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Abstract

Cartesian Grid Embedded Boundary Finite Difference Methods for Elliptic and Parabolic

Partial Differential Equations on Irregular Domains

by

Hans Svend Johansen

Doctor of Philosophy in Engineering-Mechanical Engineering

University of California, Berkeley

Professor Phillip Colella

This thesis presents a natural extension of the embedded boundary method, to
include elliptic and parabolic partial differential equations defined on moving domains. Our
motivation is to augment the algorithms available for hyperbolic problems, and provide the
tools needed to approach a broader class of problems that include both heat transfer and
phase change. This thesis attempts to overcome the major drawbacks of rectangular-grid
finite-volume methods — lack of adaptivity and geometric flexibility — while retaining their
simplicity and regular data structures.

To demonstrate that this is possible, three model problems with Dirichlet bound-
ary conditions are discretized on time-dependent domains: the Poisson equation, the heat
equation, and classical Stefan problem. In each case, a consistent finite-volume method
is derived, by integrating the differential equation over the space-time volume, defined by
the intersection of a piecewise-linear moving boundary and each cell of a Cartesian grid.
The resulting surface integrals are discretized with single-point quadrature rules, that take

advantage of geometric properties to cancel the leading-order error terms. The integrands



are then approximated to second-order, using finite-differences of the cell-centered solution,
even when those cell-centers are outside the domain. Additional consideration is given to
the conditioning of the resulting set of equations; gradients at the boundary are calculated
using stencils that are well-separated from the partial cells. Although this yields a nonsym-
metric linear system, we are able to combine point-relaxation with a multi-grid iteration
strategy, to obtain residual reduction rates per iteration that are nearly independent of the
grid spacing and the presence of arbitrarily small cells. This behavior persists, even when

incorporated into an adaptive mesh hierarchy.
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constructing the front at ¢* and ¢"*1, so that it has normal n; j, and matches
the volume fractions at each time. The quantity Ats;; is given by the dis-
tance between these parallel lines, which determines $;; . . . ... .. ...
Here we describe the surfaces of the space-time volume, I'(x,t). The plane
S/ represents the trajectory of the front in space-time through the cell
(i,7) x [t",t"+1]. Where S/ the front location at each time is given by the
intersection of S/ with the planes t =t" and t =¢"*1. . . ... ... . ...
A gradient in the normal direction is calculated at il{ ;» marked with an open
circle, using a Taylor series expansion about the front midpoint, x,,,. Instead
of performing this in the (z,y) coordinate system, we use the system defined
by the cell’s outward-pointing normal, and tangent, as one traverses the
boundary in the counter-clockwise direction. We then calculate the location
of xl J relative to X,, in the new system, (pn, ). - .« « o o oo oo
When the front is still present in cell (3,7), we calculate ¢, at x{ ; starting
with the approximation for ¢, at x,, (left). We again use the same stencil for
G/, given in (2.17), to approximate both ¢, and ¢n, from the value at X,
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Chapter 1

Introduction

Thesis Overview

In this thesis, we have extended a recent numerical approach, the Cartesian grid
embedded boundary method, to complete the set of basic tools needed to simulate ma-
terials processing and other industrial processes. The embedded boundary method was
developed to increase the geometric flexibility and adaptivity of traditional finite difference
discretizations, without giving up their computational efficiency. The approach has shown
great promise in the aerodynamics community, by reducing the cost of grid generation and
simulation of inviscid, compressible flows around complicated aircraft configurations. To
augment the advances made in that sector, we have added the algorithms and analysis
needed to simulate heat transfer and viscous fluid flow, on changing domains in two dimen-
sions. The resulting collection of algorithms is ideally-suited for simulating a wide variety
of free surface problems in industrial applications.

We will focus on one particular application which has benefited from numerical
simulations: the growth of large crystals of semiconductor substrates. The Czochralski (CZ)
method for growing such crystals involves drawing a seed crystal from a heated crucible,

which contains the material’s molten components. A crystal’s electronic properties are de-
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termined by its composition and thermal history, so it is critical to control heat transfer and
fluid motion inside the furnace. However, for most semiconductor compounds, the furnace
is a high-temperature, caustic environment, which is difficult to monitor, leading to expen-
sive experimental trial-and-error improvements in the process. This has led researchers to
use numerical simulations, to isolate factors in the growth process, and improve the quality
of the resulting crystal.

This thesis presents three algorithms which contribute to the Cartesian grid em-
bedded boundary approach, and represent a significant step towards modelling the CZ pro-
cess. First, we describe a second-order accurate, finite volume discretization for Poisson’s
equation with spatially-variable coefficients. Our approach calculates a solution centered
on a rectangular grid which encompasses the given domain. The finite volume method is
derived on each irregular cell, given by the intersection of the rectangular grid and the
domain boundary. We use a careful truncation error analysis to derive a consistent finite-
volume operator, centered on irregular cells. Boundary fluxes are discretized in a way that

results in a well-conditioned linear system, which is amenable to multi-grid iterations. The
J 3 &

the accuracy of the solution by decreasing the mesh spacing locally. Second, this approach
is extended to create a conservative, second-order accurate discretization for the heat equa-
tion. In this case, we use the multi-grid strategy in implicit, time-integration schemes, to
avoid time step restrictions. Finally, we have developed a finite-volume discretization of the
classical Stefan problem, the simplest model of crystal growth. By combining our strategy
for the heat equation with a volume-of-fluid front tracking algorithm, we are able to evolve
the solidification front. The combination of algorithms for these three model problems,
along with previous embedded boundary implementations for fluid flow, helps complete a
set of computational tools that can be extended to more complicated problems.

The remainder of this chapter describes the Czochralski method of crystal growth

and its governing equations, and reviews previous numerical simulations using the embedded
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Figure 1.1: Schematic of the Czochralski growth of a semiconductor crystal.

O O O O O

O O 0 O O
/

boundary method. Then we introduce our three model problems, and note their contribu-
tion to the embedded boundary method. Finally, we offer a general overview of numerical
methods, as they relate to crystal growth. The second, third, and fourth chapters present
the finite difference algorithms for the Poisson equation, heat equation, and Stephan prob-
lem, respectively. In each of those chapters, the discretizations are derived first in one space
dimension, then extended to two or more. This allows us to perform a detailed analysis
to explain numerical results obtained in two dimensions. After a discussion of each soft-
ware implementation, each chapter concludes with test problems and convergence studies.
The last chapter is devoted to conclusions and suggestions for future work involving the

embedded boundary method.

1.1 Target Application: Bulk Crystal Growth

The growth of large single crystals with precise material properties is an important
step in the manufacture of electronics components, where it is the most popular method of

producing semiconductor substrates used in integrated circuits and solid-state lasers. The
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majority of such crystals are grown using the Czochralski (CZ) method and its variants. This
approach is based on lowering a seed crystal into a molten mixture of the semiconductors
components, and then slowly removing the seed while cooling it at the same time (Figure
1.1). There are a number of factors that can be controlled in this process [33]: the rotation
of the seed crystal and melt crucible, the pull rate of the crystal, and the power output and
layout of heaters in the furnace. The entire procedure is very difficult to monitor, because of
the high-temperatures and caustic environment inside the reactor vessel. However, extensive
trial-and-error adjustments to the CZ process have made it the most common means of
producing large, high-quality silicon crystals.

Unfortunately, this method has not been as successful for most multiple-component
semiconductors, such as gallium-arsenide or indium-phosphide. This is generally believed
to be caused by two characteristics of the CZ growth process: large thermal gradients and
melt segregation [33]. Thermal gradients in the crystal result in thermal stresses, which in
turn adversely affect its microscopic and electronic properties. Large thermal gradients also
give rise to buoyancy-driven convection in the melt, which can cause detrimental remelting
of the crystal interface [33]. Segregation of the semiconductor components in the melt
causes the resulting crystal to have non-uniform properties, and reduces the yield from the
process. Similarly, rejection of the solute during solidification can cause the composition of
the crystal to change over the length of a run. The need to control these effects has led
to variations on the CZ process, include using liquid encapsulants for volatile compounds,
pressurizing the reactor vessel, and applying external magnetic fields to suppress convection
in the melt. Again, parameters in the growing process have been mostly determined by
expensive experimentation, with the quality of the resulting crystal guiding changes in the
process.

This has led some researchers to develop numerical methods for the simulation
of CZ crystal growth ([70, 66, 71] for example). However, few of these simulations have

included all of the aspects of the process. For instance, even though buoyancy-driven
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convection is an important, three-dimensional phenomenon in CZ growth, most researchers
have assumed the governing equations to be axisymmetric, to reduce computer time and
memory usage [70]. It has also been found for some materials, such as semi-transparent
oxide crystals used for solid-state lasers, internal radiation can greatly affect the interface
shape [65, 12]. Because radiative heat transfer can be computationally expensive, it is often
treated using simple “shape factors” between only fixed surfaces [70, 69]. Similarly, many
simulations ignore the effect of composition and temperature on material properties, even
though these are responsible for some important flow phenomena [25]. The interactions
between these phenomena, in the presence of moving interfaces and time-dependent inputs,

makes a complete simulation of a CZ furnace prohibitively expensive, at the present time.

Governing Equations

The governing equations for CZ crystal growth can be obtained from a control
volume analysis of the conservation laws for mass, momentum, and energy [36], which
states that the total change in each quantity comsists of fluxes through the the control
surface, and sources or sinks within the control volume. The diffusion of mass, momentum,
and energy are usually assumed to be governed by Fick’s, Newton’s, and Fourier’s laws,
respectively: the diffusive flux of each quantity through the control surface is proportional
to its gradient. It has also been observed experimentally that the materials in the furnace
are effectively incompressible, so that their bulk density and other properties depend on
temperature and composition alone. In the limit of an infinitesimal control volume, these

assumptions yield the following partial differential equations (PDE’s) for the system:

Oipi + V-(piu) = V-p D;V (%) (1.1)

Oi(pu) + V-(puu) = V-(uVu) - Vp+F (1.2)
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Oi(pepT) + Ve(puc,T) = V-(,VT) + Q (1.3)

Vu=0. (1.4)

The important variables in these equations are the density, p, velocity, u, and temper-
ture, T. Additional variables are state-dependent material properties, such as the thermal
conductivity k, or source terms, such as a body force induced by gravity, F.

Equations (1.1)-(1.4) apply separately in each region of Figure 1.1, and require
appropriate interface conditions to indicate how these regions interact. For instance, the
velocities in the liquids are prescribed where they contact the crucible and crystal. Surface
tension affects the interface shapes between the ambient gas, encapsulant, and melt. The
excellent reference [33] details additional boundary conditions that are relevant to the CZ
method. We must briefly note the most important interaction: the liberation of heat at the
crystal-melt interface. When the transition from solid to liquid occurs at the melting point,

T, conservation of energy requires:
pshsUint = n - ("35 VT -~ VTy) , (15)

where U, is the relative interface speed between the solid crystal and the liquid melt,
denoted by the subscripts s and [, respectively. This merely states that the energy liberated
by converting the liquid to solid, with enthalpy of formation hg, is balanced by the heat

flowing from the interface.

1.2 Motivation of the Numerical Investigation

Our goal is to develop conservative finite volume discretizations for simulating
engineering problems with free surfaces. Finite volume methods are generally derived from
conservation laws applied to a discrete control volume, instead of the infinitesimal one used

to obtain the PDE’s (1.1)-(1.4). Finite difference operators can then be used to approximate
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fluxes across the control surface, so that the discrete evolution equation also satisfies the
conservation law. Because of this close relationship to the governing equations, finite volume
methods have been developed for a multitude of engineering applications.

The approach suffers from two major shortcomings, however: the limitations of
using a global mesh spacing, and the inability to represent complicated geometries. For
traditional finite volume methods, the only means of increasing numerical resolution is to
decrease the global mesh spacing. For problems where only a small portion of the compu-
tational domain is under-resolved, using global refinement wastes computational resources,
and generally results in a less-accurate solution. Adaptive mesh refinement (AMR) algo-
rithms have been developed to address this issue. AMR decreases the grid spacing locally,
either cell-by-cell, or in block-shaped regions, to improve the discrete solution’s accuracy
only where desired. This reduces the computer time and memory needed to attain a given
level of accuracy.

The Cartesian grid embedded boundary approach has been introduced to increase
the geometric flexibility of finite volume methods. Away from the boundaries of the compu-
tational domain, this approach uses traditional finite difference discretizations, on a regular
Cartesian grid. At the domain boundary, the local geometry is incorporated by intersecting
the domain with each grid cell. The operator is then approximated on each irregular cell
using a finite volume discretization. Because this requires only local geometric information,
such as cell volumes or intersections with grid lines, grid generation is much less expensive,
and affects the discretization only locally. And although the method is known to lose accu-
racy at the domain boundaries, for a large number of problems, this does not significantly
affect the resulting global accuracy of the solution.

Both AMR and the embedded boundary approach have been used in compressible
fluid dynamics simulations. A conservative volume-of-fluid discretization was presented for
hyperbolic conservation laws by Chern and Colella [18]. Their approach was a precursor

of the embedded boundary method, in that it used a standard finite volume discretization,
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except near jumps in the solution. There, a specialized algorithm was used to track dis-
continuities in the solution. This front-tracking approach was later extended to include
AMR for inviscid compressible fluids [9). Similar algorithms have also been developed for
unsteady inviscid flows with solid-wall boundaries, in two and three space dimensions [49].
The combination of AMR and the embedded boundary method has been effective in steady
aerodynamics simulations as well [2, 21]; the approach is able to obtain highly-refined
solutions for inviscid flows, without the expensive grid generation procedures used with
structured- or unstructured-grid flow solvers. The combination of AMR and the embedded
boundary method has also been used for solving the steady, compressible Navier-Stokes
equations [20].

Cartesian grid embedded boundary methods have also been developed for incom-
pressible flows, using projection methods. Projection methods provide a means of enforcing
divergence constraints like (1.4), and generally involve solving an elliptic equation with Neu-
mann boundary conditions. This approach has been used in predictor-corrector methods
for viscous, incompress

ible fluids [8], including flows with density jumps [48] and low-Mach

g flow
number combustion {31], but only on rectangular domains. In [3], an embedded boundary
projection method was presented for the incompressible Euler equations in two dimensions.
Their approach used advection algorithms developed for compressible flow simulations [49],
along with two discrete projection operators, derived from variational and conservative
(MAC-based) discretizations. The algorithm’s numerical results were globally second-order
accurate, but attained slightly lower accuracy near the boundary. However, the flexibility of
this approach has been demonstrated in simulations of industrial furnaces with many more
complicated phenomena, like radiative heat transfer and turbulence models [50]. Although

AMR has been used with projection methods [4, 46, 32], the two approaches have not yet

been combined with the Cartesian grid embedded boundary method.
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1.3 Contributions to the Embedded Boundary Method

Although the embedded boundary method has been used successfully for hyper-
bolic conservation laws, additional work must be done before the approach can be applied
to more general processes, like the Czochralski method of bulk crystal growth. This is
because the PDE’s (1.1)-(1.3) are parabolic. Very few embedded boundary discretizations
have been presented for this type of equation, and none has been thoroughly verified. One
must also consider how to enforce divergence constraints, like (1.4); the projection method
used in [3] is one means of doing this. That discretization of the Laplacian was conserva-
tive, but formally inconsistent, and only defined for Neumann-type boundary conditions.
A final open question, is how to develop finite volume formulations in the presence of free
boundaries, such as the solidification front in (1.5). Approaches have been presented for
hyperbolic conservation laws, but not for elliptic and parabolic equations. These topics
must be addressed before the embedded boundary method can be applied to CZ crystal
growth.

The present work gives a systematic approach for developing conservative dis-

cretizations of elliptic and parabolic equations. Our theoretical framework draws on idea

w

from Young, et al. [68], in their treatment of steady transonic potential flow around com-
plex bodies. They used a non-conservative formulation based on rectangular finite ele-
ments, where nodal values of the solution could be inside or outside the domain. However,
the corresponding volume integrals were only over the regions of each cell, that were in-
side the physical domain. The discrete projection operators in [3] used similar ideas; their
cell-centered discretization is the basis of our approach here. In particular, we treat the
independent variable as a cell-centered quantity on a regular Cartesian grid. The discrete
operator is then derived using a control volume analysis on the valid region of each cell.
The resulting integrals are then evaluated, using quadrature formulas and finite difference

approximations of the integrands, which determines the accuracy of the discrete operator.
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This approach provides us with a framework for deriving finite volume methods for more
general conservation laws.

This thesis uses the same procedure to obtain discretizations for three model prob-
lems, one in each chapter. The first model problem is a self-adjoint elliptic operator on fixed,

irregular domains,
V-V =p, (Eq. I)

with Neumann- or Dirichlet-type boundary conditions, and §(z,y) > 0. This equation
is an essential part of projection methods for incompressible flows with variable density.
In Chapter 2, we derive a discretization for (Eq. I), based on the standard second-order
accurate difference stencil in the domain interior, and a first-order discretization in the
boundary cells. This larger error at the boundary is shown to induce an error that is third-
order in the mesh spacing, due to the Dirichlet boundary condition and the smaller number
of boundary cells. With this phenomena in mind, we can then explore the advantages of
adaptive mésh refinement for elliptic equations. In addition, we demonstrate the use of
multi-grid iterations to solve the resulting linear system. Developing a well-conditioned
discretization for (Eq. I), along with a multi-grid strategy compatible with AMR, is the
major contribution of Chapter 2.

In Chapter 3, the discretization of (Eq. I) is applied to the initial value problem

for the heat equation with variable coefficients,
o1 =V-pVop, with p(x,t = 0) = f(X) ) (Eq. 1)

on fixed, irregular domains. In this case, we also find that the larger truncation error
near domain boundaries does not affect the time-accuracy of the solution. In one space
dimension, we show this using an order-of-magnitude argument, while in two dimensions we

rely on numerical test problems. Discussing the discretization in one dimension also allows
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us to examine the eigensystem of the discrete update matrix of implicit time-integration
schemes, such as the backward Euler, Crank-Nicholson, and Runge-Kutta methods. In two
dimensions, these approaches take advantage of the same multi-grid iteration strategy, with
minimal modification.

Our last model equation is the classical Stefan problem, which combines the heat

equation with an evolution equation for the domain boundary:

u(x,t) = — St n- BVp(x,t), with p(x,t) =0, (Eq. III)

where v as the normal velocity at some point x on the boundary, and St is the Stefan
number. This is a simpler form of (1.5), so that (Eq. III) still represents an evolution
equation for the domain based on conservation of energy. In Chapter 4, we derive first-
and second-order accurate finite-volume discretizations for the heat equation on expanding
domains. These are combined with a simple front tracking algorithm, to produce a viable

embedded boundary method for the classical Stefan problem.

1.4 Literature Survey of Related Work

Because we are considering both a specific field of application, and the implementa-
tion of a general algorithm, it is difficult to provide a complete survey of past work. Instead,
we include several major “threads” of research which pertain to crystal growth simulations
or the model equations that we discuss in this thesis. In either case, we attempt to describe
the benefits and difficulties of each method.

A great deal of information is contained in the recent Handbook of Crystal Growth
[33], which is an excellent reference for both overviews and detailed descriptions of processes
related to crystal growth. In particular, it surveys numerical simulation of unstable or
dendritic solidification. This form of crystal growth occurs when a seed crystal is introduced

into a supercooled liquid, causing rapid solidification and fingering. This is a difficult
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process to model, because the solidification front moves with a curvature-dependent speed,
and the resulting dendrites can go through topological changes, like breaking and merging.
Even though dendritic solidification is not directly relevant to bulk crystal growth, it is a
rigorous test of numerical methods that might be applied to both processes, so, in the spirit

of completeness, we will include some of these methods here.

1.4.1 Finite Element Method

Adaptive solutions of elliptic and parabolic equations have long been dominated
by the FEM ([28, 23, 34], in addition to many others). This approach is closely tied to the
variational formulation of these problems, which results in desirable properties for the re-
sulting linear systems. In addition, general software is readily available, making it relatively
easy to include additional effects. Thus, it is no surprise that the FEM is the most popular
choice for crystal growth simulations. One noteworthy approach is given in [26, 24], where
a finite-element method with structured grids was used to compute axisymmetric flows,
with complicated heat transfer mechanisms, for the CZ method with external magnetic
fields. Their approach was able to recover a relationship between heater power and crystal
growth rate that had been observed experimentally. A more advanced, three-dimensional
simulation was performed in [65, 66], which used an unstructured grid method, which was
implemented on a parallel architecture. Their simulations were able to identify important
three-dimensional phenomena that affected heat and solute transport in the melt.

The two main factors to consider with the FEM are grid generation and perfor-
mance of the resulting data structures. Generally, when applying the finite-element method
to moving boundary problems, one must take great care that the generated grid is of good
quality everywhere. An excellent example of this is given by the method for dendritic so-
lidification in [55]; in this case, careful grid generation constitutes an entire subproblem of
the numerical method. One must also consider that unstructured grids have overhead asso-

ciated with their underlying data structures. The required connectivity information incurs
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an extra expense, which becomes significant when iterative methods are used to solve the

resulting linear equations.

1.4.2 Finite Difference Methods

Finite difference methods on structured grids have been the mainstay of the
aerodynamics community for some time. The approach admits conservative and non-
conservative discretizations, with varying order and complication. Structured grids also
allow for the clustering of grid lines to improve numerical resolution; this is seen most often
in simulating the very thin boundary layers surrounding aircraft. Because of the method’s
popularity, there is a great deal of infrastructure for generating high-quality, adaptive grids
for such applications. However, this can become a very expensive computational task for
time-dependent or highly intricate configurations in three-dimensions. Further information
about structured grid methods for aerodynamics applications can be found in [63].

This approach has also been applied to industrial crystal growth applications;
[69, 70] presents a discretization for the simulation of axisymmetric flows in the CZ method.
In that reference, an implicit time integration of the governing equations is used to achieve
steady state, and grid lines are clustered along the melt interfaces for greater resolution. As
with the FEM, additional effects, such as radiative heat transfer and surface tension, have

been successfully incorporated into the approach [69].

1.4.3 Front Capturing Methods

Another approach is based on capturing the interfaces between various regions,
instead of explicitly tracking them. The capturing technique used the same governing
equations equations everywhere, and representing the interface simply by changing the
material properties. This allows the multiple regions to be treated in unison, and removes
the need for generating time-dependent grids. One such approach is called the “enthalpy

method” [60, 57], which treats the jump conditions at the melt interface using source terms.
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Their approach allowed them to advance the temperature and concentration fields without
explicitly knowing the location of the solidification front.

Similarly, “phase field” [64, 29] methods have been used to model the solidifica-
tion front as a diffuse interface. The method is derived by considering an additional phase
variable, whose value is one in the solid state, and zero in the liquid. An evolution equation
for the phase variable is then derived from basic thermodynamic arguments, coupled to
the heat equation. The approach may also be extended to mixtures of pure substances,
by considering additional “order parameters” [64]. This method also has the advantage
that the interface is no longer explicitly tracked. However, the results depend on a small
interface thickness, which theoretically should be resolved in order to consider the solution
converged. For finite difference calculations, resolving these internal structures requires
daunting computational resources; employing a spectral method [58] or adaptive mesh re-
finement [6] would be appropriate for exploring this effect. At the present, the accuracy of

under-resolved computations is still open to debate.

1.4.4 Boundary Integral Methods

Boundary integral methods use the known form of Green'’s function for a given
problem. This allows such methods to perform calculations only on the boundary of a
domain, and not in the interior; however, only problems for which Green’s function is
known may be treated this way.

One example of this approach was presented in [45], where fast multipole and
boundary integral methods for Laplace’s equation, were used in conjunction with a finite-
difference method for Poisson’s equation with discontinuous right-hand side [44]. Their
method was second-order accurate, even in very complicated regions, and had near-optimal
work estimates. A significant contribution to the boundary integral approach was recently
presented in [30]. There, a similar integral equation approach was incorporated with spectral

approximation on an adaptive quad-tree data structure. The resulting combination was
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extremely well-suited for smooth right-hand sides with compact support.

Another example was given in [56], where a combined level set and boundary
integral method was applied to dendritic solidification in two dimensions. The level set
method [47] tracks an interface by treating it as the level set (contour) of a distance function.
This makes it well-suited for unstable crystal growth; breaking and merging of dendrites
is straightforward, as are interface curvature calculations. The velocity of the solidification
front was calculated using an efficient moving boundary integral approach for the heat
equation. Using the combination of techniques, it was possible to generate a number of

convincing and realistic phenomena.

1.4.5 Immersed Boundary Technique

The “immersed boundary” method (in [51], for example) was introduced to enforce
boundary conditions for incompressible flows on changing domains. The idea is based on
using discrete delta functions to create smooth jumps in the solution across interfaces.

1. A

These delta functions are then represented as source terms in a finite-difference calculation

=
(D
-
o

¥
o

on a regular Cartesian mesh. This method is extremely flexible, and has been applied to a
variety of problems in fluid dynamics [62, 17]. However, the method requires the discrete
impulses to be carefully spaced along the interface, and in some situations it has been shown
to lose accuracy [39]. This approach was combined with a careful particle-tracking method
in [35], which had the ability to detect and account for topological changes in the interface.
The algorithm was also able to incorporate jumps in material properties across the interface
using discrete delta functions, but it also used explicit time integration of the heat equation,

which severely limited the algorithm’s maximum allowable time step.

1.4.6 Immersed Interface Method

An approach that is closely related to our own is the “immersed interface” method

[39], which incorporates interface jump conditions and the given PDE in a local coordinate
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system. The result is a finite difference stencil with first-order accurate truncation error,
which generally yields second-order accuracy, globally. The immersed interface method has
been successfully applied to a variety of flow problems with immersed boundaries [41], such
as porous media problems, fluid-boundary interactions at low Reynolds numbers, and Hele-
Shaw flow, which is similar to dendritic crystal growth. Time-step restrictions have been
avoided by using implicit methods, and in some cases it has been found that the resulting
linear system is ill-conditioned. This has recently been resolved with fast solution methods,
such as the GMRES and multi-grid [1, 40, 67] algorithms. One drawback of the approach
is that it is not conservative, due to the rotated difference stencil. In addition, by using the
PDE to cancel error terms in the finite difference stencil, generating the stencil coefficients

becomes problem-dependent, and more difficult to automate.
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Chapter 2

Poisson Equation

2.1 Introduction

In this chapter we present a numerical method for solving the variable-coefficient

Poisson equation,
V-V = p with 8 = f(z,y) >0 (Eq. I)

on a bounded two-dimensional region 2, with either Dirichlet or Neumann-type boundary
conditions on the domain boundary, Q. Our approach uses a finite-volume discretization,
which embeds the domain in a regular Cartesian grid with mesh spacing Az. We treat the
solution as cell-centered on a rectangular grid, even when the cell centers are outside the
domain. We discretize (Eq. I) on each cell by applying the divergence theorem on the inter-
section of that cell with 9. This leads to a conservative, finite-volume discretization on the
cells that intersect Q. Thus, the discretized operator is centered at the centroids of par-
tially covered cells, in contrast to the solution values, which are centered on the rectangular
grid. The fluxes at the cell edges are computed using second-order accurate differences of

the cell-centered values of the solution. In cells away from the boundary, the algorithm
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reduces to the standard five-point discretization for (Eq. I), with a truncation error that is
O(Az?). On the boundary, this discretization results in an O(Axz) truncation error; how-
ever, this boundary truncation error induces a solution error that is O(Az?), so that the
overall solution is still O(Az?). For each cell convered by a portion of 99, along which
Dirichlet boundary conditions are enforced, the flux through the boundary is calculated us-
ing only values from other cells. This leads to a linear system whose conditioning properties
are uniform independent of the smallest partial cell volume, and are essentially the same
as that of a problem without irregular boundaries having the the same rectangular mesh
spacing. This allows us to use multi-grid iterations with a simple domain-decomposition
point relaxation strategy. We have combined this with an adaptive mesh refinement (AMR)
procedure, based on the block-structured approach of Berger and Oliger [10]. We show ev-
idence that the algorithm is second-order accurate for various exact solutions, and compare
the adaptive and non-adaptive calculations.

