High-Order, Finite-Volume Methods in
Mapped Coordinates

P. Colella 2, M. R. Dorr ™!, J. A. F. Hittinger »*1,
D. F. Martin 2
a Applied Numerical Algorithms Group, Lawrence Berkeley National Laboratory,
One Cyclotron Road Mail Stop 50A-1148, Berkeley, CA 94720

b Center for Applied Scientific Computing, Lawrence Livermore National
Laboratory, 7000 Fast Avenue L-561, Livermore, CA 94550

Abstract

We present an approach for constructing finite-volume methods of any order of ac-
curacy for control-volume discretizations of space defined as the image of a smooth
mapping from a rectangular discretization of an abstract coordinate space. Our
approach is based on two ideas. The first is that of using higher-order quadrature
rules to compute the flux averages over faces that generalize a method developed for
Cartesian grids to the case of mapped grids. The second is a method for computing
the averages of the metric terms on faces such that freestream preservation is auto-
matically satisfied. We derive detailed formulas for the cases of fourth-order accurate
discretizations of linear elliptic and hyperbolic partial differential equations; for the
latter case, we combine the method so derived with Runge-Kutta time discretiza-
tion and the new high-order accurate limiter to obtain a method that is robust in
the presence of discontinuities and underresolved gradients. For both elliptic and
hyperbolic problems, we demonstrate that the resulting methods are fourth-order
accurate for smooth solutions.
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1 Introduction

Finite-volume methods are a popular choice for the discretization of partial dif-
ferential equations involving flux divergences, e.g., conservation laws. In such
approaches, the spatial domain is decomposed into a set of control volumes.
The boundary of each volume is represented as a union of faces, with each face
shared by exactly two control volumes. Based on this discretization of space,
the average of the divergence of the flux function over each control volume
is approximated by applying the divergence theorem to express the average
in terms of averages of fluxes over the faces, which are then computed using
some quadrature rule. The main advantage is that the resulting discretization
satisfies a discrete form of the divergence theorem. This leads to a local con-
servation property holding for time-dependent problems and easily-checked
solvability conditions for steady-state problems. Furthermore, this approach
extends to a wide variety of grid systems: Cartesian, mapped, multiblock, and
locally-refined structured grids, as well as unstructured grids. A limitation of
these methods as developed to date is that they have typically been restricted
to second-order accuracy [1-3]. The flux integrals are approximated using the
midpoint rule, and the metric terms appearing in the quadrature computed
using low-order geometric representations (e.g. unions of triangles).

In this paper, we present an approach for constructing finite-volume methods
of any order of accuracy for control-volume discretizations of space defined
as the image of a smooth mapping from a rectangular discretization of an
abstract coordinate space. Our approach is based on two ideas. The first is
that of using higher-order quadrature rules to compute the flux averages over
faces that generalize the method described in [4] to the case of mapped grids.
The second is a method for computing the averages of the metric terms on
faces such that freestream preservation is automatically satisfied.

Freestream preservation is an important requirement for the discretization of
conservation laws in mapped coordinates. This property ensures that a uniform
flow is unaffected by the choice of mapping and discretization. As described
in numerous works (e.g, [1,5,6]), this goal is typically accomplished by the
discrete enforcement of metric identities, which take the form of divergence-
free conditions for products of the mapping Jacobian and gradients. Since
cell faces are contractible (continuously deformable to a point), the Poincaré
lemma guarantees that these products can be written as exterior derivatives.
The form of these derivatives is not unique, however (see, e.g., Section 4 of [6]),
and the specific choice used for discretization is critical in achieving freestream
preservation. In [5], it is observed that writing the derivatives in “conservative
form” is sufficient to enable second-order central differencing to be applied in
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the exact enforcement of the metric identities. This result was more recently
extended in [7] to higher-order (second-, fourth- and sixth-order) compact,
finite difference operators. The equivalence of the central difference scheme
used in [5] with a second-order, finite-volume method was also used to obtain
an early result for this class of methods. For the higher-order finite-volume
discretizations presented here, we describe how to take further advantage of the
ability to express mapping metric products as exterior derivatives to achieve
freestream preservation.

The paper is organized as follows. A formalism for computing a fourth-order
accurate average of a flux divergence on a control volume in physical space
in terms of fourth-order accurate face averages on a Cartesian computational
grid is developed in Section 2. In Section 3, we describe the application of
the mapped grid finite-volume formalism to obtain a fourth-order accurate
discretization of a self-adjoint elliptic equation. In Section 4, we describe the
application of the formalism to obtain a fourth-order accurate discretization
of a scalar, linear hyperbolic equation. The spatial discretization is combined
with Runge-Kutta time discretization and the new high-order accurate limiter
in [8] to obtain a method that is robust in the presence of discontinuities and
under-resolved gradients.

2 High-Order Finite-Volume Methods

In the finite-volume approach, the spatial domain in R is discretized as
a union of rectangular control volumes that covers the spatial domain. For
Cartesian grid finite-volume methods, a control volume V; takes the form

h Rl [ R R b h
M:[Z1—2721+2] [12_2al2+2]X--~X[ZD_27ZD+2]7 (1>

X

where the multi-index i = (iy,4y,...,ip) € ZP is identified with the loca-
tion of the control volume center and h is the grid spacing. A finite-volume
method discretizes a partial differential equation by averaging that equation
over control volumes and replacing the integrals that appear by quadratures.
For right-hand sides that appear as the divergence of fluxes, the divergence
theorem states that

D
[V -Fax= ¥ Y+ [ Fuda, 2)
Vi T=+,—d=1 +
d
where Fj is the d" component of F and the AF are the high and low faces
bounding V; with normals pointing the d* coordinate direction. In this case,
the finite-volume approach computes the average of the divergence of the fluxes



on the left-hand side of (2) with the sum of the integrals on the right-hand
side, with the integrals approximated using quadratures. Such approximations
are desirable because they lead to conserved quantities in the original PDE
satisfying an analogous conservation law in the discretized system.

Most finite-volume methods use the midpoint rule to approximate the flux
integrals in (2), leading to a second-order accurate method. We will develop
higher-order methods (fourth-order or better) using the approach in [4]. The
starting point for this approach is to replace the integrand in the right-hand
side of (2) by a Taylor expansion about the center of the face:

1
/ FidA= Y —VFilis, / (x — xo)*dA, + O(RF+P-1Y,
o<lrl<r T Ay (3)
rl=nr!...rp!, O =q*...q7.

For example, if we take R = 4, we obtain

h? 0*F,
hD 1 /FddA Fd(Xo) + — 24 d/;d a

7 (X0) + O(hY). (4)

If we replace the derivatives by finite-difference approximations of a suitable
order that are smooth functions of their inputs, the resulting approximation
of the average of the flux divergence over a cell is O(h'?).

