement character of the AMR technique the solution on different levels is advanced with
different timesteps. Synchronization issues then arise as the multilevel solution to the elliptic equation needs to
be solved simultaneously on all levels. In particular, the density field represented by the particles evolved on
finer levels may not be available on coarser levels when they are not synchronized. Similarly, one cannot
account for the effects of the mass distribution on finer levels on the multilevel solution of the potential, unless
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all levels are synchronized. Among other features of the code, we have thus introduced an aggregation proce-
dure to cost-effectively represent on the coarser levels the particles on finer levels without compromising the
code accuracy and performance. We have also implemented a procedure for estimating (when the coarse
and finer levels are not synchronized) the effects on the coarse potential produced by the matching conditions
at refinement boundaries between coarse and fine solution, as they would arise in a full multilevel calculation.
We performed several standard tests which illustrate the code accuracy as well as the advantages of the AMR
technique for the study of both self gravitating hyperbolic systems, collisionless system and hybrid systems.
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Appendix A. Charge assignment schemes

In one dimension the following Charge Assignment Schemes are commonly used. The first order accurate
nearest grid point (NGP) scheme, defined as
W ðxÞ ¼ 1 if jxj 6 1
2

0 otherwise

�
ðA:1Þ
in which the assigned charge distribution is discontinuous as the particle crosses the cell boundary. The second
order accurate cloud in cell (CIC) scheme, defined as
W ðxÞ ¼
1� jxj if jxj 6 1

0 otherwise

�
ðA:2Þ
in which the assigned charge distribution is continuous but the first derivative is not. And the third order accu-
rate triangular shape cloud (TSC) scheme, defined as
W ðxÞ ¼

3
4
� jxj2 if jxj 6 1

2

1
2
� 3

2
� jxj


 �2
if 1

2
6 jxj 6 3

2

0 otherwise

8><
>: ðA:3Þ
in which both the assigned charge distribution and first derivative are continuous. These schemes retain their
properties when they are extended to more than one dimension in the form
W ðxÞ ¼
YD
j¼1

W jðxjÞ: ðA:4Þ
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