For the remainder of this chapter, we will give the details of the algorithm and

et

its implementation. In Section 2, we describe the discretization in one dimension, and
provide some analysis of the accuracy of the method, as well as the conditioning of the
resulting linear system. We then describe the non-adaptive algorithm for two dimensions
in Section 3. In Section 4, we discuss our multi-grid iterative method; Section 5 explains
the modifications needed to include adaptive mesh refinement. Section 6 briefly describes

the software implementation in C++ and FORTRAN. In the last section, we present numerical

test cases and demonstrate the method’s accuracy.
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2.2 One-Dimensional Algorithm

2.2.1 Discretization

Consider the one-dimensional case of (Eq. I): the Poisson equation with Dirichlet

boundary conditions,
@z = p for z € [0, €], with ©(0) = ®°, p(¢) = &7, (2.1)
We discretize the interval [0,¢] with N finite difference cells, by first choosing a volume

fraction for the last cell, A € (0,1], and then defining the grid spacing as

1

AENCirn

Then the volume V; of each cell is Az, except for the rightmost cell N abutting z = ¢, for

which Viy = AAz. Cells which have V; = Az are called “full” cells; cell V is a “partial”

cell. Thus, the locations of cell edges are given by z,, 1 = 1Az, ¢ =0,... ,N — 1, but the
2
right edge of cell N at x = £.
Our discretized solution is denoted by ¢;, ¢ = 1,... , N, which is centered at the

middle of the regular “Cartesian” cells of length Az,
o1 .
¢ = @ (z;), where z; = <z~ -2—) Agfor i=1,... ,N.

Note that ¢y is assumed to be a cell-centered quantity, even if the center of the Cartesian
cell is outside the problem domain. In that case, we are assuming that the solution ¢
can be extended smoothly a small distance beyond x = £, and that the discrete solution

approximates the value of this extended solution.
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Our approach is then based on averaging (2.1) over each cell volume, to obtain

1 1
— dr' = ———/ dz' . 2.2
v, /W¢zx v Vip ( )

Of course the right-hand side of (2.2) is just the average value of p over cell 1. We then

apply the divergence theorem to the integral of ¢g¢; for full cells, this reduces to

Az Vi

o) enld) 1 7
Vi
while for the partial cell, we have

AAz TV

Pz (£) — ¥z (JZN_%) 1 / ) da!
Vi

We obtain a discretization of (2.1), by using second-order finite difference approximations
for ¢, at cell edges and the integral of p over cell <.
Let us denote the finite difference approximations of ¢, using G'¢, with appropriate

subscripts. On cell edges in the interior of the domain, we use centered differences to

approximate @,:

Note that this same gradient discretization is used on the interior edge of the partial cell,
N, abutting z = £ (Figure 2.1). This expresses the idea that values of the solution are
cell-centered, even if those centers are outside the domain. These centered difference ap-
proximations of ¢, are second-order accurate in the grid spacing. To approximate a gradient

at z = 0, we fit a quadratic polynomial through the values ®% ¢,, and ¢o, and evaluate its
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Figure 2.1: Diagram of the second-order stencil for the gradient at z = £. A quadratic polynomial is
fitted to the two values of ¢ in neighboring cells, and the value at the interface; the value in the last cell is

not used in the calculation.
slope at = O:

=1 (9, — ¢, - 82)

ng% 3Az

This is also a second-order accurate finite difference discretization. Finally, to approximate
the gradient at = £, we apply a similar one-sided difference stencil, but using only values
in neighboring cells. This specialized gradient discretization is denoted by the superscript

f, and given by

Glo= 7 i 7 <(‘1’f - ¢N—1> g—j - (@f - ¢N—2) %) : (2.3)

This difference formula is depicted in Figure 2.1; one may verify that (2.3) is second-order
accurate by examining a Taylor series of ¢y—1 and ¢n_2 about z = £.

The average of p in (2.2) can be approximated to second-order accuracy using the
midpoint rule. In our discretization, the midpoint or centroid Z; of any full cell is merely

z;; for the partial cell, it is given by

831
'z
I

(xN—% +€> .

B
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We then use p; = p(Z;) to approximate the right-hand side of (2.2), thus completing the

discretization of (2.1). To summarize, in full cells, the discrete equations are given by

-1

Di 4

Lo = 5, (Gouy — Gy

Note that using centered differences for G¢ reduces (2.4) to the standard three-point fi-
nite difference stencil for the Laplacian. We have merely derived it using a finite volume

interpretation. In the partial cell abutting x = ¢, we have a slightly different form, however:
1
T s f — =P
quN ANz (G ¢ GQZSN_%) PN - (25)

2.2.2 Truncation Error Analysis

Let ¢¢ be the value of the exact solution at centers of Cartesian cells: ¢f = ¢(z;).

Then the truncation error 7 is defined as
i = pi — Ly

Note that 7, like p and L¢*®, is centered on the irregular grid. The error £ = ¢ — ¢° satisfies

the following system of equations:
Le=7,8"=3/ =0 (2.6)

We have the following error estimates for 7:

71 = CiAz

7 =CiAz?, fori=2,... ,N—1 (2.7)
A

T™N = CN——EZ;- .

A
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In the estimates (2.7), C4y,...,Cn—; are functions of Az that are uniformly bounded in
Az, 1, provided ¢ is smooth. Cy is a function of Az and A that is uniformly bounded as
both those quantities vary. At first glance this estimate of 7 may seem singular as A — 0,
but the singularity is matched by that in the denominator of the expression defining the
operator in (2.5). Ultimately, this leads to an estimate of £ = O(Az?), uniformly in A. We
demonstrate this as follows.

We first use (2.4) and (2.5) to calculate L€, and multiply by the appropriate cell

volumes. After summing, we obtain

GEi=Gle+ Y Aerj+Adary

<N
=Gle+02® Y Cj+CnvAL® ifi>0
i<j<N (2.8)
=Glt+Azd Y Ci+COnAP+ 1AL ifi=0
1<j<N

=GI¢+ Dy, Aa?

where the D;’s are uniformly bounded in Az, i, and A. Given this expression for the G¢,

we can solve for the £’s:

_ Az

2

G=G+0z Y Gy, i=2,...,N
1<y <

G'¢ + B AL®
(2.9)

:wiG’fﬁ-f-EiA:cQ

Again, the E;’s are uniformly bounded in Az, 7 and A. Combining (2.8), (2.9), and the
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boundary condition (2.3), we obtain the following relation for Gl¢:

1 d d
f — _ 2 1
G’¢ N < —dIEN-l + ""dQSN—z)

(2.10)
o dg d1 f dl d2 2
= ( 4 (¢ dy) + a (¢ dg)) G’€+ (dzEN_Q dlEN_1> Az
Solving for Gf¢, we finally obtain:
d2En_o —d3EN_1
Gle =2 2 Az (2.11)

£(dy + da)

Thus, G/¢ is O(Az?), uniformly in A. From this and the estimates (2.9) we obtain the
result that € is O(Az?) uniformly in A.

We can obtain more detailed information regarding the effect of the larger trunca-
tion error in the irregular cell. We define £p to be the contribution to { from 7x; separately;

this is obtained by solving

(Lép); =0 ifi# N

(2.12)
(Lgp)]\,f = 7y otherwise.

A simple calculation shows that the discrete solution is linear, with constant gradient,

rvAAZ? )
(GfP)H% = D22 —0(Ar%) i=0,...,N,
(& -4)¢
1 2

so that &p = O(Az?), uniformly in A. Thus we observe that the apparently singular
contribution to the truncation error in the irregular cell does not lead to a singularity in
the error estimate, due to the multiplication by the length of the cell in (2.8). In fact, &p,
the contribution to the error, is two orders smaller than 7y, uniformly in A.

This fact can be understood from the point of view of potential theory. We can view

the error equation (2.6) as being approximated by a continuous potential theory problem
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for (2.1), in which the charge is piecewise constant in cells with values given by the 7;’s.
In that case, the contribution to the field £ from Ty, in the sense of (2.12) is given by a
dipole located at = = £ of strength AAz7x. The reason this is a dipole, rather than a
monopole with the same charge, is that the effect of the homogeneous Dirichlet boundary
condition at £ on the field induced by 7n can be represented by an image charge with the
same total charge, but of opposite sign, located at a distance %—AA.’E to the right of £. The
dipole results in an induced field which is one order smaller in Az, giving £p ~ O(Az®).
We have shown that the conclusion from this potential-theoretic model is rigorously correct
in one dimension. For the extension of this algorithm to two space dimensions in the next
section, we will use this idea to interpret the various contributions to the error observed

numerically.

2.2.3 Discussion

First, we would like to note that incorporating Neumann boundary conditions into
(2.1) is straightforward. Our discretization is derived by approximating gradients on the
domain boundaries; this quantity is known a priori with Neumann boundary conditions. It
is easily demonstrated that we obtain the same truncation error estimate for this problem.
However, the Neumann boundary condition does not generate the dipole error field that was
shown above, and the effect of the first-order truncation error at either end of the domain
is O(Az?). Note, however, that this result is still well-behaved for arbitrarily small A.

For the Dirichlet boundary condition, we wish to emphasize that it is essential that
the gradient stencil at x = £ be well-separated from the boundary. The use of such a stencil
leads to the uniform boundedness of the conditioning of the linear algebra as A approaches
zero. This is definitely not the case with more conventional Galerkin approximations on
this kind of irregular grid. In Figure 2.2 we plot the condition number of the partial-
volume-weighted matrix versus A, with N = 50, along with that of a piecewise-linear

Galerkin discretization, with N — 1 degrees of freedom and the same cell sizes. The poor
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Figure 2.2: The effect of volume fraction A, on the two-norm condition number of the linear system,
DL, where D is a diagonal matrix with ones on the diagonal, except for Dny = A, for our system (dashed)
and a piecewise-linear Galerkin discretization, with N —1 variables, on the same grid (solid).

conditioning of the Galerkin approach is due to a refined approximation of the gradient at
z = £, as A — 0. We have effectively exchanged this dependence on A for one involving Az,
to avoid poor conditioning in the presence of arbitrarily small volume fractions. The price
we pay is that the matrix is not symmetric due to the gradients calculated from quadratic
polynomials. In addition, the matrix is no longer diagonally dominant, and thus may not
satisfy a discrete maximum principle. The result is that for Laplace’s equation, the discrete

solution might attain its maximum value inside the domain boundary, unlike the analytic

solution.

2.3 Two-Dimensional Case

The algorithm in the previous section extends naturally to more space dimensions,

because it is based on a finite-volume formulation. The dependent variables ¢ are cell-
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centered on a uniform rectangular grid: ¢;; = @((i— %—)Am, (j— %)Ay), where ¢ is a solution
to (Eq. I). The operator is discretized by integrating (Eq. I) over the control volume of
each cell; however, to calculate this integral we must first define how the domain boundary
is represented. We use a piecewise-linear representation, which is linear in each cell and
defined by the intersection of the domain boundary, or “front,” with the cell edges (Figure
2.3). The volume fraction and front normal are then determined from this representation.
In each cell (i, ), a simple relationship exists between the inward-facing normal n, the area

of the front Ay, and the areas of the cell edges, or “apertures”:
f _ R "
Al = (A= Ay ,) i+ (A - Ay1)d (2.13)

For full cells, all aperture values are equal to the grid spacing, implying that A/ is zero, and
A = 1. In partial cells, A/ is non-zero. We are ignoring the possibility of very narrow (with
width less than Az) “fingers” of the boundary that enter and exit through the same cell
edge. A similar algorithm can be used for three dimensions, where the cell faces are defined
analogously, and they in turn define the front normal and area. See [49] for a discussion of

this kind of geometry discretization, and some of its limitations.

2.3.1 Discretization

The first step in the derivation is to integrate (Eq. I) over each cell’s control
volume, and then invoke the divergence theorem. In order to best approximate the surface
integral of the resulting fluxes, they are evaluated at the midpoint of each full or partial
edge, as in Figure 2.3(a). After dividing by the cell volume, V; ;, we obtain the difference
approximation

-F . ,-F

~F._ 1.+ F, 1Li—3 ”J) (2.14)

PR B
Li; = AzAyk; ; <Fz‘+%,y’ i=35.J i+

= ﬁl,] y
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Figure 2.3: Diagram showing (a) the control volume formulation, which is based on the divergence of
appropriately-centered fluxes, and (b) how a properly-centered normal derivative is found by interpolating
between two neighboring values.

where we have introduced the volume fraction, A;; € (0,1], with V;; = Az Ay A, ;. The
flux through each surface of the control volume in Figure 2.3(a) is denoted by F. The
right-hand side of (2.14) uses p;; = p(X;;), the value of p evaluated at the centroid of the
irregular cell, V; ;. As in one dimension, this is a second-order accurate approximation of
the average of p over V; ;.

For full edges, the flux is found by first calculating a gradient of ¢ normal to the
face, using central differencing of neighboring cell values. Note again that ¢ is treated
as a cell-centered quantity, even when that center is beyond the domain boundary (as
demonstrated in Figure 2.3). Finally, to calculate F, the gradient is multiplied by B,
evaluated at the midpoint of the face, and the area of the face. For the full edge at
(i + 3,7), this reduces to
Fy1;=2y ﬁi+%,j@g-?i’—j) : (2.15)
For full cells, it is obvious that this reduces (2.14) to the standard five-point finite difference

stencil for (Eq. I). In partial cells, there are partial apertures which are not equal to the
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grid spacing, so that the front area A/ is non-zero. In that case, we must do some additional
work to construct second-order accurate fluxes.

On a partial edge, the centering of the gradient and 3 should still be the midpoint of
that edge. Therefore, to calculate the normal gradient, we have chosen to linearly interpolate
between values at the midpoints of full edges. More specifically, in Figure 2.3(b), the
partial edge (i + %,j) has midpoint Xi 1 If Yirl; > Yigr We use centered differences at

neighboring edge (i + %, 7 + 1) to obtain an interpolated gradient,

— ¢+1,—¢, ¢ 1, 1__¢,’A+1
G¢i+%,j:(1_n) : JAa: Sy DT -

Az ’

where n = le—y (QH%J — yi,j) . Had it been that gi%)j < y;,5, we would have used a gradient

from (i + 5,7 — 1) to complete the interpolation:

— (147 Pit15 — Pig . Pit1y-1 — Pij-1

Go Az Az

i+3,7
The flux used in (2.14) is then given by
Fii1y=bics Airy; Givy (2.16)

where 3, 41 represents 3(z,y), evaluated at X, We can define similar formulas for

b
(1,7 + —%) edges using values at their midpoints. In either case, this provides a second-
order accurate approximation of the flux through the cell edge. Note that, for full edges
irl ;= Yigs and both formulas reduce to (2.15).

To obtain a consistent discretization of (2.14), Ff should also be based on quan-
tities centered at the midpoint of the front. Because only the normal component of the
gradient contributes to the resulting flux, we have chosen to calculate it using values along

a line normal to the interface, and passing through its midpoint (see Figure 2.4). As in

one dimension, we employ a three-point gradient stencil, using values from cells other than



CHAPTER 2. POISSON EQUATION 30

Figure 2.4: Diagram of the second-order stencil for the gradient normal to the interface, ¢/. Two values
are found on the neighboring grid lines, using quadratic interpolation. The gradient is then calculated by
fitting a parabola to the interpolated values and the value at the interface.

the current cell. To do this, we select the first pair of grid lines that intersect with the
line normal to the interface, but do not pass through the current cell. We then interpolate
between values along each grid line (marked with circles in Figure 2.4), to the intersection
points (marked with boxes in Figure 2.4). To obtain a second-order accurate gradient, we

must use quadratic polynomial interpolation along grid lines, and then apply the gradient
q )Y ) Py g

formula as in one dimension:

o= (% (¢ — &) —%(@f—-cbé)) (2.17)

Here we have used ®/ for the value of ¢ on the front; this is given by the Dirichlet boundary
condition at the front’s midpoint. Interpolation along grid lines determines ¢! and #1, at
the points distance d; and dz away from the interface. Finally, we can evaluate the interface

flux in cell (i, 7),

Fl=pl,4[,67¢:5, (2.18)
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!
43"

where 3/ is the value of #(x,y) at the midpoint of the front, X

By counstructing the gradients in this fashion, we impose one more constraint on
the discretization of the domain: the interpolation stencil must not reach into cells with
zero volume. For the quadratic gradient stencil, this may imply certain constraints on
the discretization of the domain. However, the fact that a zero-volume cell is within two
rows of another partial cell would indicate that the local boundary is substantially under-

resolved. Such domains are more appropriately treated with adaptive mesh refinement,

which is described in Section 5.

2.3.2 Truncation Error Estimates

Using arguments similar to the one dimensional case, we can compute the local
truncation error. We assume that ¢ = ¢(z,y) is a smooth solution to (Eq. I), for the case
that p, G, and 9€) are smooth. We further assume that ¢ can be extended smoothly to a

slightly larger open set containing 2. Then for Az, Ay sufficiently small, we can define the

g = Pig ~ L (2.19)

€

i =P (xi,5)

Note that here, as in one dimension, the dependent variable ¢° is centered on the rectangular
Cartesian grid, while the truncation error, like the operator and right-hand side, is centered
at the centroid of the partial cells. In that case, we have the following estimates of the
truncation errow:

i = CijAx?  for full cells

. A (2.20)

A for partial cells .
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Here Az = rAy for some fixed 7 > 0, and the coefficients C; ; are bounded independent of
Az, A, and (7, 7). For interior cells, we obtain the standard centered-difference cancellation
of error so that the local truncation error is O(Az?). On the partial cells, that cancellation
does not take place, so that the standard Taylor-expansion arguments, plus the fact that
the truncation error in the flux calculations is O(Az?), lead to the estimate given above.
Based on a similar potential-theoretic argument as discussed in the one-dimensional
case, we expect that the estimates (2.19) are sufficient to guarantee second order accuracy

of the the solution. Specifically, we consider the error equation
LE=7,{=¢—¢" (2.21)

If we approximate this as a continuous potential theory problem with a piecewise constant
charge 7; ; on each cell, we expect the contribution of each cell to £ to be proportional to
the total charge on that cell. For a full cell (7, §), the total charge is 7;; x rAz? = O(Az?).
There are O(-A—lﬁ) such cells, leading to a contribution of O(Az?) to &. The total charge in
an partial cell (4,7) is 7; ; x ArAz? = O(Az?), uniformly in A. However, the contribution
to ¢ from that charge is a dipole field that is one order smaller in Az, i.e. O(Az*). This is
because of the influence of the homogeneous Dirichlet boundary condition, whose effect on
the field induced by the charge in the partial cell can be represented as an image charge of
the same strength but of opposite sign located a distance O(Az) away from the partial cell
just outside the boundary of the domain. The field strength at a distance d from a given

pair of charges can be approximated by
£(d) = 75 Aj jrAc? ( In(d + Az) — In(d — Aa:))
~ O(Az?) x O(Az).

There are O(2-) such cells, so that the contribution to the error is O(Az?), uniformly with

respect to the range of values taken on by the A;;’s. We will verify in detail this behavior
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in our discussion of the results below.

2.3.3 Neumann boundary conditions

Finally, we wish to note that the finite volume formulation (2.14) allows us to
impose Neumann boundary conditions for (Eq. I) with minimal difficulty. We merely sub-
stitute the value of the gradient at the front midpoint, instead of using the finite difference
stencil (2.17). However, the solution error due to partial cells is now O(Az?), instead of

the O(Az?) for Dirichlet boundary conditions. Again, the error is well-behaved as A—0

2.4 A Multi-Grid Method for our Discretization

In order to efficiently find the solution to the linear system derived from (2.14),
we use multi-grid iterations [14]. The multi-grid method is based on combining simple
point-relaxation schemes and a hierarchy of coarser grids. After applying point relaxation
on the finest grid, a correction term is found by representing the fine-grid residual on the
next coarsest grid, and using point-relaxation there. This is applied recursively, down the
hierarchy of grids, until the problem is coarsened enough to be solved directly. The correc-
tion terms are then interpolated back up the hierarchy, while applying point-relaxation at
each level. In all, this is called a multi-grid “V-cycle”. Multi-grid methods have the dual
benefit of low memory overhead and theoretically-optimal convergence rate. Generally, the
method’s difficulties are in defining appropriate “coarsened” operators, along with restric-
tion and interpolation functions; poor choices can result in significantly slower convergence.
Because of the enormous interest in multi-grid methods, there is a theoretically-optimum
choice of these operators for discretizations based on the variational form of (Eq. I) [7].
However, for non-variational finite volume discretizations, this is not as straight-forward,
although some work has been done [13]. We have chosen a simple approach, which performs

well for the test problems presented at the end of this chapter.
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Figure 2.5: Diagram of the coarsening strategy for the multi-grid method. The coarse grid preserves the

apertures and volumes of the fine grid, but uses a coarser, piece-wise linear representation.

2.4.1 Point relaxation scheme

The details of the multi-grid iteration scheme are straightforward, once the grid
hierarchy is established. The point relaxation scheme that we use resembles a multiplicative
Schwarz algorithm from domain decomposition [16]. On the partial cells, we perform one
point-Jacobi iteration, while holding the values in the full cells fixed. For iteration m, this

is expressed as
— Lgm), (2.22)

where  is the (7, ) entry on the diagonal of the matrix operator L. Note that even though
le o A;;, this cancels with the operator’s denominator. We then perform one sweep of
Gauss-Seidel relaxation on the full cells, with either red or black ordering, while holding
the partial-cell values fixed. The partial cells, along with the full cells used in the stencil
for (2.14), define a region of overlap between the two domains. Although we can provide
no convergence analysis for this approach ([16] might provide a good starting point), the

convergence rates for the entire multi-grid procedure demonstrate its efficacy.

2.4.2 Coarse problem definition

The grid hierarchy is generated by coarsening the finest discretization of the bound-
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ary, as follows. The coarse grid spacing in each direction is twice that of the fine grid, and a
coarse grid’s apertures and normals are defined exactly like those of a fine grid: intersection
points of the domain boundary with coarse-cell edges define the apertures, which in turn
define A/ and n (Figure 2.5). However, a coarse cell’s volume is defined as the sum of its
corresponding four fine-cell volumes; this is required to maintain the flux-difference form
of (2.14). The interface gradient stencil is then determined from this coarse interface rep-
resentation. This definition of the geometry does have one drawback: it still requires that
the interface not cross any coarse cell edge more than once. In addition, the limitations
of the finite-difference stencil for ¢/ must be considered. On very coarse grids, these con-
straints can be violated; we use this criteria to determine the coarsest level in our multi-grid

hierarchy.

Prolongation and Restriction operators

The residual is restricted to the coarser grid by volume-weighted averaging; the
definition of the coarse volume then ensures that a constant p is coarsened properly. The
finite-difference stencil for the gradieilt on coarser grids is found in the same manner as on
the fine grid, but using the coarsened discretization. On the coarsest grid, we apply the
point-relaxation procedure as many times as there are valid points. This is the simplest
option, and requires no additional memory or data structures. The coarse correction is then
treated as piecewise constant on all cells when interpolating back up the grid hierarchy. This
is the least expensive approach, and point-relaxation quickly redistributes coarse corrections

locally.

2.5 Adaptive Mesh Refinement

Oftentimes, the solution provided by a single, uniform discretization of the domain

may not be accurate enough. Large gradients in the solution or variation in the domain
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Figure 2.6: The stencil at the coarse-fine interface is represented. A value is found on a fine-level grid
line, from quadratic interpolation on the coarse level. This value, along with two values on the fine grid,
is used to calculate a gradient at the coarse-fine interface. The coarse-grid stencil can be shifted when
necessary. Finally, the coarse-grid flux (shaded arrow at right) is defined as the sum of the corresponding
fine-grid fluxes (white arrows).

boundary can require a finer grid spacing than is available with limited computer resources.
An adaptive mesh hierarchy enables one to increase grid resolution where necessary; such
an approach can greatly reduce the memory required to obtain a given level of accuracy.
Our algorithm uses block-grid refinement, based on the work of Berger and Oliger [10].
This permits us to use simple computational data structures, instead of a linked, quad- or
oct-tree object (as used in [30], for example). Our adaptive algorithm is based mostly on
work and source code from Martin and Cartwright [42], for adaptive solution of Poisson’s

equation on rectangular domains. They used refinement factors of two and higher in their

work; here we will use only factors of two, to simplify our discussion.

2.5.1 Coarse-fine interface fluxes and interpolation stencils

We first define each level of the grid hierarchy is defined as a union of rectangular
blocks, all with the same grid spacing. After defining a base level, whose quantities are
denoted by the superscript ! = 0, successively finer levels [ = 1,2,... are laid only on top
of each coarser level. The valid region of each level is that which is not covered by any finer
level. We also require that each level is properly nested on top of the next coarser one. This

is best expressed by saying that boundaries may only occur between neighboring levels in
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the hierarchy. In additions, we use grid blocks of at least eight cells; with the factor of two
refinement, this guarantees our ability to calculate boundary conditions at the coarse-fine
interface, described below.

In the valid region of each level, we use (2.14) to discretize (Eq. I). Again, the
burden of consistency falls on the discretization of edge gradients, due to the finite volume
approach. Interfaces between fine and coarse levels have fluxes that are defined by the sum
of the more-accurate fine level fluxes (Figure 2.6). Specifically, the flux on level [ is given
by

Fl = FH—l __+_FH-1
it+3,j p+i.g p+i,g+1

where p and ¢ are the appropriate indices on the finer level, [ + 1. These fine level fluxes are
calculated just as before, except the edge gradients use one-sided difference stencils except
for a value interpolated from nearby coarse-level cells. This interpolated value enforces the
continuity of the solution between the coarse and fine levels.

As is implied in Figure 2.6, a quadratic polynomial is fitted to the values in three
coarse-grid cells lying beside the fine grid. Then, a second quadratic polynomial is fitted to
the values normal to the boundary, using two fine grid points and the value interpolated from
coarse-grid cells. The gradient is then evaluated at the coarse-fine interface. Specifically,

the edge gradient in Figure 2.6 would be calculated with

Pl — e gl @
+1 g 1,j+1
Gy = say T say (2.23)

where ®° is the value interpolated from the coarse grid ¢!. This procedure results in second-
order accurate fluxes at the coarse-fine interfaces, which in turn means the discretization of
(Eq. I) has a first-order truncation error in cells along the coarse-fine interface. However,
the coarse-fine interface is a one-dimension smaller set, so we expect the error in the solution

to still be O(Az?).
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2.5.2 Relationship to multi-grid iteration strategy

A detailed description of this algorithm, and the multi-grid iteration scheme used
to solve the resulting linear system, can be found in found in [42] or [46]. The changes
required to extend this algorithm to our embedded-boundary method are straightforward.
The point relaxation scheme on a level is that described in the previous section, suitably
modified to account for the coarse-fine boundary conditions. The averaging and interpola-
tion operators that transmit information between AMR levels are also the same described
above. However, we must change the residual-correction structure of multi-grid in order to
accomodate the coarse-fine interface conditions.

Define the multi-grid restriction or averaging operator to be A, and the prolonga-

tion operator to be P. The multi-grid algorithm can then be given by this series steps:
e Calculate the residual on the fine level, R = pt — L¢'.
e Perform point relaxation on the correction equation, Lyt = R', with 1 = 0.
e Calculate a new residual, R' = p! — L(#' + ¢!).
e Wherever level [ — 1 is covered by level I, set to R"™1 = AR%

This procedure is then repeated on level [ — 1, and so on down the level hierarchy. At the
coarsest level, the standard multi-grid procedure described above is used. We now have

estimates for the correction 1! on all levels, so we traverse back up the hierarchy:
¢ Add P41 into .
e Find R! = p' — Ly on level | and beneath level [ + 1, using ¥'~1 at the boundaries.

Perform point relaxation on another correction equation, Ly! = R, with x=1 = 0.

Add x! into 4.

Finally, add ¢! into ¢'.
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This is continued for all levels, up to the top level. The whole process is repeated, until the

maximum of the residual on all levels is less than some specified tolerance.

2.5.3 Refinement criterion

We use Richardson extrapolation of the error to determine what regions might
benefit from refinement. Because of the form of the truncation error is known for this
method, it is easily approximated from the discrete solution ¢'. We can approximate the

truncation error on the next coarser level, 7/~1, using the averaging operator, A:

Tl rAp —LAY .

For full cells away from coarse-fine boundaries, this quantity is O(Az?). When 7 is greater
than some specified tolerance, the four fine cells contributing to it are tagged for grid
refinement. To simplify the implementation of the embedded boundary algorithm, we also
refine all partial cells, along with a suitably sized buffer for the gradient stencils. In addition,
we know that the truncation error at the coarse— fine interface is O(Axz), so that values of 7
along it are ignored. Finally, all tagged cells are grouped into block grids of some minimum
size, using an algorithm developed by Berger and Rigoutsos [11]. These block grids are then

used to define the next finest level in the hierarchy.