2.1 Mapped Grids

We can extend this formalism to the case of mapped grids. Assume that we
have a smooth mapping X from some abstract coordinate space, say, the unit
cube, into physical space:

X =X(&),X:[0,1]” - R (5)

Given this mapping, the divergence of a vector field in physical space can be
written in terms of derivatives in the mapping space, that is,

1
Vi F =V (N'F),

(6)
J=det(VeX) , (NT) = det((VeX)(ple?)),
P
where A(p|v) denotes the matrix obtained by replacing the p'* row of the
matrix A by the vector v, and e? denotes the unit vector in the d** coordinate
direction. The relationship (6) is a consequence of the chain rule, Cramer’s
rule and (for D > 2) the equality of mixed partial derivatives.



If we define control volumes in physical space as the images X(V;) of the
cubic control volumes V; in the mapped Cartesian grid space, the relationship
corresponding to (2) for mapped grids is given as follows:

/V Fdx_/vE (NTF)dg = 3 Zi/NFddAE (7)

(V) Vi +=+4+,— d=1 Ai

To obtain a finite-volume method, the face integrals are replaced by quadra-
tures, similar to what was done in (3). In the mapped-grid case, some care
is required to obtain freestream preservation, that is, the property that the
discrete divergence of a constant vector field is zero. To do that, we split each
face integral into two pieces:

J(NTR) A = (( / NTdAg)F(xd)>d—i— J(NT(P - F(xp)dAe,  (8)

Ag Ag Aq

where x;4 is the image under the map of the center of the face in coordinate
space. It is routine to derive a version of the Taylor expansion in (3) to ap-
proximate the second integrand on the right-hand side of (8) so that, if F
is constant, the integral is identically zero. To obtain a fourth-order accurate
discretization, we can use the following formulation

J(NTF)adA :(( / NTdAe) - / FdA, )

Aq

0
F)) dA¢ + O(hY),
/ 3 (36, N g, (F) e+ 00, (0

as h — 0. In either case, we only need to derive quadrature formulas for
Ja, NTdA¢ so that the discrete divergence of a constant vector field given
by (8) or (9) is zero.

The existence of such quadratures is a consequence of Stokes’ theorem and the
Poincaré lemma. The rows of the matrix N, denoted by N®, s =1,..., D are
divergence-free. This can be seen by a direct calculation, or inferred indirectly
from applying (7) to constant vector fields. Then by the Poincaré lemma [9],
there exist functions Nj ;,d # d’ such that

8/\/ ,
Z = ;,d’ == 5/,d- (10)

d'#d

Thus we have

/deAgz 3 Zi/ o By, (11)
iy £=hodAd i



where E(fd, are the (hyper)edges on the low and high sides of A, in the d'
direction. For each edge, the same integrals over the edge appear for the inte-
gral over each face adjacent to that edge, modulo signs. If we approximate the
integrals over edges with the same quadrature formulas wherever they appear,
then the freestream property

D
3 + / NidAg =0 (12)
- +

d=1+=+
Ad

is satisfied. Furthermore, the quadrature formulas for the edge integrals can
otherwise be chosen arbitrarily; in particular, they can be chosen so that (11)
approximates the integral of Nj over the face to any order of accuracy. We
note that this is a generalization to arbitrary dimensions and arbitrary orders
of accuracy of standard methods to discretize electromagnetic fields so that
discrete analogues of the various vector identities are satisfied identically [10].

Given Nj, d =1,..., D, the family of functions N3 ,,d" # d, satisfying (10)
is not unique. A particularly simple choice that is a local function of X and
VX is given by

L= 5 det ((VX) (XId)(sle)). (13)

where A(v|p) denotes the matrix obtained by replacing the p'* column of
the matrix A with v. We note that the expression for N7, given above only
involves derivatives of X in directions tangent to E4 4. For convenience, the
N 4 for the special case of D = 3 are given as follows.

e e IR aat
ot 022 n ) (e )
op( % -x i) (g en ) oo
by (05 e Ge) Mey (e G e

The remaining A’’s are given by the antisymmetry condition N3, = =N ;.

The proof that (13) satisfies (10) is a straightforward calculation. By Leibnitz’



rule applied to determinants, we have

0
det ( (VeX) (X|d')(s]e?
gdagd,( t((VeX) (X[ (sle))
=37 det ((VeX) (- [d)(sle) 1)
d'#d d’
! 82X 1" Sed
+ g ; det ((VeX) (XId) (5 5—1d")(sle")).

Each summand in the first (single) sum is just N3, so it suffices to show that
the second (double) sum vanishes. However, for a given dy, da, d1 ;é dy, sum-
mands in the double sum involving the mixed second partial 85 8£ appear
exactly twice, differing from one another only by the exchange of the d1 and dy
columns. By the antisymmetry of the determinant under column exchanges,
the two summands cancel, and hence the entire second sum vanishes. Finally,
we need to show the antisymmetry condition N, = =N ;. The following is
a consequence of linearity of the determinant as a function of the d’' column,

plus the identity det(A(e?|q)) = det(A(q|eP)):

det ((VeX) (X[d')(sle)) = gx det ((VeX) (sle?)(s'|e")).  (16)

The right-hand side of (16) is manifestly antisymmetric in d, d'.

2.2 Fourth-order mapped-grid finite-volume discretization

Following these ideas, we can specify the information required for a fourth-
order accurate finite-volume discretization. Using a Taylor series, the integrals
on the cell faces AZ can be approximated using the following formula for the
average of a product in terms of fourth-order accurate averages of each factor:

<fg>i+%ed =
h2

(17)
(Dieset Diprer + 1560 (Pinger) - G0 ((9)iggen) +O0Y).

Here, Gé ! is the second-order accurate central difference approximation to
the components of the gradient operator orthogonal to the d-th direction:
Gy 4 Ve—el ag , and the operator (-);, 1ed denotes a fourth-order accurate
average over the face centered at i+ %ed

@isser = 1oy [ 2€)IA O, (18)
Aq



Alternative expressions to (17) are obtained by replacing the averages (f);, 14
2
and/or (g);, 1.« used in the transverse gradients Gé " by the corresponding

2

face-centered pointwise values f;, Led and/or g, led; respectively.

We then approximate the divergence of a flux by

D
[ VxFaxmpPS S F (19)
where
. D
F}+%ed = Z<Nds>i+%ed <Fs>i+%ed
= (20)
W & (L 1d
t (G (N 1) - (G, 1,0 )
The column vectors {<N5>i+%ed, s =1,..., D} are computed on each face using

(11) and (13), with fourth-order accurate quadratures replacing the integrals
in (11). The fourth-order average of F can be computed using (4).