2.6 Software Implementation

The algorithm is implemented in a hybrid C++ and FORTRAN code, where complex
organizational tasks are accomplished using a C++ class library, called BoxLib [53]. A
discussion of the broader software issues that have been dealt with in BoxLib can be found
in the paper by Crutchfield and Welcome [22]. In this section, we will briefly review BoxLib

and our programming approach for the numerical algorithm.
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2.6.1 Description of BoxLib

We have chosen to use the C++ class library BoxLib [53] to implement our algo-
rithm. BoxLib was developed by researchers at the Center for Computational Science and
Engineering at the Lawrence Berkeley National Laboratory. It is based on a dimension-
independent approach, and was specifically designed for block-refined implementations of
adaptive mesh refinement.

BoxLib is based on a global regular index space, which is used to define rectangular
regions called Box’s. Thus, in two dimensions, a Box is defined by its lower-left and upper-
right global indices, (i1, j1) and (42, j2). Contiguous FORTRAN-type arrays, called Fab’s, are
then built on top of this, thereby allowing a single data structure to manage the array’s
bounds and number of components, as well as pointers to the underlying memory. The
concepts of cell-centered, edge-centered, and node-centered Fab’s are easily obtained by
shifting one or both of a Box’'s indices by a half. This allows single-block calculations to be
implemented in FORTRAN, which is highly optimized for such structures.

However, the greatest benefit of BoxLib is its libarary of tools for adaptive mesh
refinement. In particular, unions of Box’s and Fab’s can be defined on the same index space,
and managed as single units. Thus the concept of a level in the adaptive hierarchy is more
easily defined. Thus, the point-relaxation scheme described in the previous sections is easily

implemented as follows:

1. Define a union of cell-centered Fab’s that overlap by two indices. The overlap region

defines the traditional “ghost” cells use in finite-difference calculations.
2. Copy data from each Fab’s neighbor into its ghost cells.
3. For Fab’s on the domain boundaries, fill ghost cells using the boundary conditions.
4. For Fab’s that abut the coarser level, use the interpolation scheme in the ghost cells.

5. Apply the point-relaxation algorithm to each Fab independently.
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This algorithm’s difficulty is shown in steps 2, 3, and 4; they involve determining the
neighbor bordering a given Fab. BoxLib includes lists that maintain this information, and
uses the global index space to help coarse and fine Fab’s to interact efficiently.

Using BoxLib, traditional finite-difference algorithms can be more easily extended
to a block-refined, adaptive framework. In addition, the resulting algorithm is implemented
in C++, where more emphasis can be placed on object-oriented programming and reusability

of the individual parts.

2.6.2 Description of AmrPoisson

The class structure we use was developed by Martin and Cartwright [42], to im-
plement a multi-grid algorithm for solving Poisson’s equation. The top-level data structure,
called AMRPoisson, contains the problem parameters and manages individual levels of re-
finement. Each of these AMRLevel’s contains the data and functions necessary to perform
multi-grid iterations on its level. This includes classes for applying the discrete operator,

filling in ghost-cell values, and performing point-relaxation sweeps.

2.6.3 Sparse data structures

We have defined two classes that maintain the additional information needed at the
embedded boundary, and are contained within the AMRLevel class. On each Fab in a given
refinement level, we define a VoF class, or volume-of-fluid reprentation of the embedded
boundary. This includes the geometric data, such as the apertures, partial volume, and
interface normal, in each cell. We also define the EmbBndry class, which contains a VoF,
in addition to functions and data for applying the operator at the embedded boundary.
Finally, a union of EmbBndry’s is defined, which is used to perform operations on given

level’s union of Fab’s.
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2.6.4 Grid generation classes

There are two aspects to grid generation that need to be considered in our ap-
proach. The first, is the ability to generate a group of block-refined grids just from a set of
cells tagged for refinement. This is accomplished through the class GridGenerator, which
is based on an algorithm by Berger and Rigoutsos [11], and implemented by [42]. Given a
group of tagged cells, the class is designed to find a union of Box’s, each with some mini-
mum length or width, which covers all the tagged cells. This union of boxes in then used
by AMRPoisson, to add additional resolution using another level of refinement.

The second form of grid generation is finding the geometric information in a VoF,
given some analytical description of the embedded boundary. We have therefore developed
a Curve class, whose purpose is to generate the piecewise-linear description required by
the algorithm. This is accomplished by discretizing the analytical formula into a polygonal
curve, and using this representation to intersect cell edges and define the VoF. In this
form, it is much easier to tranverse the polygon, and determine intersection with grid lines.
Details of the grid generation algorithm will be given in the next section. Note also that the
coarsening strategy of the multi-grid algorithm requires VoF’s on coarser levels of refinement
to be derived from finer ones. To this end, the Curve class provides functions which properly

coarsen a union of VoF’s.

2.6.5 Graphics libraries

Finally, we wish to give a brief description of the graphics libaries that we have
used for representing our data structures. We have developed our visualization tools using
VIGL [27], which is a set of graphics functions using X and Tc1/Tk, and was written by Allen
Downey. Elements that can be drawn include graphics primatives, such as points, lines, and
polygons, and more complicated structures such as Fab’s. A simple user interface provides

advanced capabilities, such as zooming, inspection of a Fab’s arrays point-by-point or with
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slices, and drawing contour or quiver plots. Finally, objects can be dynamically created
and destroyed, as well as used to generate output in other formats. We have extended
these libraries to include BoxLib primatives, such as Box’s and unions of Fab’s, in addition
to graphical interpretations of more complicated objects, like a VoF or EmbBndry. In all,
these routines have been an invaluable aid for interactive debugging, and for an informative

presentation of results.

2.7 Results

We have chosen three simple problems to demonstrate the the single-grid and
adaptive algorithms, and verify the method’s characteristics as laid out in the previous
sections. First, we will describe our method of grid generation and its influence on the
geometric properties. Then we define the discrete norms that will be used to measure the
solution’s accuracy. We will then proceed to the description of the three test problems, and

an interpretation of their results.

Arntian

e P e
LTl weneravion lgG

The boundary 99 is discretized by first representing it as a parametrization, r(6);
we then choose points in this parametrization, which are no more than oAz apart (the
following calculations use o = 0.3). By connecting these points, we form a piecewise-linear
representation of the interface. The intersections of this representation, with the finest
level’s grid lines, define the apertures; these then define the area of the front from (2.13).
We also include two modifications to this grid generation algorithm. The first is related
to the grid requirements described above and in [49]; if the boundary representation enters
and leaves a cell through the same edge, the intersections with that edge are ignored. In
effect, this “clips” the boundary where it crosses the same cell edge twice. The second

modification, which occurs rarely in practice, is to adjust the boundary to remove cells with
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volume fractions A < 1078, This is done by shifting the boundary points to the nearest
intersection of grid lines, thus making the cell volume zero. In this process, the boundary
is moved by at most 0.1% of the grid spacing; this incurs a negligible error relative to that

of the numerical algorithm.

Definition of Discrete Norms

The norms used in the following analysis warrant some additional explanation.
We must first separate the computational domain into the adaptive levels, @, where [ is
the number of cells per unit length, in each grid direction. For example, 280 designates the
set of all valid cells with a grid spacing of Az = '8’16’ that are not covered by a finer level
(i.e., Figure 2.12(a)). The entire computational domain is then defined by Q = |JQ!. We
note again that the domain boundary is represented only on the finest level, which can be
divided into two sets of cells: QZI, which consists of full cells; and le, consisting of partial
cells. The set of cells on the finest level is then just Q! = QLI U Qﬁo. Unless otherwise noted,
cell counts for a level O refer to the number of uncovered full or partial cells in Q; this
excludes both dummy values outside the domain, and values covered by finer levels.

We can now define a volume-weighted norm of a variable e on some set of cells,

Qk:
1
P
lellp® =1 D2 leisl Ai,jvl/ > AV (2.24)
(1,3) € (1,3) €%
where V! = Az? is the full cell volume on a given level. An unweighted norm, || - || gk, merely
removes A; j from equation (2.24). Any oc-norm, |- |2 is just the maximum value over

the cells in £;. We can now define the rate of convergence between two norms, e; and eg,

with two different grid spacings h; and hsg, as

€1 hl
r = log (e—>/log (h——) .
2 2
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Thus with hy < hg, arate of r = 1 for the two errors e; and e, indicates a first-order accurate

method.

2.7.1 Problem 1: Comparison with an exact solution

For the first two problems, the domain interior is defined by

Q={(r,0) :7<0.30+0.15cos 66} .

The boundary is sufficiently complicated to test the algorithm, without compromising the
requirements of the finite-difference stencil mentioned in Section 3.
We first set 8 = 1, to demonstrate several results for Poisson’s equation. The

values of the right-hand side are given by the exact Laplacian of the solution,

V-V = 7r? cos 36,

evaluated at the centroid of each finite-difference cell. This is done to best represent the
average value in (2.14). Note that fourth-order derivatives of ¢ are discontinuous a

origin, and higher-order derivatives are singular. Dirichlet boundary conditions on 92 are

specified by the exact solution:

o(r,0) = rtcos 36,

which has a maximum value of about £0.041 at r = 0.45 on 9§). The exact solution ¢
enters into the discretization by taking its value at the midpoint of the front in each cell,
and using this as the value of ®f in (2.17). A plot of the discrete solution is given in Figure

2.7, with 40 evenly-spaced contours between ¢ = +0.0412.
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Figure 2.7: Contour plot of the solution to Problem 1.

Truncation Error

We will first analyze the algorithm with uniform grid spacing over the domain.
We compute the truncation error 7, defined in (2.19), for this solution. In Table 2.1,
we can still see that A7 is O(Ax) on Qp, consistent with the error estimate (2.20). In
the same table we see that the interior truncation error (7 on 1), which is due to the
standard five-point difference scheme, is O(Az?). Because the domain is star-shaped, we
can use 6 as an independent variable as we walk along the interface. In Figure 2.8(a),
we plot AT versus the angle 6, in Qp only (partial cells); obviously, it is certainly not a
smooth function, and contains a substantial high-wavenumber component. This is due to
the error being dependent on many non-smooth factors, such as the apertures and distance
to interpolation lines. In Figure 2.8(b), we plot the volume fraction A as a function of 6.

We see that there is no “blow up” in A7 for small A.
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Ly A [ v Jgac™ | r (NP GrlSy |- | NT
40 |/ 1.20- 1071 2.63 - 1072 208 || 1.66 - 1073 400
80 || 7.71-1072 | 0.64 | 1.45-10"2 | 0.86 | 420 || 4.15-107* 2.0 | 1824
160 || 4.20-1072 | 0.88 | 7.35-1073 | 0.98 | 856 || 1.04-10"4|2.0| 7712
320 |1 2.18 1072 0.95 | 3.73-1073 | 0.98 | 1716 || 2.59-107°% | 2.0 | 31716
640 || 1.11-1072 | 0.98 | 1.89-1073 | 0.98 | 3416 || 6.49 - 1076 | 2.0 | 128604

Table 2.1: The norms and convergence rates of the partial-volume-weighted truncation error are presented
for Problem 1. The values in partial cells are first-order in the grid spacing, while values in the interior are

second-order.

Error induced by the truncation error

We can also measure the error in the discrete solution, &, defined in equation
(2.21). However, to elucidate the resulting behavior, we have also computed solutions to

two subproblems. Specifically, we solve

Lép =7p

L¢ =7

——~—~
[S]
)
[

——

where 7p, 77 are, respectively, equal to the truncation error on the partial and full cells, and
zero elsewhere. In that case, £ = {p + &1, and Ep, and & represent the contributions of the
error from the interior and the irregular boundary, respectively. In Table 2.2 we see that &p
converges at a rate r &= 3 in the co-norm. Our explanation of this behavior is the potential-
theoretic model for the error on the partial cells described at the end of Section 2. The
partial cells induce a dipole distribution on the boundary, due to the homogeneous Dirichlet
boundary condition for the error equation. The field induced by this dipole distribution is
O(Az?), uniformly in the range of values taken on by the A’s. However, £; is is strictly
second-order accurate. Table 2.2 demonstrates that the overall solution error converges at

a rate of r = 3 for coarser grids, and is then only second-order accurate for finer grids.
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(@)

(b)

Figure 2.8: For Problem 1, we plot (a) the magnitude of the volume-weighted truncation error and (b)
the partial volume, on Qp versus 6. Note that the former is bounded, even for arbitrarily small volumes.

Figure 2.9 demonstrates this for the one-norm. Essentially, the error on coarser grids is
dominated by the effect of the truncation error in partial cells; for finer grids, the effect
of the interior truncation error begins to dominate. Both &p and &;, converge to zero at
the stated asymptotic rates; however, their sum does not settle down to its asymptotic
rate until £ > £p. This leads to some anomalous behavior in the convergence rate for £.
For example, the rate of convergence for [|£]/$} appears to be less than second order, even
though both summands are converging at rates greater than or equal to second order. The
reason for this is easily seen in Figure 2.9. At the grid spacing where ||ép]| and [|é;] are
comparable, there is partial cancellation between the two components of the error. At the

finer grid spacings, as that cancellation diminishes because of the more rapid convergence

of ép, the convergence rate of ¢ decreases slightly as it asymptotes to &;.
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T

IV T et T e T aeel® T r | 0ed® Tr ] Je® Tr]
40 |1 5.89-107° | 5.85 - 10~° 9.33.1076 1.38-1076 8.34-1076
80 1/ 7.35-107% | 7.36-107% | 3.0 1.33-107% [ 2.8 | 3.97-1077 | 1.8 | 1.02-107% | 3.0
160 | 1.17-107% /1 1.17-107% | 2.6 || 1.76 - 1077 | 2.9 | 1.05-10"7 | 1.9 | 1.07- 1077 | 3.2
32011 1.67-1077 | 1.68-10"7 | 2.8 |/ 2.27-107% | 3.0 | 2.70-10"% | 2.0 | 1.80-107% | 2.6
640 || 2.26 - 1078 | 2.27-1078 | 2.9 | 2.86-107° | 3.0 | 6.84-107° | 2.0 | 5.02-107° | 1.8

Table 2.2: We present the two components of the solution error in Problem 1, and their corresponding
convergence rates. The error due to truncation error in the partial cells converges at a substantially higher

rate than that due to the interior truncation error.

Benefits of AMR

With this in mind, we can also demonstrate some benefits of adaptive mesh re-
finement for this problem, even though the right-hand side is evenly distributed over the

whole domain. Table 2.3 shows three cases using adaptive mesh refinement:
e Case 1: Two levels of refinement, with coarsest level 080,
e Case 2: Two levels of refinement, with coarsest level 160,
o Case 3: Three levels of refinement, with coarsest level 0160,

In each case, we refine only the boundary region, subject to the constraint that each grid
block has at least eight points in each direction (similar to Figure 2.12(b). By refining
around the boundary, we can reduce the impact of the larger truncation error there. For
example, the error in the adaptive solution for Case 1 and Case 2, is roughly that of the finest
grid, yet both require fewer points than a calculation with uniform grid spacing. However,
the effect of the interior truncation error is seen again in Case 3; the algorithm is not able
to improve the solution significantly without global refinement, since the truncation error

in the interior is evenly distributed for this problem.
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Figure 2.9: Plot of the one-norm of the error in the discrete solution, £, and its two components: p,
from the O(Az) truncation error on Qp; and &;, from the O(Az?) truncation error on ;. Note that £p

converges like O(Az?), while £; converges as O(Az?).

2.7.2 Problem 2: Including variable coefficients

Here we include variation in the coeflicient 3,

/B(T79) =1- T2a

which is evaluated at the midpoint of the actual edges in the finite-difference cell of Figure

2.3. The right-hand side is then given by

V-8V = (7r? — 15r*) cos 36,

so that the exact solution is the same as in the first problem. Again, the solution is evaluated
at cell-centers when calculating the truncation error, and the right-hand side is evaluated

at cell centroids. We can see from Table 2.4 that the non-adaptive cases have results similar
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H Level H 080 (160 1320 640 “ Overall
N in Q! 896 4984 5880
Case 1 1612 |} 1.05-107% | 1.36 - 10-6 1.36 - 1076
leN® 1 2.87-10-7 [ 2.24 - 107 2.51 -10~7
N in O 5568 11160 16728
Case 2 | |2 2.36-1077 | 2.58 - 10”7 2.58 - 1077
ene 9.39-1078 | 4.49 - 10~8 7.75- 1078
N in Q! 4480 9664 21684 35828
Case 3 || |12 2.79-1077 | 3.20-1077 | 1.50 - 10~7 || 3.20 - 10~7
e 1.02-1077 | 8.40-107% | 2.35-1078 || 8.40 - 108
N e 2244 8568 33432 132020 f
Uniform || [|¢|Z 1/ 7.36-1076]1.17-107% [ 1.68 - 10-7 | 2.27- 1078 || «
1e® | 1.02-107% [ 1.07-10-7 | 1.80 - 10~8 | 5.02 - 10~°

Table 2.3: Adaptive mesh refinement errors for the solution in Problem 1. Each case uses different levels
of refinement. We also give the results for uniform grid spacing; arrows indicate which sets of values to

compare.

to those of the constant coefficient problem.

Multi-grid convergence

We can also analyze the effectiveness of the multi-grid algorithm for this prob-
lem. Each multi-grid iteration applies the point-relaxation scheme four times (i.e., four full
sweeps of Gauss-Seidel relaxation), before and after the coarse-grid correction is applied.

Figure 2.10 plots the norm of the residual,

A (L¢™ ~ p)[12,

versus iteration number, m, for all the calculations on a uniform grid. The solution ¢ is
initialized to zero, so that the initial residual grows as O(Az~2), due to the inhomogeneous

boundary conditions. Our multi-grid algorithm reduces the residual by about an order of
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INT s Tr ] ne@ T ue? Tr]
40 || 9.60 - 1072 5.86 - 107° 8.16 - 1078
801/ 6.17-1072 1 0.64 | 7.30-107% (3.0 | 9.57-10"7 | 3.1
160 || 3.36-1072 | 0.88 | 1.17-107% | 2.6 | 9.58 - 1078 | 3.3
320 || 1.75-1072 | 0.94 | 1.68-1077 | 2.8 [ 2.00-10~8 | 2.3
640 || 8.84-1073 | 0.99 | 2.28-1078 | 2.9 | 6.00-1079 | 1.7

Table 2.4: We list errors and convergence rates for Problem 2. The results are very similar to those

obtained in Problem 1.

magnitude per iteration, even as its norm approaches the cutoff of 107!, There is a slight
decrease in performance as the grid spacing is reduced, so that the reduction rates are
around 8.5 for the finest grid. The adaptive cases are shown in Figure 2.10, also. Even
with the coarse-fine interface relations, we are able to obtain nearly an order of magnitude

reduction in the residual per iteration, despite the unsophisticated interpolation operator.

2.7.3 Problem 3: Grid Convergence Study

We also wish to test the algorithm for problems without analytic solutions, to
demonstrate that values centered outside the domain do not cause problems. We solve

Laplace’s equation on 2 = T1 N YTy, where

T;={(r,0):7r>0.25+0.05cos 66}

and Y, is the unit square centered at the origin. The Dirichlet boundary conditions are
¢=1o0n 9071, and ¢ =0 on 9Y5.
Discrete maximum principle

A plot of the solution is given in Figure 2.11; we can see that it extends smoothly

outside of 071, and overshoots the boundary condition as a result. For equal grid spacing
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Residual
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Figure 2.10: Plot of the co-norm of the partial volume-weighted residual, versus multi-grid iteration m,
for the single-grid (solid) and adaptive-grid (solid lines with plus signs) solutions of Problem 2.

in both directions, the maximum principle for Laplace’s equation dictates that there should
be no overshoot for values of A < %, while values in cells with A > % should be greater than
one. Table 2.5 shows the number of cells, k, in Qp that violate this criterion; we see that it
is variable, but small, with respect to the total number of points in Qp. For the finest grid,
N = 640 and k = 0. We assume that this violation occurs when a partial volume, A ~ %, is

in a region with significantly under-resolved gradients.

Comparison of different discrete solutions

To evaluate the convergence of the algorithm for the single grid case, we compare

two solutions, with a factor of two difference in grid spacing. To do this comparison, we must
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Figure 2.11: Surface plot of the solution to Problem 3, for N = 80.

interpolate the solution on the fine level, to the coarse grid cell centers. This is done with
bilinear interpolation, denoted with B, between the four fine-level solution values closest to
the coarse grid cell center, as in Figure 2.5. We can then define the error as the difference

between the two results:
l I+1 4141
¢h= B¢ — ¢ on QF .

We do this only for interior cells on the coarse grid, because the values needed on the
fine level, in order to interpolate to the center of a partial cell on the coarse-grid, are not
necessarily available. Table 2.5 contains the convergence rates for this error, which are

roughly second-order in both norms.
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Iv T e 1] pe [« [#k/NF]
40 || 1.27-1072 2.82-107° 8/104
80 |/ 4.32-107% | 1.6 | 6.28 - 10™* | 2.2 | 0/208
160 || 1.27-1073 | 1.8 | 1.50 - 107* | 2.1 | 4/408
320 || 2.45-107% | 2.4 | 3.00- 1075 | 2.3 | 0/820

Table 2.5: We present results for Problem 3. The error between successive levels is approximately
second-order in the grid spacing. In addition, the last column indicates that relatively few cells violate a

discrete maximum principle.

Efficacy of AMR

To demonstrate the AMR algorithm, we compare the solution on each level, to the
solution with the finest uniform grid spacing, i. e., we replace ¢t above with ¢%40, where
0640 is the finest grid level in this case. Although the resulting errors are not appropriate
for calculating convergence rates, they are accurate up to the error on the finest grid. In
Table 2.6, we see that the AMR algorithm is able to improve the accuracy of the method
substantially, by merely refining around the boundaries. In Case 1, with two levels, we are
able to obtain results with the accuracy of the finest grid, with only 35% of the points; in
Case 2, with three levels, this holds true with 17%. Figure 2.12(a) demonstrates the valid
regions on which norms are computed, for for Case 1; Figure 2.12(b) plots the solution and

block grid structure.

2.8 Conclusions

The algorithm described in this chapter have several important characteristics.
The finite-volume formulation uses second-order accurate gradients for calculating surface
fluxes. These gradients are calculated from cell-centered quantities, even when those centers
are outside the domain. The truncation error for the resulting discretization for (Eq. I) is

first-order in the mesh spacing only along the domain boundary, and second-order in the
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I

l

I

i h Level H 080 | 160 320 } Overall |
Nin @ 4288 3096 7384
Casel | [€]® | 6.64-107%]1.49-103 1.49-1073
len® |l 1481074 3.71- 1074 1.82-1074
N in O} 3792 3664 6148 13604
Case 2 el |1 1.58-1074 | 1.43-1071 | 2.46 - 10~ || 2.46 - 104
1en® 112.83-1075 | 6.42-1075 | 7.45-107% || 3.83.107
N in O} 5016 20248 81476 i
Uniform | |62 | 5.49-1073 | 1.49-1073 | 2.45-107* || «
€)% [18.06-1074]1.80-10~* | 3.00- 1075

56

Table 2.6: Adaptive mesh refinement errors for the solution in Problem 3. Errors are found by comparing
the solution to values interpolated from the finest result. The last row contains results for uniform grid
spacing; arrows indicate which set of values to compare.

interior. In our three test problems, the solution is found to be second-order accurate, on
domains with significant curvature and variation. Convergence rates of O(Az®) were also
observed for larger Az, which are attributed to the truncation error at the boundary using a
potential-theoretic argument. The Dirichlet boundary condition regards the partial-volume
weighted truncation error as a dipole on the domain boundary. Because each dipole has an
O(Az*) field, the O(N) boundary points cause only an O(Az3) error in the solution.

Our analysis in one dimension demonstrates that our discretization is well-conditioned,
even in the presence of arbitrarily small or thin cells. In addition, the multi-grid algorithm
uses only a simple point-relaxation scheme, with volume-weighted restriction and piece-
wise constant prolongation operators, and we obtain nearly thé same multi-grid reduction
rates for the residual, regardless of grid size or quality. This suggests that we retain a
well-conditioned system in more than one dimension.

We also demonstrate that our method is amenable to the introduction of adaptive
mesh refinement to improve the accuracy locally. This refines the cells containing portions of

the domain boundary, and simultaneously refines the geometry description, while reducing
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(a) (b)

Figure 2.12: We present two plots of the first quadrant of Problem 3, Case 1. (a) represents the valid

regions of each level, and (b) gives grid block boundaries, and contours of the solution.

the effect of the larger truncation error. The multi-grid framework attains reduction rates

for the adaptive grid hierarchy that are comparable to those obtained on uniform grids.
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Chapter 3

Heat Equation

3.1 Introduction

In this chapter we extend our discretization of (Eq. I) to a second model problem,

the heat equation with spatially-varying thermal conductivity, on a fixed domain:
ot = V-8V on Q, with ¢(x,0) = f(x) . (Eq. IT)

As with (Eq. I), we impose either Dirichlet- or Neumann-type boundary conditions on 02,
with G(z,y) > 0 a given quantity. Our approach is again based on a finite volume formula-
tion, which is derived by integrating (Eq. II) over each irregular cell, and for a single time
step, At, from time t™ to "+, The resulting integrals are then evaluated using appropriate
quadrature rules. The spatial discretization is the same as in the previous chapter: volume
integrals are centered at the irregular cell centroids, while surface integrals use the mid-
point rule. The temporal discretization for (Eq. II) is determined by choosing quadrature
formulas for the time integrals. Evaluating the integrand at ¢" results in an explicit, finite-
volume approach, for which the maximum stable time step is severely limited, because of

the arbitrarily-small cell volumes. This leads us to consider implicit discretizations of (Eq.
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IT), such as the backward-Euler, Crank-Nicholson, and implicit Runge-Kutta (RK) meth-
ods. In addition, we consider another implicit, but non-conservative, approach, and provide
another means of maintaining discrete conservation.

The algorithms for (Eq. II) are presented as in the last chapter. In Section 2,
we first derive the finite volume approach in one dimension, using different temporal dis-
cretizations; this allows us to determine the accuracy and stability characteristics of each
approach. In Section 3, we extend the approaches to two dimensions. Sections 4 and 5 de-
scribe the modifications to the multi-grid algorithm, and resulting software implementation,

respectively. Finally, in Section 6 we present numerical results to support our arguments.

3.2 Derivation in One Dimension

We will first develop our discretization of the heat equation in one spatial dimen-

sion,

—~
o
-

—

ot = [ pge for z € [0,4] and ¢ € [0, 00),

where 8 > 0 is a constant. This will allow us to provide an analysis similar to that of the
Poisson equation in the previous chapter. To complete the problem we specify the initial

conditions, and Dirichlet boundary conditions at each endpoint:
oz, t = 0) = @o(z), with p(z = 0,t) = ®°(t) and ¢(z = £,1) = &/ (). (3.2)

We then use the same spatial discretization that was used for the Poisson equation in one
dimension, namely N — 1 cells of cell Az, and the last cell N is bordered by the domain
boundary at z = ¢, and has volume fraction A € (0,1]. The independent variable ¢ is
still cell-centered, at points z; = (1 — %)Az, while cell edges are denoted by z,, 1 for

i=0,...,N—1.
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3.2.1 Finite volume derivation

To discretize (3.1), we first integrate it over the control volume z € [z, zg], and

the time interval ¢ € [t",#"!], and apply the divergence theorem to obtain:

TR TR
/ e (2, ") do’ — / o (z',t") do’
x x

L L
tn+1 tn+1

= oz (zp,t')dt' — B os (zr,t)dt’. (3.3)
tn in

This form of (3.1) merely states that the total change of ¢ in the control volume, is balanced
by its diffusive fluxes through the cell edges. We will now apply this to the control volume

defined by each cell 4.

Approximation of spatial integrals

The spatial integrals in (3.3) will be approximated differently for full and partial
cells. For full cells, we expand the integral about the cell midpoint, z;, using the Taylor

series for i evaluated at time t™:
$i+% ! an ! n 3 / n 5
/ (2, M) de' = Az o(wi, ) + C1 A oea(ai, 1) + O(AT). (3.4)
T

Note that we have kept an extra term here, in order to obtain more specific results for the
truncation error later. For partial cells, we will use a lower order approximation, based on

values at the cell center,

¢
/ oz, t")dz’ = AAz (cp(a:N, t") + CoAzp,(zn,t™) + O(A$2)) , (3.5)

1
N-3

where the constant Cj is uniformly bounded in A.
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Approximation of time integrals

Similarly, the integral of the heat flux across any cell edge can be approximated
using values of @, at t?, t**1, or an average of the two. These in turn lead to the familiar
forward Euler, backward Euler, and Crank-Nicholson discretizations of the heat equation.

More specifically, given the time step At = ¢! —¢" using a value at " implies
t"+l
/tn Vo (azi+%,t') dt' = At o, (mH%,t") + C3At%0, (wH%,t”) +O(AB),  (3.6)
while a value at t"*! gives
tn+1

_ +1 2 1 3
/tn Oy <mi+%,t') dt' = At (asH%,tn ) + CyAt oy (wi+%,t"+ ) + O(At?), (38.7)

Finally, averaging ¢, at the new and old times produces the result

m At
/tn ve <$i+%’t1) at’ = 2 (9% ($i+%’tn> * ¥z ($i+%7tn+1))

1

+ Cs A oun (wi+%,t"+2> + O(A).

(3.8)

Note that the extra term in these expansions will be used below, to help determine each

algorithm’s truncation error.

Finite volume derivation of finite difference schemes

Given these three different representations for the flux integral, we can now choose
discretizations for (3.3) that correspond to the three classical finite difference methods
mentioned above. We demonstrate this first for full cells, and then extend the result for

partial cells, later. The forward Euler method is derived by combining (3.4) with (3.6) with
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(3.3) to obtain

Az ((zs, ") — oz, t7)) = BAL (‘PI ( ) (xi”%’tn»
(

- CIA-T Pz $z7tn+1 ‘wa(zzatn))

(3.9)
+ C3At? (eozt( Titls ) Wrt( i-%’tn))
0(Az®) + O(APAx).

The first line of (3.9) represents the forward Euler discretization of the heat equation. The
second and third lines represent the quadrature error for the various integrals in (3.3). We
note that the term in parentheses on the second line is a simple difference in time of ¢y,
which is O(At). Similarly, the term in parentheses on the third line is a difference in space
of @4, and is O(Az). The O(Az®) and O(At3Az) terms on the last line also come from
similar cancellations. We can therefore conclude that the quadrature formulas for (3.9) lead
to an O(AtAz(Az? + At)) truncation error in full cells.

This derivation of quadrature errors was necessary, in order to determine the ac-
curacy of the resulting finite difference algorithm. To continue, we use a centered difference

approximation of ¢, at edges,

GqﬁH%‘ " fori=1,..., N—1. (3.10)

If we then discretize ¢ using its values at cell centers, and at t* and t"*!, qbf’"“ = o(z;, ")

and ¢;" = ¢(z;,t"), then the truncation error for (3.10) is

(3.11)

=@z (xi+%>tn) + CGAZ'2<szx <$i+%,tn) + O(A:L‘4) . (3.12)

When we substitute (3.4) and (3.10) into (3.9), and divide by At Az, we obtain the forward



CHAPTER 3. HEAT EQUATION 63

Euler method

¢ﬂ+1 —
At

(3.13)

After replacing ¢ with ¢¢, the difference of terms involving @z, in (3.12) becomes one

higher order, O(Az?), so that the method’s truncation error becomes

en+l _ en G¢?’n; -G
¢ N ¢ =3 H‘zAx =3 +O(AIII2 + At) . (3.14)

This is the expected result; the forward Euler algorithm is known to be accurate
to second-order in space and first-order in time. However, we have arrived at this by a route
that is more complicated than a simple Taylor expansion of (3.1) about (z;,t"). By using
quadrature rules to approximate the integrals in (3.3), we have been able to demonstrate
the cancellations necessary to obtain the truncation error estimate (3.14). Of course, using
(3.7) instead of (3.6) to approximate integrals of fluxes leads to the classical backward Euler
method for the heat equation, while (3.8) leads to the Crank-Nicholson method, which result
in first- and second-order accurate methods, respectively.

As a final detail, we define the flux at the left boundary using the formula from
the previous chapter, centered at the correct time,

Go} = o (967 — ¢} —89°(t"))
5 3Az

This reduces the spatial accuracy of (3.14) to first order in the left-most cell.
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Finite volume derivation for partial cells

We will now derive the forward Euler method for the partial cells, based on sub-

stituting (3.5) and (3.6) into (3.3). This produces

Az (plan, 1°71) ~ glan, ) = AL (2 (067) — e (ay_3,27))

— Cy AAZ? (gox(asN, ") — o (2, t"))
(3.15)

+ CyAt? (%t (£,2") — out (-’EN—%’tnD

+ O(AAZ®) + O(AP Az).

Note that we obtain another cancellation involving the difference of spatial integrals in
time; the difference of ¢, terms on the second line becomes O(At). We also obtain the
same cancellation in the time integrals as before, so that the difference of terms in ¢, is
o - LL‘N_%), which is O(AAz).

Again, we substitute finite differences of ¢ for terms in ¢ and ¢;, to find the
truncation error in partial cells. The last thing we need is an approximation of ¢, at the
right boundary, z = £. We will use the same discretization that was introduced in the

previous chapter, but with the proper time centering:

no_ 1 frn n da frm n d
Gl = &, ((q) (t )"‘¢N—1> & (‘I) (t )”¢N—2> 3;) ; (3.16)

where d; and dj are the distances from the front to cell centers z;_; and z;_s, respectively.
When we substitute the discretized exact solution ¢¢ into this expression we obtain the

local truncation error

d d
6fon = (P - ) - (P -4) ) ean

= g (£,1") + CrAz%@rzs (6,17) + O(AZ?),



CHAPTER 3. HEAT EQUATION 65

where C7 is bounded uniformly in A and Az. Substituting (3.5), the approximation of the

volume integral in cell N, and (3.16) into (3.15), and dividing by A At Az, leads to

n n fan n
¢N+l _ ¢N _ G d) G¢N——%

A
At s AAz (3.18)
Setting ¢ = ¢° leads to an expression for the local truncation error,
c]a\,,n+1 N ¢§\,{n Gf¢e,n - ngi}n_l Az
- 2 it
A =f3 As +O<A +Am+At>. (3.19)

This is similar to the result from the last chapter, where our spatial discretization led to a
truncation error in the last cell that was singular for A — 0, but was well behaved when
multiplied by the partial volume, A.

We now use the notation for the discretized self-adjoint elliptic operator, L, from

Chapter 2, so that the forward Euler method may be written concisely as

+1
¢~ & T
.LJ\,(/Z .

The backward Euler method is given by
ntl e '
i Lép*t, (3.21)

At

so that it has the same truncation error as the forward Euler method. Finally, the Crank-

Nicholson method is given by

¢;’1+1 - 9{)? _ 1 n+1 7
= 5(L@‘*‘ +L¢i) , (3.22)

and its truncation error can be derived from (3.4), (3.5) and (3.8), along with the results of

Chapter 2. For interior cells, i = 2,... , N — 1, and the truncation error is O(At? + Az?),
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while for the leftmost (i = 1) cell it is O(At*+Az). Finally, for i = N, the truncation error is
O(At? + Az + %{9) Note that in order for the Crank-Nicholson method to be second-order

accurate in the interior cells, we must have SAt & Az in the limit of At, Az — 0.

Truncation Error Analysis

We can analyze the effect of the truncation error for these methods, in a fashion
similar to that done for the Poisson equation in one dimension, using the modified equation

for the method. We again evaluate the truncation error 7 for the Crank-Nicholson scheme

by applying (3.22) ¢,

en-+4+1 | en
7 . 7 1
= " A7 b _ 5 (qu?" + L¢f»”+1) .

We have shown that 7 is O(At? + Az?) in the interior, and O(At? + 8Z) in cell N.

If we set & = ¢ — ¢° we obtain an evolution equation for the error,

G- 1 (Ler + LertT) — on (3.23)
At 2\ : v '

where ¢ satisfies homogeneous Dirichlet boundary conditions. For the first time step, £° = 0,

assuming that ¢ is initialized with ¢°. For the first time step, this implies
(3.24)

As in the previous chapter, we can use this system of equations to obtain an order of
magnitude approximation for the error, £, in terms of Az and At.

We will not try to provide a rigorous bound on ¢ for (3.24), as was done in the last
chapter. Instead, we will explore how the truncation error in the last cell, 7n, affects & after
one time step. We will consider the particular case of SAt < Az, as A, At, Az — 0. As

mentioned above, this represents the time step constraint for the stability of most explicit
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Figure 3.1: We plot the solution of (3.25) for N = 20,40,80,160,..., for A = 1072, The error in the
solution is € = O(Az?), while the gradient at = = £ is G'¢ = O(Az?), and negative.

advection methods, as well as the proper ratio for obtaining second-order accuracy from the
Crank-Nicholson discretization. If we assume that 8 = 1, At = 2Axz, and set 7; = 0, except

for Ty = %{5, then (3.24) reduces to

& —Az L& =0 fori# N,

2
Ev — Az Léy = éf— . (3.25)

It is possible to write the exact discrete solution to this equation (see [59]) on z € [0,1].
However, it is easier to determine the important characteristics of ¢ from Figure 3.1, for
Az = N~' and A = 1072, The maximum value of £ behaves like O(Az?®), and quickly
decays to zero away from z = 1. The corresponding G/¢, also in Figure 3.1, are O(Az?) in
magnitude, and negative; this is because ¢ is steepening with N, which is at odds with the

interpolating polynomial used in computing G¢. These trends persist for A — 0, and with
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other At o« Az. We conclude that the discretization is well-behaved as A — 0, and expect

that the truncation error in the partial cell will induce an error in the solution of O(Az3).

Discrete Conservation

One of the desirable properties of a finite volume method is that it satisfies a dis-
crete version of (3.3). Because the underlying principles of diffusion problems involve conser-
vation of some physical quantity (such as mass, momentum, or energy), it can be considered
desirable to have a discrete algorithm which mimics such behavior. Our finite volume for-
mulation implies discrete conservation of energy; for example, the Crank-Nicholson scheme

satisfies

Az > ¢F + ADxdly — Az Y ¢) — AAzgl,
i%N i#=N

n—1 n—1
_ _g_ZAtk (Gf¢k+1 I G'fqbk) _ _ngtk <G¢’i+1 + G¢>’§) . (3.26)
k=0 2 :

k=0

This was derived by multiplying equation (3.22) by V;, and summing over all cells, for n time
steps. The result is obtained by noting that fluxes on interior cells cancel when summed

over space, as do the intermediate spatial integrals, when summed in time.

3.2.2 Properties of update matrix

In this section we examine the eigensystems of the update operators in (3.20),
(3.21), and (3.22). To accomplish this, we will use the matrix decomposition routines
supplied with the MATLAB software suite [43]. This program is well-known and reliable, and
we trust that its results are sufficiently accurate for the purpose of this discussion.

All the time-integration schemes use our discrete Laplacian operator, L, so it is
a logical place to begin our analysis. In Figure 3.2, we plot the eigenvalues of —L, sorted

by magnitude, for N = 100 and a range of A € [275,1]. The spectrum is similar to that
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Figure 3.2: We plot the eigenvalues of —L for A € [27° 1], for N = 100 cells. There is a pair of complex
conjugate eigenvalues for A > 0.1 (real and imaginary parts marked by stars and circles), for oscillatory
modes corresponding to cell N. For A < 1, this eigenvalue grows as A™', while the eigenvector resembles a

discrete delta function in cell V.

range (0,4N?), except for two features. First, we note the presence of a single pair of
complex conjugate eigenvalues when A 2 0.1, which are marked by stars in Figure 3.2. The

corresponding eigenvector’s real and imaginary parts are plotted in Figure 3.3, along with
its absolute value, for A = 0.8. We see that the eigenvectors correspond to an oscillatory
mode for the last cell V, whose absolute value is smooth, but does not satisfy the boundary
condition. As A — 0, this mode becomes more like a discrete delta function in cell N; the
inset in Figure 3.2 shows the eigenvalue behaves like A"!N2. This is the expected result;
in Figure 2.2 Chapter 2, we found that the partial-volume-weighted operator’s condition
number was well-behaved as A — 0. A final anomaly in Figure 3.2 is the eigenvalue slightly
larger than 4N?, and independent of A. In Figure 3.3, we see that the corresponding

oscillatory eigenvector is due to the discretization in the leftmost cell. Because these specific
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Figure 3.3: Here we plot the eigenvectors of —L, for N = 100, corresponding to the left- and rightmost
cells. The mode on the left is independent of A, but the eigenvectors on the right are complex and oscillatory
(solid lines) for A = O(1), although their absolute value is smooth (dotted line). For A < 1, these modes
transform into a delta function in cell N (dashed line).
oscillatory eigenmodes are not present in standard discretizations of (Eq. I) [59], we can
conclude that they are due to the construction of gradients using quadratic polynomials in
the first and last cells.

Having explored the spectrum of —L, we can now examine the properties of each

time-integration scheme, and examine the effect of varying A¢, Az, and A. The first case

will be the forward Euler method, for which we have

PPt =@ + At LT . (3.20)

Thus, the amplification factor w for an eigenvector of L (not —L, as in Figure 3.2), with

eigenvalue A, is

w=1+At).
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For the scheme (3.20) to be stable, we must have |w] < 1. Given the eigenvalue distribution

in Figure 3.2, this requires that the time step satisfy
: 1 2
BAt < min [ A, 3 Az© . (3.27)

As A — 0, this is very restrictive. This is a well-known property of explicit, conservative
finite volume methods, such as those used with hyperbolic conservation laws [49].
This time step limitation can be avoided by employing an implicit time-integration

scheme. For example, the amplification factor for the backward Euler method (3.21) is

1
T 1- At

W

while that of the Crank-Nicholson method (3.22) is

The eigenvalues of L all have negative real parts, so that in these equations |w| < 1, and
both methods are unconditionally stable, as expected. Another significant feature is that
for A « —1, the amplification factor for the backward Euler method goes to zero. This is
because the backward Euler method is Lo-stable [37], causing the larger eigenvalues to be
dissipated more quickly. This is not the case for the Crank-Nicholson discretization, because
w =~ —1 for large negative A, so that the corresponding eigenvector is changes sign every
time step, with minimal damping. In Figure 3.2, |A| 3> 1 for a majority of the eigenvalues,
especially in the case A — 0, and we expect nearly all the eigenvectors to have this behavior

for the Crank-Nicholson discretization.
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3.2.3 An implicit Runge-Kutta method

The oscillatory nature of the Crank-Nicholson algorithm can cause severe problems
in some instances. We mentioned earlier that our desire was to combine our method with
high-resolution advection algorithms, as done in [3]. These algorithms are designed for sta-
bility in the presence of discontinuities in the advected quantity, by using slope-limiters and
upwinding, for example [38]. For embedded boundary, the restrictive time step constraint
(3.27) can be avoided by redistributing the conserved quantity [49], or by giving up con-
servation. Regardless, this lowers accuracy near the embedded boundary [20, 2], or in the
presence of significant high-frequency component [54]. We expect that these algorithms will
interact poorly with the Crank-Nicholson method, especially near cells with small partial
volumes.

This has motivated us to explore implicit Runge-Kutta (RK) methods. RK dis-
cretizations have been studied extensively, and are a popular method of integrating initial
value problems for ordinary differential equations (ODE’s) [37]. Exact solutions to ODE’s
are often expressed as exponentials of functions, and RK methods can be viewed as rational

such exponentials. The approach is applied to PDE’s using the method

<

approximations t
of lines, in which the spatial discretization is fixed, and the unknowns are advanced in time
as a system of ODE’s. From this viewpoint, the three temporal discretizations presented
above are RK methods, with rational approximations given by the amplification factor, w
[37]. A second-order accurate family of RK methods was presented in [61], for which the
rational approximation is

B 1+ (1 - a)(AtX)
YT A + (= Ly(Aatr)2

= e + 0(A12N?) .

In [61], it was shown that for a > 1, this approximation is Lo-stable, and for a = 5 it



CHAPTER 3. HEAT EQUATION 73

equation reduces to the Crank-Nicholson discretization. They also note that for o < 2— V2
or @ > 2+ /2, it is possible to factor the denominator using real arithmetic only, so that

the discretization can be written as

bi= ¢} + (1 — )AL L} + o, At L

PPl = ¢ + a_ At LD, (3.28)

where o, = (20— 1)/(a £ (a® — 4o+ 2)%), so that o, + a_ = a. In two dimensions, this
allows us to solve (3.28) using our standard multi-grid method, instead of having to invert
a linear sum of biharmonic and Laplacian operators. So although we now have to solve two
linear systems per time step, we will see below that the results are much less oscillatory

than the Crank-Nicholson discretization, but achieve the same level of accuracy.

3.2.4 Hybrid method for heat equation

Another approach is to give up conservation for the cells abutting the domain
boundaries, in favor of removing the oscillatory eigenmodes associated with them. One way

to accomplish this is to use the Lg-stable backward Euler method near the boundary,
Ot — AL = ¢

and the more accurate Crank-Nicholson method in the interior

At At
ot — Lo =t + 5L
This is motivated by similar approaches that have been used for hyperbolic conservation
laws [49]. In that case, the finite-volume discretization is abandoned in small irregular
cells, in favor of better stability properties for the overall algorithm. Below, we will suggest

how discrete conservation can be maintained without destroying the accuracy of the hybrid
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Figure 3.4: We plot the eigenvalues of the hybrid (solid line) discretization, for At = Az, A = 273, and
N = 100 cells, and which uses the backward Euler discretization in the first and last cells. The spectrum
is very similar to that of the Crank-Nicholson discretization (dashed line), except for two features. On
the right, we see Crank-Nicholson’s complex A = —1 (circles on dashed line) have been replaced by a real
A = —1 (circle on solid line), and a real A < 1 (same in inset). Similarly, the eigenvalue corresponding to
the leftmost cell in the Crank-Nicholson discretization (star, right), has been replaced by another A << 1
(star, inset).

approach.

Using the same notation as the previous section, we can look at the eigensystem
of the update matrix defined by (3.22) for cells 1 # N, and (3.21) in cell N. Because this
method is not a linear function of L, the spectrum in Figure 3.2 is no longer applicable.
In Figure 3.4 we plot the eigenvalues of the update matrix, for N = 100, At = Az, and
A = 273 We have used three different hybrid operators, which use the backward Euler
method in cell i = N, cells ¢ = {1, N}, and cells i = {1, N — 1, N}, respectively. In all
cases, the magnitude of the amplification factor |w| is less than one. This was also verified
for At € [0.1Az% 10Az] and A € [0,1], so that the schemes seem to be stable in this range
of values.

In comparing the eigenvectors of the Crank-Nicholson and hybrid operators, each

eigenvector is scaled to have unit magnitude in the Euclidean norm. An eigenvector v; is then
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Figure 3.5: We plot the eigenvectors for the first and last cells, for the hybrid and Crank-Nicholson
discretizations corresponding to Figure 3.4. The undamped eigenvector of the Crank-Nicholson discretiza-
tion (solid line on left) has been replaced by a heavily damped eigenvector (dashed-dotted) in the hybrid
discretization. Crank-Nicholson’s complex eigenvectors corresponding to cell N have been replaced with an
undamped real mode (solid line on right), and a heavily damped mode (dashed).

associated with cell ¢ if its absolute value in that cell is the largest, for all the eigenvectors.
For A Z 0.1, we see in Figure 3.5 that the complex eigenvectors have disappeared, but have
been replaced by a single, undamped eigenmode in the right-most cell, much like that in
Figure 3.3 for the left-most cell. The second-largest eigenvector in that cell corresponds to
low-frequency, damped mode (Figure 3.3, left inset). For the second hybrid method, the
osciallatory mode is removed, while for the last method, we see a return of the mode similar
to a discrete delta function in cell N, pictured in Figure 3.5. However, the corresponding
eigenvalue in Figure 3.4 is now much smaller, suggesting that it will be severely damped in
the time-integration scheme. We must conclude that the hybrid approach is able to damp

the large-eigenvalue-modes that persisted in the Crank-Nicholson method, in this range of

parameters.
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Calculation of conservative losses

However, if we still desire a conservative discretization, we must now account for
the flux mismatch between cells that use the Crank-Nicholson and backward Euler methods.
This lack of conservation d¢ at edge z’+% is found by subtracting the two different fluxes in

(3.7) and (3.8):

At
oot = 228 (6ap - 6ar}) (3.29)
T 2 2

Note that 6¢ is O(At) for At « Az, and thus one order larger than the O(At?) local
truncation error for the backward Euler method. We have chosen to associate d¢ with
cell 4, so that it will be damped by the hybrid method when it is re-incorporated. If the

transition occurs in cell N, for example, then d¢ included in the next time step,
P = ¢ + AtLo + A TegR, (3.30)

so that conservation is lagged until the following time step. We can see how this affects the
solution by noting that (3.30) is the same as (3.25), except that §¢™ = O(At) is one order
lower in At. However, our numerical results below will show that that the solution error

after O(N) steps is still O(At?).

3.3 Results in One Dimension

We may now apply the numerical algorithm to a series of test problems, to verify
the analysis in the previous sections. In this discussion, we will use the same definitions
that were given in Chapter 2. Discrete norms are given by || - ||, with subscripts oo, 1, and
2 denoting max-, 1-, and 2-norms, respectively. We will again use Qp to represent all cells
that contain a portion of the irregular boundary; all other valid cells make up the interior,

2, so that the computational domain is given by 1 = Qp U Q.
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Figure 3.6: We plot the truncation error for each of the methods using the exact solution (3.31). In the in-
terior of the domain, the backward Euler method is first-order accurate (circles), while the Crank-Nicholson
(stars) and Runge-Kutta (plus signs) discretizations are second order accurate. On the right, the par-
tial-volume-weigthed truncation error in the last cell, Ary, is O(Az) and well-behaved for over a range of A
and N (top line A = 1, lowest line A = 27F),

3.3.1 Decay of a sinusoid

For (3 constant, the exact solutions to (Eq. II) on simple domains can be found using
the “separation of variables” technique. In particular, consider (3.1) with homogeneous

Dirichlet boundary conditions and § = 1, on the interval z € [0,1], for which
oz, t) = e ™ Plginng (3.31)

is an exact solution, for ¢ > 0. This can be used to verify the truncation error arguments of
Section 2, and determine the effect of the larger boundary errors on the discrete solution.

We will first verify the estimates (3.20)-(3.22) for the truncation error after one
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Figure 3.7: Error in the discrete solution. The left-side plot show the oo- and two-norms of ¢ after
one time step, for a wide range of N. For the backward Euler method (circles), £ = O(At?), indicating
a first-order accurate method. The Crank-Nicholson (stars) and RK (plus signs) discretizations are sec-
ond-order accurate. On the right, we plot same error norms at ¢ = (.25, for these three methods and
the hybrid discretization. The backward Euler method is first-order accurate, whereas the others are sec-
ond-order accurate.
timestep, from ¢ = 0. Figure 3.6 demonstrates that for At = Az, and A = 10~2, the two-
norm of the truncation error in the interior of the domain is O(At) for the backward Euler
method, and O(At?) for the Crank-Nicholson and Runge-Kutta discretizations. There is no
difference between the hybrid and Crank-Nicholson methods in the interior of the domain.
Figure 3.6 also shows that, in the last cell, the partial-volume-weighted truncation error,
ATy, is bounded as A — 0, and O(At) for all methods.

This larger truncation error at the domain boundaries does not affect the conver-
gence rate of the solution. Figure 3.7 shows the error in the discrete solution £ = ¢° — ¢, for

a range of N. This is calculated for each of the methods by advancing the solution one time

step, from t = 0 to t = At. As expected, ¢ asymptotes to O(At?) for the backward Euler
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discretization, in both the co- and two-norms. The Crank-Nicholson and Runge-Kutta al-
gorithms are one-order higher, ||¢|| = O(A#®). Note that the larger error from the endpoints
does not corrupt the convergence rate of the solution in each case. The results from the
hybrid method are not distinguishable from the Crank-Nicholson method for the first time
step. Also in Figure 3.7, the co- and 2-norms of the solution error are plotted at time
t = 0.25, when the solution has a maximum value of ¢ = 8.5 - 10~2. The backward Euler
method is first-order accurate for this case, while the Crank-Nicholson and Runge-Kutta
discretization are second-order accurate. These results suggest that the larger truncation
error at the boundary does not affect the accuracy of the solution. The hybrid method, with
lagged conservation term d¢, also appears to be second-order accurate, although conver-
gence is more erratic for coarser grids. We have found that it is important to re-introduce

d¢ into a cell using the backward Euler discretization:
ML — At Lo = ¢% + doT .

When d¢7%; is put into a cell using the Crank-Nicholson discretization, it was found that the

hybrid method is unstable in the range of parameters used here.

3.3.2 Decay of non-smooth initial conditions in 1D

We will now demonstrate how each method attenuates high-frequency components,
by using an initial profile that is not C°, such as ¢(z,0) = 1 —|2z — 1|, for z € [0,1]. Again,

we have a Fourier series representation of the solution at time #:

8 — i . m,\ ek
(p(.’l?,t) =— Z (5[6 ~— S 'é'k) T sinwkzx

™
odd k>0

Figure 3.8 shows the four different discrete solutions, with N = 100 and A = 1073, along

with the initial conditions at £ = 0, and the exact solution after one time step, ¢ = 0.01. We
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Figure 3.8: Discontinuous initial conditions. We plot the solution at ¢t = 0.01, for the heat equation with
@ =0at z =0,1, and initial conditions ¢(z,t = 0) = 1 — |2z — 1| (dotted V-shape). The discrete solutions
for each of the four methods use N = 100, At = 0.01, and A = 1073, On the left, the exact solution (dotted
curve) is smooth, whereas the Crank-Nicholson (solid) and hybrid (dashed) discretizations cause cusps at
z = 1. The CN discretization also suffers from O(1) oscillations, due to the discontinuous initial conditions.

2
On the right, the Runge-Kutta method causes small

he right, th nge-Kutt illations, while the backward Euler method (dashed

aeeil
G8C I Vi€ o eLnoa (a

curve) causes none at all.

see that the Crank-Nicholson and hybrid discretizations suffer from a lack of attenuation
of the small-wavelength components in the solution; both algorithms have a cusp at z = %
The Crank-Nicholson discretization also has large oscillations at £ = 0 and z = 1, whereas
this is not as evident for the hybrid algorithm. In contrast to these two approaches, the
Lo-stable backward-Euler method has no such difficulties. The Runge-Kutta discretization
has small oscillations at £ = 0,1. At £ = 0.125 the exact solution has a maximum value of
¢ ~ 0.135 and contains no high-frequency components. Figure 3.9 shows that the backward
Euler method is first-order accurate in this case. This is true of the hybrid method as
well, because the cusp at z = %— persists, even after O(N) time steps. In addition to this

effect, the Crank-Nicholson discretization contains O(1) errors at z = 0,1, and does not

converge with grid refinement. These two errors, the cusp at = = % and jumps at z = 0,1
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Figure 3.9: Error at ¢ = 0.125 for discontinuous initial conditions. The error norm ||£[|, for the backward

Euler method (circles) indicates first-order accuracy. The hybrid method (crosses) is also first-order accurate,

due to the persistance of the cusp at z = % shown in Figure 3.8. The Runge-Kutta method (plus signs) is

second-order accurate, as expected, while the O(1) oscillations at z = 0,1 in the Crank-Nicholson solution
(stars) persist, preventing convergence.
are oscillatory because they are associated with modes whose eigenvalues are A ~ —1, and

thus change their every time step, without decaying. In contrast, the Runge-Kutta method

is second-order accurate, even for these discontinuous initial conditions.

3.4 Extension to Two Dimensions

The derivation in the previous section extends naturally to two or more dimen-
sions, given an appropriate discretization of the domain. As in Chapter 2, we will use a
cell-centered Cartesian grid, with the boundary represented as piecewise-linear, with one
segment in each cell (4,7). The same relationship (2.13) holds between the apertures A,

normal n, and area A of the front in each cell.
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3.4.1 Finite volume derivation in two dimensions

We start by integrating (Eq. II) over the control volume defined by the irregular

cell V; ;, and from " to t"*1 to obtain its surface integral representation:

I,

Time integrals of fluxes

tn+1

o(x', tM)dx' = / ; BV -ndA,;;dt . (3.32)
" Vi

o(x', " hdx' — /

g Vi

In the one-dimensional algorithm, we were able to show that the algorithms were
consistent due to specific cancellations in the quadrature errors for the flux integrals. We
will briefly demonstrate this point in two dimensions, by using the truncation error estimates
for L¢ from Chapter 2. First, note that the right-hand side in (3.32) is the Laplacian of ¢
evaluated at time ¢, and integrated over cell (¢,7) to obtain the flux difference form. The

discretization we used before is still applicable, when evaluated at the proper time:

(]
(W]
(L]
S

Az
/ BVe-ndA; =V, (Le;iﬁcz,jxf , (3.
av; 1,7

2

where we have again evaluated ¢ at cell centers x;; to obtain ¢7;. In addition, C;; is
uniformly bounded in A and Az, as before, for sufficiently smooth ¢. We have also set
Ay = Az to simplify our derivation, although the results still apply for Ay o« Az, as in
Chapter 2.