We can apply this approach to compute a fourth-order accurate approximation
to the cell volumes by taking F(x) = x. In that case,

/ V4 - Fdx = D x Volume(X(1})),
X(W)

and the volume of the cell can be written as the discrete divergence of fluxes.
Such a flux form is convenient for maintaining conservation and freestream
preservation for adaptive mesh refinement on mapped grids [11].

3 Application to Elliptic Equations

In this section, we apply the mapped grid, finite-volume formalism described
above to obtain a fourth-order accurate finite-volume discretization of a self-
adjoint equation

V- Fx)=px), xcQcCR? (21)
where

F(x) =D(x)Vo(x), (22)

and the matrix coefficient D is such that the second-order differential operator
in (21)-(22) is elliptic. Assuming a mapping (5) of the physical domain Q to
a computational domain, we have in the latter using (6)

F=DVx¢(V:d=J 'DNV0. (23)



Following (19) and (20), we therefore obtain
3

[ Ve Fax=n> 3 wFL, +0(nY), (24)
X{W) d=1+=+,—  2°

where, using face-centered pointwise values of F in the transverse gradients,

F'y = (Fy) 23: <5 o >
= L1, = !
i+ e Vit gel =1 0 i+ e
3| 0P >
_ Dy ). el 25
Z [< dd >1+;ed<afd/ i+%ed 2

d'=1

12 N 0P
—i—EGol’d <<Ddd'>)i+%ed Go! <8§d’>i+§ed]

where

D = (Dy) = J'N"DN. (26)

Face averages <ﬁdd/> can be computed to fourth order in terms of face averages

of the entries of the factor matrices N7, D and J !N using the product
formula (17). Computing the second-order accurate transverse gradients

G#d (<ﬁdd'>)i+%ed = llz <<ﬁdd/>i+;ed+ed’ B <ﬁdd/>i+§ed—ed’> ’ (27)

it then remains to specify the discretization of the averages (0®/ 8§d/)i+ L
2

and transverse gradient Gy (9®/ 8§d/).+1e .
2

3.1 Discretization of (0P/0&q) and Gy (0D /0€ )

i+%ed i+%ed

First consider the case where d = d. We have
0 od h? 0d
— = —+ Al’d> +0O(ht , 28

where A% is the Laplacian in the directions transverse to the d-th direction.
Defining
1

biter = 5

it 27 (Pjet — Pi) — (Piyoed — Pi_ea)], (29)
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Fig. 1. Stencil for <8®/a§d>i+led' The values of @ at the cell centers marked by the
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open circles determine the 3 values given by (29) at the cell faces marked by the

solid circles.

where the ®; denote pointwise values of ® at cell centers, we have

0 6i+led
a?d|i+led = h2 + O(h*),

d'#d

Furthermore, we set
0P
(%), .
agd 1+ ed

Next, for d’ # d, we have

9® 0b 1250 )
(56 )1~ (0 1),y 7O 1),
2 2

10

5 (s 5
h2 i+%ed+ed/ - i+%edfed/ )

(30)

_ 2
afd i+ ed - h3 Z ( 1+%ed+ed/ _'_ﬁi_’_%ed_ed/ - 26“_;6(1) + 0 (h ) . (31>

(33)
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marked by the o symbols determine the « values at the e symbols via (34), which
in turn determine the 7 values at the x symbols defined by (37)—(39).

Letting
1
&i—‘r%ed = E [9<¢i+ed + q)l) — (q)i+2ed + q)i—ed)] s (34)
d/7(4) = i — — _—
i+%ed 12 [8(ai+§ed+ed' Oéi-i—%ed—ed') (ai+%ed+2ed’ O[i-i-;eﬂl—2ed')] ’ <35>
d2) —1|_ _ _
i+%ed =2 [ 2(ai+%ed+ed/ ai+%ed—ed’> T (ai+%ed+29d/ ai+;ed2ed/)] , (36)
we have
d’,(4)
7.1
aq) i+§ed
= O (h! 37
agd,|i+%ed T ( ) ’ (37)
7dl7(2)
P 1+§ed 9
i) =
Defining
SR W + 100
i+%ed 12 i+%edﬂed/ +Eedted (39)
—18a %ed—|—6 L edoped i+%ed¢2ed, )

11



we furthermore set
o L ([ aa &' (4),—
GJ—yd = 7( )»+ _ 7( )7 . 40
: <8§d/) iplet P2 (ﬁhéed Tipled (40)
2

The stencil entries given by (39) yield fourth-order accurate first derivatives in
the d’ direction at the face centers i+ %ed +e?. We employ these non-centered
formulas to ensure that the resulting stencil is confined to block of cells at
most 5 cells wide centered on the cell in which the flux divergence average is
being computed.

3.2 Boundary conditions

For boundaries upon which a Dirichlet boundary condition is posed, the face
averages (09/ 8§d/)‘+1 , used in (25) on faces contained in such boundaries can
1 Ee

be computed using modified discretizations that incorporate the prescribed
boundary values. Suppose that the cell face with center at i + %ed is one
such face, such as the face centered on the point labeled A in Figure 3. The
averages (0P / 8£d/>_+1 , for the transverse coordinates d’ # d can presumably
1 §e
be computed directly from prescribed Dirichlet data to fourth-order accuracy.
For the normal direction, the stencil describing (0®/ 8£d>_+ 1 _, can be modified
1 §e
by replacing the definition (29) by

1
(G J—
= — (28169 — 367595
ﬁi-i—%ed 8 O< i+ged (41)

+12250; g0 — 441P; g0 + T5D;_504),

where <I>i+ 1 is the prescribed boundary value at the center of the cell face.

Although this formula yields a fourth order accurate approximation of the nor-
mal derivative, it results in a stencil extending beyond the 5-cell-wide block
centered about the cell upon which the discrete divergence is being computed.
To avoid using a larger stencil at the boundary than in the interior, we take ad-
vantage of the opportunity to reduce the discretization order at the boundary
while still maintaining fourth-order accuracy overall due to elliptic regularity.
In particular, instead of (41) we define

1
Q(f;ed = (184<I>i+;ed 2250 + 50b;_o1 — 9c1>i_2ed) . (42)

The same issue affects the normal and transverse derivatives on interior faces
parallel to the boundary exactly one cell away, such as the face centered on
the point labeled B in Figure 3, i.e., the use of a non-centered fourth-order

12



/ Dirichlet boundary
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Fig. 3. Locations at or near a Dirichlet boundary requiring stencil modifications
(see text).

discretization leads to a stencil that is not contained in a 5 x 5 block. However,
we may use the same interpolating cubic polynomial used in finding (42) to
obtain

() 1

=5 ( 80,10+ T30~ 091 i + 3@1_29d> . (43)

Similarly, (34) is replaced by

1
< 4D, 1, + 15%; + 10®; i — @i_zed) . (44)

o, 1, =
1+§ 20 +5e

Next, consider cell faces adjacent and normal to a Dirichlet boundary, such
as the face centered on the point labeled C in Figure 3. For the calculation of
the average of the normal derivative (d = d’), the calculation of the transverse
Laplacian (31) using centered differences can be shifted one cell away from the
boundary with no loss of the required second-order accuracy. A non-centered,
second-order accurate formula replaces (32):

L (0D -
GO <%>i+led - T (Sﬂ 46 e’ - 61-&- el—2e dl) ' <45>

For the average of the transverse derivative (d # d'), we replace (35) and (36)

13



by

e _ 1 _ _

i+%ed 30 {32®i+§ed+%ed' 15ai+%ed 20Oéi ; d_ed’ + 3, ; d_2e d'} ! <46>
@ 1 160, — 30,1, + 200 — 6o (47)
i+ged 5 1 d-‘rl @ i-‘r%ed i—l—%ed—ed' i+%ed—29d/ !

where ¢ +1 +1 » 1s the prescribed boundary value. This yields a third-order

accurate ﬁrst derlvatlve and first-order accurate third derivative, respectively.
We furthermore use for the transverse gradients

0P 1
Gy 160 ,
’ <a§d/>i+éed 5h2 it5 ed+1 d

— 25 10 —a J-
i+%ed T i+%edfed/ i+%ed729d/

(48)

On cell faces normal to a Dirichlet boundary, the transverse gradients of the
coefficient averages are obtained by replacing the centered formula in (27) by
the second-order non-centered formula

G (D) 1

1 —~ —~ __ (49)
= o <3 <Ddd/>i+%ed —4 <Dddl>i+%ed_ed’ + <Ddd/>i+%ed—2ed’> :

Finally, consider cell faces normal to a Dirichlet boundary and one cell away,
such as the face centered on the point labeled D in Figure 3. The average of
the normal derivatives (d = d') is computed in the same manner as for the
interior cells. For the average of the transverse derivative (d # d’), we replace
(35) and (36) by

aa _ 1

Tirder 7210 { 0P, 1oay Low T2100 100 o (50)
3501~ 12601, 0t 15ai+;ed29d,] ,
v 1 [64@ — 105
Tirdet 35 |77 irgettger T Nk jetrer -
3R 2L 1 180 d,} ,

where again <I> 1 is the prescribed boundary value. This yields a fourth-

1 ed
+

order accurate ﬁrst derlvatlve and second-order accurate third derivative, re-

spectively. We furthermore use for the transverse gradients the second-order

14
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formula

0 1
Ow ), 1.4 105h2
2

Gy (320,

i+

- 140ai+%ed + 63ai+%e

35a
1+%ed+§ed/ + i

o + 20«

1+%ed+ed/

(52)

i+%ed—2ed'} )

Stencil modifications corresponding to a Dirichlet condition at the lower bound-
ary of a coordinate direction are obtained in the obvious way by permuting
indices and negating the entries of stencils corresponding to odd order deriva-

tives.

3.8 A numerical example

To test the discretization described in the preceding sections, we consider
the solution of Poisson’s equation in the “D”-shaped annular geometry €2
presented in Section IV of [12] and depicted in Figure 4. The mapping X from
computational coordinates € = (£, &) to physical coordinates x = (xy, z3) is
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given by

7 = 1.7+ [0.074 (26 — 1) + 0.536] cos [27&, + sin ™" (0.416) sin(27&,)]

53

s = 1.66[0.074 (2&; — 1) + 0.536] sin(27&,), 53)
for 0 < &;,& < 1. We seek the solution of

V20(x) = p(x), x€Q, (54)

satisfying homogeneous Dirichlet boundary conditions in the radial (£;) direc-
tion

O(X(0,&)) = P(X(1,&)) =0, 0<& <1, (55)
and periodic boundary conditions in the azimuthal (&) direction. To test the
accuracy of our discretization, we employ a manufactured solution procedure
and compute a right-hand side p corresponding to a predetermined, analyti-
cally prescribed solution. After forming and solving the linear system resulting
from our discretization using the right-hand side so obtained, we can compute

the discretization error since the exact solution is known. In particular, we set
P(x) = (X !(x)), where

(&1, &) = 46 (1 — &) [1 + 0.1sin(87&)] . (56)

Using (56), we apply the divergence theorem to compute the integral of p over
a mapped grid cell X(V) as

xX)dx =
/X(V)p() X

Since the mapping (53) is prescribed using simple analytic formulas, the trans-
formation matrix N and its Jacobian J are also explicitly available. The
one-dimensional integrals in (57) are evaluated using the DQAG integrator
from QUADPACK [13], which implements a globally adaptive Gauss-Kronrod
quadrature to prescribed relative and absolute tolerances. For the convergence
results presented below, the relative and absolute tolerances were set to 10712
to reduce the quadrature error well below the discretization errors being mea-
sured, yielding a nearly exact evaluation of the the integral (57).

2
3 /A (JINTNVS) dA.. (57)
d=1 d

=4,—

The discretization described above was implemented in a test code using the
Chombo infrastructure [14]. The resulting linear system was solved using a
preconditioned conjugate gradient (PCG) solver from the Hypre library [15].
The Hypre PCG solver accommodates the 5x 5 stencil generated by the fourth-
order discretization at each grid cell. Given the positive-definite, self-adjoint
property of the linear operator, a possible alternative approach would have
been to employ a multigrid solver. We do not, however, have a multigrid solver
available that can accommodate a 5 x 5 stencil, including the multigrid solvers
available in Hypre. We therefore employ the Hypre PFMG multigrid solver
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Fig. 5. Test problem convergence study.

applied to a standard second-order discretization of (54) as a preconditioner
for CG. Beyond the issue of solver availability, it is generally acknowledged
that the combination of a Krylov method with multigrid preconditioning yields
a more robust solver, especially with variable coefficients.