The approximations used for time integrals in one dimension are directly applicable
here, because the constant C; ; is a smooth function of time. This is because the truncation
error for L¢*® is only a function of the cell geometry and the spatial derivatives of . The cell
geometry does not change with time, so we may freely take the time derivative of C; ; if ¢

is smooth enough. We can then provide error estimates for the forward Euler discretization
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of the right-hand side of (3.32),

tn+l

AtA
/ BVy-n dAi?j dt' = Vi jAt <L¢i’;‘l + T‘Tzatci,j(tn)> , (3.34)
t" BV;J 17.]
where the error term is V; ;A x O(KA:%) Of course, we obtain a similar result for the

backward Euler discretization. For the Crank-Nicholson discretization, the trapezoidal rule

for the time integral yields the same higher-order cancellation as was seen in one dimension,

tn+1

/ BV -n dAi,j dt' =
tn @Vl‘J

1 @,Tl+1 e,n AtQASC +l
VijAt <§ <L¢i,j + L¢i,j) + "'“Kl']—‘ Ou Cyi(t"72) ) . (3.35)

Taylor-series expansions of volume integrals

In (3.32), the integrals of ¢ over the cell volume can be approximated using the
cell-center value; this is second-order accurate in full cells. In partial cells, we can obtain

first-order accuracy, by expanding the integral about the cell center, z; j,

J

iJ

o(x' t")dx' = (p(xi,j,t")/ dx' + V(x; ;,t") / (x' — x;,5)dx' + O(Az*). (3.36)

Vij Vi

Note that the first integral on the right side is just the volume V; ;. The second integral is
just the volume times the vector from the cell centroid, x; ;, to the cell center. Thus, the

expression reduces to

/ P, t")dx" = Vij o(%i5,t") + Vij(x§; — xi5) - Voo(xij,t") + O(Az?).  (3.37)
Vi

J

Thus, when we difference the two integrals over the cell in (3.32), the difference of terms

involving Ve is O(At). Since x{ ; — x;,; = O(Az), the error term becomes V; ; x O(AzAt).
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Truncation error for the methods

With these estimates in mind, we can now write the truncation error for the each
time discretization, starting with the forward Euler method. If we use ¢;'; in place of

@(x;,5,t"), substitute (3.34) and (3.37) into (3.32), and finally divide by Vj;At, we obtain

¢n+1 AN

—i—E——- L¢?, . (3.38)

Of course, for full cells, this formula reduces to the standard, forward Euler discretization in

two dimensions. The truncation error for (3.38) is found by substituting qﬁi’? = p(x;;,t")

for ¢7;, and using the quadrature error estimates (3.34) and (3.37), which leads to
gortt — g7 Az
LA A Lo, o .39

in partial cells. Because the the truncation error for L¢ is O(Az?) for interior cells, the
local truncation error is O(At + Az?) there. The same results hold for the backward Euler

method,

¢n+1 _an

—’-’l—&-—— Lgrit . (3.40)

Finally, using (3.35) in partial cells defines the Crank-Nicholson discretization,

¢n—}-1 n
At

(L¢"+1 +L¢§§j) , (3.41)

DI o

with truncation error O(At? + 7%—’”;) For interior cells, the method is second-order accurate
in time and space, as expected. As in one dimension, the hybrid method is defined by using

(3.40) in partial cells, and (3.41) in full cells.
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Discrete conservation

The three methods, (3.38), (3.38), and (3.38), still satisfy a discrete conservation
principle, as in one dimension. This is easily seen using results from Chapter 2; if we
multiply (2.14) for L¢ by the cell volume, V;; = A;;AzAy, and sum over any subset of
cells D € (2, the fluxes on interior edges cancel out in this sum. This leaves only the fluxes
on the domain boundary, G¢, and those between cells inside and outside D. With this
result in mind, we can multiply (3.40) by AtV; ;, and sum over cells (z,j) € D, and all time

steps from ¢ = 0 to t". This leads to the following discrete conservation equation:

. (3.42)

Z ViJ(d)?,j" U Atz

(1.j)eD k=1

Z edge Z Gf¢

edgesedD (1,7)€ED

Similar equations for the forward Euler and Crank-Nicholson methods, which can be derived

by starting with (3.38) or (3.41), and evaluating the same sums.

The non-adaptive multi-grid approach from Chapter 2 is easily extended to include
systems of equations like (3.40). These implicit discretizations require the solution to a linear

system of the form:
Gij — CLdij = piy- (3.43)

The only modification needed to apply the multi-grid strategy to (3.43), is to the replace

the point-relaxation procedure (2.22) with:

1
¢ = le“F;(Pi,j— Tl CLe ), (3.44)
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where the parameter p is now the diagonal entry of the matrix operator (I — (L). Note
that the superscript m refers to the point-relaxation iteration number, and is not related to

the time centering, n. No other modifications to the multi-grid procedure are necessary.

3.6 Software Implementation

As in Chapter 2, our algorithm for (Eq. II) is implemented using a combination
of the C++ and FORTRAN programming languages. The major difference is that the current
implementation is non-adaptive, and is no longer based on the modules developed by Martin
and Cartwright [42]. This allows us to use the simpler, single-block multi-grid algorithm,
without needing the multiple-block data structures in BoxLib. This has been implemented
in a MultiGrid class, which uses the algorithm presented in Section 2.4.

We have also used the object-oriented features in C++, such as derivation and
polymorphism. First, note that in the two different multi-grid algorithms for (Eq. I) and
(Eq. II), only the linear operator and point-relaxation schemes changed. For the general case
where this is true, we have developed a common base class, Operator, which implements
standard finite-difference operators on rectangular domains, using virtual member functions.
The MultiGrid class then contains an array of pointers to Operator objects, one for each
grid in the hierarchy. Thus, the basic MultiGrid class can be used to invert linear systems
corresponding to standard discretizations on rectangular domains.

The benefit of this approach is that embedded boundary classes can be derived
from Operator. Such derived classes have direct access to Operator’s member functions,
can use them for applying finite-difference operators on single-block data, and avoid multi-
ple implementations of these functions. For problems like (3.43), we have created a derived
class, EBOper, which implements point-relaxation and other operators for the embedded
boundary discretization. Information about the domain geometry and finite-difference sten-

cil is contained in the member classes VoF and EmbBndry, respectively, which were described
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Figure 3.10: Discrete solution for the test problem in two-dimensions, at ¢t = 0.125, for Az = 7, with
twenty contours between ¢ = 0 and ¢ = 0.07.

in Chapter 2. Another benefit of the derivation mechanism in C++, is that virtual member
functions in Operator can be redefined by EBOper. This results in polymorphism: a deref-
erenced pointer to an EBOper is treated as an Operator, but calls to virtual functions in
Operator use the redefined versions in EBOper. This allows us to specify a fixed program-
ming interface between Operator and MultiGrid, thereby isolating the MultiGrid class

from changes in the finite-difference discretization.

3.7 Results in Two Dimensions

In two dimensions, we will again use an exact solution to verify the error estimates

given above. Consider the domain Q@ = T; N Ty used in Problem 3 of the last chapter
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(Figure 3.10), where
T ={(r,0):r>0.25+0.05cos 66}

and Y7 is the unit square, centered at the origin, To = {(z,y) : |z| < &, |y| < 1}. We will

use the following exact solution of (Eq. IT) with 8 =1,
olz,y,t) = e 2™t cos Tz cos Ty , (3.45)

which satisfies the boundary conditions ¢ = 0 on dT5. On the interface 8T, we enforce
inhomogeneous Dirichlet boundary conditions given by (3.45), evaluated at the midpoint of
the front in each cell. The discrete solution is initialized using (3.45), evaluated at t = 0,
at cell-centers on grid with spacing Azx.

As in one dimension, we set At = Az, and use the exact solution at ¢t = At to
evaluate the accuracy of each of the methods. Our first result is the || - ||; norm of the
volume-fraction-weighted local truncation error, AtAr, plotted in Figure 3.11. We see that
the backward Euler method is first-order accurate, with local truncation error O(At?), while
the hybrid, Crank-Nicholson, Runge-Kutta discretizations are second-order accurate. Also
in Figure 3.10, we plot the partial- and full-cell components of the local truncation error
for the Crank-Nicholson discretization. We see that the full cells have AtAr; = O(At3),
as expected for a second-order accurate method, while the partial cell values are one order
lower, or AtA7p = O(At?). However, in Figure 3.12, we see that the error after one time-
step also behaves as in one dimension, with £ = O(At#?) for the backward Euler method,
and € = O(At?) for the other discretizations, although the Runge-Kutta method seems to
be approaching this limit only at the finest resolution. Also in Figure 3.12, we have plotted
the two components of the error for the Crank-Nicholson discretization, £p due to partial
cells, and &; from full cells, both of which are O(A#?). We conclude that the larger errors

near boundaries do not deteriorate the overall accuracy of each approach after one time
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Figure 3.11: Volume-weighted local truncation error for the test problem in two dimensions. The
backward Euler method (circles) has [|[AtAT]; = O(At?), as expected for a first-order method, while the
hybrid (crosses), Crank-Nicholson (stars), and Runge-Kutta discretizations (plus signs) are second-order
accurate. On the right, we plot the two components of the larger truncation error, AtATp = O(At?), due
to partial cells (dashed), and 77, due to the discretization in full cells, for the Crank-Nicholson method.

step.

Figure 3.10 shows the domain and discrete solution at ¢ = 0.125, for grid spacing
Az = &5 and At = Az. The exact solution (3.45) at this time has maximum value of
¢ =~ 7-1072 on Y. The solution errors for each of the methods are given in Figure 3.13.
The left plot shows that ||¢]|cc behaves as expected for the backward Euler and Crank-
Nicholson discretizations. The hybrid method with lagged conservation also seems to be
roughly second-order accurate, with variations due to erratic convergence of partial cells
in the oo-norm. The Runge-Kutta method seems to be slightly less than second-order

accurate. The right-side graph in Figure 3.13 shows that ||¢||2 behaves more as expected.
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Figure 3.12: Error for two-dimension test problem. The error in the discrete solution after one time
step is plotted versus the grid spacing. For the backward Euler method (circles), ||£]l; = O(Az?), indicating
first-order accuracy, whereas the other methods appear to be second-order accurate. On the right, we have
plotted the two components of the error after one timestep, for the Crank-Nicholson discretization. We see
that the error induced by the partial cells, £p (dashed line), converges at the same rate as that from the

interior of the domain, ;.
3.8 Conclusions

In this chapter we have extended the finite-volume discretization of (Eq. I) pre-
sented in Chapter 1 to the heat equation with variable coefficients (Eq. II). We derive a
consistent method from a discrete control-volume analysis, which used quadrature rules for
volume and surface integrals, combined with finite-difference approximations for the inte-
grands. Our first decision is to discard the forward Euler method, because the maximum
stable time step is severely limited in the presence of small cells. This leads us to consider
three implicit, conservative time discretizations: the backward Euler and Crank-Nicholson
methods, and a second-order accurate Runge-Kutta method. In addition, we condider a
non-conservative hybrid method, which uses a backward Euler discretization in cells con-

taining a portion of the domain boundary, and the Crank-Nicholson method elsewhere.
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Figure 3.13: Error at t = 0.125. In the left-hand plot, we see that the oco-norm of the discrete error
is O(Ax) for the backward Euler method (circles), O(Az?) for the Crank-Nicholson (stars) method, and
slightly less than O(Axz?) for the Runge-Kutta (plus signs) discretization. The hybrid method also seems
to be second-order accurate, although convergence is erratic for ||€|lec. On the right, ||£]]2 behaves more
smoothly, as expected.

Discrete conservation is maintained by introducing a lagged source term, to account for the
mismatch between the fluxes of the two different methods.

In all cases, the truncation error in partial cells is found to be O(AzA™1), for
At «x Az. We are able to show that this truncation error at the boundary produces
an O(Az®) error in the solution after one timestep. Numerical results in one and two
dimensions demonstrate this fact, and confirm that the larger truncation error in partial cells
does not deteriorate the overall accuracy of each of the methods. Thus, for smooth initial,
the backward Euler method is globally first-order accurate, whereas the other methods are
globally second-order accurate. The hybrid method with lagged conservation is second-

order accurate, when the source term is incorporated into a cell using the backward Euler

method. However, if that cell uses a Crank-Nicholson discretization, the algorithm is found



CHAPTER 3. HEAT EQUATION 92

to be unstable in the given parameter ranges.

In one dimension, analysing the eigensystem of L¢ also allows us to determine the
damping properties of each of the conservative methods. We demonstrate that the maxi-
mum eigenvalue of L grows like O(N?A~1), which is unbounded for arbitrarily small cell
volumes. For the Ly-stable backward Euler and Runge-Kutta discretizations, the corre-
sponding eigenmodes are heavily damped in time. For the Crank-Nicholson discretization,
these modes change sign every time-step, and were practically undamped. The hybrid
method is shown to be effective at damping eigenmodes associated with the partial cells,
but not other cells. Finally, we introduce a numerical test, which uses an initial condition
that was discontinuous at each end of the interval, and whose gradient was discontinuous
at the interval’s midpoint. The Ly backward-Euler and Runge-Kutta methods are still
first- and second-order accurate, respectively, whereas the Crank-Nicholson method does
not converge due to the undamped O(1) oscillations at each endpoint. The hybrid method

was only first-order accurate, due to an O(Az) oscillation at the interval midpoint. This is

We also demonstrate that each discretization is easily extended to two dimensions,
without modifying the approach used for (Eq. I). Each approach relies on a cancellation of
quadrature errors in the integral of ¢ over irregular cells; these terms can then be approxi-
mated with cell-centered values, instead of using the O(Az?) midpoint rule, without loss of
accuracy. This allows to make minimal changes to the multi-grid algorithm, to treat each
of the four linear systems. For smooth initial conditions, numerical experiments show that
the truncation error is again O(Az A™!) in partial cells, and induces only an O(At®) error
in the solution each timestep. In each case, the solution has a time-accuracy corresponding

to the method used in the interior of the domain.
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Chapter 4

Stefan Problem

4.1 Introduction

In this chapter we extend our discretization of the heat equation (Eq. II) on fixed
domains, to include changing domains 2(t). As described in Chapter 1, the classical Stefan
problem represents the simplest set of governing equations for solidification phenomena,
and specifies Dirichlet boundary conditions, ¢(x,t) = 0, on the domain boundary, 9§(¢).

In addition, the boundary moves normal to itself, with speed
u(x,t) = =St n- fVp(x,t). (Eq. III)

This represents conservation of energy, in that ¢ diffusing through the boundary causes the
front to traverse a specified volume. Therefore, the Stefan number St can be interpreted
as a parameter representing the balance between the front speed and the rate of diffusion.
For most semiconductor applications, St < 1, and diffusion time scales are shorter than
those of the front motion. For liquid metals, typical applications have St > 1, so that
conduction dominates. Our discretized equations will again be a finite volume method,

based on integrating (Eq. II) over the part of each cell inside 2, for one time step. However,



CHAPTER 4. STEFAN PROBLEM 94

this now requires that we represent 9Q in space and time, and compute surface integrals
on the moving front. Because (Eq. III) requires us to keep track of the volume moving
through 0, we employ an explicit volume-of-fluid front-tracking algorithm to provide a
discretization of the moving control volume, and advance the boundary in time. We can
then define an implicit finite-volume discretization using quadrature formulas for the surface
and volume integrals, along with finite difference approximations of V. The constraint
represented by (Eq. III) is enforced using a lagged conservation term, as with the hybrid
method in Chapter 3. Although this avoids coupling (Eq. III) with finding ¢©™*! in the
heat equation, it introduces stability problems for the both discretizations, so that we our
unable to develop a conservative discretization for the Stefan problem. The non-conservative
discretizations are stable, however, and results are presented for both discretizations in one
and two space dimensions.

We present a simplified derivation in one space dimension next, in Section 2. This

consists of both a discretization for the heat equation with moving boundaries, and a means

algorithm, in order to guide the derivation in higher dimensions. Section 4 describes a
volume-of-fluid front-tracking algorithm, which is needed to extend the algorithm to two
dimensions. The finite-volume discretization is derived for that case in Section 5. In the last

section, we evaluate the algorithm’s numerical results for test problems in two dimensions.

4.2 Approach in 1D

We first consider the heat equation in one dimension,

0 = Bipgg for z € [0,s(t)], with p(s(t)) =0, (4.1)
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Figure 4.1: The front advances by at most Az in on time step At. It either spends the entire time step
in cell N (left), or it crosses between cells N and N + 1.

with a moving boundary, s(t), and constant 3 > 0. In this case, (Eq. III) for the speed of

the boundary reduces to

u(t) = =St B pz(s(t), 1), (4.2)

so that the only free parameter in the problem is the Stefan number, St. In addition, we

will assume that the front only advances in time, so that u = § > 0.

4.2.1 Domain Discretization and Nomenclature

The control volume formulation first requires that a representation of the front’s
trajectory, s(¢). To this end, we first assume that the front’s speed u is constant from time

" to time "1, This implies that

As = sV — " = Atu”

where s™ and s"*! are the front’s locations at each time. This is represented in the space-

time diagram in Figure 4.1. Note that IV, the right-most cell inside the domain, and A are
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now functions of the front position, s, and therefore functions of time. We use the notation
that cell NV is the cell containing the front at t™,
S'fl
N=1+|—]|,
where [-] represents rounding down to the next whole number. In discussing the algorithm

between ¢" and t"*1, we drop the superscripts from u, N, and As to simplify notation. The

volume fraction A™ at time ¢" is given by

8" s"
=Ar [‘A‘”J :

n

"+1 in place of s™.

with an analogous formula for A”*! given by substituting s
Note that if "t < TNyl then the front stays in cell N during the time step;
otherwise it crosses from cell N to N+ 1. We make the restriction that As < Az; the front

moves no more than one cell width during a time step. Let us introduce the notation that

ds; is the distance the front covered in cell 1,
53N=min<xN+%—5",As) 58N+1=max(s”+l——a:N+%,0) .

Similarly, we split up At into the amount of time the front spends in each cell, so that

0ty = 6sy/u and dty41 = dsy/u. With these definitions we have
O0SN + 0sN+1 = As and 0ty + 0tyyr = At

4.2.2 Finite Volume Derivation with Moving Boundary

First, we will focus on the discretization in cell N, in order to demonstrate the
general finite volume approach. Note that in cells ¢ = 1,... ,N — 1 the algorithm is the

same as was used in the previous chapter for the heat equation, because they do not interact
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directly with the front. Again referring to the diagram in Figure 4.1, we can formulate
a finite-volume algorithm by applying the divergence theorem to the space-time control

volume in cell N,

L ps(t) tntl
/t / (‘Pt ,B(Pm:) dz'dt’ = i IB()OCE(',L.N——-%7t,) dt’

sn+l 8™

+/ w(w',t"“)dw'~/ o(a',t") dz’ (4.3)
xN_% zN_%
tn+1 tn+1

- [ el ral = [ peatstt), oy at
tn tn

Note that this applies to the case where the front does not leave cell N during the time step
(Figure 4.2), that is Ty} < s s < Tyl the other case will be dealt with in more
detail later. In (4.3), the right-hand side of the first line represents the integral of the fluxes
through the left edge of cell N, like the same term in the heat equation. The second line of
(4.3) represents the change in the total integral of ¢ in cell N between times ¢**! and #".
The last line represents the effect of the boundary motion on the total integral of . The
first integral is the change in ¢ due to the front overtaking regions where ¢(s(t),t), whereas

the second integral is the total flux through the moving interface over the time step.

If we integrate the constraint (4.2) from " to t"*!, we obtain

tn-}-l

As = —St Bz (s(t),t)dt . (4.4)

tn

Note that this is proportional to the last term in (4.3). Thus, the finite volume interpretation
of the Stefan problem requires that the time-integral of the flux through the front is exactly
proportional to the total distance covered by the front. This represents a conservation of ¢,
in that the volume converted by the front is driven by the diffusion of ¢ (given by By, ) from
the interior. For the remainder of this section, it will be assumed that 8 = 1, to simplify

the derivation and discussion.
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Figure 4.2: We plot the space-time surfaces corresponding to the integrals in (4.3). If we approximate the
integrals using the midpoint rule (square boxes, left), we obtain a first-order accurate method.Alternatively,
the time integrals may be evaluated at the same location in space, but at ¢"** (right), without losing any

accuracy .

Cancellation of Quadrature Errors

We now wish to show a more general characteristic of finite volume methods of
the form (4.3). In Chapter 3, we obtained a cancellation of quadrature errors in the finite-
volume formulation for (Eq. II) with fixed boundaries. This allowed us to use only first-
order accurate quadrature rules, and still retain a consistent discretization. We will now
demonstrate that this behavior extends to the case with moving boundaries.

Let us expand the integrals of ¢ in (4.3) in a Taylor series about some z*. After

some simplification, we get

tn-{-l

s(t')

/ pr dz'dt’ = A" Az (2%, 1) — A"Az p(a*, 1) — As p(a*, 177 5)
tn Ty 1
2

+ A" Az (ZVT — 1%) (¥, 1Y) — APAZ(Z" — z¥) g (o, )

— As(5 — 2 g (z*, t7F3) + O(Az?) .

Here we have treated u as a constant between t" and #"*!, and represented the irregular
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_ : PR
cell N centers as Z, and the front location at t"*2 by 5 = %(s” +s"*1). We can also expand
the last two lines of terms in ¢, (z*,t), about some time t*, at which point they to reduce

to

— (A" Az -~ A"Az — As)z* i (z*,t*)

+ (A Az 2M - AMAz 3 — As 5) (a7, 1) + O(Az?At) .

The first term in parentheses is zero because As = (A"*! — A")Az. Similarly, by using the

definitions of Z, which in this case are

1
.1_3”+1 = (IL'N__% + Sn+1) and T’ = 5 (QTN__% + Sn> 3

N =

we see that the second term in parentheses is zero, also. With these cancellations, the
remaining error term is O(Az?At), implying the algorithm is first order accurate. Thus, by
evaluating the integrals of  at £* and the proper time given by the midpoint rule, we still
obtain a consistent method.

We can show a similar result for the integrals in (4.3) involving ¢, but with the
roles of z and t reversed. Here ¢, is evaluated at some arbitrary ¢*, but at the location in

space given by the midpoint rule (Figure 4.2),

tn+1

tn

s(t')
/ Ve dz'dt’ = At <<p$(§, t*) — @z(an%,t*)) + O(AzAt?) (4.5)
.'EN_%

Thus, we have a first-order accurate discretization of ¢, in (4.1), provided the finite dif-

ference stencils for o, are second-order accurate.

4.2.3 Derivation of the Finite Volume Method

We may now return to the problem at hand, given a bit more confidence about

our ability to discretize (4.1). We will use a method similar to what those presented in
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Chapter 3 for the heat equation. This means either a backward Euler or hybrid method in
any cell the front intersects during the time step. Because the algorithm for full cells was
described in the previous chapter, we will not treat it with any more detail here. However
we will provide a detailed description of the time-stepping procedure for cells that intersect

the front.

Approximation of ¢ integrals

At this point, we will make use of the boundary condition ¢(s(t),t) = 0, in (4.1).
This is substituted directly into the integral of u ¢ in (4.3), making that term zero. The
spatial integrals that are left are then approximated using the midpoint rule. For example,

at t", this means

Sn
/ (', t")ds' = A" Az o(Z",1") + C1AZ3 0 (F7, t7) + O(AZ). (4.6)
Ty_1

N-g

"+l is not in cell N,

Note that z" depends on the front location s". For instance, if s
then we use z"*! = z,, which is the Cartesian cell center. Now we must determine an
approximation to (z",t").

However, it was shown above that we could have obtained a consistent discretiza-
tion even if the terms were all evaluated at any point z*, like z;. This was the approach
taken in Chapter 3, for fixed domains. In this case, we would not be able to use the fact
that o(s(t),t) = 0, to remove the u ¢ term in (4.1). We would have to approximate ¢(z*, )
using an interpolation in time, in conjunction with an extrapolation in space, if * > s. This
could have consequences for the stability of the algorithm, and so we prefer to approximate

the spatial integrals of ¢ with values at Z (Figure 4.2).

For cell N, we can linearly interpolate neighboring cell-centered values of ¢ to Z,
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by defining an averaging operator,

. (TN —zn-1) (Zy — zn)
Ry dt) = IS N1 - 4.7
avg(Zy, ¢") Ao N (4.7)
Using linear interpolation provides second-order accuracy to the value of ¢(Z",t"). By

substituting this into (4.6) we obtain

/S o(a’, t")de’ =~ A"Az avg(Zh, ¢") + O(Az3).
Tho}
Of course, an analogous approach is used to approximate the spatial integrals at ¢"*! using
the averaging operator at the new time, avg(z"*!, ¢"*1).
Note that if the front has left cell N at t"*1, z is the cell centroid at that time,
and no interpolation is necessary. In that case, the front has entered cell N + 1 during the
time step, and we use the interpolation stencil at t"*! there. We assume the integral of ¢

is zero in that cell, and no interpolation is necessary.

Integrals of spatial fluxes

At this point we must separate the problem into two distinct cases. The first is

when the front stays in cell N for the duration of the time step, that is z,,_1 < s™, s"*! <

2

T, 1. The second case is when the front leaves cell N and enters into cell N + 1 during
2

the time step, or 8" <zpn 1 < s"*1. We will now treat each case separately.
2

Front remains in cell N. If the front stays in cell N, we use the quadrature error cancel-
lation presented above to formulate a backward Euler discretization. Instead of evaluating
¢, at the time indicated by the midpoint rule, we will use t* = ¢+, and use the formula

(4.5)

tn+1 tn+1

/tn c,ox(s(t’),t’)dt’—/tn pr(zy_1,t) dt’ = At <F;}"+1—F;f1%> : (4.8)
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Figure 4.3: When the front stays in cell N during the time step, we require an approximation to the

gradient at §n. This is accomplished by fitting a quadratic polynomial to the two values ¢n—2 and ¢y,

-1

and the value 0 at s"7°. The slope of the polynomial is then evaluated at 5y to approximate 8,¢.

The flux F]’\ff_ll represents centered differences of ¢"*! as in Chapter 3. We have also
2

"+1 which uses values ¢"*1, but is calculated at

introduced a new flux approximation, Fgf ’
5y instead of at the actual front location, s"™!. We can extend the formula for F/m+!
from the previous chapter, by evaluating the quadratic interpolant at this new location to

obtain

1 dq da\ | 2(5y — s™t1) 1 1
Ff,n—f—l - n+l %1 ndl %2 + n+l - gn4l - 4.9

SN d2 _ d1 ¢N—2 d2 qzsN—l dl dg . dl ¢N——2 dQ ¢N—-1 dl ’ ( )
where d; and d are the distances from s"*! to cell centers z;_; and z;_, respectively. We
have also used the Dirichlet boundary condition ®/(#**1) = 0 to simplify the formula. A
graphical depiction of it is given in Figure 4.3, for case we are studying now. Note that
when the front is not moving, §y = s"*! and the second term vanishes, and the formula

reduces to F/Hm+l

Front crosses cell edge. When the front crosses from cell N to cell N + 1 during the
time step, we break up As and At into parts corresponding to each cell, using the notation

introduced earlier. See Figure 4.4 for a diagram corresponding to this case. For cell N +1,
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Figure 4.4: When the front crosses between cells N and N + 1, the difference formula requires an
approximation to the gradient at 5x. This is accomplished by fitting a quadratic polynomial to the three

values ¢n -1, ¢, and ¢n 41, and evaluating its slope at 5y.

the time integrals are approximated by

tn+1

/t Pu(s(t),t) = palzy 1,1 dt' ~ bty <F{;{:§1 - F;;jl%) : (4.10)

Here 5y41 = In41, because the entire irregular cell N + 1 was traversed by the front.

The interface flux for cell N is computed differently, when the front leaves during
the time step. In order to avoid tracking the front’s properties outside of cell N, we have
chosen to interpolate a flux to the point 3y, and call the result F;&"H. This is done by
differencing cells N ~ 1, N, and N + 1 to obtain an approximation of the gradient at 5y

and "1
plN+L_ ] SN Dy 1 1\ s 411
N T Ag 7 PNy — 29N + v+ 3 PNt ) (4.11)

where v = (55 — zn) /Az. Note that this is a second-order accurate difference stencil.