Figure 5 shows the Ly, Ly and max norm errors in the discrete solution of
(54) using an N x N computational grid with N = 16,32,64, 128,256 and
512, plotted against N~*. By L; and L, norms, we mean the discrete norms
computed using the solution error evaluated at cell centers, rather than con-
tinuous norms computed using a reconstruction of the discrete solution over
grid cells. The fourth-order convergence rate is clearly observed. In each case
the PCG iteration was performed to a tolerance of 1071 on the relative L?
residual norm (the L? norm of the residual relative to that of the right hand
side). The multigrid preconditioner was solved to a relative tolerance of 1072
in each iteration. Table 1 shows the relative residual at each iteration together
with an estimate of the local convergence rate for the finest grid N = 512. A
pseudocolor plot of the N = 512 solution is shown on the right-hand side of
Figure 4.
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Iteration | Convergence Residual

number rate norm

[

0.000223 2.232355e-04
0.209853 4.684667¢-05
0.074080 3.470404e-06
0.120163 4.170155e-07
0.144002 6.005124e-08
0.075322 4.523166e-09
0.247301 1.118583e-09
0.107240 1.199568e-10
0.090233 1.082405e-11

© 0 N O Ot ke W N

Table 1
PCG convergence rates and residuals for N = 512.

4 Application to Scalar, Linear Hyperbolic Equations

In this section, we apply the mapped grid formalism to obtain a fourth-order
accurate finite-volume discretization of a scalar hyperbolic conservation law

21;+VX-F:0 on xecQCRP t>0. (58)

This equation expresses the evolution of the conserved scalar field u : Q0 x
[0,00) — R under the action of the vector-valued flux function F(u,x,t),
where F : Q x [0,00) — RP. The vector whose entries consist of the wave
speeds in each coordinate direction is given by

v(u,x,t) = g]i, (59)

where v :  x [0,00) — RP. In the simplest case, this velocity vector is a
constant.

Because of the ease of formulation for higher-order, we adopt a method-of-
lines discretization approach. As in (5), let X be a smooth mapping from
some abstract Cartesian coordinate space & into physical space. We discretize
on a uniform finite-volume grid (1) with grid spacing h; thus each control
volume is V; = hP. Integrating (58) over a cell i and applying (7) and (19)
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yields the semi-discrete system of ordinary differential equations

4 /quE = / 8—udx = —/ Vi - Fdx
dt X(v;) Ot X (V)
Vi (60)

D—-1 d d
I

d=1

Dividing by the uniform cell volume h”, equation (60) becomes the fourth-
order update formula

dwl), 1

é < e F*y ) +0(h'), (61)

8
~
D‘

2

written in terms of the cell-averaged quantity (u.J); on the computational grid.
The cell average of the solution of the physical space grid is then

/ dx / u(x)dx = (j),_l (ud);. (62)

(Vi) X (Vi)

For discrete conservation, it is easiest to store and to update (u.J); directly,
converting to u; only for output.

4.1  Face-Averaged Flur Approximation

In the update (61), the face-averaged normal interface fluxes F¢ ; , are ap-

1+§e
proximated to fourth-order by (20). Thus, the problem is reduced to obtain-
ing fourth-order accurate approximations to each component s of the face-
averaged interface fluxes (F*),, Lod (s =1,...,D) averaged over the compu-

tational space cell faces with normals in the d-directions (d = 1,..., D).

Taylor expansion of the integrand of (18) about the center of a d-th face gives

O*F
<F>i:tled = F 1:t ed Z
2 24 d’;ﬁd agd/

+0(ht). (63)
£:§ii%ed

Specializing to a linear flux, we assume F(§) = v(§)u(). Then (63) becomes

_ d
<F>i:t%ed “VitfedUjtled

h? 0*v ov Ou 82u> (64)
+ — u +2 +v +O(h'),
24 d’;d ( 853’ afd’ aéd’ 863/ €=€.,1 4 ( )
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where we adopt the pointwise notation Gitled = q(gii%ed). Thus, the face-
averaged flux is expressed in terms of pointwise values of v, u, and their
derivatives at the center of the face i & %ed

The expansion of the integral (63) also gives pointwise values expressed in
terms of face-averaged values. Specifically, for pointwise values of v and v,
one can write

h? v 4
Vieter = (Visger = 57 %jd oG +0(h), (65a)
T itge
h? 0%u A
uii%ed = <u>ii%ed - ﬁ d%;d @ e + O(h ) . (65b)
- itje
Thus, the average interface flux is
h? ov Ou
Fhagor = gt + 15 2 ( o agd,l o). @

written in terms of the face-averages (u);, 100 and (V)is 100 and the pointwise
values of the gradients of u and v at the center of the face.

In a finite-volume scheme, one works with cell-averaged values. Through the
use of primitive functions [16], one can construct face-averages directly in
terms of cell averages; at fourth-order on a uniform grid, this yields the
centrally-differenced expression

1 (Gizroed + Gied) + O<h4) . (67)

(Cji + Qi—&—ed) - 12

<q>i+%ed = E
To approximate the pointwise transverse gradients, we first note that an O(h?)
approximation is sufficient. In the d’-th direction, a suitable centrally differ-

enced approximation is

Jq
3%

1

&= glil d 4h

(qi—l-ed/ T Gitedted — Gi_ed — Cji:ted—ed') + O(hQ) . (68)

Expressions (67) and (68) provide the approximations necessary to evaluate
the face-averaged fluxes (66) to fourth-order given the cell averages of u and
v on the computational grid.

To obtain the average u; from the average (u.J);, we again appeal to Taylor
series expansion of the integrand to express the average of products as the
product of averages:

= 1 hQ(vgu Vel); +O(h'). (69)
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Fig. 6. Stability region of the classical Runge-Kutta scheme. The approximation by
a semi-ellipse (77) is shown in blue.

Thus,
i =h"P / u(x(€))d¢ = (j)i’1 l(uJ)i — ivgu Vel + o(h‘*)] . (70)

We require at least second-order approximations of the gradients and choose
the central differences

d —_
(Vﬁu)i _ 2h

+0(n?) (71)

i—
Ji+ed —ed

1 [(u‘])iJre‘i N (T{) ed
7

in each direction d. This choice is freestream preserving; the difference evalu-
ates to zero (within roundoff) provided that the averages are initialized such
that, for constant u, uJ; = uJ;.