The other time integrals in this case are computed using centered differences at
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t"t1 as before. In all, this results in the difference of fluxes given by

tn+l tc tn+l
/t <pm(:cN+%,t'> dat’ +/tn e (s(t),t)dt' — /tﬂ cpz(acN__%,t'> dt/

~ 1 ILN+1 +1
~ (At — ty) F;i% + 6ty F5 T — At FZ,_% . (4.12)

This concludes the enumeration of time integral discretizations.

4.2.4 Overall Time-Stepping Procedure

We will now summarize the procedure for advancing the front position s and
solution ¢ to time t"*1, given their values at ¢".
Motion of the front

First, the front is moved by approximating its speed at ¢ using (4.2), and then

using this to find the new location of the front. Specifically, we use
oz (s",t") ~ FI7
where F/" is the flux at t*, given by (3.16). The front is moved by applying
st = 5" — St AtFHm (4.13)

Here At is chosen so that As = Cr Az, where Cr < 1 is the Courant number. This is not
a requirement for the stability of the algorithm, but only a constraint that the front may
move at most one cell length per time step.

Note that (4.13) is an explicit first-order method for moving the interface, and
requires only that F/™ be a first-order accurate estimate of the front speed. The result is

that an O(At#?) error is introduced in the front location, each time step. If it is desired to
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have a second-order accurate discretization of the of the front motion, we may employ the

explicit Adams-Bashforth method [37], which uses velocities at both "~! and t™
sl = gm S %f (3p7m - pIn-1) (4.14)

In order for this method to be second-order accurate, At must be constant. In addition,
F/™ must now be second-order accurate, so that the error in the front location, induced
by applying (4.14), is O(At3) every time step. Finally, because the value of F/n~1 ig
not available initially, we must use (4.13) for the first time step. Although this causes an
O(Az?) error in the front position, this is of the same order as that caused by (4.14) after
O(Az™1) time steps. Thus, the algorithm should is still produce a second-order accurate

front position.

Advancing the heat equation

After moving the front, we have all the geometric properties necessary to approx-
imate the necessary integrals. We will now go through each of the cases again and write
down the finite difference formulas for ¢!, for the two cases. Note that in cells that do

not contain the front during the time step, we have the simple update formula
¢?+1 — At (qun—{-l)z = ¢? ’ (415)

for the backward Euler algorithm, and

= S (g, = o + 5 (e, (4.16)

for the hybrid algorithm. These are the same methods from Chapter 3.
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Front remains in cell N. In this case, we combine all the approximations of integrals

into a single update formula in cell N,
W Aaag( g 0 — A ave( o) = e (BT - FEL) L)

This comes from substituting (4.7) and (4.8) into (4.3), and represents a first-order accurate

discretization of the heat equation with a moving boundary, in cell N.

Front crosses cell edge. In this case, we require a discretization of (4.3) in both cell N
and N + 1. The discretization in cell N + 1 is derived by combining (4.7) and (4.10) to get

A AL an(QbR/illa ¢7\r+1) = 0tny1 (Fme — Fril ) . (4.18)

SN+1 N+%

In cell N, we use the interpolated gradient in in (4.12), given by (4.11), to obtain

Az ¢t — A" Az avg (¢, ¢_y) = (At — 5tN)F_;i%% +tnFy = AtFRTL L (4.19)

Again, each of these formulas is first-order accurate in space and time.

4.2.5 Discrete conservation

The time integral of ¢, (s(t),t) is proportional to the distance moved by the front
during the time step; this is expressed in (4.4). We could make use of this fact, and enforce
an inhomogeneous Neumann boundary condition when updating ¢!, thus producing a
single step, conservative algorithm. If we were to do this, however, the update equations
for ¢ would not explicitly use the boundary condition ¢(s(t),t) = 0. This fact would only
appear in the conservative flux representation of (4.3). Thus any error in the solution would
allow the value of ¢(s(t),t) to drift away from 0 after several time steps. In addition, we

would not have the effect of the Dirichlet boundary condition, which reduces the effect of



CHAPTER 4. STEFAN PROBLEM 107

the truncation error by one order in Az. So we have chosen to use the Dirichlet boundary

condition in the discretization, and account for the energy balance by some other meauns.

Sub-iteration strategy

A first option that is used frequently in the literature, is to try to match the
velocity of the front with the discrete flux calculated at the interface. This essentially
means performing a sub-iteration between (4.1) and (4.2), to couple the two equations.
One problem with this approach is that it involves advancing the heat equation repeatedly,
until the (4.4) is satisfied to some desired tolerance. For a conservative method, that
tolerance could be nine or ten orders of magnitude smaller than the temperature field, thus
requiring a significant number of iterations, each involving advancing the heat equation. In
two or more dimensions this is a daunting amount of work, so this approach would be more

appropriate for a non-conservative or explicit method, and less so for our implicit method.

Lagged conservation term

Instead we choose to calculate the energy mismatch due to (4.4) not being satisfied

by our discrete equations. This can be quantified as
Sy = —St™LAs — At LT (4.20)
if the front does not exit cell N, and

6N = =St Ssns — Btygn FLH

dpn = -8t ! dsy — Oty F;I:/n.*—l )

if the front crosses the edge of cell N. Because the front is moved explicitly using (4.13),

and the fluxes are first order, we expect this correction to be O(At?).
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This loss of §¢ can be reincorporated on the next time step, to maintain total
discrete conservation of ¢. For example, during that last time step, from t"~! to 7, a
§¢"! was calculated for the current cell N. This is then added back into the evolution

equations from " to t"t1:

A Az avg (¢, %) — AmAzave (6%, 9%_1) =

At (Fgf];"“ — Frt ) + g%, (4.21)

1
2

for instance, where the front does not exits cell N during the time step. Analogous expres-
sions for the other cases are derived simply by adding 6¢™~! into the right-hand side of the

evolution equations.

Flux mismatch for the hybrid method

The hybrid discretization has an additional difficulty due to the mismatch of fluxes

through edge N — 1 in equations (4.16) and (4.17) or (4.18):

At )
S¢n = — St~ sy — ty FLH 4 =3 (F;;tl% ~ Fﬁ_%) : (4.22)
if the front crosses the edge of cell N, or
-1 fin+1 At n+1 n
by = —St™H As = AR 4+ T (PRt —FR_y ), (4.23)

if it does not cross.

4.2.6 Summary of time-stepping algorithm

To summarize, the solution is advanced in time by performing each of these steps

in succession:

e Explicitly move the front, using the temperature gradient at " in (4.13).
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e Solve for " *! using the algorithm for the heat equation with moving boundary, and

reincorporating the loss term 64" ! using (4.21).
e Calculate the loss d¢™ for this timestep, using (4.20).

At this point, we have updated ¢"*! and s”*!, and repeat each part for the next time step.
There are no specific start-up procedures, other than setting ¢ and s to their given initial

values, and the conservation term ¢ equal to zero.

4.3 Results in One Dimension

We will now evaluate the algorithm described above in a series of numerical test
problems. In order to separate out the different contributions to the discrete error, we
will calculate numerical solutions to for an intermediate problem, the heat equation on a
changing domain (4.1), without the constraint (4.2) for the Stefan problem. The boundary
motion will be specified using an analytic solution to the Stefan problem in one dimension,
so that our results for this simpler problem can help us evaluate the results we obtain for
the entire algorithm. The second test will be the complete Stefan problem, using both a

conservative and non-conservative algorithms.

4.3.1 Analytic Solution in One Dimension

Carslaw and Jaeger [15] provide an analytic solution for the Stefan problem in one

dimension. Consider the initial value problem for the heat equation (4.1):

o(z,0) =0 for £ > 0, and ¢(0,t) = 1, ¢(s(t),t) =0, (4.24)
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where we specify s(t) = 2x+/[5t, with k a constant parameter. We have also set 3 equal to
a constant in (4.1), so as to obtain the following analytic solution for (4.24):

z

o(z,t) =1 —erf (2\/375

) Jerf(k) for z € (0,s(t)). (4.25)

The normalized error function,

t
erf(t) = —?\/;T;/o e dr,

is easily calculated. At any time t > 0, ¢ is C* on the interval z € (0,s(t)), due to the
smoothness of the error function.

We may also calculate o, (s(t),t) from (4.25),

1 e

sz(s(t)at) = "m erf k.

With the definition of s(t) given above, we have an expression for the front speed, u(t) =
$(t) = fi\/é . After applying the constraint (4.1) on 5(t), we obtain the following non-linear

algebraic equation for «:
St e = V7K erf &,

where St is the Stefan number. For St < 1, time scales for diffusion are smaller than those
for the front motion, which produces an almost linear solution between z = 0 and = = s(t).
When St > 1, the front moves more quickly, and slower diffusion causes the solution to

have larger second derivatives.
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4.3.2 Heat Equation with Moving Boundary

We will now use this analytic solution to the Stefan problem to test the finite
volume algorithm for the heat equation with a specified boundary motion, s(t) = 2x+/ft.
We will discretize s(t) in a way that simulates the behavior of the advection algorithm:
choose some Cr < 1, and solve the following equation for the At that produces the desired

front motion:
CrAz=ult = At=——/["")%~(s")?]. (4.26)

The speed of the front during the time step is determined from u = %—j. To exercisekall the
dependencies of the discretization on A™, we will set Cr = \/g , an irrational number. When
Cr is a rational number, A" cycles through a list of values that depends on the common
factors of the numerator and denominator of Cr. In that case, we could find that A™ <« 1 or

A™ ~ 1 never occur, and the algorithm would not be thoroughly tested. With Cr irrational,

Problem 1: Heat equation with St =1

To perform the calculation, we choose an initial time t° = 0.1, and set ¢(z;,t°) =
@(z;,1°), and 5% = s(¢°), where s(t) is of the form given above. The discrete solution is
advanced using (4.26) with Cr = (/% for a total of n = (2Az)~! time steps. We have set
B =1 and St =1 in the following calculations.

The exact solution is plotted in Figure 4.5 at times ¢ = 0.1,0.3,0.6, and we see
that it varies smoothly between ¢ = 1 at 2 = 0, to ¢ = 0 at z = s(t). In each of the
following cases, the discrete solution at cell centers is compared to the exact solution at
the same final time, using (4.25). Because it is possible that z; > s(t"), the exact solution
(4.25) must be evaluated outside of the domain for some cases, and we assume that this is

equivalent to smoothly extending the solution past the domain boundary.
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Figure 4.5: The exact solution to the Stefan problem in one dimension, for St = 1, is plotted at times
t =0.1,0.3,0.6. Because our discrete solution ¢ can extend beyond the front location, we extend the exact

solution using (4.25), even when the result is less than zero.

In Figure 4.6 we show the error in the discrete solution, { = ¢ — ¢(z;,t"), for
the non-conservative backward Euler method. The results are presented for six
Az =0.1-27%4¢€{2,3,4,5,6,7}, while the final time and front position is the same for all
i. The solution error is smooth, and reduces by a factor of two with each refinement of Az,
suggesting that the algorithm is first-order accurate. Also in Figure 4.6 is the difference
between the calculated front speed, using (4.13), and the front speed u®(t) = $(¢) from the
exact solution (which is u(t) ~ 1 ~ 2 for ¢t = 0.1 ~ 0.4). This also appears to be first-order
accurate, as expected.

In Figure 4.7 we plot the error in the discrete solution, for the hybrid method,
with the same values of Az. The error is relatively smooth for z < 0.37, but increasingly
more oscillatory as z approaches the front location. Because the initial location of the front
is s(0.1) = 0.37, we conclude that this is due to the error introduced at the front every

time step. Because the hybrid method does not dampen high-frequency components of the

error, it persists, even after O(N) time steps. It is important to note, however, that the
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Figure 4.6: We plot the error in the discrete solution (£ on the left) for the backward Euler method
applied to the heat equation, with St = 1, after n = 5—}5 time steps. The difference between the exact front
speed, and that calculated from F/™, is plotted versus time on the right. In both cases, the errors appear
smooth and O(Az).

A

error appears to converge like O(Az?), so that the method is second order accurate. This
confirms that the O(Ax) truncation error in the cells neighboring the front do not adversely
affect the overall accuracy of the discrete solution.

Figure 4.8 shows, however, that the error in the front speed is extremely noisy,
albeit relatively small. We attribute this to the combination of a high-frequency compo-
nent in the solution error, and the polynomial interpolation used to approximate F/. By
calculating the linear least-squares fit to the logarithmic data, we can that u is behaving
roughly like O(Az?), indicating that the gradient calculation is also second-order accurate
(Figure 4.8).

In this section we are approximating the heat equation with a moving boundary,
and thus do not have to satisfy the constraint given by (4.4). However, our failure to

satisfy (4.4) can be still be calculated from d¢ in (4.20), which is plotted in Figure 4.9. As
stated above, §¢ behaves like O(Az?), for both the backward Euler (left) and hybrid (right)
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Figure 4.7: We plot the error in the discrete solution for the hybrid method applied to the heat equation,
with St = 1, after n = —2-21{; time steps. Note the oscillations in the error for z 2 0.37, which we attribute to
the hybrid method’s inability to damp high-frequency components of the error, which are introduced at the

front each time step.
methods.

Finally, we can consider what happens when the front motion is specified, but §¢ is
reincorporated using (4.21). This resembles the complete algorithm for the Stefan problem,
while avoiding any feedback between the algorithms for moving the front and advancing
the heat equation. Figure 4.10 shows the error in the solution , which is smooth, and
indicates that the algorithm is still first-order accurate. Figure 4.11 shows that the error
in the calculated front speed is as noisy as that of the non-conservative hybrid method. In
addition, the linear least-squares fit suggests that the calculated speed is first-order accurate,
as expected.

When the hybrid algorithm, with the lagged conservation term d¢, is applied to
this same test problem, it was found to be unstable. We again attribute this to a feedback
mechanism between the calculation of é¢, which uses quadratic polynomial interpolation to

calculate F/, and the lack of damping provided by the hybrid operator, for high-frequency
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Figure 4.8: We plot the error in the calculated front speed for the hybrid method applied to the heat
equation with St = 1, for n = 5%; time steps determined from (4.26). The error for each grid spacing is
very oscillatory (left), but a linear least-squares fit to the data (right) appears to converge like O(Az?).

components of the solution.

Problem 2: Heat equation with St = 100

For St > 1, the front moves more quickly than the diffusion of ¢, so that the exact
solution’s second derivatives in space are larger than the St = 1 case. The exact solution for
St = 100 is plotted in Figure 4.12 at times ¢ = 0.01,0.03,0.06. In the following numerical
experiments, the Stefan number is the only parameter that differs from the previous section.

In Figure 4.13 we show the error in the discrete solution, for the backward Euler
method; it appears to be first-order accurate for this case. The error in the calculated front
speed is also plotted in Figure 4.13, where we see that it is noisier than the results for St = 1,
but still O(Az). Figure 4.14 presents the solution error for the hybrid method, which again
appears to be second-order accurate, although a bit less noisy. The velocity error closely
resembles the very noisy results for St = 1, so that we only present the least-squares, linear

fit to the data, which appears to be approximately second-order accurate, as well.
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Figure 4.9: We plot the total conservation losses §¢ versus time for the backward Euler (left) and hybrid
methods (right) applied to the first test problem. Both d¢ are O{Axz?), although the hybrid case appears to
be more oscillatory.

Figure 4.10: We plot the error in the discrete solution for the backward Euler method with the lagged
conservation term, applied to the first test problem. Again, the error appears to be O(Axz).
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Figure 4.11: We plot the difference between the calculated and exact front speeds, versus time, for the
first test problem. Again, there is a oscillatory component to the error (left), but a least-squares fit (right)
suggests that it is still a first-order accurate approximation.
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Figure 4.12: The exact solution to the Stefan problem in one dimension, for St = 100, is plotted at
times t = 0.01,0.03,0.06 (from left to right).
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Figure 4.13: We plot the error in the discrete solution (left) and calculated front speed (right) for the
second test problem, with St = 100. Both appear to be O(Axz).
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Figure 4.14: For the hybrid method applied to the second test problem, the error in the discrete solution
(left) appears to be O(Az?). The error in the calculated front speed looks very much like Figure 4.8, and
the linear least-squares fit suggests that it is also O(Az?).
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Figure 4.15: We plot the total conservation losses §¢ versus time, for the backward Euler (left) and
hybrid (right) algorithms for the second test problem. Both ¢ are O(Az?), as in the first test problem.
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Figure 4.16: When we reincorporate ¢, the backward Euler method applied to the second test problem
still produces a first-order accurate discrete solution (left). The error in the calculated front speed is again
very noisy, like Figure 4.11, but the linear least-squares fit suggests that it is O(Az).
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The deviation from conservation for this test problem is given in Figure 4.15, which
shows that it is again O(Az?) for both methods. Reincorporating §¢ into the backward
Euler method is also stable for the St = 100 case. Figure 4.16 shows the error in the
solution, as well as the least-squares, linear fit to the velocity error. Again, we find that
the calculated velocity is first-order accurate. However, when 8¢ is reincorporated with the

hybrid algorithm, it is again found to be unstable.

Conclusions for the heat equation

Given these results, we may conclude that our discretization for the heat equa-
tion with moving boundaries performs as expected, when we are not concerned with the
constraint (4.4). The backward Euler method produces a first-order accurate solution, and
an approximation of the front speed that is O(Az) as well. Note that the backward Euler
method is still a conservative discretization of the heat equation with a moving boundary.
When the conservative losses d¢ are reincorporated with (4.21), the accuracy of the method
remains the same, although the error in the calculated speed has an significant oscillatory
component.

The hybrid method, which is not conservative due to the mismatch in fluxes at
TN-Ls does produce both a second-order accurate solution and approximation to the front
speed, as we concluded from the derivation. This is particularly significant, because the
algorithm is identical to the backward Euler method in the cells that contain a portion of
the front. These two test problems for the heat equation have demonstrated that the lower

accuracy near the moving boundary, does not inhibit the overall accuracy of the solution.

4.3.3 Stefan Problem

For the Stefan problem, the algorithm is exactly the same, except that we now
use an explicit algorithm for advancing the front. Again, we perform calculations for both

St = 1 and St = 100, using either the backward-Euler method, given by (4.15), or the
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Figure 4.17: The backward-Euler method for the heat equation and forward-Euler method for advancing
the front have been applied to the third test problem, with St = 1. The error in the discrete solution is
smooth, and appears to be first-order accurate.

hybrid method (4.16). We have demonstrated that the backward-Euler method is first-
order accurate for the heat equation, so we pair it with the explicit Euler method (4.13)
with Cr = \/ %—, to approximate the front motion. For the hybrid algorithm, we were able to
obtain a second-order accurate approximation of the front speed, which suggests using the
Adams-Bashforth method (4.14) to update the front position. However, in that case, At
must be held fixed for the duration of the calculation. For that case, At is calculated from

Cr= \/%— and the initial calculated front speed. However, both approaches take a total of

n = (2Az)7! time steps.

Problem 3: Stefan problem with St =1

Figure 4.17 shows the results for the backward Euler method for the six different
Az =0.1-27%4 € {2,3,4,5,6, 7}, with initial time ¢ = 0.1. The error in the discrete solution
appears to be O(Axz), as expected. Figure 4.18 plots the error in the position of the front

|s(t") — s™|, as well as the error in the calculated speed of the front. Both of these appear
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Figure 4.18: We plot the error in the front position (left) and the calculated speed (right) versus time,
for the backward-Euler method applied to the third test problem. In both cases, the error appears to be
O(Az) and smooth.
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Figure 4.19: We plot the error in the discrete solution (left), for the third test problem, using the hybrid
method with Adams-Bashforth for advancing the front in time. This results in a second-order accurate front

position (right) and solution.
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Figure 4.20: We plot the difference between the calculated and exact front speeds, versus time, for the
hybrid method applied to the first test problem. Again, there is a oscillatory component to the error (left),
but a least-squares fit (right) suggests that it is O(Az?).

to converge smoothly, and indicate that the algorithm is first-order accurate overall.

From Figure 4.19, we may deduce that the hybrid algorithm is able to produce
second-order accurate (but mildly noisy) results for both ¢ and the front position. In
Figure 4.20 we see that the calculated front speed continues to be very noisy, although the
least-square linear fit suggests that it is still O(Az?). Indeed, if the front speed were not
second-order accurate, we would see the accuracy of the calculated front position deteriorate,
as well.

The calculations attempting to maintain conservation with the lagged source term
§¢ were unstable, for both the backward-Euler and hybrid methods. Because this was
not the case for the backward-Euler method, when the boundary motion was specified,
we must conclude that this is a feedback mechanism between reincorporating d¢, which is
O(At?), and the front speed calculation, which uses the quadratic polynomial interpolation
in evaluating F/. Tt is apparent that the backward Euler method is unable to damp the

erratic source term enough to maintain the stability of the algorithm.
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Figure 4.21: The backward-Euler method for the heat equation and forward-Euler method for advancing

the front result in a first-order accurate solution for the the fourth test problem, with St = 100.

Problem 4: Stefan problem with St = 100

For St = 100, the calculations required a slightly finer grid resolution to discern the
accuracy of each algorithm; we have chosen six different Az = 0.1-27%i € {3,4,5,6,7,8}
for this case. Figure 4.21 shows the results from applying the backward-Euler method,
which show that the error behaves like O(Az), as expected. Similar results are obtained for
the front position and calculated speed (Figure 4.22, although they are considerably more
noisy than the corresponding results for St = 1.

The hybrid algorithm, which uses an Adams-Bashforth discretization of the front
motion, continues to produce second-order accurate results for the solution and front po-
sition (Figure 4.23). The error in the front speed continues to be noisy but second-order
accurate, as in Figure 4.20. Figure 4.24 shows the final steps for each run, from which the

noisy component of the error is evident.



CHAPTER 4. STEFAN PROBLEM

107°

0.01 0015 002 0025

0.04

t

107
0.01

4 l

125

0.015

0.02 0.025

0.03

0.035 0.04
t

Figure 4.22: We plot the error in the front position (left) and the calculated speed (right) versus time,
for the backward-Euler method applied to the fourth test problem. In both cases, the error appears to be
O(Az), but more oscillatory than the results in Figure 4.18, with St = 1.
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Figure 4.23: We plot the error in the discrete solution (left), for the fourth test problem, using the
hybrid method, with Adams-Bashforth for advancing the front in time. The O(Az?) rate of convergence
of the discrete solution is not apparent except at the finest grid resolutions. The front position (right) is

oscillatory, but second-order accurate.
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Figure 4.24: A close-up of the error in the calculated front speed, plotted versus time, is presented for
the hybrid method applied to the fourth test problem. Again, there is a oscillatory component to the error
(left), but a least-squares fit (right) suggests that it is O(Az?).

4.4 Front Tracking

Our means of tracking the melting front is based on work done by three sets of
authors, employing volume of fluid (“VoF”) methods, which use a scalar volume fraction
to track the front location. The first set of authors, Chern and Colella [18], developed an
algorithm for tracking shocks in the unsteady Euler equations for compressible fluid flow.
This was extended by a Bell, et al. [9], who used a volume-fraction representation, instead
of the polygonal curve used in [18]. Finally, a more abstract method was introduced by
Pilliod and Puckett [52], where a specific interface reconstruction algorithm was combined

with standard advection algorithms for the volume fraction.

4.4.1 Volume of Fluid Algorithm and Derivation

The volume fraction field, A; ;, is first initialized to represent the front location at
t = 0. This is accomplished with the grid generation algorithm from Chapter 2: the front

is treated as piecewise-linear in each cell (i,7). Intersections with grid lines determine the
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linear front representation needed to calculate A;;. The volume fraction in other cells is
defined as before: A;; = 0 if the cell is outside the domain, while A; ; = 1 if it is inside.
Formally, the motion of the volume fraction is assumed to be governed by an

advection equation,
Ar+u-VA = 0,
or in another form,
Ay +V-(uA) =AV-u, (4.27)

where u is the front velocity. The volume-of-fluid algorithm can be thought of as a consistent
discretization for (4.27), in which A is piecewise constant. In this discretization, we first
reconstruct a linear representation of the front in each cell (¢,7), based on an approximate
least-squares fit of a linear front to the volume fraction field, A; ;. We then approximate
the front velocity using a discrete version of (Eq. III), and extend the result to cell edges
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an operator-split, flux-based discretization of (4.27), whose fluxes depend specifically on a
piecewise linear representation of the front. Finally, the front velocity and updated volume
fraction are used to find the front’s trajectory within each cell, and derive the areas and

centroids of the space-time surfaces required for the finite volume discretization.

Approximate least-squares front reconstruction

This part of the algorithm is due to Pilliod and Puckett [52]. Given the volume
fraction field, A;;, they were able to exactly reconstruct a linear interface, using only A, ;
in cells in the 3 x 3 block centered on cell (i,j) (which we denote by ngh(i,5)). Their
method was demonstrated to be second-order accurate for several test problems, when used

in conjunction with an operator-split advection algorithm [52]. We have chosen to use it
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here, due to its simplicity and relatively good accuracy.
Consider the volume fractions in ngh(4, 7), and the sums of the volume fraction in

each vertical column in ngh(i, j), 0;_1, 04, and o;41. For example,

J+1

oi-1= Z Aic1j.
k

=j—1

It was shown in [52], that if the interface 92 is linear, with slope m € [0,1], and cell (i, j)
contains a portion of the interface, then simple finite differences of the ¢’s will yield the

correct slope, m. Specifically,

1
m = 5 (Cit1 —0i1)

if 01 intersects the left and right sides of the box containing ngh(s, j). Similarly,
m = 0j+1 — 0y andmzzai—oi,l,

if 9%) intersects the left and top, or bottom and right, sides
one of these difference stencils will exactly determine the slope of a linear front. If m €
(1, 00), switching the roles of 7 and j, and performing these same differences, will produce
the correct result. Similarly, if m < 0, then flipping the volume fraction array upside-down
and going through the procedure, yields the correct slope.

For a curved front, it is not obvious which of these difference approximations to use.
The solution suggested in [52], is to calculate each of the six differences (forward, backward,
or centered differences of column- and row-sums), and find which one best matches the
volume fraction array. Specifically, for each of the six slopes, we calculate what the 3 x 3
volume fraction array would be, if the interface were linear, with the given slope, and

matched A;,; exactly. This volume fraction array, which we will call AR, for (k,1) € ngh(s, j),

is easily calculated from the slope and volume fraction A; ; (the appendix in [18] provides a
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Figure 4.25: To extend the front velocity, we u;; is calculated first in the cells that contain a portion
of the front (filled circles, for which P; ; = 1). These velocities are then extended the the remaining cells in
ngh(i, j) (marked with unfilled circles, where P} ; = 1 but P; ; = 0), by calculating G from (4.29).

simple explanation). We can then define a norm of the error between A™ and A using the

equation

g+l a4l

Ia™ =l =5 ST (A7 - Ay)?

l=j—1k=i—1

Of the six slopes, we choose the one that generates a A™ with smallest error norm, ||[A™—A].
The interface in cell (7, j) is then represented as the linear profile that produced the smallest
error. Note that the intersection of this profile with cell (7, j) has the correct volume fraction
A; ;. It was shown in [52] that this approach leads to a discontinuous, but second-order

accurate, linear reconstruction of the front in each cell.

Calculation of front velocities

To update A we first calculate the front velocity using (Eq. III), which gives a
relationship between the front speed and n- V. We can approximate the normal gradient
at the front using G{ ’j", given by (2.17), and extend the resulting velocities to grid edges,
for use in the advection algorithm for A; ;.