4.2 Time Discretization

As in [7], we discretize the semi-discrete system of ordinary differential equa-
tions (61) using the explicit, four-stage, fourth-order classical Runge-Kutta
scheme [17]. Consider the variable-coefficient problem

dy
5 = Ay, (72)
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where y is the vector of N unknowns (u.J); and A(x) is an N x N spatially-
varying variable-coefficient matrix. For all four-stage, fourth-order Runge-
Kutta temporal discretizations, the characteristic polynomial is

2 g3 A
P@%ﬂ+@+é+é+i, (73)

where z; = At \; and the A\; € C are the N eigenvalues of A. The constant-
coefficient stability constraint is

P(z)| <1 Yje[LN] (74)

Alternatively, for all j, let z; = x; +1iy; with x;, y; € R, then the amplification
factor g; of the fully discrete scheme has real part

2?2 2® ot 2 22 4
thz<1+%+-5+(§+zﬁ—fg<L+%A—5>+gi (75)

and imaginary part

2 1 3
Imgj:yj<1+xj+5—1—5)—%(1—1—@), (76)

and our notion of stability implies that |g;| < 1 for all j. If one can estimate
the eigenvalues of the spatial operator A;, one then has a means of selecting a
stable timestep. In practice, the semi-ellipse shown in Figure 6,

4a\? 27\
- - < <
(n)'+(5> <1 for  2<0, (77)

provides a more practical relation to determine stability.

Analytically, the constant-coefficient problem reveals a potential shortcoming
of our full discretization. Define the shift operator and its inverse

Tous = Ujyee  and Ty 'y = U_ga.

The semi-discrete system of ordinary differential equations (61) reduces to

T (S5 () -y z-m) @

On a periodic domain, the eigenvalues are

- D
No=—— agsing;, [4 — cos6;,], (79)
3h 2~
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Fig. 7. Variation of the magnitude of the amplification factor |g| and the relative
phase speed «/a with phase angle 0 for several values of 0. Note that as § — =+,
the damping vanishes and the modes do not propagate. Furthermore, the phase
error is effectively independent of o.

where the discrete phase angles are 0;, = 2mig/n, iq = 0,+1,£2,...,£n/2.
Because of the central spatial discretization, the eigenvalues are all pure imag-
inary, that is, the spatial discretization contributes no numerical dissipation.
The magnitude of the amplification factor as a function of continuous phase

angles is
y6 y2

For D = 1, this is plotted in Figure 7. Similarly, the relative phase speed of
the one-dimensional scheme,

aff) 1 Img(0)

a  o0Reg(h)’

(81)

where o = aAt/h, is also plotted in Figure 7. We see that the Runge Kutta
scheme adds a small amount of dissipation and that, as § — =, this dissi-
pation vanishes. At the same time, we see that these high-wavenumber modes
(grid modes) do not propagate. For variable-coefficient and nonlinear prob-
lems, these undamped grid modes can pollute the solutions, if not cause in-
stability.

4.8 Limiting

One approach to stabilize a high-order, no- or low-dissipation scheme for
variable-coefficient or nonlinear hyperbolic problems is to add artificial dis-
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sipation. For example, adding an artificial dissipation of the form

v(—=1)" RPN T - 1) (1 - T Y, (82)

to the discrete scheme in computational space gives a scheme dissipative of
order 2r in the sense of Kreiss [18,19]. However, for r > 1, the discrete higher-
order derivatives will introduce new numerical difficulties in the presence of
discontinuous solutions or poorly resolved gradients.

An alternative approach from the shock-capturing literature is to use a nonlin-
ear limiting scheme. For linear, variable-coefficient problems, genuinely non-
linear discontinuities (shocks) do not occur. However, velocity gradients can
cause slopes in the solution to steepen, and initial and boundary conditions
can introduce linear discontinuities. We therefore will use nonlinear flux lim-
iting for robust handling of under-resolved gradients and discontinuities. A
disadvantage of this approach is that it locally reduces the order of conver-
gence of the scheme, but for smooth problems, this should only occur in a
very small subset of cells, if at all. Thus, the maximum pointwise error may
not converge at fourth-order, but the errors should converge near fourth-order
almost everywhere.

In the mapped-grid formalism, we propose to apply a limiter scheme to the
cell-averaged solution on the computational grid, u;. As a specific example,
we implement a method-of-lines variant of the recently-improved, extremum-
preserving limiter developed in [8]. In this implementation, the upwind of the
two limited face values at each face of the computational grid is chosen as the
basis state of the flux for each right-hand side evaluation of the time integrator.
The only modification to the original scheme specific to mapped grids is that
the upwind direction at each face is determined using the normal velocity on
the computational mesh, that is, w = N”7v. We use the recommended limiter
coefficient C' = 1.25.

For the smooth-data initial value problems considered in the next section, this
limiting procedure achieves fourth-order convergence on mapped grids with
sufficient resolution. However, we have identified some smooth problems for
which this specific limiter fails to produce the optimal convergence rate as the
mesh is refined. The cause of this sub-optimal convergence is not completely
understood. It does not appear that the issue is a reflection of the approach
to limiting within the mapped grid framework but instead is a result of the
specific combination of the limiter and discretizations used. The subject of a
robust limiter for the mapped grid formalism is still an open issue and is the
subject of ongoing investigation.
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Fig. 8. The deformed mesh (84) used in the example problems, shown with N=64
cells in each direction.

4.4 Ezample Problems

To demonstrate the behavior of the hyperbolic mapped finite-volume scheme,
we investigate several initial value test problems. On a periodic domain, we
consider uniform advection of constant, sinusoidal, and compactly supported
initial data. We also consider the standard limiter test problem of rotational
advection of a slotted cylinder. For each of these problems, we compute on a
uniform, Cartesian mesh and a nonlinearly deformed mesh.

For each smooth problem, a grid convergence study is conducted. We compute
on a sequence of six meshes with N = {16, 32,64, 128, 256, 512}. The error in
the cell-averaged numerical solution u; is computed by differencing with a
cell-averaged reference solution. The exact solutions for the test problems are
easily expressed pointwise, but to compute the cell-averaged reference solution
on the mapped grid analytically is difficult. Instead, for our reference solution,
we compute cell-centered pointwise values (uJ)y on a uniform computational
grid with h = 1/8N, and then use the relationships (4) and (62) to obtain
approximate values of u; on the original, coarser grid. Thus, our reference
solution is a fourth-order approximation of the cell-averaged exact solution,
but for the problems we consider, this error in the reference solution is several
orders of magnitude smaller than the error between the computed solution
and the reference solution.
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Lo Error Norm for Base Scheme

Neells 16 32 64 128 256 512

Cartesian | 0.00e+00 | 0.00e4+00 | 0.00e4+00 | 0.00e+00 | 0.00e+00 | 0.00e+00
Deformed | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 4.44e-16 2.22e-16

Table 2
Maximum pointwise errors for freestream preservation test at six resolutions for the
base scheme.

Lo, Error Norm for Base Scheme with Limiter

Neolls 16 32 64 128 256 512

Cartesian | 0.00e4-00 | 0.00e4+00 | 0.00e+00 | 0.00e+00 | 0.00e+00 | 0.00e+00
Deformed | 1.11e-16 2.22e-16 3.33e-16 6.66e-16 2.44e-15 4.13e-13

Table 3
Maximum pointwise errors for freestream preservation test at six resolutions for the
base scheme with limiter.

4.4.1 Mappings

For reference, we compute on a uniform, Cartesian mesh, which corresponds
to the identity mapping

x(§) = €. (83)

This demonstrates that the metric computations reduce to the correct trivial
relationships and provides a baseline against which to compare the results of
simulations with less trivial mappings.

The nonlinear mapping we consider is a specialization of the mapping used
in [20]. This mapping is generated by perturbing a uniform Cartesian mesh
by a Cartesian sinusoidal product, specifically,

D
zq =&+ aq [[ sin(27E,), d=1,...,D. (84)

p=1

To ensure that the perturbed mesh does not tangle, it is sufficient to take Vd,
0 < 2may < 1. This mapping cannot be inverted analytically, however, noting

that
Qg

gd:xd"i_ (gd’_xd’)a dzla"'7D7 d#d/7 (85>

g
for ag # 0, the mapping can be inverted numerically using a fixed-point
iteration on the scalar equation (84) for ;. Note that for this mapping, the
Jacobian is not constant. A depiction of the mapped grid for N = 64 in each
direction is plotted in Figure (8).
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4.4.2  Uniform Advection of Constant Data

We consider uniform advection of constant initial data on a periodic domain
x € [0,1)% The initial conditions are

up(x) =1, (IC1)

and the uniform velocity vector is

v(x) = (1,0.5). (86)

The exact solution is u(x,t) = 1 at all times; we take a constant nominal CFL
number of ¢ = v AtN = 0.32 and integrate to a final time of ¢ = 2. While
this problem appears to be trivial, it is an important demonstration of the
freestream preservation capability of the discretization.

Results of grid convergence studies are presented in Tables 2 and 3. Freestream
preservation is demonstrated by the fact that the maximum pointwise error in
the computed solution in both cases is at most dominated by round-off error.
Both with and without the limiter, the method is shown to be freestream
preserving.

We note that the results differ with and without the limiter because the limiter
scheme operates on data even when the solution is constant. The limiter never
reduces the order of the scheme in this case, but the method does a number of
finite-precision operations that can introduce additional round-off error. This
is particularly true on the deformed mesh (84); note that the non-constant
Jacobian for this mapping also contributes to round-off error. The magnitude
of round-off error increases with the number of cells because more time steps,
and hence more floating-point operations, are required to reach the final time.

If one were so inclined, a small modification to the limiter algorithm can be
made to prohibit it from acting on digits with dubious significance. Specifically,
the first step in constructing face values and in constructing parabolic inter-
polants is to compute a pair of differences between face and cell values. If the
maximum relative magnitude of the two differences is above some small value
(say 10719), the limiter algorithm proceeds normally; otherwise, the limiting
process is skipped. In practice, this produces limited freestream-test results
identical to those for the base scheme (Table 2) with no apparent effect on
limiter performance for less trivial applications.
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Uniform Advection of Sinusoidal Data (IC2)

s
E’ 107 4
o
€
S 10 E
-
10°F E
7 @ - Cartesian: Base N
1078 = Deformed: Base X 3
—e—- Cartesian: Limiter -
1084 —® Deformed: Limiter| ~ 4
— — — First-Order )
Fourth-Order
1075 =
10 10 10
Number of Cells
Ly Error Norm for Base Scheme
Neells ‘ 16 ‘ 32 ‘ 64 ‘ 128 ‘ 256 512
. error | 4.81e-03 | 3.07e-04 | 1.93e-05 | 1.21e-06 | 7.55e-08 | 4.72e-09
Cartesian
rate - 3.97 3.99 4.00 4.00 4.00
error | 3.82e-02 | 2.45e-03 | 1.56e-04 | 9.79e-06 | 6.13e-07 | 3.83e-08
Deformed
rate - 3.96 3.97 3.99 4.00 4.00
L1 Error Norm for Base Scheme with limiter
Neells ‘ 16 ‘ 32 ‘ 64 ‘ 128 ‘ 256 512
. error | 4.75e-03 | 3.07e-04 | 1.93e-05 | 1.21e-06 | 7.55e-08 | 4.72e-09
Cartesian
rate - 3.95 3.99 4.00 4.00 4.00
error | 5.49e-02 | 5.86e-03 | 1.31e-03 | 9.85e-06 | 6.21e-07 | 3.89e-08
Deformed
rate - 3.23 2.16 7.06 3.99 4.00

Fig. 9. Convergence of maximum pointwise error with grid refinement for uniform

advection (86) of sinusoidal data (IC2) for both meshes.

4.4.8  Uniform Advection of Sinusoidal Data

We consider uniform advection of Cartesian-product sinusoidal initial data on
a periodic domain x € [0, 1)?. The initial conditions are

up(x) = cos(2mxy) cos(2msy),

and the uniform velocity vector is again (86). The exact solution is

where ug is by definition periodic in each direction with unit period. Again,
we take a constant CFL of o0 = 0.32 and integrate to final time of ¢ = 2.

u(x,t) = ug(x — vt),
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Uniform Advection of Sinusoidal Data (IC2)

10 \
107 E
10°F ) E
10°F E
s
T 8 E
o
£
Q 5
Z 10°F E
3
=
107°F E
w7l Cartesian: Base LN 1]
0 = Deformed: Base ~ [
—e— Cartesian: Limiter AN
10°¢L| —=— Deformed: Limiter, e i
— — — First-Order
Fourth—Order
1075 = 3
10 10 10
Number of Cells
Lo Error Norm for Base Scheme
Necells ‘ 16 ‘ 32 ‘ 64 ‘ 128 ‘ 256 ‘ 512 ‘
. error | 9.59e-03 | 6.22e-04 | 3.92e-05 | 2.46e-06 | 1.54e-07 | 9.60e-09
Cartesian
rate - 3.95 3.99 3.99 4.00 4.00
error | 6.97e-02 | 3.94e-03 | 2.49e-04 | 1.56e-05 | 9.77e-07 | 6.11e-08
Deformed
rate - 4.14 3.98 4.00 4.00 4.00
Lo Error Norm for Base Scheme with limiter
Neells ‘ 16 ‘ 32 ‘ 64 ‘ 128 ‘ 256 ‘ 512 ‘
. error | 9.70e-03 | 6.22e-04 | 3.92e-05 | 2.46e-06 | 1.54e-07 | 9.60e-09
Cartesian
rate - 3.96 3.99 3.99 4.00 4.00
error | 1.61e-01 | 2.78e-02 | 2.23e-02 | 2.41e-05 | 1.57e-06 | 1.55e-07
Deformed
rate - 2.53 0.32 9.85 3.94 3.34

Fig. 10. Convergence of maximum pointwise error with grid refinement for uniform
advection (86) of sinusoidal data (IC2) for both meshes.