This is done in the following manner, which is similar to that used in [9]. We first

introduce a marker, F; ;, associated with each cell. If that cell contains a portion of the
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front, and thus an estimate of the normal gradient G’if)’f, we set Pj; = 1, and F;; = 0,
otherwise. We construct a vector velocity in that cell simply by combining the front normal

and speed given by approximating (Eq. III) at time &7,
u;; = — St n{,j Fz{}” : (4.28)

Each cell in ngh(i, j) will need some approximation of the velocity vector for the advection

algorithm. We can now extend the front velocity to neighboring cells using an average value,

G 2k Pruk (4.29)

where the sums are over cells k € ngh(s, j). We now use these quantities to calculate edge
velocities that will participate in the advection algorithm. If we have two values of u; ;
in the cells neighboring a given edge, then average them; with only one value of u, j, that
value is used at the edge. If neither cell has a value for u; ;, we then repeat the procedure
with 1@i; ;. For example, if edge (i + %—, Jj) one or two neighbors with P, ; = 1, we would use
the formula,

_ Py + Bijug

= 4.30
uz—{—%,j B-{_]_,J +P1’7] ( )

If the edge has only neighbors with P; ; = 0, we would define a new marker field with Pi’,j,

such that P/, = 1 if a front cell is in ngh(s, j), otherwise P/ = 0. We would then use the
a similar formula to extend the 4; ; to these cell edges,

e Pl
Py i1, + P Ui

U., 1 =
i+5,] / /
2 P, +P;

(4.31)

This guarantees that all the edges participating in the advection algorithm have a defined

velocity. We have attempted to depict this extension algorithm in Figure 4.25. Of course,
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domain boundaries are treated differently, depending on the type of boundary condition
enforced there. Dirichlet-type boundary conditions do not change the extension algorithm,

while Neumann boundary conditions set the edge velocity there to zero.

Operator-split advection for volume fraction.

This approach also comes from [9]. We discretize (4.27) using an operator-split

method, where the z- and y-components of the equation are integrated separately, that is

At + 0z (ul) = Adu

As+ By (vA) = Ad,w

are integrated one at a time. Each equation is advanced with a finite volume discretization,
using a control volume around the entire Cartesian cell (¢, j). For the z equation (“sweep”),

this yields

g - Ty Tiss Timggmy g T Y
%7 7J+ 2 20— ALTR 2 20 (4.32)

where F* approximates the flux of A through edge (i + —%, 7), which will be explained below.
Note that we have chosen to center the right-hand side at "2, This implicit differencing
guarantees that A € [0,1], subject to the stability constraint

lulAt |v]At 1
= T —— < - .
Cr max( An Ay ) 53 (4.33)

where Cr is the Courant number in the current context. This can be interpreted as saying

that the front may move no more than a half cell width in either direction, during any time
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Figure 4.26: The volume fraction flux across edge (i + &,j) is computed by shifting the edge by a
FA

3.0 Titd
and edge (i + 3,7)), intersected with the region A7 given by the linear front reconstruction.

distance —At u is found by calculating the area of this shifted region (between the dashed line

step. The y sweep is written in a similar manner:

1 An+2 An+l
Anﬂ__AT_Hfz F '.;_12-F' T1t U, 1 —U; . 1
L] b DTE WTE _ pntl _WEE W3 (4.34)

At/2 Arly ~ M Az

In order to obtain second-order accuracy in space with this approach, the z sweep and y
sweep must be performed in an z-y, y-z pattern [59]. After each sweep the interface is

reconstructed using the approximate least-squares algorithm, given above.

Calculation of edge fluxes.

We take a geometric approach to calculating the fluxes of A through each cell edge,
Flfi L starting from a linear representation of the front in each cell, using the approximate
reconstruction procedure. At each cell edge where F# is required in the z-sweep, we first
determine the “upwind” direction based on the sign of the normal component of u on
that edge. For instance, at the (i + %, J) edge, we use the sign of u, +1. to choose which

cell (4,7) or (1+1,7) the flux will come from. If Uil > 0, the flux for edge (i + 3,7)
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Figure 4.27: There are three cases when specifying the trajectory of the front in space-time. For (a) and

(b) when only one of A or A" is between 0 and 1, the front trajectory is specified by that A, n, and §.
In case (c) when both 0 < A™ A™! < 1, the volume fractions and n are used to specify the front location.

comes from cell (i,7), and we define Fli 1 to be the area of the intersection between
2’
[IL’H_%J U1, At, mi+%,j] X [yi,j—%’yi,j+%] and the geometric description of £ in cell (4, 7).
This is depicted in Figure 4.26. If u;.1 5 <0, then Fzﬁ-l ; is computed from the area of the
27 9
intersection of Q in cell (4 + 1, 7), and [a:H_%’j,xH%?j —Uip1 At] x [ym“%,yi’ﬁ%]. For the y-
sweep, this procedure is applied to the (i,j + %) and (1,7 — %) edges of each cell, in a similar
fashion. Note again that the geometric representation of the interface is reconstructed after

each z- or y-sweep.

Given the volume fraction fields at the old and new times, A7 and A?jl, we can
reconstruct the front’s approximate trajectory in time in each cell (4, 7). This is done using
an approach given in [18] and [9]. We have already assumed AZ;-H > A7, although the

i
algorithm can be easily extended to include the other case [18]. Because the front is not
allowed to move more than %—“’— during a time step, we are guaranteed that cells with A = 0
or A =1 at both times do not contain a portion of the front during that time step.

Since we are only dealing with cell (¢, j) at this point, we will drop the subscripts
for this part of the discussion. We first assume that the normal to the front, n, is constant
in time, and given by the value at " using the procedure described above. We define an

approximate speed, $, in one of three ways, each of which is depicted in Figure 4.27. First,

if A"*! = 1, then the front has left cell (4,7) during the time step. In this case, we set
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Figure 4.28: For the case when 0 < A7, Afjl < 1, we calculate the front speed by first reconstructing

the front at ¢t and t"*!, so that it has normal n; ;, and matches the volume fractions at each time. The
quantity Ats;; is given by the distance between these parallel lines, which determines $; ;
§ = |u|, where u is given by (4.28). However, because A"t! is determined from an inexact
advection algorithm, § might not be large enough to guarantee that A"*! = 1. In that case,
we set § to the minimum value that guarantees A™*! = 1. Similarly, if A® = 0, then we
set § = |Q|, where 1@ is the extension of the front velocities. Again, if s is not large enough,
we use the minimum value that guarantees A" = 0. Otherwise, 0 < A”, A"*! < 1, and we
must match the front speed with its old and new positions, determined by A", A"*! and
n. Specifically, at " and ¢"*!, the normal n is used to generate a linear representation of
the front in each cell, whose areas at time ¢* and t"*! exactly match the volume fractions
A™ and A™T! respectively. Again, this is done using the formulae given in the first section
and in [18]. The distance between the two parallel, linear representations at t* and ¢"*!
approximates At $, which in turn yields $. Figure 4.28 depicts this reconstruction of the
front speed from the A’s and n.

VNOW that we have an approximation of §, we can describe the space-time evolution

of Q in cell (7, 7) with
[(x,t) = {xEcell (4,7), t € {t”,t"“] tn-x—§t+C< 0} ,

where the constant C is chosen to match A™ and A™*!. This polyhedron I'(x,t) is depicted
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in Figure 4.29. Note that it has at most seven faces, six of which coincide with the faces of
the box defined by cell (4, ) in the time interval [¢",¢"*1], and the last being the trajectory
of the front in space-time.

Well will now define each of the space-time surfaces surrounding the volume I'(x, t).

The top surface is the plane I'(x, t"*1), and defines the interior of the cell (¢, 5) at time ¢"*1.

n+1

This planar region is denoted by Vz-Z-H, and has area Az Ay Ai)j . Similarly, the bottom

surface I'(x,t") corresponds to &> with area Az Ay Aj;. These two constraints are used
to determine the constant C' in the equation for I'(x, ) above; the construction of $, above,
guarantees that V™ and V™" match A" and A™t!, respectively. The vertical faces of

I'(x,t) correspond to an edge of cell (4, j) in space-time. For instance, we define the surface

at (i + ,7) with

Si+%,j =T (xi+%,j’y’t) .

The remaining edges surrounding cell (4, j) lead to similar definitions of the surfaces S, _ 1

S. and Si’jm;_. We denote the final boundary of I'(x,t) with S, as it refers to the

ity
surface defined by the front’s trajectory in space-time. Because the speed and normal are

constant, S/ is simply the plane in space-time defined by
sl = {x € cell (i,7), t € [t", t""]: n-x—-5t+C=0}.

In addition, the space-time normal to S/ is also constant in time, and given by

. o (ng,ny, —§)
V1452
where the denominator makes 7/ a unit normal vector.
The surfaces of the space-time volume I'(x, ¢) will now be used to determine time-

averaged geometric properties within cell (4,7). To simplify our notation, we will use the
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Figure 4.29: Here we describe the surfaces of the space-time volume, I'(x,t). The plane S’ represents
the trajectory of the front in space-time through the cell (i, 5) x [t*,¢"*!]. Where S/ the front location at
each time is given by the intersection of $¢ with the planes ¢ = t” and ¢ = ¢*+.

variables defining planar regions, such as S/ and V", to also represent the areas of those

regions, wherever it is unambiguous. By applying the divergence theorem to a constant

vector ¢, on the volume defined by I'(x,¢) we obtain

// Vochz// c-7dS, (4.35)
JJJr oT

where U represents the unit outward normal for each surface of I'. By considering each
component of the vector, ¢, we can determine relationships between the areas of each of

these surfaces. For instance, setting ¢ equal to the unit vectors in z, y, and ¢, respectively,

yields
—__ "2 __of
Sivdy = Si-1y = \/1+—s'25
_ Ny f
n+l _yn _ 5 f
V;,j 1, T ms :

We are mainly interested in the role of these surface areas in our control-volume discretiza-

tion. In two dimensions, we need the time integrals of edge lengths, over the interval
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[t",¢" 1], which we will call A. On the cell edges, (i + L,7), etc., these are just the space-
time areas, so Aed = Sii1 ;- We obtain the necessary result at the front by projecting
2)

S/ onto the normal direction in space, (ngz,ny,0), to yield

Al = (nz,ny,0) - 2y

_.___L_gf.

V1442

The relationship (4.36) can then be written as

A3 — A5 = AT
ABIT3 — ABIYY =, AT (4.37)

Vet v =s AT

This set of equations will be necessary to obtain quadrature cancellations in the next section.

Our final derivation is for the space-time centroid of each of the surfaces; this is
needed to apply the midpoint rule to flux integrals in two dimensions. In order to obtain
an expression such as (4.37), we consider (4.35) with vector ¢ = (0, z,0), for example. This

leads to

// c-ﬁdS:// mdS—-// mdS+l/1{// x dS
or S. 1 S, 1 Sf
z,]+-2- Li- 5

P SR | R S
= Wty AWits _ gbi—5 AbI—3 o+ VJ jf Af

=0,

where Z indicates the z coordinate of the centroid for each face. We obtain a similar result

with ¢ = (y,0,0). These centroid are also related to the spatial centroid of V; ; at t* and
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t"*1: with ¢ = (0,0, z) we obtain

=n+l yn+l _ =n yn _ =2f c4f
T V;’j zi; Vil a:m-sA =0.

Another equation can be derived when ¢ = (0,0,y). Finally, the centroid of each face in

time is given by ¢ = (¢,0,0),
S 1 s 1 C 1, _
el Aited —imad Aed 4 nf AT =0

In summary we have the following six relationships between the space-time centroids on

each surface of I'(x, ¢):

%[ s Al ==yt g v (4.38)
ny 7/ Al = ziimz Ali3 _ giits gbits (4.39)
ng ! Al = i3 Aind _ gited gited (4.40)
ny tf AS =1%-3 Ab—3 _ {hits 4bits (4.41)
ng A = 1730 1730 _Fited 4T3 (4.42)

Averaging of space-time areas and centroids

We have developed these approximations using only $; ; and A; ;. However, edge-
centered quantities, such as A:;%’j, have also been determined in the neighboring cell
(¢ 4+ 1,7). Thus we have a mismatch of these quantities between cells; because the apertures
have an essential role in our conservative discretizations, this is clearly unacceptable. To
remedy this, we average the two quantities derived from data in different cells, wherever

possible. For instance, if both cells (¢, 7) and (i + 1, j) generated approximations to A”%’j,
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we define the average value

1 /[ i+l it 5.
= 3 3>
Ay =5 (A" T4y |

For centroid values, this is done with area-weighted averages,

e 4itad | pitad git5d

P Ligt AT Tt Ay
3 A¢+§-,j+Ai+%,g‘ ’
,J 1+1,3

with similar definitions for x on edges.

If only one of the two cells bordering an edge has an approximation of the moving
front, then we ignore the moving front data there. For example, if there is a mismatch
between the linear reconstruction of the interface in cell (4, 7), and the neighboring cell with
Aiy1; = 0, we assume that Az‘+%,j = (), and no flux passes through that edge. Similarly, if

cell (i —1,7) has A;_;; = 1, then we set A = Ay, and treat that edge as a full edge.

i+3,7
This is done to prevent any “contact resistance,” represented by partial apertures, between
the interior of the domain and cells that contain a portion of the front.

In the next section, we will show that the relations

Aim5d - Aited = AT (4.43)

S | I ¢
Alﬂ"ﬁ — AZ7J+§ — ny Af

are critical in the derivation of our finite-volume discretization for (Eq. II). However, we
expect that the averaged edge values of A could satisfy (4.43) to first-order, at best. To
rectify this, we recalculate n; ; and A{’ ; using (4.43) and the four averaged edge apertures,
so that the equations are satisfied exactly. Other quantities, such as the centroids ¢ and %
and front speed 3, do not play as significant a role in the finite-volume derivation, and are

not recalculated.
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4.4.2 Accuracy Assessment

The first thing to note about this front tracking algorithm, is its ability to exactly
track a planar front moving with constant velocity. We see this through the following line of
reasoning. Regardless of the orientation of the line representing OT', the approximate least-
squares algorithm is able to reconstruct it exactly, given only the correct volume fraction
array. 'The operator-split advection algorithm will calculate the correct volume fraction
fluxes, FA, given the exact normal and constant speed. Finally, the space-time area and
centroid calculations are exact; the fundamental assumption in calculating them is that
the front is a plane in space-time, which is certainly the case here. Thus, no averaging or
truncating of edge quantities is necessary. Every aspect of the algorithm is exact, so that
the planar front with constant velocity is reproduced with only rounding errors.

In [52], it was shown for a variety of simble test problems, based on translating
and rotating simple geometric shapes with constant velocity, that the combination of the

approximate least-squares reconstruction and operator-split advection scheme is second-

expect only first-order accuracy for A. In addition, the averaged edge-centered quantities

no longer satisfy (4.39) — (4.42), but we expect the approximation to be first-order accurate.

4.5 Discretization in Two Dimensions

Because the method in one dimension is based on a finite-volume-type discretiza-
tion, it is easily extended to two or more dimensions. We will assume that we have the geo-
metric properties of the moving front, such as volumes, time apertures, and time-centroids.
For the purpose of the discussion in this section, we will use A; and A£ to designate the
average lengths of each of the sides of V; j(t), from ¢ to "1, Thus, the A here are merely
the time-apertures given in the last section, divided by At.

We then integrate (Eq. II) over this space-time control volume, and use carefully-
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chosen quadrature rules for the resulting integrals, to obtain a consistent discretization.
The spatial integrals are approximated using values at the cell centroids at the old and
new times, whereas the time integrals of edge or interface fluxes are calculated using finite-
difference stencils for the gradients. In view of the instability of the conservative algorithm
in one dimension, we will focus on assessing the accuracy of the backward Euler and hybrid

methods in two dimensions, without maintaining conservation with the lagged source term.

4.5.1 Finite volume derivation in 2D

We start from (Eq. II) in two dimensions, and integrate it from ¢" to t"*! over
cell (7,7). For cells that do not interact with the front during the time step, ¢ is governed
by the heat equation, and the derivation given in Chapter 3 applies. In cells that contain
the front, we will again consider the two cases: one where the front intersects the given cell
(1,7) at both the beginning and end of the time step (0 < A", A"*! < 1), and the other
where it does not.

In order to assess the truncation error of the discretization, we first start by inte-

grating (Eq. II) over the ezact control volume, whose quantities we designate with a tilde

(7), and corresponds to the motion of the true front through cell (z, 7):

/{/n+1 gp(x',t"“)dx’—/ ‘,D(X/ tn)d /
%J

tn+1
/ / xtunfdx'dt—/
tn Al ()

First, we note that the integral over A7 is zero, because of the Dirichlet boundary condition

tn+1

/ BV -ndAdt.
AV, (¢

for ¢. This can be simplified further by writing the last integral as a sum over all the sides
of 8Vi,j (tl)i

tn+1

/, - w(x',t”“)dx’—/_ (x',t")dx’ —Z/ ,BV(,o-nk dAg dt’ .
| v

i,J
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Here, Ay, represents each of the five possible surfaces of f/i,j: A with half indices are for cell
edges, while the front is designated by fizf]
Similarly, by integrating (Eq. III) in time over A/, we also obtain an expression

similar to (4.4),

tn-H

i

n

/_ A n/dAldt' . (4.44)
Ai,j

Again, this represents conservation of energy, because the melting volume absorbs heat from

the interior of the domain.

Cancellation of quadrature errors

In cells that contain a portion of the front during the timestep, we use the geometric
properties of the approximation to the space-time volume from the previous section. To
reiterate, we have a relationship between the time apertures and front normal, given by
(4.37), which we will use to cancel the quadrature errors for the time integrals, to one

higher order than expected.

Quadrature error for spatial integrals. We will again use the midpoint rule for the
integrals over V; ; in (4.5.1). Given the intersections of the front with grid lines at time #”,
we have a second-order accurate approximation of JZ-’ for the purpose of calculating the

truncation error. This implies that
/v ol )i = VY ol 1) + O(AxY) (4.45)
i,

where X7, is the location of the centroid of cell (i,7) at time t". We have also assumed that

Az = rAy for some constant r. A similar result holds at "1,
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Quadrature errors for time integrals. The time-integral of fluxes in the right-hand
side of (4.5.1) is approximated to second-order accuracy using the space-time centroids on

each of the faces of f/i,j:

tn+1

Z/ Ve -ng dA; dt' = Atzfiknk Ve (&, Bg) + O(AzAL) .
g A k

The first step in our derivation is to evaluate the fluxes at the correct location in space, but
at the new time t"*1. By performing a Taylor expansion of Vi about t"*!, the sum on the

right side becomes

Atzﬁknk -V ()_(k,t—k) = Athiknk -V ()—Ck,tn+1)
k k

+ At Z Ak (t—k - tn_H) ng - Vi (}—(k, tn+1) + O(ACL‘AtS) .
k

Note that using the proper time centroid #; on each surface would remove the first error
term. However, we can approximate the error term by shifting the quadrature points in

space to X; j,
V(,Ot (ik>tn+1) = v@t (xi,jatn+1) + O(A"L‘) 3
which we will call ¢ from here on. The quadrature error then becomes

At A (B — ") ng - Vo (Re, 1) = At Y A (B — t*71) ng ¢ + O(AZ?AL?)
k k
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Now we note that the sum on the right-hand side is a second-order accurate approximation

of the divergence theorem, applied to ¢ (t - t”“):

t"+1

[ V- (¢ (t - %)) dV df’ + O(AT?AP).
14

n

Afz%ik (fk—-tn_H) nk~c=/
k t

Since the spatial divergence of a function of time is zero, the error term is O(Az2At?).
Thus, shifting the time-centering of V¢ to t"*! does not change the truncation error of this
sum.

However, we would like to use the Ay calculated from the front advection algorithm,

which are first-order accurate. By substituting A for Ay, we obtain

Z Apng - Vo (ik, tn_H) = Z flknk -V ()_Ck, tn+1)
k k

+ Z(Ak - Ak)nk . V(p (ik,tn+1) .
k
The gradient in this last sum can be expanded around x; ;, so that the error term becomes

z(Ak - .Zlk)nk . VQO (}_Ck, tn_H) = VQO (xi,ja tn+1) . Z nk(Ak - fik) + O(AmgAiz) s
k k

because the quantity Ay — Ay is O(Az2At) for first-order accurate Ay. Finally, we note
that the sum on the right-hand side is exactly zero: for Aj, this is always true, but Ay has

been constructed to be zero as well. Thus, the error term is zero, and we have shown that

tn+1

>

/_ Vo ng ddy dt = At S Apng - Vo (%, £71) + O(AzAR) . (4.46)
Ap k

t’n

Dividing this error by AzAt? yields O(At), and we can conclude that evaluating fluxes at
the spatial location of the space-time centroids, but t"*!, still yields a first-order accurate

discretization.
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Approximation of volume integrals

The volume integral in (4.45) is best approximated by ¢ at the centroid of the
cell, X; ;, and not the cell center x; ;. Therefore, we will use our cell-centered values of ¢
to estimate a value at the centroid location, as in one dimension. Let us define a bilinear
interpolation operator, M, which depends on the location of the centroid %; ;. For example,
if Z; ; < z; 5, and ¥; ; < y; 5, this would imply that the four-point stencil should be

(M@);; = (L+61)(1+82)¢7; — 01(1 + G2) B 1
(4.47)

=021+ 61)@7 1 — d1b2dbiy ;1

where (Az 61, Ay da) = X; j — x;;. Similar formulas are easily defined for the cases that X; ;
is in any of the other quadrants of cell (7,7). Regardless, this is a spatially second-order

accurate interpolation of ¢ at X; ;.

Calculation of second-order accurate gradients

We now need to approximate the normal gradients in (4.46) at the centroids Xy, to
second-order accuracy. Our approach will use ideas from both Chapter 2, where gradients
were interpolated along edges to achieve the proper centering, and from the discretization

in one dimension. There are three cases, each needing separate consideration.

Gradients on cell edges. For each cell edge, gradients are evaluated at the spatial
location of the edge’s space-time centroid. This requires an interpolated gradient as was

used in Chapter 2; for instance, at (i + %, J) we would use

¢n+11 _ ¢n+1 ¢n+1 _ ¢n+1
Im+1 _ ¢4 _ i+l V] i+1,g+1 (Vg
Cigg =Umm = 448)
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f
(VA

a Taylor series expansion about the front midpoint, x.,. Instead of performing this in the (z,y) coordinate

Figure 4.30: A gradient in the normal direction is calculated at %/ ;, marked with an open circle, using

system, we use the system defined by the cell’s outward-pointing normal, and tangent, as one traverses the

boundary in the counter-clockwise direction. We then calculate the location of i{,j relative to X, in the

new system, (fin, ft).
for the case that g;?i,é,%,j > yi,j, with

_ gi+%,j — Yij
= Ay X

If ng%J < y;,;, of course, we use a gradient from (1 + %, j—1) to complete the interpolation:

n+l ¢n+l Qs'n—{-l _ d)n—f—l

Tl ) CPirt g Pii1 i1 Di i1

Gf,w_rf — 1+ 4y 57 _ 1 i,j by T & .
vy, = 1+m) Ay n Ao

B

We can define similar formulas for y edges using the spatial location of their space-time
centroids. In either case, the formulas are spatially second-order accurate approximations

of the normal gradient.

Gradients when front is present. Referring back to (4.9), for the algorithm in one
dimension, we used a quadratic polynomial in space to estimate a gradient at the front
centroid, 8. We will take the same approach here, but in two dimensions the algorithm is
a bit more complicated; Figure 4.30 demonstrates why this is the case. In this discussion,
we will only be concerned with the normal nzf, ;» 80 we will drop both the subscript (4, j) and

superscript f.
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First, we must describe the geometric construction of the second-order accurate
gradient at the front. In Chapter 2, we were concerned with approximating a gradient at
the midpoint of the interface, Gf: ;- using a line normal to the interface extending from the

midpoint. Now, we wish to approximate the normal gradient at the point %/ using a Taylor

iij’
series expansion from the midpoint, x,,. Instead of performing this in (z,y) coordinates,

we will use (n,t), the normal and tangential directions:
Galsr = Bnbe, +1 (X1 = %) Gunke, - (X =) puily, +0(A7%) . (4.49)

This suggests how we can modify the formula for G/ used in the previous chapters, to
calculate a flux at X/. The interpolation line is defined by the line in the n/ direction,
intersecting the front in cell (¢, 7) at x,,, (Figure 4.30).

The next term in (4.30) involves the second derivative in the normal direction,
©nn. The quadratic interpolant between ®7, qﬁ{ , and ¢L, can be used to provide a first-

order accurate approximation of p,, at x,, (Figure (4.31)):

Do = 2 [ n+1 _@f) _1_ _ /¢"+1 __q)f\ .E.\ (4 50)
" dy — dy (2 do (1 ) . '

In one dimension, we needed the distance 5y — s"*! in (4.9); in two dimensions the corre-
sponding distance is g, = n - ()‘cf - xm), from the projection of %/ onto the interpolation
line, to the midpoint of the front at t"*1,

The next term in (4.49) involves the cross derivative ,;, and the distance from

X; ; to the interpolation line, pu; =t - (if — xm). In order to calculate ¢,¢, we apply the

chain rule to ¢, = n- Vy, to obtain

Pnt = =g Ny (Pzz — ‘Pyy) + (ni - nf,) Pry - (4.51)

Figure 4.31 demonstrates the finite-difference stencil that are used to approximate these
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Figure 4.31: When the front is still present in cell (3,7), we calculate p, at }‘cifyj starting with the

approximation for ¢, at x. (left). We again use the same stencil for G7, given in (2.17), to approximate
both ¢, and ¢n, from the value at xm,, and two values interpolated in the interior, ¢1 and ¢4. For the
remaining cross term, pn;, we use a six-point stencil that is shifted away from the boundary (right).

second derivatives of ¢. To guarantee that we do not reach past the domain boundary,

we have shifted the stencil into the interior, away from the interface. For instance, if n is

pointing into the third quadrant, we use:

_ Git2j+1 — 2041 41 + Giga1
Prx =

Az?
 Git15+2 = 2041 541 + Pigrj
vy = Ay
boy = Git1,41 — Div1,s — Pij+1 + Gi ’
AzAy

with similar formulas for n pointing in other directions. To complete the first-order approx-

imation of ¢y, we substitute these difference formulae and n into (4.51), and call the result

d’nt-

f

Finally, the gradient at X; is approximated using

1

d d
Gy = dy—d; ( 2 P 2 d_l) + bn Gnn + it Pnt - (4.52)
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f

Figure 4.32: When the front has left cell (4,7), we calculate an approximation to ¢, at Xj; using a

six-point stencil, but no information about the location of the boundary at the new time.
Gradients when front has exited the cell. Again, we will use the algorithm in one
dimension as a starting point for an appropriate discretization for the gradient at the front
centroid, )“{lf ;- In (4.11), we fit a quadratic polynomial to three points, and then evaluated
its slope at 5y to approximate a gradient. Note that this did note use any information
about the location of the front, or the Dirichlet boundary condition. In two dimensions,
a second-order accurate gradient will require six cell-centered values. Note however, that
A?jl = 1, so that we can use any values in ngh(i, j) without concern that the resulting
finite difference stencil will reach outside the domain.

Figure 4.32 demonstrates the scenario that we are considering. A Taylor series

expansion about x; ; yields the following terms:

o (Xij) = @o(Xig) + (Tij — Tij) e (Xig) + (Fij — Yij)Pay(Xij) + O(Az?) (4.53)

oy (Xig) = oy (Xij) + (Zig — Tig)Pay (i) + i — yij)oyy (Xij) + O(AZ?) .
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We use the obvious finite difference stencils to approximate these derivatives at x; ;:

by = il — Pin1y

20z
_ big1 = i
Py = i —
20y
s = Git1,j — 2055 + Pi-1,5
by = Gijr1 = 2055 + Pi g1
vy = Ay? .

For the ¢z, term, we use a four-point stencil reaching into the interior, away from the

interface. For instance, if n is pointing into the third quadrant (Figure 4.32), we use

Dit1,j+1 — Piv1j — Pigs1 + bij
Pay(Xi) = Azly -

with similar formulas for n£ ; pointing in other directions. Finally, all of the finite difference
approximations are applied to ¢!, and substituted into the Taylor series expansion (4.53),
to obtain a stencil for Gi’f“. For the case where n is pointing into the third quadrant, we

have

Gz{j =n” (¢x + Y1 Pz + V2 ¢xy) +nY (¢y + 72 ¢yy +7 ¢xy) ) (4'54)

! in other quadrants, the appropriate finite

where (Az~vyi,Ayy) = X;; — x;,;. For n;
difference stencil for ¢z, is substituted in (4.54), and the other terms remain the same.
Note that we have chosen to use the superscript I for both interpolated gradients in (4.48)
and (4.54); the subscripts of a cell edge (1 + %—, 7) or cell interior (7, 7) differentiate the two

formulas.
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4.5.2 Summary of finite volume discretization

At this point, we have defined all of the operators necessary to complete the finite-
volume discretization of (Eq. III) and (4.28). Again, we separate our discussions for cells

in the interior, and cells that interact with the front.