Results of grid convergence studies are plotted in Figures 9 and 10. For the
unlimited scheme, fourth-order convergence is seen for both meshes. Fourth-
order convergence is also obtained by the limited scheme for the Cartesian
grid; in fact the errors are nearly identical to the unlimited scheme.

However, on the deformed mesh (84), fourth-order convergence is not in gen-
eral seen for the limited scheme. At a resolution of N = 64, large isolated errors
occur, as is indicated by the large difference in L; and L., norm behaviors.
However, at finer resolutions, near-fourth-order convergence is again obtained
for this mapping. The isolated errors occur in the regions of most strongly
stretched mesh, and the isolated behavior at N = 64 suggests a transition in
the detail of the mapped grid that can be represented at finite resolution.
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Note that, in computational space, the problem is a variable-coefficient prob-
lem on a uniform mesh, where the solution is locally modified by the Jacobian.
Around N = 64, enough detail of the mapping is represented such that, in
isolated regions, some variations in the velocity and/or solution are identifi-
able but under-resolved. Thus, the limiter attempts to control the solution in
these regions, causing the scheme to drop order. As the mesh is refined, the
variations are resolved, and the number of points at which the limiter is active
drops. The good agreement between the limited and unlimited L; error norms
at resolutions finer than N = 64 supports this explanation.

4.4.4  Uniform Advection of Compactly-Supported Data

We consider uniform advection of compactly-supported smooth initial pulse
on a periodic domain x € [0,1)2. The initial conditions are

COSB<W), 0<r <R,

up(x) = 2R - (IC3)
0, otherwise,

r = |x —x*|, and the uniform velocity vector is again (86). We take R =

0.25 and x* = (0.75,0.5). The exact solution is again given by (87), with
u(x + el t) = u(x,t) for d = 1,2. We take a constant CFL of ¢ = 0.32 and
take the final time to be ¢ = 2.

Results of the grid convergence study for the base and the limited scheme are
plotted in Figures 11 and 12. For both schemes and both meshes, the compact
function is poorly represented at coarse resolutions; at N = 16, there are only
four cells in each direction across the non-zero portion of the function. By
around N = 128, the error behavior begins to enter the asymptotic regime for
both norms, and the computed solution converges at a fourth-order rate for
both schemes and on both meshes.

4.4.5  Circular Advection of a Slotted Cylinder
A standard problem used to test the multidimensional performance of limiting

schemes is the circular advection of a slotted cylinder. The rotational velocity
vector for rotation about x¢ = (0.5,0.5) is

V(%) = 2mw(= (22 — 25), (11 — 27)), (V3)

where we take w = 1. We define a slotted cylinder of radius R = 0.15, slot
width W = 0.05, and slot height H = 0.25 centered on x* = (0.5, 0.75) for the
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Fig. 11.

meshes.

Convergence of L error norm with grid refinement for the base and limited
schemes for uniform advection (86) of compactly-supported data (IC3) for both

initial conditions:

, O0<R<m,

0
up(x) =<0, |2z1| <W and 0< 2+ R< H, (IC4)
1

, otherwise,

where z = x —x* and r = |z|. We simulate on the truncated domain x € [0, 1]?
with NV = 100 cells in each direction. The exact solution at time ¢ = 1 is the
initial condition, and we use a fixed time step of At = 1.59236 x 1073.

The initial and final solution for simulation on a Cartesian mesh are plotted
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Fig. 12. Convergence of maximum pointwise error with grid refinement for the base
and limiter schemes for uniform advection (86) of compactly-supported data (IC3)
on both meshes.

in Figure 13. The basic shape of the cylinder is preserved, albeit with some
spreading of the initially sharp edges of the cylinder. The slot has some fill-in,
but the shape and size of the slot is fairly well preserved. This is a very good
approximation for such a coarse resolution; note that there are only five cells
across the slot.

The initial and final solution for simulation on the mapped grid (84) are plot-
ted in Figure 14. Again, the basic shape of the cylinder is preserved, although
there is more smearing than for the Cartesian case. In addition, note that
there are slightly larger overshoots (still only 1%) than for the Cartesian case.
The symmetry of the cylinder is still relatively good, despite the distortions
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Fig. 13. Circular advection of a slotted cylinder on a 100 x 100 Cartesian grid. The
left is the initial condition (and reference solution), and the right is the computed
solution after one revolution. The slot and bridge do fill in and slump, respectively,
but the overall agreement is good.

in the mesh.

5 Summary

We have presented a strategy for the construction of high-order, finite-volume
discretizations of flux divergences in mapped coordinates. The approach is
based on the systematic development of sufficiently accurate cell face averages,
including the computation of product averages in terms of factor averages
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Fig. 14. Circular advection of a slotted cylinder on a 100 x 100 deformed grid (84).
The left is the initial condition (and reference solution), and the right is the com-
puted solution after one revolution. The slot and bridge do fill in and slump, re-
spectively, but the overall agreement is good.
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and/or face-centered values. Among the face averages to be computed are
those of the coordinate mapping metric factors, whose calculation affects not
only the overall accuracy of the scheme but also freestream preservation. The
latter is automatically achieved to machine roundoff by representing the metric
factors as exterior derivatives, whose face averages are in turn reduced to
quadratures on face hyperedges. The quadratures can be performed by any
convenient method of sufficient accuracy.

To demonstrate the approach, we developed fourth-order discretizations of
prototypical elliptic and hyperbolic problems. In addition to testing fourth-
order accuracy, the elliptic example displayed the use of an operator based on
a second-order finite-volume discretization as a preconditioner in a conjugate
gradient iteration. Such strategies can be important in reducing the solver cost
of the larger stencils that inevitably accompany high-order discretizations. In
the hyperbolic examples, we included an improved nonlinear limiter [8]. Our
results indicate that the limited method can achieve a fourth-order conver-
gence rate for smooth data on mapped grids and can control oscillations for
discontinuous data on mapped grids.

Although we focused on fourth-order, finite-volume discretizations in this pa-
per, higher-order discretizations are obtainable by a similar strategy. The es-
sential ingredients are a generalization of the cell face average product formula
(17), more accurate quadrature formulas for the integrals of metric factors over
face hyperedges in (11), and a discretization of flux face averages to the desired
order of accuracy. Further extensions include moving mapped grids, as well as
generalization from domains describable by a smooth mapping from a single
Cartesian computational grid to more complicated multiblock geometries.
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