Interior of the domain

The only choice that need be made in the interior of the domain, away from the
front, is whether to use a backward Euler or a Crank-Nicholson discretization, corresponding
to our “hybrid” algorithm, in time. Thus, when a cell does not contain a portion of the

front, the update equation for ¢! is given by one of these formulas:
P g

p = At (Lo, = e (4.55)
ni1_ At At

1,J 9 (L¢n+l)i’j = (/5?,] + ) (L¢n)i,j . (4.56)

D)

These are the same discretizations of the heat equation that were used in Chapter 3,
interior of the domain. We have demonstrated that these formulas are first- and second-

order in time, respectively.

Cells that interact with the front

In this case, the front was in cell (7, j) at some point during the time step. This
implies that 0 < A7; < 1 and/or 0 < AZ;Tl < 1 is true. Therefore, we will need to
approximate each of the integrals in (4.5.1), using the finite-difference stencils given above.
First, the volume integrals are approximated using the bilinear interpolation operator, M,
defined in (4.47). Second, the edges of the cell each have space-time areas and centroids,
which were derived from the front in the previous section, and resulted in equations (4.37),

(4.39), and (4.40). For these edges, we must use the interpolated edge gradient, defined in
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(4.48) at (i + 3, j) for instance, to approximate the flux in (4.5.1):

n+1 I,n+1
Fr s = Pug Ay Gy
Finally, the choice of interface flux depends on whether a portion of the still exists in cell
(4,7) at the new time or not. If the front cuts cell (i,5) at "', we use the gradient

approximation G571 given in (4.52), and define the interface flux as
fint+l _ pf Af fn+l
Fi =8485

Otherwise, the front has left cell (i,5) and we use the interpolated gradient G/**1, given

in (4.54),
fn+l _ of Af ~AIn+l
By =6,4,G
With these definitions, the finite volume scheme in cells interacting with the front is

2

VI M) = V(M) = At > nmpFptt (4.57)
k

where Fk”+l represents the flux through each of the five surfaces of cell (7, 7), centered at

t"*1: edge fluxes F, F,

1. 1.
l+§,]’ 2_§)J7

Fi’j+%, or Fi’j_%; and the flux through the front, Fz’; The
variable ny carries the proper sign for F to be the flux out of the control volume. Because
the approximation of each term in (4.57) is second-order accurate, we obtain the cancellation

of quadrature errors described earlier, resulting in a first-order accurate approximation of

(Eq. IT) in cells that contain a portion of the moving boundary.

4.5.3 Overall time-stepping procedure

We can now summarize the algorithm that is be used to advance (Eq. III) in time:
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1. Calculate the front speed using (4.28), and extend the speed to neighboring cell edges

using the algorithm described in the front-tracking section.

2. Move the front, using the operator-split advection scheme to update A, and the ap-

proximate least-squares reconstruction algorithm.

3. Calculate the space-time geometry, based on a a piecewise-linear front moving with a

constant velocity.
4. Recalculate the front normal and aperture to satisfy (4.37).
5. Construct the coefficients of the discretization (4.57), in cells that interact at the front.
6. Coarsen the geometry to each grid in the multi-grid hierarchy.

7. Use the multi-grid iteration strategy to calculate ¢"*1.

4.6 Modifications to Multi-grid iteration strategy

Again, we use multi-grid iterations to solve for ¢nJ+1 in (2.14). Rearranging the

terms in (2.14) yields the following linear system:

VIAH M)t — ALY ng FPH = Vi (M) .
k

We will use H to designate the linear operator applied to ¢?j1 in this equation, we write
the point-relaxation strategy as before,
m m-—1 1 m—1
$iy = Wi T ; (Pi,j - H(ﬁi,j ) . (4.58)

Here p is the diagonal entry of H, and m refers to the point-relaxation iteration number.

Because H is indefinite, there is not guarantee that this strategy will converge; however,
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Xij Xij
Figure 4.33: The location of )‘(if,j and X;; on coarser grids (marked with circles) is determined by the

A{j— or Vi j-weighted average of values from the fine grids (marked with squares).

the numerical results below will demonstrate that the approach is as successful here, as it

was being applied to (Eq. I) and (Eq. II).

4.6.1 Coarsening strategy

The multi-grid approach for the Stefan problem incorporates the motion of the
boundary, by deriving the coarse-grid stencils from the geometric properties on the finer

grids. This is done by coarsening the space-time apertures and centroids, so that the finite-

difference stencil in (2.14) can be defined on the coarse grid as well. First, the A A

i+4.50 i+

and V; ; are coarsened as in the previous chapters: the coarse-grid quantities are defined
as the sum of the corresponding fine-grid values. Next, the coarse-grid front apertures are
defined as the sum of over the fine A/. Given these coarse Aj and Vi j» the coarse-grid

normal is defined using (4.37), and solving for n:

fpn= - -
A n= A’L+%:.7 Az—%yj’AZJ“I"% Al:]—% '

The remaining centroid-type quanties are defined in a way that preserves the

properties of a linear front, on the coarse grid. For example, Figure 4.33 shows how the
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front centroids if

;; are defined: the centroid of the combined fine-grid front areas, A,

defines the coarsened front centroid. Similarly, the coarse cell centroids X;; are weighted
with V; ;, although in this case we have to include the centroids of the full fine grid cells as

well (Figure 4.33). Finally, the edge centroids are coarsened using weighting based on

i+3.]
the fine A, 1 again accounting for full edges on the fine grid. These averaging procedures
guarantee that the space-time properties are reconstructed exactly, for a linear front moving

with constant speed.

4.7 Software Implementation

Our discretization has been implemented using the C++ classes from the previous
two chapters, with only two additional classes. As for the heat equation, the additional work
is minimized due to the object-oriented programming methodology we have employed, using

inheritance and polymorphism.

4.7.1 Description of MovingVoF

The first class, MovingVoF, organizes all the data needed to advance the front, and
calculate the space-time characteristics of the front motion. It contains two VoF objects,
which are used to describe the front location at t* and ¢"1. A MovingVoF includes functions
for implementing the advection algorithm described above, including extending velocities
to cell edges, calculating edge fluxes of FA, and and reconstructing the front using the
least-squares linear fit algorithm. In addition, quantities like Af, X, etc., are maintained in
one-dimensional arrays, which are resized every time step to match the number of partial

cells.
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4.7.2 Description of StefOp

The discretization (2.14) is implemented in the StefOp class, which contains all
the information required for the finite difference stencils, like in Figures 4.31 and 4.32. This
class is initialized using a MovingVof, and contains the functions needed to coarsen the
space-time geometry for the multi-grid algorithm described in the previous section. The
StefOp class is also derived from the Operator class for square domains. As in the previous
chapter, this allows us to extend the algorithm for the partial cells only, and use existing
functions for performing operations on the remainder of the domain. This is transparent
to the MultiGrid class, so that the same structure is used to apply the prolongation and

restriction operators, without any changes.

4.8 Results in Two Dimensions

In this section, we compute solutions for several test problems, to confirm the
truncation error arguments made above, and estimate the influence of the error along the
moving boundary on the solution. Each test problem evaluates a different aspect of the
algdrithm. First, we compute a solution to Laplace’s equation on a changing domain, to
check the accuracy of the fluxes in boundary cells. Next, a simple solution to the heat
equation is used to assess the discretization of the time derivatives. An exact solution to
the Stefan problem in two dimensions is then used to verify the truncation error at the
domain boundary. Finally, we perform several convergence studies to assess the accuracy
of the method for more complicated initial conditions and boundary motion.

In these calculations we set the number of points in each direction to be N = k2¢,
where k € {4,5,6} and ¢ € {3,4,5,6}, for a total of twelve different grid sizes, ranging from
32 x 32 to 384 x 384. The grid spacing in both directions is determined from Az = -1%,—,

which in turn specifies the timestep At = Cr f—u’f-, where |u| is the front speed and Cr is

the Courant number. Note that this implies At < Az, so that we may use the expressions
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Figure 4.34: We plot the results of the first test problem, with ¢(x) = In %, versus the number of points
in each grid direction, N. On the left, we see that the co-norm (solid line) and one-norm (dash-dot line)
of the truncation error |Ar| in partial cells is O(Az), whereas it is O(Az?) in the interior (dashed line).
However, on the right, we see that the error induced by the truncation error in partial cells is £ = O(Az®),

in all norms.

O(Az) and O(At) interchangeably.

For problems where the domain boundary is specified, we use the grid generation
algorithm from Chapter 2, which finds the intersections of the domain boundary with cell
edges, and then connects them to create a piecewise-linear representation. However, because
the volume fraction always multiplies the the truncation error at the moving boundary, we
will use A7 throughout this section. In addition, the other norms defined in Chapter 2 are

no longer calculated with volume-fraction-weighting, so each part is equally weighted.

4.8.1 Laplacian on a Changing Domain

Our first test problem verifies the truncation error estimates, for the discretization
of the Laplacian operator on a changing domain. We specify the exact solution ¢(r,t) =

In %, with R = 0.5, which is axisymmetric and harmonic. We compute the discrete solution
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from ¢t = 0, on the domain
T={r:r>R+t}n{(z,y):0<z<,0<y<1}.

Thus, ¢ is constant in time, and the front moves outward with speed |u| = 1. Dirichlet
boundary conditions are given for ¢(r,t) along the boundaries at r = R+ ¢, z = 1, and
y = 1, and we specify homogeneous Neumann boundary conditions at z = 0 and y = 0.
The truncation error for the first time step is given in Figure 4.34. In partial cells,
we observe that |A7]| is approximately O(Az) in both the oo- and one-norms; in the interior
of the domain, the discrete Laplacian is second-order accurate, as expected. We may also
calculate the error in the solution, |£], induced by |A7| in partial cells, as was done in
Chapter 2. In Figure 4.34, we see that this is O(Az?), in all norms. This result is the same
at that obtained for fixed domains, which we attribute to the Dirichlet boundary condition,
which causes each boundary cell to contribute only an O(Az*) dipole field to the error, so
that O(N) boundary cells cause only an O(Az3) error in the solution. We conclude that

moving the charges a distance O(Az) away from the boundary does not destroy this effect.

4.8.2 Parabolic solution for the heat equation

We now construct an analytic solution to the heat equation with a moving bound-
ary, which satisfies the homogeneous Dirichlet boundary condition at the front. Consider

an axisymmetric ¢(r,t) given by

p(r,t) == (r* = rd) + Bt (4.59)

N
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Figure 4.35: We plot the initial conditions for the second test problem, with exact solution
p(r,t) = (r§ — ) + Bt.
for some constant rq. This satisfies (Eq. II) with constant 8 on r > s(t), and has ¢(s(¢),t) =

0 for
o
s(t) = \/rg—élﬂt,

so that the domain boundary is circular, and shrinking towards the origin.

We compute the solution on the region Y in the first quadrant,
T(t)={r:r>st)}n{(z,y): 0<z<1,0<y<1}.

A plot of ¢(r,0) on T(0) is given in Figure 4.35. We specify Dirichlet boundary conditions,

using (4.59) with rg = %—, on the boundaries at ¢ =1, y = 1, and r = s(t), where ¢ = 0.

Again, we specify homogeneous Neumann boundary conditions at z = 0 and y = 0. Finally,

the discrete solution is initialized from (4.59) as well, evaluated at cell-centers, ¢ = 0. The
1

timestep is chosen so that |s(t" + At) — s(t")| = Cr Az, where we choose Cr = 4/ 3.
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Figure 4.36: Because the exact solution to the second test problem is a low-order polynomial, the
truncation error for our discretization is zero everywhere, except at the boundary, where it is O(Axz) in the
oo-norm (solid line). The corresponding error in the solution, |£], is O(Az®), either after one (dashed line)
or O(N) time steps (dash-dot).

This ¢(r, t) does not satisfy (Eq. I1I), but (4.36) is a low-order polynomial in r and
t. This means that the backward Euler and hybrid discretizations will have zero truncation
error in full cells; Figure 4.36 shows that the truncation error in partial cells is still O(Axz).
Because this is the only contributor to the error in ¢, we find again that ¢ is O(Az?3).
However, Figure 4.36 demonstrates that even after O(N) timesteps, |¢] is still O(Az?). We

assume that this is because errors introduced in previous time steps decay more rapidly

than they accumulate.

4.8.3 Axisymmetric Analytic Solution with St =1

Again, we refer to [15] for an axisymmetric exact solution to the Stefan problem
(Eq. IIT), with 8 constant (we will use 8 = 1 here). Consider the initial value problem for

the heat equation (Eq. II), with a constant source term, @, centered at the origin, and

©(r,0) =0 for r > 0, and p(s(t),t) =0. (4.60)
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Figure 4.37: We plot the truncation error for the third test problem, where ¢ is given by the exact
solution to the Stefan problem, (4.61). In partial cells, the co- and one-norms of |Ar| are O(Az) (solid,
dashed lines with circles, respectively). Over the part of the domain away from the origin, the truncation
error is O(Axz?) (solid, dashed lines).

As in one dimension, we specify the location of the front as s(t) = 2kv/Gt, with x = 0.27.

We may then derive an exact solution for [15],

[Ei ( - ) —~ Ei(fsz)] for r € (0, s(t)), (4.61)

where Ei(x) is the exponential integral,

Ei(z) = / ” -e-; dt . (4.62)

The choice of k is necessary for (4.61) to satisfy (Eq. III), for St = 1. Note that ¢ is
unbounded as r — 0, because Ei(z) has a logarithmic singularity at the origin. This
prevents us from computing an accurate finite-difference representation of ¢, but we can
still use it to calculate the discretization’s truncation error.

For this calculation, At is given by the exact front speed |u| = § and Cr = %—, with
an initial time ¢ = 1.0, for which s =~ 0.54. For interior cells, we calculate |A7| only for

r > 0.1, to avoid the influence of the singularity. Figure 4.37 plots the co— and one-norms
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Figure 4.38: We plot the discrete solution to the fourth test problem, with N = 80, after 40 time steps.
The result is smooth, and has a mild change in curvature, indicating that the front moves more quickly than

the rate of diffusion.

of |A7| for the hybrid method. We see that the truncation error in the interior is O(Axz?);
the large difference between the two norms is due to the influence of the singularity. For
partial cells, the truncation error is O(Az) in both norms, indicating that we have correctly

approximated the spatial and temporal derivatives next to the moving boundary.

4.8.4 Axisymmetric initial conditions

Next, we wish to evaluate the accuracy of the discretization for the heat equation

after O(N) timesteps. We specify the initial conditions
(p(T,t = O) = 4(1"8 - 7.2),

which has a maximum of ¢ = 1 for ry = % A solution is computed on the quarter-circle
T = {(z,y) : z,y > 0 and r < s(t) = rg + ¢, so that the speed of the boundary is |u| = 1.

The timestep At is given by At = Cr Az, where Cr = \/g , and the solution is advanced for
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Figure 4.39: We plot the error in the discrete solution, |£|, for the fourth test problem. The backward
Euler method is first-order accurate in both the co- and one-norms (solid and dashed lines at top), whereas

the hybrid method is second-order accurate (solid and dashed lines at bottom).

a total of %{ timesteps.

Figure 4.38 shows the discrete solution at the final time for the backward Euler
method, with N = 80 points in each direction; the change in the surface curvature suggests
that the diffusion timescales are longer than those of the boundary motion. Although there
is no simple exact solution for this problem, we can compare solutions for grid spacings
that differ by a factor of two, as described in Chapter 2. Figure 4.39 plots the co— and
one-norms of |¢] for both the backward Euler and hybrid discretizations, which are O(Axz)
and O(Az?), respectively. Figure 4.40 shows the error for the hybrid method, with N = 80;
a high-frequency noise at r = 0.5 is immediately obvious. We attribute this to the hybrid
method’s inability to damp high-frequency components of the solution, so that the large

initial errors (at r = 0.5) persist, even after O(NN) timesteps.
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Figure 4.40: We apply the hybrid algorithm with N = 80 to the fourth test problem, and plot the

solution error after 40 timesteps. Note that the hybrid method does not damp high-frequency components
of the error caused from the initial discretization error at r = 0.5.
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Figure 4.41: We plot the initial solution value and boundary position for the last test problem, with
N = 80.
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4.8.5 Star-shaped initial configuration

Now that the discretization for the heat equation has been tested, we can evaluate
the combined front-tracking and heat equation algorithms, by applying them to the Stefan
problem, with St = 100. We solve the following Poisson problem to specify a smooth initial

value for ¢:
Ap(x,t =0)=41in T, with ¢ = 0 on 97y,
where T =T N Ty,
Ty ={(r,0):r<0.25+0.05cos 66} ,

and Yo = {(z,y) : ¢ > 0,y > 0}. The method described in Chapter 2 is used to discretize
the initial conditions and calculate the ¢(x,0) for the initial boundary location (Figure
4.41). Note that the front is perpendicular to the boundaries at z = 0 and y = 0, where we
specify homogeneous Neumann boundary conditions. The timestep is calculated from the

discrete gradient of the solution, as specified by (4.28),
u;; = — St nz{j szj’" ,

and the maximum value of Cr = %, for the operator-split advection algorithm. In each case,
a total of % steps are taken.

Figure 4.42 plots the location of the front at each time, for the backward Euler
discretization with N = 40. As expected, the parts of the front where the gradient is
largest move more quickly, which makes the front more circular in time. At these parts
of the boundary, the front-tracking algorithm keeps the interface relatively coherent, even
at this coarse resolution. To assess the accuracy of the solution, we again compare results

corresponding to different grid spacings: Figure 4.43 plots the the oo-, one-, and two-
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Figure 4.42: We plot the evolution of the front in time for the last test problem, with N = 40. For
this coarse grid spacing, the front-tracking algorithm is still able to maintain a coherent interface at the

fastest-moving part of the front.

using our discretization for the Poisson equation, we expect them to be O(Axz?) accurate;
this is the behavior seen in Figure 4.43 for small N. For larger N, the backward Euler
method seems to be asymptoting to O(Az), whereas the result for the hybrid method is
appears to be O(Az?). Again, we attribute this behavior to convergence of the initial

conditions, and not necessarily the accuracy of the algorithm.

4.9 Conclusions

In this chapter, we extend the approach for (Eq. II) to include domains that
expand in time. A finite-volume discretization is presented, in which quadrature rules are

applied at the surfaces of the space-time control volume defined by the expanding boundary.
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Figure 4.43: We plot the co-, one-, and two-norms of the solution error |¢| (solid, dashed, and dash-dot
lines) for the backward Euler (left) and hybrid (right) methods. At coarser grid resolutions, both appear to
be O(Az?); we attribute this to the convergence of the discretization of the initial conditions. The O(Az)
errors of the backward Euler method become apparent at smaller grid spacings, whereas this is not yet the
case for the hybrid algorithm.

Again, by carefully choosing the location of the quadrature points, we obtain a consistent
discretization, using the geometric properties of the control volume. In conjunction with
an explicit discretization of (Eq. III) to advance the domain boundary in time, we are also
able to apply the method to the classical Stefan problem.

In one space dimension, we develop both backward Euler and hybrid discretizations
for the heat equation on expanding domains. Both approaches apply careful quadrature
rules to the surfaces of the space-time region traversed by the front, to obtain first-order
accurate discretizations in cells next to the moving front. By comparing the results to an
analytic solution to the Stefan problem, we find that the truncation error does not adversely
affect the overall accuracy of the solution: the backward Euler method is still O(Az) ac-
curate, while the hybrid approach is O(Az?) accurate. However, lagged enforcement of

the conservation equation (Eq. III) causes instability in both cases, so that we have no

conservative algorithm for the Stefan problem in one dimension.
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In two space dimensions, the space-time trajectory of the boundary requires us to
use algorithms from the front-tracking literature. The space-time geometry is represented
as a linear front with constant velocity, providing a first-order accurate description of the
boundary motion. We again show that carefully applying quadrature rules at the surfaces
of the control volume in space-time, leads to a consistent discretization with even this
simple geometric description. Several test problems verify the backward Euler and hybrid
approaches for the heat equation on an expanding domain. Incorporating an explicit advec-
tion algorithm for the front motion, provides a first-order accurate, but non-conservative,

discretization for the classical Stefan problem.



169

Chapter 5

Conclusions

5.1 Summary

This thesis presents a natural extension of the embedded boundary method, to
include elliptic and parabolic partial differential equations defined on moving domains. Our
motivation is to augment the algorithms available for hyperbolic problems, and provide the
tools needed to approach a broader class of problems that include both heat transfer and
phase change. This thesis attempts to overcome the major drawbacks of rectangular-grid
finite-volume methods - lack of adaptivity and geometric flexibility — while retaining their
simplicity and regular data structures.

To demonstrate that this is possible, three model problems with Dirichlet bound-
ary conditions are discretized on time-dependent domains: the Poisson equation, the heat
equation, and classical Stefan problem. In each case, a consistent finite-volume method
is derived, by integrating the differential equation over the space-time volume, defined by
the intersection of a piecewise-linear moving boundary and each cell of a Cartesian grid.
The resulting surface integrals are discretized with single-point quadrature rules, that take
advantage of geometric properties to cancel the leading-order error terms. The integrands

are then approximated to second-order, using finite-differences of the cell-centered solution,
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even when those cell-centers are outside the domain. Additional consideration is given to
the conditioning of the resulting set of equations; gradients at the boundary are calculated
using stencils that are well-separated from the partial cells. Although this yields a nonsym-
metric linear system, we are able to combine point-relaxation with a multi-grid iteration
strategy, to obtain residual reduction rates per iteration that are nearly independent of the
grid spacing and the presence of arbitrarily small cells. This behaviour persists, even when

incorporated into an adaptive mesh hierarchy.

5.2 Poisson Equation

Chapter 2 presents a finite-volume discretization for (Eq. I), along with a multi-
grid algorithm for solving the resulting linear system, and an adaptive mesh algorithm for
improving the accuracy of the solution.

In deriving the finite-volume algorithm, the integrals of fluxes on each cell edge
are approximated using the midpoint rule, along with second-order accurate finite-difference
approximations for the solution gradient. The discretization’s truncation error is O(Az A1)
along the domain boundary, where A is the volume fraction in that cell, and O(Az?) in
the interior. In three test problems, the approach yields second-order accurate solutions,
on domains with significant curvature and variation. We also observe that the truncation
error on the boundary causes only an O(Az3) error in the solution, because of the Dirichlet
boundary condition. Each boundary cell contributes a dipole field of strength O(Az?), so
that the O(NV) boundary points cause only an O(Az?) error in the solution.

A significant feature of the discretization, is that gradients on the domain bound-
ary are derived using finite-difference stencils which are well-separated from the domain
boundary. In one space dimension, we show that the resulting discrete operator L is non-
symmetric, but has a condition number that is unaffected by arbitrarily-small cells, and

comparable to standard finite-difference discretizations on regular grids. A similar ap-
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proach is employed in two dimensions, so that we may apply multi-grid iterations with only
a simple point-relaxation scheme, with volume-weighted restriction and piecewise constant
prolongation operators. This multi-grid algorithm obtains nearly the same multi-grid re-
duction rates for the residual, almost independent of Az or grid quality. This suggests that
we retain a well-conditioned system in more than one dimension, as well.

We also demonstrate that our method can be combined with adaptive mesh re-
finement to improve the accuracy locally. By refining the cells containing portions of the
domain boundary, we simultaneously refine the geometry description, while reducing the
effect of the larger truncation error. The multi-grid framework attains residual reduction
rates for the adaptive grid hierarchy that are comparable to those observed on uniform

grids.

5.3 Heat Equation

In Chapter 3, we extend the finite-volume discretization of (Eq. I) to the heat
equation with variable coefficients (Eq. II). Four implicit discretizations are derived to
address different accuracy and dissipation requirements when At o« Az. Each approach
relies on a cancellation of quadrature errors in the integral of ¢ over irregular cells; these
terms can then be approximated with cell-centered values, instead of using the O(Az?)
midpoint rule, without loss of accuracy.

By examining the eigensystem of L¢ in one dimension, we are able to evaluate
different time discretizations for (Eq. II). First, we demonstrate that the maximum eigen-
value of L is O(N?2A™1!), where N is the number degrees of freedom. This suggests that
explicit methods using L are unstable for arbitrarily small A; instead, we introduce implicit
discretizations based on the backward Euler and Crank-Nicholson methods. The Crank-
Nicholson method is second-order accurate for smooth initial conditions, but does not damp

the modes corresponding to the largest eigenvalues of L. The backward Euler method pro-
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vides sufficient damping for these modes, but is only first-order accurate. We also present
a Runge-Kutta algorithm, which provides moderate damping, and second-order accuracy,
but requires that two linear systems be inverted. Finally, we develop a non-conservative,
hybrid algorithm, which applies the backward Euler method in regions where dissipation is
required, and the Crank-Nicholson algorithm elsewhere. In all cases, the truncation error
in the partial cells is O(Az A~1), but only introduces an O(Az?) error in the solution each
timestep, regardless of the method. Again, this is attributed to the Dirichlet boundary
condition, and the resulting dipole field.

Each of the discretizations extends easily to two dimensions, without modifying the
approach used for (Eq. I). Only minimal changes are required to the multi-grid algorithm, to
include each of the four linear systems. For smooth initial conditions, numerical experiments
show that the truncation error is again O(Az A~!) in partial cells, and induces only an
O(Az3) error in the solution each timestep. In each case, the solution has a time-accuracy

corresponding to the method used in the interior of the domain.

5.4 Stefan Problem

In Chapter 4, we extend the approach for (Eq. II) to include domains that expand
in time. A finite-volume discretization is presented, in which quadrature rules are applied at
the surfaces of the space-time control volume defined by the expanding boundary. Again, by
carefully choosing the location of the quadrature points, we obtain a consistent discretiza-
tion, using the geometric properties of the control volume. In conjunction with an explicit
discretization of (Eq. III) to advance the domain boundary in time, we are also able to
apply the method to the classical Stefan problem.

In one space dimension, we develop both backward Euler and hybrid discretizations
for the heat equation on expanding domains. Both approaches apply careful quadrature

rules to the surfaces of the space-time region traversed by the front, to obtain first-order
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accurate discretizations in cells next to the moving front. By comparing the results to an
analytic solution to the Stefan problem, we find that the truncation error does not adversely
affect the overall accuracy of the solution: the backward Euler method is still O(Az) ac-
curate, while the hybrid approach is O(Az?) accurate. However, lagged enforcement of
the conservation equation (Eq. III) causes instability in both cases, so that we have no
conservative algorithm for the Stefan problem in one dimension.

In two space dimensions, the space-time trajectory of the boundary requires us to
use algorithms from the front-tracking literature. The space-time geometry is represented
as a linear front with constant velocity, providing a first-order accurate description of the
boundary motion. We again show that carefully applying quadrature rules at the surfaces
of the control volume in space-time, leads to a consistent discretization with even this
simple geometric description. Several test problems verify the backward Euler and hybrid
approaches for the heat equation on an expanding domain. Incorporating an explicit advec-
tion algorithm for the front motion, provides a first-order accurate, but non-conservative,

ization for the classical Stefan problem.

5.5 Future Research Directions

The results of this thesis suggest a number of future research topics. First, the
framework we have presented for developing finite-volume algorithms could be extended
to other conservative discretizations, for problems with irregular boundaries. For exam-
ple, a similar approach could be applied to hyperbolic problems, modifying the approach
discussed in [49], to obtain a method that is formally consistent at the boundary. It is un-
known, however, what the tradeoffs are between improved accuracy and robustness in the
presence of shocks and other discontinuities in such systems. Further extension to include
incompressible fluid flows, like in [3] and [5], would allow us to simulate buoyancy-driven

flows, with advected scalars. Finally, our discretization for the classical Stefan problem



CHAPTER 5. CONCLUSIONS 174

could be added, to simulate complicated industrial processes, with the combined effects of
fluid flow, heat transfer, and phase change across internal boundaries.

A number of issues have to be addressed before this can be accomplished. First,
the current implementation is well-suited to external boundaries, but internal interfaces will
require more sophisticated data structures, to allow jumps in the material properties and
thin “fingers” within the multi-grid hierarchy. Another open question is how to develop
volume of fluid representations in three dimensions, with more accurate boundary represen-
tations, as in [2]. For problems where body-fitted grids are preferable for resolving boundary
layers, the algorithm could be extended to an overset grid approach [19], where the irregu-
lar boundary is given by intersections between moving grids. Another issue is conservation
of energy; a lagged source term introduced instabilities for our discretization of the heat
equation. Although more complicated redistribution algorithms have been introduced for
hyperbolic problems [18, 49], it is not known how to do this for parabolic problems. Finally,
extending adaptive mesh refinement to the heat equation, will present additional problems

, and with movin 1 ) ssin

with time centering [5]
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